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Abstract

The paper studies the kinetic equation for electron transport in semiconductors. New

formulas for the heat generation rate are derived by analyzing the basic scattering mech-

anisms. In addition, properties of the steady state distribution are discussed and possible

extensions of the deviational particle Monte Carlo method to the area of electron transport

are proposed.

Contents

1 Introduction 2

2 Kinetic equation 2

3 Stochastic model 4

4 Heat generation 5

4.1 Scattering mechanisms . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Heat generation rate . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Deviational particle Monte Carlo 9

5.1 Steady state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 Deviational particles . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

References 15

1



1 Introduction

Kinetic theory is a common tool for modelling charge transport in semiconductors ([6, 10, 8]).
The continued miniaturization of semiconductor devices leads to new challenges related to heat
generation ([20, 12, 11, 16]). The direct simulation Monte Carlo (DSMC) method for the Boltz-
mann transport equation has been extended to cover the generation and distribution of heat
in the device. The lattice heating rate is calculated on the basis of the exchange of phonons
between the electrons and the lattice (see [19, 22, 13] and references therein).

The purpose of this paper is to contribute to the study of heat generation in semiconductor
devices. New formulas for the heat generation rate are derived from the kinetic equation by an-
alyzing the scattering mechanisms. In addition, some ideas for improving the existing stochastic
algorithms are proposed. The paper is organized as follows. In Section 2 the basic kinetic equa-
tion is introduced. The underlying stochastic model is described in Section 3. Formulas for the
heat generation rate are derived in Section 4. Finally, Section 5 contains comments concern-
ing the Maxwellian steady state distribution and possible extensions of the deviational particle
Monte Carlo method to the area of electron transport.

2 Kinetic equation

The kinetic equation
[

∂

∂t
+ v(k) · ∇x −

q

~
E(t, x) · ∇k

]

f(t, x, k) = (Qf)(t, x, k) , (2.1)

is used to study electron transport in semiconductors ([6, 4, 8]). It determines the time evolution
of the distribution f(t, x, k) of electrons with respect to position x ∈ D ⊂ R

3 (Euclidean
space) and wave-vector k ∈ R

3 . The velocity v(k) is defined as

v(k) =
1

~
∇k ε(k) , (2.2)

where ε(k) is the kinetic energy of an electron with wave-vector k . The electric field E depends
on the electron distribution function f . It is defined as

E(t, x) = −∇xΦ(t, x) , (2.3)

where the electric potential Φ satisfies the Poisson equation

ǫ∆xΦ(t, x) = q [n(t, x)− nD(x)] . (2.4)

The function

n(t, x) =

∫

R3

f(t, x, k) dk (2.5)

is the electron density and nD denotes the donor density. Moreover, q is the absolute value
of the electron charge, ǫ is the permittivity and ~ denotes Planck’s constant divided by 2π .

Boundary conditions will not be used in this paper.
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The scattering collision operator has the form

(Qf)(t, x, k) =

∫

R3

S(k′, k) f(t, x, k′) dk′ − f(t, x, k)

∫

R3

S(k, k′) dk′ . (2.6)

The transition rate from a state k to a state k′ is determined by the function

S(k, k′) = K0 δ(ε(k
′)− ε(k))+ (2.7)

6
∑

i=1

Ki

[

δ(ε(k′)− ε(k) + ~ωi) (κi + 1) + δ(ε(k′)− ε(k)− ~ωi) κi

]

.

The coefficients K0, Ki are physical constants and ~ωi is the energy of a phonon with fre-
quency ωi . The function (2.7) represents the main scattering mechanisms in silicon, at room
temperature, which are due to several electron-phonon interactions (see [7, Section III.D.1], [6,
Section 2.2.5] for more details). Finally, the quantities

κi =
1

exp
(

~ωi

kB TL

)

− 1
(2.8)

are phonon occupation numbers, where kB is Boltzmann’s constant and TL is the lattice tem-
perature.

We assume that the kinetic energy ε(k) of an electron with wave-vector k has the form

ε(k) = g(|k|) , (2.9)

where g is a strictly increasing and differentiable mapping of [0,∞) onto itself. It follows from
(2.2) and (2.9) that

v(k) =
g′(|k|)

~ |k|
k . (2.10)

Property (2.9) is fulfilled under the common assumption of analytic bands in the quasi-parabolic
approximation. In this case, ε(k) is determined by the relation

ε(k) [1 + α ε(k)] =
~
2|k|2

2m∗
, (2.11)

where α ≥ 0 denotes the non-parabolicity factor and m∗ is the effective electron mass. If
α > 0 , then (2.11) implies

ε(k) =

√

1 + 2α~2|k|2

m∗
− 1

2α
(2.12)

and (2.10) takes the form

v(k) =
~k

m∗

√

1 + 2α~2|k|2

m∗

=
~k

m∗[1 + 2αε(k)]
.

In the case α=0 , which is called parabolic, one obtains

ε(k) =
~
2|k|2

2m∗
and v(k) =

~k

m∗
. (2.13)
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3 Stochastic model

A common technique for the numerical treatment of equation (2.1) is the Monte Carlo method
([7, 6, 4]). This approach is based on a system of stochastic particles that mimic the time evo-
lution of electrons. Their behaviour is determined by the electric field and the scattering mecha-
nisms. A time step ∆t is used to decouple the transport equation (2.1) and the Poisson equation
(2.4). That is, each particle moves with its velocity (2.2), is accelerated according to a fixed elec-
tric field Ê(x) and performs scattering collisions according to the transition rate function (2.7).
After ∆t , the density (2.5) is measured and the field is re-calculated according to (2.3), (2.4).

For a fixed electric field Ê(x) , equation (2.1) is a version of Kolmogorov’s forward equation

∂

∂t
f(t, x, k) = (A∗f)(t, x, k) , (3.1)

with

(A∗f)(t, x, k) =
[

−v(k) · ∇x +
q

~
Ê(x) · ∇k

]

f(t, x, k) + (Qf)(t, x, k) ,

where A∗ denotes the adjoint operator. The generator A of the corresponding Markov process
is (cf. [2])

(Aϕ)(x, k) = (3.2)
[

v(k) · ∇x −
q

~
Ê(x) · ∇k

]

ϕ(x, k) +

∫

R3

S(k, k′) [ϕ(x, k′)− ϕ(x, k)] dk′ ,

where ϕ is a sufficiently smooth test function. The weak form of equation (3.1),

d

dt

∫

D

∫

R3

ϕ(x, k) f(t, x, k) dk dx =

∫

D

∫

R3

(Aϕ)(x, k) f(t, x, k) dk dx , (3.3)

is called Dynkin’s formula. Boundary conditions are taken into account via restrictions on the
class of test functions.

The generator (3.2) determines a piecewise deterministic Markov process (x(t), k(t)) in
the sense of [2]. Its time evolution is as follows.

� During the free flight, the particle moves according to Newton’s equations of motion,

d

dt
x(t) = v(k(t)) ,

d

dt
k(t) = −

q

~
Ê(x(t)) . (3.4)

Equations (3.4) are solved with a numerical scheme up to the next scattering time, or up
to ∆t , if no scattering occurs. Note that v(k) is given in (2.10).

� The distribution function of the random scattering time τ is

Prob(τ < s) = 1− exp

(

−

∫ s

0

λ(k(t)) dt

)

, s > 0 , (3.5)

where

λ(k) =

∫

R3

S(k, k′) dk′ (3.6)
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denotes the total scattering rate. With probability

Prob(τ ≥ ∆t) = exp

(

−

∫ ∆t

0

λ(k(t)) dt

)

,

the particle does not scatter during the time interval [0,∆t] . Various acceptance-rejection
techniques have been introduced to increase the efficiency of this step (see the survey in
[14]).

� If τ < ∆t , then a scattering mechanism is chosen randomly, according to its relative
probability, and a new state k′ is generated from the differential cross section of this
mechanism. Details of this step will be given in the next section.

4 Heat generation

In this section we study the problem of heat generation. First a detailed description of the scat-
tering mechanisms is provided. Then the notion of the heat generation rate is introduced. Finally,
some properties of this quantity are established.

4.1 Scattering mechanisms

The transition rate function (2.7) has a probabilistic interpretation in terms of random jumps
determined by various scattering mechanisms. It takes the form

S(k, k′) = S0(k, k
′) +

6
∑

i=1

[

S+
i (k, k

′) + S−
i (k, k

′)
]

, (4.1)

where

S0(k, k
′) = K0 δ(ε(k

′)− ε(k)) , (4.2)

S+
i (k, k

′) = Ki δ(ε(k
′)− ε(k) + ~ωi) (κi + 1) (4.3)

and

S−
i (k, k

′) = Ki δ(ε(k
′)− ε(k)− ~ωi) κi . (4.4)

The transition rate function (4.2) corresponds to elastic (acoustic) scattering, which means that
the electron just gets a new orientation, while its energy is preserved. The transition rate func-
tions (4.3), (4.4) correspond to inelastic (optical) scattering, which means that the electron either
looses energy (interpreted as emission of a phonon, sign “+”) or gains energy (interpreted as
absorption of a phonon, sign “−”) and gets a new orientation. The quantities ~ωi are phonon
energies. Emission of a phonon is only possible if ε(k) > ~ωi , otherwise the electron does not
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have enough energy. Relative frequencies of various scattering events are determined by the
corresponding rates

λ0(k)

λ(k)
,

λ±
i (k)

λ(k)
, i = 1, . . . , 6 , (4.5)

where

λ0(k) =

∫

R3

S0(k, k
′) dk′ , λ±

i (k) =

∫

R3

S±
i (k, k

′) dk′ (4.6)

and λ is defined in (3.6).

4.2 Heat generation rate

The sum over all phonon emission minus phonon absorption events per unit time (multiplied
with the corresponding phonon energies) was used in the electrothermal Monte Carlo method
(cf. [19, 20, 22]) as an approximation to the rate of heat generation. It was shown in [13] that
a better (in the sense of lower variance) estimate of the heat generation rate is obtained by
calculating the functional

H(t, x) =

∫

R3

G(k) f(t, x, k) dk , (4.7)

where

G(k) =
6

∑

i=1

~ωi [λ
+
i (k)− λ−

i (k)] . (4.8)

Here we derive a result concerning the heat generation rate in the spatially homogeneous (bulk)
case. Equation (2.1) takes the form

[

∂

∂t
−

q

~
Ê · ∇k

]

f(t, k) = (Qf)(t, k) . (4.9)

In this situation, the electric field E is independent of f . It is determined by an external field Ê ,

which does not depend on t .

Theorem 4.1 Assume (2.9). Let f(∞, k) be any steady state solution of equation (4.9). Then

∫

R3

G(k) f(∞, k) dk = −q Ê ·

∫

R3

v(k) f(∞, k) dk . (4.10)

In the parabolic case (2.13), the function f satisfies

∫

R3

v(k) λ(k) f(∞, k) dk = −
q

m∗
Ê

∫

R3

f(∞, k) dk . (4.11)
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According to (4.10), one obtains

H(∞) :=

∫

R3

G(k) f(∞, k) dk = 0 , if Ê = 0 . (4.12)

Moreover, relation (4.10) implies

H(∞) > 0 , if Ê 6= 0 , (4.13)

since the average velocity and −Ê are parallel. This property is a (heuristic) consequence of
the probabilistic description of the trajectory of an electron. Indeed, in the jump moments, the
orientation of k is uniform, according to (4.2)–(4.4). Between the jump moments, there is a drift
into the direction −Ê , according to (3.4). Thus, in the steady state, the average wave-vector
and, according to (2.10), the mean velocity are proportional to −Ê . A related property is (4.11).

4.3 Proof

The proof of (4.10) is based on the following lemma.

Lemma 4.2 Assume (2.9) and denote

J(y) =
[g−1(y)]2

g′(g−1(y))
. (4.14)

Let F be any continuous function on [0,∞) . Then

∫

R3

δ(ε(k)− ε(k′))F (ε(k′)) dk′ = (4.15)

4π F (ε(k)) J(ε(k)) = F (ε(k))

∫

R3

δ(ε(k′)− ε(k)) dk′ ,

∫

R3

δ(ε(k)− ε(k′) + ~ωi)F (ε(k′)) dk′ = (4.16)

4π F (ε(k) + ~ωi) J(ε(k) + ~ωi)

= F (ε(k) + ~ωi)

∫

R3

δ(ε(k′)− ε(k)− ~ωi) dk
′

and

∫

R3

δ(ε(k)− ε(k′)− ~ωi)F (ε(k′) dk′ = (4.17)

4π F (ε(k)− ~ωi) J(ε(k)− ~ωi) 1(0,∞)(ε(k)− ~ωi)

= F (ε(k)− ~ωi)

∫

R3

δ(ε(k′)− ε(k) + ~ωi) dk
′ .

The notation 1(0,∞)(x) is used for the step function taking the values 1 , for x > 0 , and 0 ,
otherwise.
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Proof. Consider the substitution g(r) = y so that

g′(r) dr = dy and r = g−1(y) . (4.18)

Using spherical coordinates, one obtains (for any a 6= 0 and b ∈ R)
∫

R3

δ(a ε(k) + b)F (ε(k)) dk =

4π

∫ ∞

0

δ(a g(r) + b)F (g(r)) r2 dr = 4π

∫ ∞

0

δ(a y + b)F (y) J(y) dy

and
∫

R3

δ(ε(k)− b)F (ε(k)) dk =

∫

R3

δ(−ε(k) + b)F (ε(k)) dk = 4π F (b) J(b) 1(0,∞)(b)

so that the assertions (4.15)–(4.17) follow. �

According to Lemma 4.2, one obtains (cf. (4.1)–(4.4), (4.6), (4.8))
∫

R3

S(k, k′) [ε(k′)− ε(k)] dk′ =

6
∑

i=1

Ki

[

(κi + 1)

∫

R3

δ(ε(k′)− ε(k) + ~ωi) [ε(k
′)− ε(k)] dk′+

κi

∫

R3

δ(ε(k′)− ε(k)− ~ωi) [ε(k
′)− ε(k)] dk′

]

=
6

∑

i=1

Ki

[

(κi + 1) (−~ωi)

∫

R3

δ(ε(k′)− ε(k) + ~ωi) dk
′+

κi ~ωi

∫

R3

δ(ε(k′)− ε(k)− ~ωi) dk
′

]

=

6
∑

i=1

[

(−~ωi)

∫

R3

S+
i (k, k

′) dk′ + ~ωi

∫

R3

S−
i (k, k

′) dk′

]

=
6

∑

i=1

~ωi

[

λ−
i (k)− λ+

i (k)
]

= −G(k) . (4.19)

In terms of the probabilistic interpretation of the scattering mechanisms given in Section 4.1,
property (4.19) is related to the expected jump size.

In the spatially homogeneous case, equation (3.3) takes the form

d

dt

∫

R3

ϕ(k) f(t, k) dk = (4.20)

∫

R3

[

−
q

~
(Ê · ∇k)ϕ(k) +

∫

R3

S(k, k′) [ϕ(k′)− ϕ(k)] dk′

]

f(t, k) dk .

With ϕ(k) = ε(k) , equation (4.20) implies (cf. (2.2), (4.19))

d

dt

∫

R3

ε(k) f(t, k) dk = −q Ê ·

∫

R3

v(k) f(t, k) dk −

∫

R3

G(k) f(t, k) dk (4.21)
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so that (4.10) follows.

Next we prove (4.11). According to (2.7), (2.9) and (2.10), one obtains (using spherical
coordinates)

∫

R3

S(k, k′) v(k′) dk′ = 0 . (4.22)

Thus, with ϕ(k) = vi(k) , equation (4.20) takes the form (cf. (3.6))

d

dt

∫

R3

vi(k) f(t, k) dk =

∫

R3

[

−
q

~
(Ê · ∇k) vi(k)− vi(k) λ(k)

]

f(t, k) dk . (4.23)

Since (cf. (2.2))

vi(k) =
1

~

∂

∂ki
ε(k) ,

one obtains

(Ê · ∇k) vi(k) = Ê1
∂

∂k1
vi(k) + Ê2

∂

∂k2
vi(k) + Ê3

∂

∂k3
vi(k) =

∂

∂ki

(

Ê1 v1(k) + Ê2 v2(k) + Ê3 v3(k)
)

=
∂

∂ki
(Ê · v(k))

so that (4.23) implies

d

dt

∫

R3

v(k) f(t, k) dk = (4.24)

−
q

~

∫

R3

∇k (Ê · v(k)) f(t, k) dk −

∫

R3

v(k) λ(k) f(t, k) dk .

In the parabolic case (2.13), one obtains

∇k (Ê · v(k)) =
~

m∗
∇k (Ê · k) =

~

m∗
Ê

and (4.11) follows from equation (4.24).

5 Deviational particle Monte Carlo

In this section we propose an extension of the deviational particle Monte Carlo method to the
area of electron transport. This method has been developed by Hadjiconstantinou and co-
workers [1, 5, 24, 21] for the Boltzmann equation in rarefied gas dynamics. Recently it has
been applied to phonon transport [17, 18]. The basic idea is to approximate the deviation of the
solution from a given function (e.g., a local steady state) by particles. This approach is partic-
ularly successful in applications with a small signal-to-noise ratio, where it leads to significant
variance reduction compared to standard DSMC.
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5.1 Steady state

Theoretical results concerning convergence to equilibrium for the solution of equation (4.9) were
obtained in [9]. A related numerical study was performed in [15]. Here we derive some properties
of a specific steady state by applying techniques from the previous section. In physical terms,
the results are related to the Maxwell-Boltzmann distribution, which is an approximation to the
Fermi-Dirac distribution (see [8, Remark 1.12], [6, Section 2.5]).

Theorem 5.1 Assume (2.9). The function

fM(k) = A exp

(

−
ε(k)

kB TL

)

, where A > 0 , (5.1)

satisfies (cf. (2.6))

QfM = 0 (5.2)

so that it is a steady state of equation (4.9) with zero external field. Moreover, the function (5.1)

has the following properties.

� The heat generation rate satisfies (cf. (4.7), (4.8))

∫

R3

G(k) fM(k) dk = 0 , (5.3)

in accordance with (4.12).

� The mean velocity satisfies (cf. (2.2))

∫

R3

v(k) fM(k) dk = 0 . (5.4)

� In the parabolic case (2.13), the mean energy satisfies

∫

R3 ε(k) fM(k) dk
∫

R3 fM (k) dk
=

3

2
kB TL . (5.5)

In this case the function (5.1) is a Maxwellian density.

Proof. Introduce the function

f̃M(ε) = A exp

(

−
ε

kB TL

)

and note the identity (cf. (2.8))

κi exp

(

~ωi

kB TL

)

= κi + 1 . (5.6)

It follows from Lemma 4.2 and (5.6) that (cf. (4.2)–(4.4))
∫

R3

S0(k
′, k) fM(k′) dk′ = fM(k)

∫

R3

S0(k, k
′) dk′ , (5.7)
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∫

R3

S+
i (k

′, k) fM(k′) dk′ = (5.8)

Ki (κi + 1) f̃M(ε(k) + ~ωi)

∫

R3

δ(ε(k′)− ε(k)− ~ωi) dk
′

= Ki fM(k) κi

∫

R3

δ(ε(k′)− ε(k)− ~ωi) dk
′ = fM(k)

∫

R3

S−
i (k, k

′) dk′

and
∫

R3

S−
i (k

′, k) fM(k′) dk′ = (5.9)

Ki κi f̃M(ε(k)− ~ωi)

∫

R3

δ(ε(k′)− ε(k) + ~ωi) dk
′

= Ki fM(k) (κi + 1)

∫

R3

δ(ε(k′)− ε(k) + ~ωi) dk
′ = fM(k)

∫

R3

S+
i (k, k

′) dk′ .

According to (5.7)–(5.9), one obtains (cf. (4.1))

∫

R3

S(k′, k) fM(k′) dk′ = fM(k)

∫

R3

S(k, k′) dk′

so that (5.2) follows from (2.6).

It follows from (5.8) and (5.9) that (cf. (4.6))

∫

R3

λ+
i (k) fM(k) dk =

∫

R3

[
∫

R3

S+
i (k, k

′) dk′

]

fM(k) dk = (5.10)

∫

R3

[
∫

R3

S+
i (k, k

′) fM(k) dk

]

dk′ =

∫

R3

fM(k′) λ−
i (k

′) dk′ .

Property (5.3) is a consequence of (4.8) and (5.10). Property (5.4) follows from (2.10), due to
rotational symmetry. It remains to establish property (5.5). Using spherical coordinates and the
substitution g(r) = y , one obtains (cf. (4.14), (4.18))

∫

R3

F (ε(k)) dk = 4π

∫ ∞

0

F (g(r)) r2 dr = 4π

∫ ∞

0

F (y) J(y) dy , (5.11)

for any non-negative function F such that the integrals are finite. In particular, it follows from
(5.11) that

∫

R3

ε(k)i fM(k) dk = 4π A

∫ ∞

0

yi exp

(

−
y

kB TL

)

J(y) dy = (5.12)

4π A (kB TL)
i+1

∫ ∞

0

yi exp(−y) J(kB TL y) dy , i = 0, 1, 2, . . . .

In the parabolic case (2.13), one obtains (cf. (2.9), (4.14))

J(y) =

(

m∗

~2

)
3

2
√

2 y . (5.13)
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It follows from (5.12) and (5.13) that

∫

R3

ε(k)i fM(k) dk = 4π A (kB TL)
i+1

(

m∗

~2

)
3

2

∫ ∞

0

yi exp(−y)
√

2 kB TL y dy

= 2π A

(

2m∗

~2

)
3

2

(kB TL)
i+ 3

2 Γ

(

i+
3

2

)

,

which implies (5.5). �

5.2 Deviational particles

Here we discuss some basic steps towards an application of the deviational particle Monte Carlo
method to the numerical treatment of equation (2.1). Introduce the function

f̄(t, x, k) = f(t, x, k)− fM(k) , (5.14)

where f is a solution of (2.1) and fM is defined in (5.1). Note that (cf. (2.2))

∇k fM(k) = −
~

kB TL

fM(k) v(k) . (5.15)

According to Theorem 5.1 and (5.15), the function (5.14) satisfies the equation

[

∂

∂t
+ v(k) · ∇x −

q

~
E(t, x) · ∇k

]

f̄(t, x, k) = (5.16)

(Q f̄)(t, x, k)−
q

kB TL

fM(k)E(t, x) · v(k) .

Equation (5.16) is similar to (2.1), but contains an additional source term. Equations (2.3)–(2.5)
are applied to the original function f .

Functionals of the solution f are calculated as

∫

D

∫

R3

ϕ(x, k) f(t, x, k) dk dx =
∫

D

∫

R3

ϕ(x, k) fM(k) dk dx+

∫

D

∫

R3

ϕ(x, k) f̄(t, x, k) dk dx .

Functionals with respect to fM are either known explicitly (cf. (5.3)–(5.5)), or can be calculated
by some deterministic method. Functionals with respect to f̄ are calculated using a system
of particles. The basic stochastic model described in Section 3 has to be extended by jumps
corresponding to the creation of particles. This is covered by the general theory of stochastic
particle systems related to kinetic equations (cf., e.g., [3]). However, slight modifications are
needed, since the source term in (5.16) takes both positive and negative values. Thus, a system
of particles with positive and negative weights is used.

In the following we sketch this algorithm in the spatially homogeneous case. Note that v(k)
is given in (2.10) and the external field Ê does not depend on t .

12



� Initialization. The particle system is initialized according to a density proportional to

|f0(k)− fM (k)| ,

where f0 is the initial state of equation (4.9). Particles get weights determined by the sign
of the function f0 − fM .

If f0 = fM , then the algorithm starts with an empty particle system.

� Creation. Particles with wave-vector k are created according to a density proportional to

fM(k) |Ê · v(k)| .

They get weights determined by the sign of the expression Ê · v(k) . This choice of con-
stant weights ±1 corresponds to the original deviational particle Monte Carlo method.
Alternatively, particles can be created according to fM(k) getting variable weights pro-
portional to Ê · v(k) .

If f0 = fM and Ê = 0 , then the particle system stays empty, in accordance with
Theorem 5.1.

� Acceleration. Particles are accelerated according to (cf. (3.4))

d

dt
k(t) = −

q

~
Ê .

� Scattering. Particles are scattered as in the standard case (cf. (3.5), (4.1)–(4.5)).

According to Lemma 4.2, the scattering probabilities (4.5) take the form

λ0(k) = λ̃(ε(k)) and λ±
i (k) = λ̃±

i (ε(k)) ,

where

λ̃0(ε) = 4πK0 J(ε) ,

λ̃+
i (ε) = 4πKi (κi + 1) J(ε− ~ωi) 1(0,∞)(ε− ~ωi)

and

λ̃−
i (ε) = 4πKi κi J(ε+ ~ωi) .

The quasi-parabolic case (2.12) has the form (2.9) with

g(r) =

√

1 + β r2 − 1

2α
, β =

2α~2

m∗
.

One obtains

g−1(y) =

√

(2α y + 1)2 − 1

β
, g′(r) =

β r

2α
√

1 + β r2
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and (cf. (4.14))

J(y) =
g−1(y)

β
2α

√

1 + β [g−1(y)]2 =

√

(2α y + 1)2 − 1

β

2α (2α y + 1)

β

=

(

2α

β

)
3

2 √

2 y (α y + 1) (2α y + 1)

=

(

m∗

~2

)
3

2 √

2 y (α y + 1) (2α y + 1) . (5.17)

Note that (5.17) holds with α ≥ 0 (cf. (5.13)).

5.3 Comments

In the deviational particle approach sketched in Section 5.2 there is permanent creation of
particles. In order to run the algorithm for large times, the growth of the system has to be
controlled. This blow-up control is a common problem when dealing with “artificial” weighted
particle systems instead of “natural” direct simulation systems (cf. [23, Section 3.4]). In [17, 18]
particles are skipped, when they have had a sufficiently large number of scattering collisions.
The argument is that those particles have reached a certain equilibrium and do not add any
new information. A similar idea might be useful in our context, where the steady state for the
deviation f̄ is a combination of “old” particles (that have experienced enough scattering and
acceleration) and “new” particles (permanently incepted by the source term). Beside the control
issue, further work is needed to develop the details of an extension of the deviational particle
approach to the spatially inhomogeneous case.

There is another interesting aspect related to stochastic weighted particle systems. Once
the algorithm is based on weighted particles, it should be possible to provide alternatives for
the simulation of scattering processes. This might be helpful in order to study effects of rare
events, which do not happen frequently enough in the direct simulation algorithm in order to
gather reliable statistics.
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