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Abstract

The well-known structure theorem of Hadamard-Zolésio states that the derivative of a shape
functional is a distribution on the boundary of the domain depending only on the normal per-
turbations of a smooth enough boundary. However a volume representation (distributed shape
derivative) is more general than the boundary form and allows to work with shapes having a lower
regularity. It is customary in the shape optimization literature to assume regularity of the domains
and use the boundary expression of the shape derivative for numerical algorithm. In this paper
we describe the numerous advantages of the distributed shape derivative in terms of generality,
easiness of computation and numerical implementation. We give several examples of numerical
applications such as the inverse conductivity problem and the level set method.

Introduction

In his research on elastic plates [12] in 1907, Hadamard showed how to obtain the derivative of a
shape functional J(Ω) by considering normal perturbations of the boundary ∂Ω of a smooth set Ω.
This fundamental result of shape optimization was made rigorous later by Zolesio [8] in the so-called
“structure theorem”. When J(Ω) and the domain are smooth enough, one may also write the shape
derivative as an integral over ∂Ω, which is the canonical form in the shape optimization literature.

However, when Ω is less regular, the shape derivative can often be written as a domain integral
even when the boundary expression is not available. The domain expression or distributed shape
derivative has been generally ignored in the shape optimization literature for several reasons: firstly the
boundary representation provides a straightforward way of determining an explicit descent direction
since it depends linearly on the boundary perturbation θ and not on its gradient, secondly this descent
direction only needs to be defined on the boundary. When considering the domain expression, these
two advantages disappear as the shape derivative is defined on Ω and depends on the gradient of θ,
so that a partial differential equation needs to be solved to obtain a descent direction θ on Ω.

It seems that these drawbacks would definitely rule out the distributed shape derivative, however they
turn out to be less dramatic than expected in many situations and the domain formulation has other
less foreseeable advantages over the boundary representation. In this paper we advocate for the use
of the distributed shape derivative and discuss the advantages of this formulation.

The boundary representation has the following drawbacks. First of all if the data is not smooth enough
the integral representation does not exist so that the more general domain representation is the only
rigorous alternative. Even when the boundary representation exists and has the form

∫
∂Ω
g θ · n, it

is usually not legitimate to choose θ · n = −g on ∂Ω for a descent direction if g is not smooth
enough, for instance if g ∈ L1(∂Ω). Therefore, a smoother θ must be chosen, which requires to solve
a partial differential equation on the boundary ∂Ω. When taking θ · n = −g is legitimate, it might
still not be desirable as this may yield a θ with low regularity, in which case one needs to regularize
θ on the boundary as well. Therefore the first advantage of the boundary representation disappears.
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The second advantage of the boundary representation is that the perturbation field only needs to
be defined on the boundary instead of on the whole domain, reducing the cost of the computation.
Actually, the distributed shape derivative also has its support on the boundary, and may be computed
in a small neighbourhood of the boundary so that the additional cost is minimal. In addition, in most
shape optimization applications, g is the restriction from a function defined in a neighborhood of the
boundary and not a quantity depending only on the boundary such as the curvature. Therefore from a
practical point of view, g must be evaluated in a neighbourhood of ∂Ω anyway. Also, in many numerical
applications, θ must be extended to a neighborhood of Γ or even to the entire domain Ω. This is the
case for level set methods for instance, where the level set function must be updated on Ω, or when
one wishes to update the mesh along with the domain update, to avoid re-meshing the new domain.
The distributed shape derivative then directly gives an extension of θ well-suited to the optimization
problem.

Recent results have shown that the distributed shape derivative is also more accurate than the bound-
ary representation from a numerical point of view; see [16] for a comparison. Indeed functions such
as gradients of the state and adjoint state appearing in the distributed shape derivative only need to
be defined at grid points and not on the interface. Therefore one avoids interpolation of these irreg-
ular terms. This is particularly useful for transmission problems where the boundary representation
requires to compute the jump of a function over the interface, a delicate and error-prone operation
from the numerical point of view.

Two other novel aspects of this paper are the introduction of a new Lagrangian method to compute
the shape derivative of a cost function depending on a transmission problem in an efficient way, i.e.
bypassing the computation of the shape derivative of the state equation, and the extension of the level
set method to the case of the distributed shape derivative. We apply the Lagrangian approach to the
problem of electrical impedance tomography in Section 4. Combining these techniques, we obtain a
straightforward and general way of solving the shape optimization problem, from the computation of
the shape derivative to the numerical implementation.

In Section 1 we recall the concept of shape derivative and the structure theorem. In Section 2 a
Lagrangian method for transmission problems is described. In Section 3 we discuss gradient methods
based on the distributed shape derivative and give several examples. In Section 4 we apply the results
of Section 2 to the inverse problem of electrical impedance tomography. In Section 5 we extend the
level set method to the case of the distributed shape derivative and finally in Section 6 we show
numerical results for various problems including the problem of electrical impedance tomography.

1 Differentiation of shape functions

LetP(D) be the set of all subsets ofD ⊂ Rd, where the so-called “universe”D ⊂ Rd is assumed to
be open. Henceforth we will work with the space of all k−times differentiable functions with compact
support in D, i.e.

Lip(D,Rd) := {f ∈ C0,1(D,Rd)| {x ∈ Rd : f 6= 0} ⊂ D}, (1.1)

Dk(D,Rd) := {f ∈ Ck(D,Rd)| {x ∈ Rd : f 6= 0} ⊂ D}. (1.2)

We have Dk(D,Rd) ⊂ Lip(D,Rd) for k ≥ 1. When k =∞ one uses the notation D(D,Rd) :=
D∞(D,Rd). Consider a vector field θ ∈ Lip(D,Rd) and the associated flow Φt(θ) : D → D,
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t ∈ [0, τ ] defined for each x0 ∈ D as Φt(θ)(x0) := x(t), where x : [0, τ ]→ R solves

ẋ(t) = θ(x(t)) for t ∈ (0, τ),

x(0) = x0.
(1.3)

We will sometimes use the simpler notation Φt = Φt(θ) when no confusion is possible. When
θ ∈ Lip(D,Rd) we have by Nagumo’s theorem [21] that for fixed t ∈ [0, τ ] the flow Φt is a home-
omorphism on D and maps boundary onto boundary and interior onto interior. Further, we consider
the family

Ωt := Φt(θ)(Ω) (1.4)

of perturbed domains. Let P be a subset of P(D).

Definition 1.1 Let J : P → R be a shape functional and Θ be a topological vector subspace of
Lip(D,Rd). The Eulerian semi-derivative of J , when it exists, is defined by

dJ(Ω)[θ]
def
= lim

t↘0
(J(Ωt)− J(Ω)) /t exists for all θ ∈ Θ. (1.5)

(i) J is said to be shape differentiable at Ω in Θ′ if it has a Eulerian semiderivative at Ω for all
θ ∈ Θ and the mapping

G : Θ→ R

θ 7→ dJ(Ω; θ)

is linear and continuous, in which case G(θ) is called the shape derivative at Ω.

(ii) The smallest integer k ≥ 0 for which G is continuous with respect to the Dk(D,Rd)-topology
is called the order of G.

We have the following fundamental result of shape optimization which gives information about the
structure of the shape derivative:

Theorem 1.2 (structure theorem) Assume Γ := ∂Ω is compact and J is shape differentiable. De-
note the shape derivative by

G : D(D,Rd)→ R, G(θ) := dJ(Ω)[θ]. (1.6)

(i) Assume that G is of order k ≥ 0, then G belongs to the Hilbert space H−s(D,Rd) for some
s ≥ 0 depending on k. Moreover, by the representation theorem of Riesz there exists an
element g ∈ Hs(Rd) such that

G(θ) = 〈g, θ〉Hs(Rd). (1.7)

(ii) If G is of order k ≥ 0 and Γ of class Ck+1 then there exists a distribution g ∈ Ck(Γ)′ such
that

dJ(Ω)[θ] =< g, γ(θ) · n >Ck(Γ)′,Ck(Γ), (1.8)

where γ : Dk(D,Rd)→ Ck(Γ ∩D,Rd) is the trace operator.
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(iii) Moreover, if g ∈ L1(Γ) then

dJ(Ω)[θ] =

∫
Γ

g θ · n ds. (1.9)

Proof: See [8, pp. 480-481]. 2

Remark 1.3 The assumption “Γ must be at least of class C1” of Theorem 1.2 (ii) may be lowered. It
is sufficient for Ω to be of finite perimeter [18, p. 3 Theorem 1.3], in which case the shape derivative
depends on (θ · ν)|∂∗Ω, where ν is the generalized normal and ∂∗Ω denotes the reduced boundary
of Ω [31, p.233, Definition 5.5.1].

In this paper we are interested in numerical methods for shape optimization problems of the type

min
Ω∈P

J(Ω), (1.10)

where P ⊂ P(D) is the admissible set. Assume that the shape function J : P → R is shape
differentiable at Ω ⊂ D ⊂ Rd i.e.

dJ(Ωt)

dt
|t=0 = dJ(Ω)[θ] exists for all θ ∈ Lip(D,Rd) (1.11)

and G(θ) = dJ(Ω)[θ] is of order k ≥ 0.

Definition 1.4 (descent direction) The vector field θ ∈ Θ is called a descent direction for J at Ω if
there exists a t̄ such that

J(Ωt) < J(Ω) for all t ∈ (0, t̄].

If J is shape differentiable at Ω in Θ′, then θ is a descent direction if

dJ(Ω)[θ] < 0. (1.12)

Descent directions are used in iterative methods for finding approximate (possibly local) minimizers of
J(Ω). Typically, at a given starting point Ω, one determines a descent direction θ and proceeds along
this direction as long as the cost functional J reduces sufficiently using a step size strategy.

2 Shape derivatives via Lagrangian method

The Lagrangian method in shape optimization allows to compute the shape derivative of functions
depending on the solution of partial differential equations without the need to compute the material
derivative of the partial differential equations; see [8] for a description of the method in the linear case.
With this approach the computation of the domain representation of the shape derivative is fast and
the retrieval of the boundary form is also convenient. We extend here a result from [29], which allows
to use the Lagrangian method without any saddle point assumptions unlike in [8].

Let E1, E2 and F1, F2 be linear spaces and introduce the function

G : [0, τ ]× E1 × E2 × F1 × F2 → R,

(t, ϕ1, ϕ2, ψ1, ψ2) 7→ G(t, ϕ1, ϕ2, ψ1, ψ2).
(2.1)

We make the following assumption for G.
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Assumption 2.1 For every (t, u1, u2, p1, p2) ∈ [0, τ ]× E1 × E2 × F1 × F2 the mappings

ψ2 7→ G(t, u1, u2, p1, ψ2), ψ1 7→ G(t, u1, u2, ψ1, p2)

are affine-linear.

For p = (p1, p2) ∈ F1 × F2 consider the problem: Find (u1, u2) ∈ E1 × E2:

∂ψ1G(t, u1, u2, p1, p2)(ψ̂1) = 0 ∀ψ̂1 ∈ F1,

∂ψ2G(t, u1, u2, p1, p2)(ψ̂2) = 0 ∀ψ̂2 ∈ F2.
(2.2)

Note that due to Assumption 2.1, the equations (2.2) are independent of (p1, p2) ∈ F1 × F2. We
define the set

Λ(t) := {(u1, u2) ∈ E1 × E2| u1 and u2 solve (2.2)}. (2.3)

Now we select ut = (ut1, u
t
2) ∈ Λ(t) and u = (u1, u2) ∈ Λ(0) and consider a solution pt = (pt1, p

t
2)

of ∫ 1

0

∂ϕ1G(t, [ut1, u1]s, u
t
2, p

t
1, p

t
2)(ϕ̂1)ds = 0, for all ϕ̂1 ∈ E1∫ 1

0

∂ϕ2G(t, u1, [u
t
2, u2]s, p

t
1, p

t
2)(ϕ̂2)ds = 0, for all ϕ̂2 ∈ E2,

(2.4)

where [uti, ui]s := suti + (1− s)ui, i = 1, 2. We associate with this system the following solution set

Υ(t) := {p ∈ F1 × F2| ∃ut ∈ Λ(t) and u ∈ Λ(0) s.t. p solves (2.4)}. (2.5)

In addition to Assumption 2.1, we require:

Assumption 2.2 For every (p1, p2, t) ∈ F1 × F2 × [0, τ ] the mappings

ϕ1 7→ G(t, ũ1 + sϕ1, u2, p1, p2) and ϕ2 7→ G(t, u1, ũ2 + sϕ2, p1, p2)

are absolutely continuous and the partial derivatives are such that the integrals in (2.4) are defined.

Before proving the main theorem, we recall a simple fact.

Lemma 2.3 Let E be linear space and f : E → R a real valued function. Assume that for all
x, y ∈ E

s 7→ f(sx+ (1− s)y),

is absolutely continuous. Then it holds

f(x)− f(y) =

∫ 1

0

∂f(sx+ (1− s)y)(x− y) ds,

where

∂f(sx+ (1− s)y)(x− y) := lim
t→0

f(y + (s+ h)(x− y))− f(y + h(x− y))

t
.
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Proof: We define the function ϕ : [0, 1]→ E by ϕ(s) := f(sx+ (1− s)y), where s ∈ [0, 1]. Then
by the fundamental theorem of calculus

f(x)− f(y) = ϕ(1)− ϕ(0) =

∫ 1

0

ϕ′(s)ds =

∫ 1

0

∂f(sx+ (1− s)y)(x− y) ds.

2

We have the following result for computing derivatives of shape functionals without computing the
derivative of the state:

Theorem 2.4 Let E1, E2, F1, F2 be Banach spaces, τ > 0 a real number, and

G : [0, τ ]× E1 × E2 × F1 × F2 → R,

(t, ϕ1, ϕ2, ψ1, ψ2) 7→ G(t, ϕ1, ϕ2, ψ1, ψ2),

be given. Assume the following conditions are satisfied:

(B1) Assumption 2.1 and Assumption 2.2 are satisfied.

(B2) For all t ∈ [0, τ ] the sets Υ(t) and Λ(t) are not empty and single valued.

(B3) For any sequence (tn)n∈N converging to zero, tn → 0 as n → ∞, there exists a sub-
sequence (tnk

)k∈N, an element p = (p1, p2) ∈ Υ(0) and for every k ≥ 1 there is a pnk =
(pnk

1 , pnk
2 ) ∈ Υ(tnk

) such that for u = (u1, u2) ∈ Λ(0)

lim
k→∞
t↘0

∂tG(t, u, pnk) = ∂tG(0, u, p).

Then for all (ψ1, ψ2) ∈ F1 × F2

d

dt
G(t, ut1, u

t
2, ψ1, ψ2)|t=0 = ∂tG(0, u1, u2, p1, p2).

Proof: Let t ∈ [0, τ ] and p̄t = (p̄t1, p̄
t
2) ∈ Υ(t), p̄ = (p̄1, p̄2) ∈ Υ(0), ut = (ut1, u

t
2) ∈ Λ(t),

u = (u1, u2) ∈ Λ(0) be given. Write

G(t, ut1, u
t
2, ψ1, ψ2)−G(0, u1, u2, ψ1, ψ2)

= G(t, ut1, u
t
2, p̄

t
1, p̄

t
2)−G(0, u1, u2, p̄1, p̄2)

= G(t, ut1, u
t
2, p̄

t
1, p̄

t
2)−G(t, u1, u

t
2, p̄

t
1, p̄

t
2)

+G(t, u1, u
t
2, p̄

t
1, p̄

t
2)−G(t, u1, u2, p̄

t
1, p̄

t
2)

+G(t, u1, u2, p̄
t
1, p̄

t
2)−G(0, u1, u2, p̄

t
1, p̄

t
2),

(2.6)

for all ψ = (ψ1, ψ2) ∈ F1 × F2, where we used Assumption 2.1 to obtain

G(0, u1, u2, p̄
t
1, p̄

t
2)−G(0, u1, u2, p̄1, p̄

t
2) = 0

G(0, u1, u2, p̄1, p̄
t
2)−G(0, u1, u2, p̄1, p̄2) = 0.

By the mean value theorem, we find for each t ∈ [0, τ ] an ηt ∈ (0, 1) such that

G(t, u1, u2, p̄
t
1, p̄

t
2)−G(0, u1, u2, p̄

t
1, p̄

t
2) = t∂tG(ηtt, u1, u2, p̄

t
1, p̄

t
2),
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or briefly
G(t, u, p̄t)−G(0, u, p̄t) = t∂tG(ηtt, u, p̄

t).

This equation, together with Lemma 2.3, yields that (2.6) can be written as

G(t, ut, ψ)−G(0, u, ψ) =

∫ 1

0

∂ϕ1G(t, [ut1, u1]s, u
t
2, p̄

t
1, p̄

t
2)
(
ut1 − u1

)
ds

+

∫ 1

0

∂ϕ2G(t, u1, [u
t
1, u1]s, p̄

t
1, p̄

t
2)
(
ut2 − u2

)
ds

+ t∂tG(ηtt, u, p̄
t),

for all ψ = (ψ1, ψ2) ∈ F1×F2. Using that p̄t ∈ Υ(t) and (ut1−u1) ∈ E1, (ut2−u2) ∈ E2, we get

G(t, ut, ψ)−G(0, u, ψ) = t∂tG(ηtt, u, p̄
t), for all ψ ∈ F1 × F2.

Letψ ∈ F1×F2 be arbitrary and set δ(t) := G(t, ut, ψ)−G(0, u, ψ). Define dg(0) := lim inft↘0 δ(t)/t

and dg(0) := lim supt↘0 δ(t)/t. There are sub-sequences (ln)n∈N and (sn)n∈N of (tn)n∈N such
that

lim
n→∞

δ(ln)/ln = dg(0) and lim
n→∞

δ(sn)/sn = dg(0).

Owing to (B3), we deduce that for every k ≥ 1 there is pnk ∈ Υ(lnk
) such that for u ∈ Λ(0)

lim
k→∞
t↘0

∂tG(t, u, pnk) = ∂tG(0, u, p).

This shows that
lim
n→∞

δ(ln)/ln = lim
k→∞

δ(lnk
)/lnk

= dg(0) = ∂tG(0, u, p),

and the same argumentation leads to

lim
n→∞

δ(sn)/sn = lim
k→∞

δ(snk
)/snk

= dg(0) = ∂tG(0, u, p).

Finally, we conclude

lim
t→0

(G(t, ut, ψ)−G(0, u, ψ))/t = dg(0) = dg(0)

= lim
t↘0

∂tG(ηtt, u, p̄
t) = ∂tG(0, u, p).

Since ψ ∈ F1 × F2 was arbitrary the proof is finished. 2

3 Gradient flow

In this section we give a general setting for computing descent directions in the framework of gradient
methods using the domain and boundary representations of the shape derivative according to Theo-
rem 1.2. We show how a descent direction θ with any regularityHs, s ≥ 1 can be obtained by solving
an appropriate partial differential equation. We also show how to deal with constraints on θ and how
to obtain specific displacements such as translations and rotations.
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3.1 Smooth descent directions

In order to develop a setting allowing to define general descent directions, we recall sufficient condi-
tions for the solvability of the following operator equation

Av = f,

where A : H → H′ is an operator between a Banach spaceH and its dualH′. Sufficient conditions
for the bijectivity of A are given by the theorem of Minty-Browder [27, p.364, Theorem 10.49].

Theorem 3.1 (Minty-Browder) Let (H; ‖·‖H) be a reflexive separable Banach space andA : H →
H′ a bounded, hemi-continuous, monotone and coercive operator. Then A is surjective, i.e. for each
f ∈ H′ there exists v ∈ H such that Av = f . Moreover if A is strictly monotone then it is bijective.

LetA : H → H′ be an operator on a reflexive, separable Banach spaceH satisfying the assumptions
of Theorem 3.1 with A(0)v ≥ 0 for v ∈ H. Denote G := dJ(Ω) ∈ H′. Introduce the bilinear form

b : H×H → R, b(v, w) := 〈Av,w〉H′,H. (3.1)

Consider the variational problem:

(VP) Find v1 ∈ H such that b(v1, w) = −G[w] for all w ∈ H,

Then the solution v1 of (VP) is a descent direction since G[v1] = −b(v1, v1) ≤ 0.

In certain situations it is desirable to have bound constraints such as v ≥ 0 on the shape perturbation.
This may be handled by considering the more general case of a variational inequality. Given a subset
K ⊂ H with 0 ∈ K , consider the variational inequality:

(VI) Find v2 ∈ K such that b(v2, v2 − w) ≤ G[w − v2] for all w ∈ K.

The solution v2 of (VI) yields a descent direction for J at Ω since taking w = 0 ∈ K we get
G[v2] ≤ −b(v2, v2) ≤ 0. In view of Theorem 1.2, we choose H ⊂ Hs(Ω) where s is such that
G : Hs(D,Rd) → Rd is continuous. When H is a Hilbert space, one may identify H′ with H.
Therefore if b is bilinear, coercive, and continuous, then Lax Milgram’s lemma ensures that (VP) has a
unique solution. For all other cases we may have to use Theorem 3.1 or similar results.

Example 3.2 (H1 flow - boundary shape gradient) LetD ⊂ Rd and Ω ⊂ D, d = 2, 3, be of class
Ck, k ≥ 3. Assume J(Ω) admits a shape derivative in a boundary form as in (1.9):

dJ(Ω)[θ] =

∫
∂Ω

g θ · n ds (3.2)

where g ∈ Hk−3/2(∂Ω). TakeH = H1(Ω;Rd) and b(v, w) = (v, w)H. Let θ be the solution of the
variational problem (VP), i.e. θ solves

−∆θ + θ = 0 in Ω,

−∂nθ = g on ∂Ω.
(3.3)

By standard elliptic regularity, we get θ ∈ Hk(Ω). Due to Sobolev imbeddings we get θ ∈ Ck−2,α(Ω),
k ≥ 3 and 0 < α < 1 for d = 2 or 0 < α < 1/2 for d = 3. Therefore the integral in (3.2) is well-

defined. Since Ω is of class Ck we may extend θ to a function θ̃ ∈ Ck−2,α(D) and θ̃ is a descent
direction for J(Ω).

8



Example 3.3 (Transmission problem - boundary shape gradient) Let D ⊂ Rd be the universe
and consider the partition D = Ω+ ∪ Ω− where Ω+ b D is open with a Ck boundary, k ≥ 3, and
denote n its unit outward normal vector. Assume J(Ω+) yields a boundary expression of the type
(1.9):

dJ(Ω+)[θ] =

∫
∂Ω+

g θ · n ds (3.4)

where g ∈ Hk−3/2(∂Ω+). Take H = H1
0 (D;Rd) and b(v, w) := (v, w)H. The solution θ ∈ H of

(VP) solves the transmission problem∫
D

Dθ : Dξ + θ · ξ =

∫
∂Ω+

gξ · n ds for all ξ ∈ H,

which has the following strong form

−∆θ+ + θ+ = 0 in Ω+

−∆θ− + θ− = 0 in Ω−

[θ] = 0, [∂nθ] = g on ∂Ω+

θ = 0 on ∂D

(3.5)

where θ = θ+χΩ+ + θ−χΩ− and [∂nθ] := ∂nθ
+ − ∂nθ−. By standard elliptic regularity and since

Ω+ has a Ck boundary we get θ+ ∈ Hk(Ω+) and θ− ∈ Hk(Ω−). Using Sobolev imbeddings and
the transmission conditions on ∂Ω+ in (3.5) we get θ ∈ C0,1(D). Therefore the integral in (3.4) is
well-defined and θ is a descent direction for J(Ω+).

Example 3.4 (H1 flow - distributed shape derivative) Let Ω ⊂ D ⊂ Rd be both of class C3 and
assume J has a shape derivative of the form

dJ(Ω)[θ] =

∫
Ω

FΩ[θ]dx, (3.6)

where FΩ : Dk(D,Rd) → H1(Ω,R), k ≥ 1 is linear in θ. Let H = H1(Ω,Rd) and b(v, w) =
(v, w)H. Assume that FΩ can be extended to a function

FΩ : H1(D,Rd)→ H1(Ω,R)

A solution of (VP) is defined in the variational sense by: find θ ∈ H1(Ω;Rd) such that∫
Ω

Dθ : Dξ + θ · ξdx = −
∫

Ω

FΩ[ξ]dx for all ξ ∈ H1(Ω;Rd). (3.7)

By standard elliptic regularity, since Ω of class C3, we get θ ∈ H3(Ω). Due to Sobolev imbeddings,
θ ∈ C1(Ω) and θ can be extended to a function in C1(D).

ChoosingH = H1(D,Rd) instead ofH1(Ω,Rd) yields the transmission problem: find θ ∈ H1(D;Rd)
such that ∫

D

Dθ : Dξ + θ · ξdx = −
∫

Ω

FΩ[ξ]dx for all ξ ∈ H1(D;Rd). (3.8)

With such a choice we build an extension of θ to D. By standard elliptic regularity, due to D of class
C3, we get θ|D\Ω ∈ H3(D \ Ω) and θ|Ω ∈ H3(Ω). According to Sobolev imbeddings this yields

θ ∈ C0,1(D).
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Example 3.5 (Hk flow - distributed shape derivative) Assume that D is bounded and smooth. Let
Ω ⊂ D ⊂ R2 be open, consider the space Hk = Hk(D,Rd) ∩ H1

0 (D,Rd) for k ≥ 0 and the
bilinear form

b(θ, ξ) := (θ, ξ)Hk(Ω). (3.9)

Assume J has a shape derivative dJ(Ω)[θ] which belongs to the dual ofHk. By the Riesz represen-
tation theorem the following equation admits a unique solution θ ∈ Hk:

(θ, ξ)Hk = −dJ(Ω)[ξ], for all ξ ∈ Hk. (3.10)

By Sobolev embeddings, θ can be made arbitrary smooth choosing k > 0 large enough, which yields
a smooth descent direction.

Example 3.6 (boundary versus domain representation) Consider the simple example of the vol-
ume of a domain Ω:

J(Ω) =

∫
Ω

1 dx.

When Ω is of class C1, the normal vector n is C0(∂Ω) and

dJ(Ω)[θ] =

∫
∂Ω

θ · n ds. (3.11)

In this case, we are in the framework of Example 3.3 and we can solve (VP) using the Laplacian to get
enough regularity for θ.

When Ω is only measurable, the integral representation (3.11) does not exist but we can still compute
the domain representation

dJ(Ω)[θ] =

∫
Ω

div(θ) dx. (3.12)

In this case, the required regularity θ ∈ W 1,∞(D,Rd) can be obtained by solving (VP) using Hk

with k large enough as in Example 3.5. Using the Laplacian in this case would not provide enough
regularity for θ. Obviously, the more irregular Ω is, the higher the order of the operator b has to be
taken in (VP).

Using a bilinear form defined in Ω we obtain a vector field θ defined in the domain Ω and not only
on the boundary (or the interface) ∂Ω. This is often a desired property for numerical applications. For
instance in the level set method, the common practice is to compute the boundary shape gradient,
deduce from it a descent direction concentrated on ∂Ω, and extend it on the entire domain Ω or on
a narrow band around ∂Ω by solving a parabolic equation. In many applications, the knowledge of θ
on the entire domain Ω is also required to move the mesh points at each iteration in order to avoid an
expensive remeshing.

The distributed shape derivative also allows to obtain descent directions for domains with a low reg-
ularity such as Lipschitz domains as in example 3.6 unlike using the boundary representation which
requires a minimal smoothness of Ω. From a numerical point of view, the domain expression (3.6) is
also easier to handle and more accurate than the boundary expression (3.2) as it does not require to
determine geometric quantities on the interface such as the normal vector or the curvature, and avoids
the interpolation on the boundary ∂Ω of the derivatives of the state and adjoint states often appearing
in the shape derivative (compare for instance the formulae in Proposition 4.2 and Proposition 4.5),
which frequently leads to additional approximation errors.
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3.2 Translations and rotations

In certain applications it may happen that the shape of an object is known while the location and
orientation are to be found. It is then meaningful to use translations and rotations to move a given
shape instead of working with a general class of shapes, and to considerably reduce the amount of
variables in this way. As mentioned earlier in this section, in the shape optimization literature gradient
flows are usually determined by using the boundary shape gradient (1.9) by taking θ · n = −g and
θΓ ≡ 0. This approach produces a vector field θ which is normal to the boundary, and cannot be
a translation in general, although this would be the natural transformation in applications where the
shape is known but not the location.

In order to produce a transformation which is locally a translation, one needs to take a non-zero tan-
gential component θΓ and an appropriate normal component θ · n. In Rd a transformation combining
translation and rotation is a mapping Φ : Rd → Rd which is locally of the form

Φ(x) := Ox+ b, (3.13)

where b ∈ Rd and O ∈ Rd,d is an orthogonal matrix, i.e. OOT = OTO = I . Therefore we can
define a rotation requiring DΦ(DΦ)T = I . For small t the flow Φt of the vector field θ ∈ D(Rd;Rd)
has the form

Φt(x) = x+ tθ(x). (3.14)

To obtain a translation one may assume

Dθ(Dθ)T = I. (3.15)

For a combination of translations and rotations in R2 we may choose a vector field θ which locally
satisfies with β = (β1 β2)T ∈ R2, α ∈ R:

θ(x) = O(α)x+ β, O(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
. (3.16)

The shape derivative is then determined by three parameters α, β1, β2. Note that in this case the
vector field θ is not normal to the boundary of Ω. To determine parameters we can solve

min
(α,β1,β2)∈R3

dJ(Ω)[O(α)x+ β]

Assume the shape derivative has the form (3.2), i.e.

dJ(Ω)[θ] =

∫
∂Ω

g θ · n ds.

Then plugging in θ(x) = Ox+ β with x = (x1, x2), n = (n1, n2) one obtains

dJ(Ω)[θ] = cos(α)

∫
∂Ω

g(n1x1 + n2x2) + sin(α)

∫
∂Ω

g(−n1x2 + n2x1)

+ β1

∫
∂Ω

n1g + β2

∫
∂Ω

n2g.

In view of this formula, one may choose the parameters

α = − arctan

∫
∂Ω
g(n1x1 + n2x2)∫

∂Ω
g(−n1x2 + n2x1)

,

β1 = −
∫
∂Ω

n1g, β2 = −
∫
∂Ω

n2g
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to get a descent direction θ which is a translation and a rotation. Note that using the boundary form
(3.2), θ is automatically a local transformation and rotation. This is often more meaningful for applica-
tions since we consider shapes contained in the universe D which is fixed, which implies that θ must
vanish on the boundary of D, in which case we cannot take θ as a translation everywhere.

Using the volume form (3.6), the determination of the parameters α and β is not as straightforward
for the reason mentioned above. One may choose θ as a piecewise linear function so that θ is a
translation on the interface ∂Ω and vanishes on ∂D. Assume the shape derivative has the form

dJ(Ω)[θ] =

∫
Ω

F1[θ1] + F2[θ2]dx,

where F1[θ1] and F2[θ2] are linear with respect to θ1 and θ2 with θ = (θ1, θ2). In order to obtain
a transformation which is locally a translation, one may choose the following class of vector fields
θ = (β1η, β2η) where η is a smooth function equal to one in a neighborhood Ω∗ of Ω and equal to
zero on ∂D. The choice of η depends on Ω and D and we have

dJ(Ω)[θ] = β1

∫
Ω

F1[η]dx+ β2

∫
Ω

F2[η]dx.

Therefore a descent direction is easily found as

β1 = −
∫

Ω

F1[η]dx, β2 = −
∫

Ω

F2[η]dx.

4 Electrical impedance tomography

We consider an application of the results above to a typical and important interface problem: the
inverse problem of electrical impedance tomography (EIT) also known as the inverse conductivity or
Calderón’s problem [5] in the mathematical literature. It is an active field of research with an extensive
literature; for further details we point the reader to the survey papers [4, 6] as well as [20] and the
references therein. We consider the particular case where the objective is to reconstruct a piecewise
constant conductivity σ which amounts to determine an interface Γ+ between some inclusions and
the background. We refer the reader to [7, 14, 15, 17] for more details on this approach.

The main interest of studying EIT is to apply the approach developed in this paper to a problem which
epitomizes general interface problems and simultaneously covers the entire spectrum of difficulties
encountered with severely ill-posed inverse problem.

4.1 Problem statement

Let Ω ⊂ Rd be a Lipschitz domain, and Ω+,Ω− ⊂ Ω open sets such that Ω = Ω+ ∪ Ω− ∪ Γ,
where Γ+ = ∂Ω+ = Ω+ ∩ Ω− and Γ = ∂Ω; see Figure 1. In this section n denotes either the
outward normal vector to Ω or the outward normal vector to Ω+. Decompose Γ as Γ = ΓD ∪ΓN . Let
σ = σ+χΩ+ + σ−χΩ− where σ± are scalars and f = f+χΩ+ + f−χΩ− where f± ∈ H1(Ω).
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Figure 1: Partition Ω = Ω+ ∪ Ω− ∪ Γ.

Consider the following problems: find uN ∈ H1
D(Ω)∫

Ω

σ∇uN · ∇z =

∫
Ω

fz +

∫
ΓN

gz for all z ∈ H1
D(Ω) (4.1)

and find uD ∈ H1
DN(Ω) such that∫

Ω

σ∇uD · ∇z =

∫
Ω

fz for all z ∈ H1
0 (Ω) (4.2)

where

H1
D(Ω) := {v ∈ H1(Ω) | v = 0 on ΓD},

H1
DN(Ω) := {v ∈ H1(Ω) | v = 0 on ΓD, v = h on ΓN},
H1

0 (Ω) := {v ∈ H1(Ω) | v = 0 on Γ}

and g ∈ H−1/2(ΓN) represents the input, in this case the electric current applied on the boundary
and h ∈ H1/2(ΓN) is the measurement of the potential on ΓN , or the other way around, i.e. h can
be the input and g the measurement. Define also the space

PHk(Ω) := {u = u+χΩ+ + u−χΩ−| u+ ∈ Hk(Ω+), u− ∈ Hk(Ω−)}.

Consider the following assumption:

Assumption 4.1 The domains Ω,Ω+,Ω− are of class Ck, f ∈ PHmax(k−2,1)(Ω), g ∈ Hk− 3
2 (Ω)

and h ∈ Hk− 1
2 (Ω) for k ≥ 2.

Applying Green’s formula under assumption 4.1, equations (4.1) and (4.2) are equivalent to the follow-
ing transmission problems where uN = u+

NχΩ+ + u−NχΩ− and uD = u+
DχΩ+ + u−DχΩ− :

−σ+∆u+
N = f in Ω+, −σ−∆u−N = f in Ω−, (4.3)

u−N = 0 on ΓD, (4.4)

σ−∂nu
−
N = g on ΓN , (4.5)

−σ+∆u+
D = f in Ω+, −σ−∆u−D = f in Ω−, (4.6)

u−D = 0 on ΓD, (4.7)

u−D = h on ΓN , (4.8)
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with the transmission conditions

σ+∂nu
+
N = σ−∂nu

−
N , σ+∂nu

+
D = σ−∂nu

−
D on Γ+

u+
N = u−N , u+

D = u−D on Γ+ (4.9)

On ΓD we impose homogeneous Dirichlet conditions, meaning that the voltage is fixed and no mea-
surement is performed. One may take ΓD = ∅, in which case (4.1) becomes a pure Neumann prob-
lem and additional care must be taken for the uniqueness and existence of a solution. The situation
ΓD 6= ∅ corresponds to partial measurements. Alternatively, it is also possible to consider functions
uN and uD which have both the boundary conditions (4.5) and (4.8) on different parts of the boundary.
Several measurements can be made by choosing a set of functions g or h. The result for several mea-
surements can be straightforwardly deduced from the case of one measurement by summing the cost
functionals corresponding to each measurement, therefore we stick to the case of one measurement
g for simplicity of presentation.

The problem of electrical impedance tomography is:

(EIT): Given {gk}Kk=1 and {hk}Kk=1, find σ such that uD = uN in Ω.

Note that uN = uN(Ω+) and uD = uD(Ω+) actually depend on Ω+ through σ, however we often
write uN and uD for simplicity.

The notion of well-posedness due to Hadamard requires the existence and uniqueness of a solution
and the continuity of the inverse mapping. The severe ill-posedness of EIT is well-known: uniqueness
and continuity of the inverse mapping depend on the regularity of σ, the latter being responsible for
the instability of the reconstruction process. Additionally, partial measurements often encountered in
practice render the inverse problem even more ill-posed. We refer to the reviews [4, 6, 20] and the
references therein for more details. A standard cure against the ill-posedness is to regularize the
inverse mapping. In this paper the regularization is achieved by considering smooth perturbations of
the domains Ω+.

To solve the EIT problem, we use an optimization approach by considering the shape functionals

J1(Ω+) =
1

2

∫
Ω

(uD(Ω+)− uN(Ω+))2, (4.10)

J2(Ω+) =
1

2

∫
ΓN

(uN(Ω+)− h)2. (4.11)

Since uD, uN ∈ H1(Ω) and h ∈ H1/2(ΓN), J1 and J2 are well-defined. Note that J1 and J2 are
redundant for the purpose of the reconstruction but our aim is to provide an efficient way of computing
the shape derivative of two functions which are often encountered in the literature. To compute these
derivatives we follow the new Lagrangian approach from [29]. First of all introduce

F1(ϕD, ϕN) :=
1

2

∫
Ω

(ϕD − ϕN)2 (4.12)

F2(ϕN) :=
1

2

∫
ΓN

(ϕN − h)2. (4.13)

Note that J1(Ω+) = F1(uD(Ω+), uN(Ω+)) and J2(Ω+) = F2(uN(Ω+)). Next consider P a subset
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of P(Ω) and the Lagrangian L : P×H1
D ×H1

D ×H1
D ×H1

D ×H1/2(ΓN)→ R:

L(Ω+,ϕ,ψ, λ) := α1F1(ϕD, ϕN) + α2F2(ϕN)

+

∫
Ω

σ∇ϕD · ∇ψD − fψD +

∫
ΓN

λ(ϕD − h)

+

∫
Ω

σ∇ϕN · ∇ψN − fψN −
∫

ΓN

gψN ,

(4.14)

where ϕ := (ϕD, ϕN) and ψ := (ψD, ψN). The adjoint variable λ is used to enforce the boundary
condition (4.8); see (4.20). Introduce the objective functional

J(Ω+) := α1J1(Ω+) + α2J2(Ω+).

In order to compute the shape derivative for this linear transmission problem we would like to apply the
Lagrangian approach based on the theorem of Correa-Seeger introduced in [8]. This application has
been done in [3] and [30] for instance. However in these papers, the convexity of the Lagrangian with
respect to ϕ is required to obtain the shape derivative. For the transmission problem in this section,
the Lagrangian is not convex with respect to ϕ. To deal with the Lagrangian depending on (4.3)-(4.8),
we may adapt a result from [29] where an extension of the theorem of Correa-Seeger to non-linear
partial differential equations is performed.

4.2 State and adjoint equations

Let us denote u := (uD, uN). Since L is affine linear in ψD and ψN , respectively, the derivative

∂ψD
L(Ω+,u,p, λ)(ψ̂D) = 0 for all ψ̂D ∈ H1

0 (Ω)

is independent of p and equivalent to∫
Ω

σ∇uD · ∇ψ̂D =

∫
Ω

fψ̂D for all ψ̂D ∈ H1
0 (Ω),

corresponding to (4.2). Under Assumption 4.1, we get uD ∈ PHk(Ω) and using Green’s formula in
Ω+ with ψ̂D ∈ C∞c (Ω+), we obtain∫

Ω+

− div (σ∇ϕD)ψ̂D =

∫
Ω+

fψ̂D. (4.15)

Repeating this operation in Ω− yields (4.6) for the state uD. By calculating

∂ψN
L(Ω+,u,p, λ)(ψ̂N) = 0, for all ψ̂N ∈ H1

D(Ω),

we obtain ∫
Ω

σ∇uN · ∇ψ̂N =

∫
Ω

fψ̂Ndx+

∫
ΓN

gψ̂Nds for all ψ̂N ∈ H1
D(Ω),

corresponding to the variational equation (4.1). Using Green’s formula in (4.15) shows that the solution
uN of the previous variational equation is a solution of (4.3) and (4.4).
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Now by solving
∂λL(Ω+,u,p, λ)(λ̂) = 0 for all λ̂ ∈ H1/2(ΓN),

we obtain ∫
ΓN

λ̂(uD − h) = 0, for all λ̂ ∈ H1/2(ΓN),

which gives uD = h and the boundary condition (4.8) is satisfied.

Solving the equation

∂ϕD
L(Ω+,u,p, λ)(ϕ̂D) = 0, for all ϕ̂D ∈ H1

D(Ω),

leads to

α1

∫
Ω

(uD − uN)ϕ̂D +

∫
Ω

σ∇pD · ∇ϕ̂D +

∫
ΓN

λϕ̂D = 0, (4.16)

for all ϕ̂D ∈ H1
D(Ω), which is the variational formulation for the adjoint state pD. This yields the

following variational formulation when test functions are restricted to H1
0 (Ω):

α1

∫
Ω

(uD − uN)ϕ̃D +

∫
Ω

σ∇pD · ∇ϕ̃D = 0, ∀ϕ̃D ∈ H1
0 (Ω). (4.17)

Under Assumption 4.1, we get pD ∈ PHk(Ω) and using Green’s formula in Ω+ with ϕ̂D ∈ C∞c (Ω+)
we obtain ∫

Ω+

− div (σ∇pD)ϕ̂D = −
∫

Ω+

α1(uD − uN)ϕ̂D (4.18)

and a similar procedure provides the equation in Ω−, which finally yields

− div (σ∇pD) = −α1(uD − uN) in Ω+ and Ω−. (4.19)

Now using Green’s formula in Ω+ and Ω− for all ϕ̂D ∈ H1
D(Ω) yields∫

Ω+∪Ω−
α1(uD − uN)ϕ̂D − div (σ∇pD)ϕ̂D

+

∫
Γ+

[σ∂npD]Γ+ϕ̂D +

∫
ΓN

(σ∂npD + λ)ϕ̂D = 0.

where [σ∂npD]Γ+ = σ+∂np
+
D − σ−∂np

−
D is the jump of σ∂npD across Γ+. Using (4.19), we obtain

λ = −σ−∂npD on ΓN , (4.20)

pD = 0 on Γ, (4.21)

σ+∂np
+
D = σ−∂np

−
D on Γ+. (4.22)

Having determined λ we consider a new Lagrangian, using the same notation for simplicity:

L(Ω+,ϕ,ψ) := L(Ω+,ϕ,ψ,−σ−∂nψD),

for which we have the fundamental relation

J(Ω+) = L(Ω+,u,ψ), for all ψ ∈ H1
D(Ω)×H1

D(Ω), (4.23)
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where u = (uD, uN). Finally solving

∂ϕN
L(Ω+,u,p)(ϕ̂N) = 0, for all ϕ̂N ∈ H1

D(Ω),

leads to the variational formulation∫
Ω

−α1(ϕD − ϕN)ϕ̂N + σ∇ψN · ∇ϕ̂N +

∫
ΓN

α2(ϕN − h)ϕ̂N = 0 (4.24)

for all ϕ̂N ∈ H1
D(Ω). Under Assumption 4.1 we get pN ∈ PHk(Ω) and using Green’s formula in Ω+

with ϕ̂N ∈ C∞c (Ω+) we obtain∫
Ω+

− div (σ∇pN)ϕ̂N =

∫
Ω+

α1(uD − uN)ϕ̂N

and a similar procedure provides the equation in Ω−, which yields finally

− div (σ∇pN) = α1(uD − uN) in Ω+ and Ω−. (4.25)

Using Green’s formula in Ω+ and Ω− for all ϕ̂N ∈ H1
D(Ω) and ϕN = 0 on ΓD yields∫

Ω+∪Ω−
−α1(uD − uN)ϕ̂N − div (σ∇pN)ϕ̂N

+

∫
Γ+

[σ∂npN ]Γ+ +

∫
ΓN

(σ∂npN + α2(uN − h))ϕ̂N = 0.

This gives the boundary conditions for the adjoint:

σ∂npN = −α2(uN − h) on ΓN , (4.26)

pN = 0 on ΓD. (4.27)

with the transmission conditions

σ+∂np
+
N = σ−∂np

−
N , p+

N = p−N on Γ+. (4.28)

Summarizing, under Assumption 4.1 we obtain the system for pN :

−σ+∆p+
N = α1(u+

D − u
+
N) in Ω+, −σ−∆p−N = α1(u−D − u

−
N) in Ω−, (4.29)

σ−∂np
−
N = −α2(u−N − h

−) on ΓN , (4.30)

p−N = 0 on ΓD, (4.31)

4.3 Shape derivatives

Let us consider a transformation Φt(θ) defined by (1.3) with θ ∈ D1(Ω,Rd). Note that Φt(θ)(Ω) =
Ω but in general Φt(θ)(Ω

+) 6= Ω+. We use the notation Ω+(t) := Φt(θ)(Ω
+). Our aim is to show

the shape differentiability of J(Ω+) with the help of Theorem 2.4. For this purpose, introduce

G(t,ϕ,ψ) := L(Ω+(t),ϕ ◦ Φ−1
t ,ψ ◦ Φ−1

t ), (4.32)
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which reads after the change of variables Φt(x) = y

G(t,ϕ,ψ) =
α1

2

∫
Ω

(ϕD − ϕN)2j(t) +
α2

2

∫
ΓN

(ϕN − h)2

+

∫
Ω

σA(t)∇ϕD · ∇ψD − f ◦ ΦtψDj(t)−
∫

ΓN

σ−1∂nψD(ϕD − h) (4.33)

+

∫
Ω

σA(t)∇ϕN · ∇ψN − f ◦ ΦtψNj(t)−
∫

ΓN

gψN ,

where the Jacobian j(t) and A(t) are defined as

j(t) := det(DΦt) (4.34)

A(t) := j(t)DΦ−1
t DΦ−Tt (4.35)

In the previous expression (4.33), one should note that the integrals on Γ are unchanged since Φ−1
t =

I on Γ. Thus we have Φt(θ)(Ω) = Ω, however the terms inside the integrals on Ω are modified by
the change of variable since Φ−1

t 6= I inside Ω. Note that

J(Ω+(t)) = G(t,ut,ψ), for all ψ ∈ H1
D(Ω)×H1

D(Ω),

where ut = (utN , u
t
D) := (uN,t ◦ Φt, uD,t ◦ Φt) and uN,t, uD,t solve (4.1),(4.2), respectively, with

the domain Ω+ replaced by Ω+(t). As one can verify by applying a change of variables to (4.1) and
(4.2) on the domain Ω+(t) the functions utN , u

t
D satisfy∫

Ω

σA(t)∇utN · ∇ψ̂N =

∫
Ω

fψ̂N +

∫
ΓN

gψ̂N for all ψ̂N ∈ H1
D(Ω) (4.36)

and ∫
Ω

σA(t)∇utD · ∇ψ̂D =

∫
Ω

fψ̂D for all ψ̂D ∈ H1
0 (Ω) (4.37)

Testing equation (4.36) with ψ̂D = utD and equation (4.37) with ψ̂N = utN , we infer the existence of
constants C1, C2 > 0 and τ > 0 such that for all t ∈ [0, τ ]:

‖utD‖H1(Ω) ≤ C1, and ‖utN‖H1(Ω) ≤ C2. (4.38)

From these estimates, we get

utD ⇀ w1 and utN ⇀ w2 in H1(Ω) as t→ 0.

Passing to the limit in (4.36) and (4.37) yields w1 = uD and w2 = uN by uniqueness.

Let us now check the conditions (B1)-(B3) of Theorem 2.4 for the function G given by (4.33) and the
Banach spaces E1 = F1 = E2 = F2 = H1

D(Ω). The condition (B1) is automatically satisfied by
construction since the functionG is affine linear with respect to ϕD and ϕN , and linear with respect to
ψD and ψN . Concerning (B2), note that Λ(t) = {(utN , utD)}; see (2.3). We have p̄t = (p̄tN , p̄

t
D) ∈
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Υ(t) if and only if they solve∫
Ω

σA(t)∇ptD · ∇ϕ̂D + α1

∫ 1

0

∫
Ω

j(t)([utD, uD]s − utN)ϕ̂Ddxds

+

∫
ΓN

∂np
t
Dϕ̂D = 0,∫

Ω

σA(t)∇ptN · ∇ϕ̂N − α1

∫ 1

0

∫
Ω

j(t)(uD − [utN , uN ]s)ϕ̂Ndxds

+ α2

∫
ΓN

(uN − h)∂nϕ̂N = 0,

or equivalently ∫
Ω

σA(t)∇ptD · ∇ϕ̂D + α1

∫
Ω

j(t)(utD + uD − utN)ϕ̂D

+

∫
ΓN

∂np
t
Dϕ̂D = 0, (4.39)∫

Ω

σA(t)∇ptN · ∇ϕ̂N − α1

∫
Ω

j(t)(uD − (utN + uN))ϕ̂N

+ α2

∫
ΓN

(uN − h)∂nϕ̂N = 0 (4.40)

for all ϕ̂D, ϕ̂N inH1
D(Ω). Thanks to the Lax-Milgram’s lemma, we check that both equations (4.39) and

(4.40) have a unique solution. Testing (4.39) with ϕ̂D = p̄tD and (4.40) with ϕ̂N = p̄tN , we conclude by
an application of Hölder’s inequality together with (4.38) the existence of constants C1, C2 and τ > 0
such that for all t ∈ [0, τ ]

‖p̄tD‖H1(Ω) ≤ C1, and ‖p̄tN‖H1(Ω) ≤ C2.

We get p̄tD ⇀ q1 and p̄tN ⇀ q2 for two elements q1, q2 ∈ H1(Ω). Passing to the limit in (4.39) and
(4.40) yields q1 = pD and q2 = pN by uniqueness, where pD and pN are solutions of the adjoint
equations. Finally, differentiating G with respect to t yields

∂tG(t,ϕ,ψ) =
α1

2

∫
Ω

(ϕD − ϕN)2j(t)tr(DθtDΦ−1
t )

+

∫
Ω

σA′(t)∇ϕD · ∇ψD − f ◦ ΦtψDj(t)tr(DθtDΦ−1
t )− ψD∇f ◦ Φt · θtj(t)

+

∫
Ω

σA′(t)∇ϕN · ∇ψN − f ◦ ΦtψNj(t)tr(DθtDΦ−1
t )− ψN∇f ◦ Φt · θtj(t).

where θt = θ ◦ Φt, A′(t) = tr(∂θtDΦ−1
t )A(t) −DΦ−Tt ∂θtA(t) − (DΦ−Tt ∂θtA(t))T and Dθt is

the Jacobian matrix of θt. In view of θ ∈ D1(Ω,Rd), the functions t 7→ Dθt and t 7→ tr(DθtΦ
−1
t ) =

div (θ) ◦ Φt are continuous on [0, T ]. Moreover ϕD, ϕN , ψD, ψN are in H1(Ω), f ∈ PH1(Ω) so
that ∂tG(t,ϕ,ψ) is well-defined for all t ∈ [0, T ]. Further it follows from the above formula that
(t,ψ) 7→ ∂tG(t,u0,ψ) is weakly continuous and therefore

lim
k→∞
t↘0

∂tG(t,u0, p̄nk) = ∂tG(0,u0, p̄0). (4.41)
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Using Theorem 2.4 one concludes

dJ(Ω+)[θ] =
d

dt
G(t,ut,ψ)|t=0 = ∂tG(0,u0,p0) for all ψ ∈ H1

D(Ω)×H1
D(Ω),

and therefore we have proved the following Proposition.

Proposition 4.2 (distributed shape derivative) Let Ω ⊂ Rd be a Lipschitz domain, θ ∈ D1(Ω,Rd),
f ∈ PH1(Ω), g ∈ H−1/2(ΓN), h ∈ H1/2(ΓN), Ω+ ⊂ Ω is an open set, then the shape derivative
of J(Ω+) is given by

dJ(Ω+)[θ] =

∫
Ω

(α1

2
(uD − uN)2 − f(pN + pD)

)
div θ

+

∫
Ω

−(pD + pN)∇f · θ + σA′(0)(∇uD · ∇pD +∇uN · ∇pN),

(4.42)

where A′(0) = (div θ)I −DθT −Dθ, uN , uD are solutions of the variational inequalities (4.1),(4.2)
and pN , pD of (4.24),(4.17).

It is remarkable that the volume expression of the shape gradient in Proposition 4.2 corresponding
to point (i) of Theorem 1.2 has been obtained without any regularity assumption on Ω+. In order to
obtain a boundary expression on the interface Γ+ as in Theorem 1.2 (iii) we need more regularity of
Ω+ provided by Assumption 4.1.

Remark 4.3 Note that (4.42) can be rewritten in a canonical form as

dJ(Ω+)[θ] =

∫
Ω

S : Dθ + S · θ, (4.43)

where

S = −σ(∇uD ⊗∇pD +∇pD ⊗∇uD +∇uN ⊗∇pN +∇pN ⊗∇uN)

+ σ(∇uD · ∇pD +∇uN · ∇pN)I +
(α1

2
(uD − uN)2 − f(pN + pD)

)
I,

S = −(pD + pN)∇f.

The tensor S can be seen as a generalization of the Eshelby energy momentum tensor in continuum
mechanics introduced in [9]; see also [22].

From now on we assume that Assumption 4.1 is satisfied. Then one may differentiate (4.32) directly
using the following result for the differentiation of domain integrals; see [13] for instance.

Theorem 4.4 Let Φ : [0, T [→ W 1,∞(Rd) differentiable at t = 0 with Φ(0) = I and Φ′(0) = θ.
Assume t ∈ [0, T [→ F (t, ·) ∈ L1(Rd) is differentiable at 0 and F (0, ·) ∈ W 1,1(Rd). Then∫

Ω+(t)

F (t, x)dx

is differentiable at 0 and we have

d

dt

∫
Ω+(t)

F (t, x)dx

∣∣∣∣
t=0

=

∫
∂Ω+

F (0, x)θ · n ds+

∫
Ω+

∂F

∂t
(0, x)dx (4.44)

when Ω+ is Lipschitz.
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It is important to split the integrals using Ω = Ω+(t) ∪ Ω−(t) in order to apply the above formula.
Writing n = nΩ+ = −nΩ− we obtain

∂tG(0,ϕ,ψ) =
α1

2

∫
Γ+

[
(uD − uN)2

]
Γ+ θ · n

+ α1

∫
Ω

(uD − uN)(u̇D − u̇N) (4.45)

+

∫
Γ+

[σ∇uD · ∇pD − fpD + σ∇uN · ∇pN − fpN ]Γ+ θ · n

+

∫
Ω

σ(∇uD · ∇ṗD +∇u̇D · ∇pD) + fṗD (4.46)

+

∫
Ω

σ(∇uN · ∇ṗN +∇u̇N · ∇pN) + fṗN (4.47)

where

φ̇ :=
d(φ ◦ Φ−1

t )

dt
|t=0 = −∇φ · θ. (4.48)

and
[φ]Γ+ (x) := lim

z→x,z∈Ω+
φ(x)− lim

z→x,z∈Ω−
φ(x)

denotes the jump of a function φ across Γ+. Thanks to Assumption 4.1 we have that uN , uD, pD, pN
are in PHk(Ω) for k ≥ 2, thus u̇N , u̇D, ṗD, ṗN are in PHk−1(Ω) for k ≥ 2. Using Green’s formula
in (4.46) and the fact that ṗD ∈ PH1(Ω) has compact support in Ω we get∫

Ω

σ∇uD · ∇ṗD +

∫
Ω

fṗD =

∫
Ω+

σ∇uD · ∇ṗD +

∫
Ω−
σ∇uD · ∇ṗD +

∫
Ω

fṗD

=−
∫

Ω+

div(σ∇uD)ṗD −
∫

Ω−
div(σ∇uD)ṗD +

∫
Ω

fṗD

+

∫
∂Ω+

σ∂nuDṗD −
∫
∂Ω−

σ∂nuDṗD

=−
∫

Γ+

[σ∂nuD∂npD]Γ+θ · n

where we have used (4.6) with the test function ṗD. Using a similar calculation for the other terms in
(4.46) and (4.47) using (4.3), (4.19), (4.25)-(4.26) and the test functions ṗN , u̇D, u̇N ∈ PH1(Ω), we
get

∂tG(0,ϕ,ψ) =
α1

2

∫
Γ+

[
(uD − uN)2

]
Γ+ θ · n

+

∫
Γ+

[σ∇uD · ∇pD + σ∇uN · ∇pN ]Γ+ θ · n

− 2

∫
Γ+

[σ∂nuD∂npD + σ∂nuN∂npN ]Γ+θ · n.

Due to uD, uN ∈ H1(Ω) we also have[
(uD − uN)2

]
Γ+ = 0.

For given φ ∈ C1(Γ+) and an arbitrary C1(U(Γ+)) extension φ̃ : U(Γ+)→ R in a neighbourhood
U(Γ+) of Γ+, we define the tangential part of the gradient (or tangential gradient) as ∇Γ+φ :=
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∇φ̃|Γ+ − ∂nφ̃ n, which is independent of the extension, see [8, pp.492-493]. We may then consider
the decomposition

[σ∇uD · ∇pD]Γ+ = [σ∂nuD · ∂npD + σ∇Γ+uN · ∇Γ+pN ]Γ+

= [σ∂nuD · ∂npD]Γ+ + [σ]Γ+ ∇Γ+uN · ∇Γ+pN

where we have used
[∇Γ+uN · ∇Γ+pN ]Γ+ = 0

since u+
N = u−N and p+

N = p−N on Γ+. We have obtained the following result:

Proposition 4.5 (boundary expression) Under Assumption 4.1 and θ ∈ D1(Ω,Rd) the shape
derivative of J(Ω+) is given by

dJ(Ω+)[θ] =

∫
Γ+

[σ(−∂nuD∂npD − ∂nuN∂npN)]Γ+ θ · n.

+

∫
Γ+

[σ]Γ+(∇Γ+uD · ∇Γ+pD +∇Γ+uN · ∇Γ+pN)θ · n.

Note that our results cover and generalize several results that can be found in the literature of shape
optimization approaches for EIT, including [2, 14]. For instance when taking α2 = 1, α1 = 0 we get
pD ≡ 0 and consequently

dJ(Ω+)[θ] =

∫
Γ+

([−σ∂nuN∂npN ]Γ+ + [σ]Γ+∇Γ+uN · ∇Γ+pN)θ · n. (4.49)

Formula (4.49) is the same as the one obtained in [2, pp. 533] (under the name DJDLS(ω).V ) by
computing the shape derivative of uN and uD. The adjoint is given by

− div (σ∇pN) = 0, (4.50)

σ∂npN = −(uN − h). (4.51)

According to Proposition 4.2 we have obtained the following more general domain expression which
is valid for any open set Ω+:

dJ(Ω+)[θ] =

∫
Ω

σA′(0)∇uN · ∇pN − fpN div θ − pN∇f · θ. (4.52)

The two formulas (4.49) and (4.52) are equal when Assumption 4.1 is satisfied.

Note also that from a numerical point of view, the boundary expression in Proposition 4.5 is delicate to
compute compared to the domain expression in Proposition 4.2 for which the gradients of the state and
adjoint states can be straightforwardly computed at grid points when using the finite element method
for instance. The boundary expression, on the other hand, needs here the computation of the normal
vector and the interpolation of the gradients on the interface Γ+ which requires a precise description
of the boundary and introduces an additional error.
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5 Level set method

The level set method, originally introduced in [24], gives a general framework for the computation of
evolving interfaces using an implicit representation of these interfaces. The core idea of this method is
to represent the boundary of Ω ⊂ D ∈ RN as the level set of a continuous function φ : D → R.

Let us consider the family of domains Ωt ⊂ D as defined in (1.4). Each domain Ωt can be defined as

Ωt := {x ∈ D, φ(x, t) < 0} (5.1)

where φ : D ×R+ → R is the so-called level set function. Indeed, we have

∂Ωt = {x ∈ D, φ(x, t) = 0}, (5.2)

i.e. the boundary ∂Ωt is the zero level set of φ(·, t).

Let x(t) be the position of a particle on the boundary ∂Ωt moving with velocity ẋ(t) = θ(x(t))
according to (1.3). Differentiating the relation φ(x(t), t) = 0 with respect to t yields the Hamilton-
Jacobi equation:

∂tφ+ θ · ∇φ = 0 in ∂Ω(t)×R+, (5.3)

which can be extended to D. Traditionally, the level set method has been designed to track smooth
interfaces moving along the normal direction to the boundary. Theoretically, this is supported by The-
orem 1.2 (ii) and (iii), i.e. if the domain Ωt and the shape gradient are smooth enough then the shape
derivative only depends on θ · n on ∂Ω. In this case, we may choose a vector field θ = ϑnn for the
optimization and by noting that the outward normal vector n to Ωt is given by n = ∇φ/|∇φ| one
obtains the level set equation

∂tφ+ ϑn|∇φ| = 0 in D ×R+. (5.4)

The initial data φ(x, 0) = φ0(x) accompanying the Hamilton-Jacobi equation (5.3) or (5.4) is chosen
as the signed distance function to the initial boundary ∂Ω0 = ∂Ω i.e.

φ0(x) =

{
d(x, ∂Ω0), if x ∈ (Ω0)c,
−d(x, ∂Ω0), if x ∈ Ω0.

(5.5)

5.1 Level set method and domain expression

In the case of the distributed shape derivative (3.6), φ is not governed by (5.4) but rather by the
Hamilton-Jacobi equation (5.3) since we are given θ and not ϑn. Numerically it is actually more
straightforward to use (5.3) instead of (5.4). Indeed, when using (5.4), ϑn is initially only given on
∂Ωt (through the computation of the boundary shape derivative for instance) and must be extended
to the entire domain D or at least to a narrow band around ∂Ωt. Therefore it is more natural to use
(5.3) with θ already defined in D as is the case of the distributed shape derivative, providing a natural
extension to D or to a narrow band around ∂Ωt.

In shape optimization, ϑn usually depends on the solution of several partial differential equations
and their gradient. Since the boundary ∂Ωt does not usually match the grid nodes where φ and the
solutions of the partial differential equations are defined in the numerical application, the computation
of ϑn requires the interpolation on ∂Ωt of functions defined at the grid points only, complicating the
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numerical implementation and introducing an additional interpolation error. This is an issue in particular
for interface problems where ϑn is the jump of a function across the interface, as in Proposition 4.5,
which requires multiple interpolations and is error-prone. In the distributed shape derivative framework
θ only needs to be defined at grid nodes.

5.2 Discretization of the level set equation

LetD be the unit squareD = (0, 1)×(0, 1) to fix ideas. For the discretization of the Hamilton-Jacobi
equation (5.3), we first define the mesh grid corresponding to D. We introduce the nodes Pij whose
coordinates are given by (i∆x, j∆y), 1 ≤ i, j ≤ N where ∆x and ∆y are the steps discretization
in the x and y directions respectively. Let us also write tk = k∆t the discrete time for k ∈ N, where
∆t is the time step. We are seeking for an approximation φkij ' φ(Pij, t

k).

In the usual level set method, the level set equation (5.4) is discretized using an explicit upwind scheme
proposed by Osher and Sethian [23, 24, 28]. This scheme applies to the specific form (5.4) but is not
suited to discretize (5.3) required for our application. Equation (5.3) is of the form

∂tφ+H(∇φ) = 0 in D ×R+. (5.6)

where H(∇φ) := θ ·∇φ is the so-called Hamiltonian. We use the Local Lax-Friedrichs flux originally
conceived in [25] and which reduces in our case to:

ĤLLF (p−, p+, q−, q+) = H

(
p− + p+

2
,
q− + q+

2

)
− 1

2
(p+ − p−)αx − 1

2
(p+ − p−)αy

where αx = |θx|, αy = |θy|, θ = (θx, θy) and

p− = D−x φij =
φij − φi−1,j

∆x
, p+ = D+

x φij =
φi+1,j − φij

∆x
,

q− = D−y φij =
φij − φi,j−1

∆y
, q+ = D+

y φij =
φi,j+1 − φij

∆y

are the backward and forward approximations of the x-derivative and y-derivative of φ at Pij , respec-
tively. Using a forward Euler time discretization, the numerical scheme corresponding to (5.3) is

φk+1
ij = φkij −∆t ĤLLF (p−, p+, q−, q+) (5.7)

For numerical accuracy, the solution of the level set equation (5.3) should not be too flat or too steep.
This is fulfilled for instance if φ is the distance function i.e. |∇φ| = 1. Even if one initializes φ using
a signed distance function, the solution φ of the level set equation (5.3) does not generally remain
close to a distance function. We may occasionally perform a reinitialization of φ by solving a parabolic
equation up to the stationary state; see [10, 11, 26]. Although in the level set method this reinitialization
is standard, in the case of the distributed shape gradient, due to the regularization, the level set function
φ stays close to a distance function during the iterations and we do not need to reinitialize.

The computational efficiency of the level set method can be improved by using the so-called “narrow
band” approach introduced in [1], which consists in computing and updating the level set function
only on a thin stripe around the interface. This allows to reduce the complexity of the problem to
N log(N) instead of N2 in two dimensions. For simplicity we do not implement this approach here
but we mention that it can be easily generalized to the distributed shape derivative approach and
equation (5.3) by taking θ with a support in a narrow band around the moving interface, which can be
achieved by choosing the appropriate spaceH in (3.1).
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6 Application and numerical results

6.1 Volume integral

Let f ∈ W 1,1
loc (R2) and Ω ⊂ R2 an open set. Assume that θ ∈ Lip(D;R2) Consider the cost

functional

J(Ω) =

∫
Ω

f(x)dx. (6.1)

According to [8], the distributed shape derivative of J exists and is given by

dJ(Ω)[θ] =

∫
Ω

div (θ)f +∇f · θdx. (6.2)

We make use of the general framework of Section 3.1 and solve

(θ, ξ)H1(Ω) = −dJ(Ω)[ξ], for all ξ ∈ H1(Ω), (6.3)

which is discretized using the finite element method. Two choices of f are used:

(i) f(x, y) = x2

a2
+ y2

b2
− 1 ∈ C∞(R2),

(ii) f(x, y) = |x|+ |y| − 1 ∈ W 1,∞
loc (R2).

The optimal shape is an ellipse in case (i) and is the unit disk in the Mannathan norm, i.e. a square, in
case (ii). In Figure 2 an example for case (i) with the choices a = 2 and b = 3.5 is given. The initial
shape (heart-shaped) is not convex and not smooth, whereas the final shape (an ellipse) is convex
and smooth. Case (ii) is illustrated in Figure 3. One observes that the method is able to create the
corners of the square starting from a smooth boundary.

Figure 2: From left to right and top to bottom: iterations 0, 1, 2, 3, 4, 5, 7, 36
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Figure 3: From left to right and top to bottom: iterations 1, 2, 3, 4, 5, 6, 7, 30

6.2 The Dirichlet problem

The purpose of this example is twofold. On one hand we show that using the distributed shape deriva-
tive one may start with an irregular initial domain Ω, which is more difficult with the boundary shape
gradient. On the other hand, we observe that an irregular domain can be more accurately approxi-
mated when the initial domain is irregular.

Let Ω ⊂ Rd be open, bounded with Lipschitz boundary. Consider the cost functional

J(Ω) =
1

2

∫
Ω

|u− ud|2dx, (6.4)

where ud ∈ H1(R) is a given target and u ∈ H1
0 (Ω) denotes the weak solution of the Dirichlet

problem

−∆u+ u = f in Ω,

u = 0 on ∂Ω.

The shape derivative of (6.4) at Ω ⊂ Rd in direction θ ∈ D1(Rd,Rd) reads (cf.[8, p.560, formula
5.62])

dJ(Ω)[θ] =

∫
Ω

A′(0)∇u · ∇p+ div (θ)(up− fp) +∇f · θ p dx

+

∫
Ω

1

2
(u− ud)2 div (θ)− (u− ud)∇ud · θ dx.

where A′(0) = div (θ)I −DθT −Dθ. Here u, p ∈ H1
0 (Ω) solve∫

Ω

∇u · ∇ϕ+ uϕ dx =

∫
Ω

fϕ ∀ϕ ∈ H1
0 (Ω) (6.5)∫

Ω

∇p · ∇ψ + pψ dx = −
∫

Ω

(u− ud)ψ dx ∀ψ ∈ H1
0 (Ω) (6.6)

Assuming Ω is of class C3 and using the same bilinear form as in example 3.4 one obtains the
regularity θ ∈ C0,1(D;R2). Indeed A′(0) and div (θ) are then continuous and u, p ∈ H1(Ω) so
that dJ(Ω)[θ] is well-defined.
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We construct an analytical example for a precise comparison with the numerical reconstruction. Intro-
duce the square Ω∗ := (0, 1)× (0, 1) and consider the problem

−∆u+ u = f in Ω∗,

u = 0 on ∂Ω∗.
(6.7)

where the right hand side is given by

f(x, y) := −2x(x− 1)− 2y(y − 1) + (x− 1)(y − 1)xy.

It may be checked that u∗(x, y) = x(x − 1)y(y − 1) is the unique solution to (6.7). Set ud := u∗,
then Ω∗ is a solution of

min
Ω⊂Rd

J(Ω) =
1

2

∫
Ω

|u(Ω)− ud|2dx. (6.8)

We start with an initial set Ω different from Ω∗ and use the solution θ of the following problem as a
descent direction:

θ ∈ H1(Ω) : b(θ, ξ) = −dJ(Ω)[ξ], for all ξ ∈ H1(Ω), (6.9)

where
b(θ, ξ) := (Dθ,Dξ)L2(Ω) + (θ, ξ)L2(Ω) + (θ, ξ)L2(∂Ω).

The evaluation of dJ(Ω)[ξ] requires the calculation of the state u and the adjoint state p solutions of
(6.5)-(6.6) on Ω. The set Ωn is updated by displacing the grid points according to

Ωn+1 = {x+ tθ(x)| x ∈ Ωn}.

The results are displayed in Figure 4 where we have used P1 finite elements with 6 · 104 degrees
of freedom. The simulations were performed using the toolbox PDElib from the WIAS. Two different
initializations of the algorithm are compared. In Figure 4(a), the initial domain is a polygon, i.e. only a
Lipschitz domain. One observes that it allows to reconstruct the square Ω∗ accurately. Such a domain
could not be used with the boundary shape gradient, since the normal is not defined at the corner
points. In Figure 4 (b), the initial domain is a disk. We observe that this initialization leads to a rounded
square instead of Ω∗, meaning that the algorithm is sensitive to the initial guess and a nonsmooth
initialization seems more appropriate in order to reconstruct a nonsmooth shape.

The results from Figure 6 were obtained as in (6.9), with the bilinear form

b(θ, ξ) = (Dθ,Dξ)L2(D) + (θ, ξ)L2(D) + (θ, ξ)L2(∂D) (6.10)

i.e. the variable sets Ω are all embedded in D = (−3.5, 3.5)× (−3.5, 3.5). In view of the structure
theorem, the distributed shape derivative is concentrated on ∂Ω, therefore a finer discretization is
used in this area.

6.3 Electrical impedance tomography

In this section we give numerical results for the problem of electrical impedance tomography presented
in Section 4.1. Using the notations of Section 4.1 we take Ω = (0, 1) × (0, 1) and ΓD = ∅, i.e. we
have measurements on the entire boundary Γ. For easeness of implementation, we consider a slightly
different problem than the one in Section 4.1. Denote Γt, Γb, Γl and Γr the four sides of the square,
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(a) Initialization with
polygon.

(b) Initialization with
disk.

Figure 4: Two results using the distributed shape derivative and two different initial guess. First row:
initial guess, second row: optimal solution after convergence.

Figure 5: Convergence history in log scale corresponding to Figure 4.

where the indices t, b, l, r stands for top, bottom, left and right, respectively. We consider the following
problems: find uN ∈ H1

tb(Ω)∫
Ω

σ∇uN · ∇ϕ =

∫
Ω

fϕ+

∫
Γl∪Γr

gϕ for all ϕ ∈ H1
0,tb(Ω) (6.11)

and find uD ∈ H1
lr(Ω) such that∫

Ω

σ∇uD · ∇ϕ =

∫
Ω

fϕ+

∫
Γt∪Γb

gϕ for all ϕ ∈ H1
0,lr(Ω) (6.12)
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Figure 6: The domain Ω (enclosed by the red line) is embedded in D. Left column: initial shape is
a circle (top). Right column: initial shape is an octagon (top). Colors indicate the values of u on its
domain of definition. Blue is zero and red is a high value of u.

where

H1
tb(Ω) := {v ∈ H1(Ω) | v = h on Γt ∪ Γb},

H1
lr(Ω) := {v ∈ H1(Ω) | v = h on Γl ∪ Γr},

H1
0,tb(Ω) := {v ∈ H1(Ω) | v = 0 on Γt ∪ Γb},

H1
0,lr(Ω) := {v ∈ H1(Ω) | v = 0 on Γl ∪ Γr}.

The results of Section 4.1 can be straightforwardly extended to equations (6.11), (6.12) and using
functional (4.10) leads to the same optimization problem.

We use the software package FEniCS for the implementation; see [19]. The domain Ω is meshed
using a regular grid of 128× 128 elements. The conductivity values are set to σ0 = 1 and σ1 = 10.
We employ the regularization (VP) with the bilinear form

b(v, w) =

∫
Ω

Dv : Dw.

We obtain measurements hk corresponding to fluxes gk, k = 1, .., K , by taking the trace on Γ of the
solution of a Neumann problem where the fluxes are equal to gk. To simulate real noisy EIT data, the
measurements hk are corrupted by adding a normal Gaussian noise with mean zero and standard
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deviation δ ∗ ‖hk‖∞, where δ is a parameter. The noise level is computed as

noise =

∑K
k=1 ‖hk − h̃k‖L2(Γ)∑K

k=1 ‖hk‖L2(Γ)

(6.13)

where h̃k is the noisy measurement and hk the synthetic measurement without noise on Γ.

We use the functional (4.10), i.e. in our context:

J(Ω+) =
1

2

∫
Ω

K∑
k=1

|uD,k(Ω+)− uN,k(Ω+)|2, (6.14)

where uD,k and uN,k correspond to the different fluxes gk.

Since we use a gradient-based method we implement an Armijo line search to adjust the time-
stepping. The algorithm is stopped when the decrease of the functional becomes unsignificant, prac-
tically when the following stopping criterion is repeatedly satisfied:

J(Ω+
n )− J(Ω+

n+1) < γ(J(Ω+
0 )− J(Ω+

1 ))

where Ω+
n denotes the n-th iterate of Ω+. We take γ = 5.10−5 in our tests.
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Figure 7: Reconstruction (continuous contours) of two ellipses (dashed contours) with different noise
levels and using three measurements. From left to right and top to bottom: initialization (continuous
contours - top left), 0% noise (367 iterations), 0.43% noise (338 iterations), 1.44% noise (334 itera-
tions), 2.83% noise (310 iterations), 7% noise (356 iterations).

In Figure 7 we compare the reconstruction for different noise levels computed using 6.13. We take in
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this example K = 3, i.e. we use three fluxes gk, k = 1, 2, 3, defined as follows:

g1 = 1 on Γl ∪ Γr and g1 = −1 on Γt ∪ Γb,

g2 = 1 on Γl ∪ Γt and g2 = −1 on Γr ∪ Γb,

g3 = 1 on Γl ∪ Γb and g3 = −1 on Γr ∪ Γt.

Without noise, the reconstruction is very close to the true object and degrades as the measurements
become increasingly noisy, as is usually the case in EIT. However, the reconstruction is quite robust
with respect to noise considering that the problem is severely ill-posed. We reconstruct two ellipses
and initialize with two balls placed at the wrong location. The average number of iterations until con-
vergence is around 340 iterations.

In Figure 8 we reconstruct three inclusions this time usingK = 7 different measurements, with 1.55%
noise. The reconstruction is close to the true inclusion and is a bit degraded due to the noise. Figure
9 shows the convergence history of the cost functional in log scale for this example.
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Figure 8: Initialization (continuous contours - left) and reconstruction (continuous contours - right) of
two ellipses and a ball (dashed contours) with 1.55% noise (371 iterations) and using seven measure-
ments.
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Figure 9: History of cost functional corresponding to Figure 8
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