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ABSTRACT. The main goal of this work is to prove that every non-negative strong solution u(x, t) to
the problem

ut + (−∆)α/2u = 0 for (x, t) ∈ Rn × (0, T ), 0 < α < 2,
can be written as

u(x, t) =
∫

Rn
Pt(x− y)u(y, 0) dy,

where

Pt(x) =
1

tn/α
P
( x

t1/α

)
,

and

P (x) :=
∫

Rn
eix·ξ−|ξ|

α

dξ.

This result shows uniqueness in the setting of non-negative solutions and extends some classical re-
sults for the heat equation by D. V. Widder in [12] to the nonlocal diffusion framework.

1. INTRODUCTION

The heat equation has the hyperplane t = 0 as a characteristic surface and this causes that the
Cauchy problem with initial data on t = 0 is not well possed in general. However there is a clear
agreement between the Principles of Thermodynamics and the model of transfer of heat given by
such an equation. This is reflected into the fact that the initial temperature evolves in time as the
convolution with a kernel, giving rise to an average, and smoothing out in this way the potential effect
of sharp thermal differences (this is in agreement with the entropy effect of the Second Principle of
Thermodynamics); also uniqueness holds true under a positivity assumption on the function (this is in
agreement with the so called Third Principle of Thermodynamics, according to which temperatures are
always positive if measured in the Kelvin scale). In this sense D. V. Widder in [12] proved the following
classical result:

Assume that u : Rn × [0, T ) ⊂ Rn
+ → R is so that

u(x, t) > 0, u ∈ C (Rn × [0, T )), ut, uxixi ∈ C (Rn × (0, T )),

and satisfies

ut(x, t)−∆u(x, t) = 0, (x, t) ∈ Rn × (0, T ),

in the classical sense.

Then

u(x, t) =
1

(4πt)
n
2

∫
Rn
u(y, 0) exp

(−|x− y|2
4t

)
dy.

In this paper we obtain a similar result for the nonlocal heat equation, that is the equation,

(1.1) ut + (−∆)α/2u = 0 for (x, t) ∈ Rn × (0, T ), 0 < α < 2,

in which the diffusion is given by a power of the Laplacian (we refer to [5] and [11] for basic definitions
and properties of the fractional Laplace operator).

It is worthy to point out that for every α ∈ (0, 2] the operator in (1.1) does not satisfies the so
called Hadamard condition, that is, the Cauchy problem is ill possed (see [7] for more details). As a
consequence we face here a problem similar to the one of the heat equation.

It is well known that the operator in (1.1) and its inverse are nonlocal. In a sense, equation (1.1)
is perhaps one of the simplest classical examples of pseudodifferential operators. Notice that if we
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consider the problem

ut + (−∆)α/2u = 0 for (x, t) ∈ Rn × (0, T ), 0 < α < 2

with initial datum u(x, 0) = u0(x) assuming, say, u0 ∈ C (Rn)
⋂
L∞(Rn), then a solution is ob-

tained by the convolution with the kernel

(1.2) Pt(x) =
1

tn/α
P
( x

t1/α

)
,

where

(1.3) P (x) :=

∫
Rn
eix·ξ−|ξ|

α

dξ.

That is, a solution is given by

(1.4) u(x, t) =

∫
Rn
Pt(x− y)u0(y) dy.

We look here for a class of solutions of the fractional parabolic equation, such that the sign condition
u(x, t) > 0 imply that u, necessarily, is of the form (1.4) with u0(x) replaced by the trace u(x, 0).
This is the type of extension that we propose for the classical result of Widder to the nonlocal equation
in (1.1).

In this article we will describe several interpretations of what solution to equation (1.1) means, and
consider weak, viscosity and strong solutions, in a sense that we now make more precise.

Weak solutions. Consider the space

L α/2(Rn) :=

{
u : Rn → R measurable :

∫
Rn

|u(x)|
1 + |x|n+α

dx <∞
}
,

endowed with the norm

‖u‖L α/2(Rn) :=

∫
Rn

|u(x)|
1 + |x|n+α

dx.

If u ∈ L α/2(Rn) then (−∆)α/2u can be defined in the weak sense as a distribution, that is we can
compute the duality product 〈(−∆)α/2u, ϕ〉, for every ϕ in the Schwartz class.

Definition 1.1. We say that u(x, t) is a weak solution of the fractional heat problem{
ut + (−∆)α/2u = 0 for (x, t) ∈ Rn × (0, T ),
u(x, 0) = u0(x) in Rn,

if the following conditions hold:

i) u ∈ L1([0, T ′],L α/2(Rn)) for every T ′ < T .
ii) u ∈ C ((0, T ), L1

loc(Rn)).
iii) For every test function ϕ ∈ C∞0 (Rn × [0, T )) and 0 < T ′ < T one has that

(1.5)

∫ T ′

0

∫
Rn

[
−u(x, t)ϕt(x, t) + u(x, t)(−∆)α/2ϕ(x, t)

]
dx dt =∫

Rn
u(x, T ′)ϕ(x, T ′) dx−

∫
Rn
u0(x)ϕ(x, 0) dx.

Condition ii) is imposed so that the right hand side of equality (1.5) makes sense for every T ′. Notice
that the continuity would follow in any case from the left hand side of (1.5) due to the integrability
condition in i).
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Viscosity solutions. Consider Q = Rn × (0, T ) and

C 1,2
p (Q) =

{
f : Q→ R | ft ∈ C (Q), fxi,xj ∈ C (Q)

and sup
t∈(0,T )

|f(x, t)| 6 C(1 + |x|)p
}

Definition 1.2. A function u ∈ C (Q) is a viscosity subsolution (resp. supersolution) of

(1.6) ut + (−∆)α/2u = 0

in Q if for all (x̂, t̂) ∈ Q and ϕ ∈ C 1,2
p (Q) such that u − ϕ attains a local maximum (minimum) at

(x̂, t̂) one has
ϕt(x̂, t̂) + (−∆)α/2ϕ(x̂, t̂) 6 0 (resp. >).

We say that u ∈ C (Q) is a viscosity solution of (1.6) in Q if it is both a viscosity subsolution and
supersolution. See [8] for more details about these type of solutions.

Strong solutions. We know (see Proposition 2.1.4 of [10]) that if u ∈ L α/2(Rn) ∩ C α+γ
loc (Rn) (or

C 1,α+γ−1 if α > 1), for some γ > 0 then (−∆)α/2u is a continuous function and it is well defined as
the following principal value

(−∆)α/2u(x) := C(n, α)P.V.

∫
Rn

u(x)− u(y)

|x− y|n+α
dy, α ∈ (0, 2).

Here C(n, α) denotes the constant satisfying the identity

(−∆)α/2u = F−1(|ξ|αFu), ξ ∈ Rn, u ∈ S , α ∈ (0, 2);

that is,

C(n, α) =

(∫
Rn

1− cos(ξ1)

|ξ|n+α
dξ

)−1

,

see [5].

In order to allow a larger class of functions, and following standard procedures in the theory of singular
integrals, we will define hereafter the principal value as the two-sided limit

P.V.

∫
Rn

u(x)− u(y)

|x− y|n+α
dy = lim

ε→0

∫
{y | ε<|x−y|<1/ε}

u(x)− u(y)

|x− y|n+α
dy.

We will use the same notation for this extended operator. When u ∈ L α/2(Rn) this definition coin-
cides with the usual one.

Definition 1.3. We say that u(x, t) is a strong solution of the fractional heat equation

ut + (−∆)α/2u = 0 for (x, t) ∈ Rn × (0, T ),

if the following conditions hold:

i) ut ∈ C (Rn × (0, T )).
ii) u ∈ C (Rn × [0, T )).
iii) The equation is satisfied pointwise for every (x, t) ∈ Rn × (0, T ), that is,

ut(x, t) + C(n, α)P.V.
∫

Rn

u(x, t)− u(y, t)

|x− y|n+α
dy = 0.
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Note that if u(x, t) is a strong solution then

P.V.

∫
Rn

u(x, t)− u(y, t)

|x− y|n+α
dy ∈ C (Rn × (0, T )).

Observe also that if u(x, t) is a strong solution of the fractional heat equation satisfying u(x, t) ∈
L1([0, T ′],L α/2(Rn)) for every T ′ < T , then u(x, t) is a weak solution of the fractional heat equa-
tion (as a byproduct of our results, we will see that this holds true for non-negative strong solutions,
see the forthcoming Corollary 3.6).

Our main contribution in this setting is the following Widder’s type result

Theorem 1.4. If u > 0 is a strong solution of

ut + (−∆)α/2u = 0 for (x, t) ∈ Rn × (0, T ), 0 < α < 2,

then

u(x, t) =

∫
Rn
Pt(x− y)u(y, 0) dy.

Note that, if for a given polynomial p with real coefficients we consider the differential operator p(D),
then we obtain that

p(D)Pt(x) =

∫
Rn
eix·ξp(iξ)e−t|ξ|

α

dξ.

Since e−t|ξ|
α

is a tempered distribution we deduce that Pt ∈ C∞(Rn × (0,∞)) (see for instance [6]
and [3] for more details). In particular, and as a consequence of Theorem 1.4, we get that if u is a non
negative strong solution of the fractional heat equation then u ∈ C∞(Rn × (0, T )).

The paper is organized as follows. In Section 2 we prove a uniqueness result for weak solutions that,
in turn, will be the key step to obtain our representation theorem. Next in Section 3 we prove the main
result for strong solutions. We start by proving a comparison result that will allow us to show that every
positive strong solution u(x, t) is bigger than or equal to the convolution of the trace u(x, 0) with the
kernel Pt(x). By a scaling argument we will prove that any positive strong solution is also a weak
solution and then, by the uniqueness result of the previous section, we will conclude with the proof of
the theorem.

Finally, in the last section we establish the pointwise behavior of positive strong solution that has an
interest on its own and that could provide and alternative proof to our representation result.

2. UNIQUENESS FOR WEAK SOLUTIONS

To start with, we prove a uniqueness result for weak solutions with vanishing initial condition. The proof
is quite complicated and it involves many fine integral estimates. The nonlocal feature of the problem
also makes localization and cutoff arguments much harder than in the classical case.

Theorem 2.1. Set T > 0, α ∈ (0, 2) and let u be a weak solution of the fractional heat equation

(2.1)

{
ut + (−∆)α/2u = 0 for (x, t) ∈ Rn × (0, T ),
u(x, 0) = 0 in Rn.

Then u(x, t) = 0 for every t ∈ (0, T ) and a.e. x ∈ Rn.
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Proof. We must show that u(x, t0) = 0 for an arbitrary t0 ∈ (0, T ) and x ∈ Rn. For this, we fix
R0 > 0 and θ ∈ C∞0 (BR0) and we will prove that∫

Rn
u(x, t0)θ(x) dx = 0.

For any t ∈ [0, t0), we define

ϕ(x, t) := (θ(·) ∗ Pt0−t(·))(x),

where Pt is the kernel defined in (1.2) and (1.3). By [9] (see also [2] and [4]) we know that

(2.2)
1

C

1

1 + |x|n+α
6 P (x) 6

C

1 + |x|n+α
.

Therefore

ϕ̂(ξ, t) = θ̂(ξ)e−(t0−t)|ξ|α = C(ξ)et|ξ|
α

.

Since

ϕ̂t(ξ, t) = |ξ|αϕ̂(ξ, t),

we have that

(2.3)

{
ϕt − (−∆)α/2ϕ = 0 for (x, t) ∈ Rn × [0, t0),
ϕ(x, t0) = θ(x) in Rn.

Now we claim that

(2.4) |ϕ(x, t)| = |θ(x) ∗ Pt0−t(x)| 6 C1

1 + |x|n+α
,

where C1 depends of n, α, R0, M := ‖θ‖L∞(BR0
) and t0.

Indeed, considering without lost of generality that 2R0 > 1, we will distinguish two cases:

When |x| 6 2R0, using that Pt is a summability kernel in L1 we have that∣∣∣∣∫
Rn
Pt0−t(y)θ(x− y) dy

∣∣∣∣ 6 M

∫
Rn
Pt0−t(y) dy = M

6 M
1 + (2R0)n+α

1 + |x|n+α

6
c1

1 + |x|n+α
.(2.5)

where c1 = c1(n, α, R0, M).

Consider now |x| > 2R0. Note that from (1.2) and (2.2), we obtain that

(2.6) Pt(y) 6
C

t
n
α

(
1 + |y|n+α

t
n+α
α

) 6 Ct

|y|n+α
.

Then, since for |x− y| 6 R0 it follows that |y| > |x|
2

, we have

Pt0−t(y) 6
2n+αC(t0 − t)
|x|n+α

.
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As a consequence,∣∣∣∣∫
Rn
Pt0−t(y)θ(x− y) dy

∣∣∣∣ =

∣∣∣∣∫
|x−y|6R0

Pt0−t(y)θ(x− y) dy

∣∣∣∣
6 2n+αCM |BR0|

t0 − t
|x|n+α

6 2n+α2CM |BR0|
t0

1 + |x|n+α

6
c2

1 + |x|n+α
,(2.7)

where c2 = c2(n, α, R0, M, t0) and |BR0| denotes, as usual, the Lebesgue measure of the ball.
Hence, (2.4) follows from (2.5) and (2.7).

Also, applying (2.7) to the derivatives of θ ∈ C∞0 (BR0), we also have

(2.8) |∇ϕ(x, t)| = |∇θ(x) ∗ Pt0−t(x)| 6 C2

1 + |x|n+α
,

where C2 depends also of n, α, R0, M ′ := ‖∇θ‖L∞(BR0
) and t0.

Then, from (2.4) and the fact that u ∈ L1([0, t0],L α/2(Rn)) we deduce that

(2.9) M2 :=

∫ t0

0

∫
Rn
|u(x, t)ϕ(x, t)| dx dt <∞.

Let now φ ∈ C∞(R) be such that

(2.10) χB1/2
6 φ 6 χB1 .

For R > 2R0 we define φR(x) = φ
(
x
R

)
and

ψ(x, t) := ϕ(x, t)φR(x),

as a test function of problem (2.1). Also, by an explicit computation, one sees that, for any f, g ∈
L α/2(Rn),

(−∆)α/2(fg)(x) = f(x)(−∆)α/2g(x) + g(x)(−∆)α/2f(x)−B(f, g)(x)

with B(f, g) the bilinear form given by

B(f, g)(x) := C(n, α)

∫
Rn

(f(x)− f(y))(g(x)− g(y))

|x− y|n+α
dy.

Appling this formula (for a fixed t) to the functions ϕ and φR and recalling (2.3) we obtain

(2.11) (−∆)α/2ψ = ϕ(−∆)α/2φR + φRϕt −B(ϕ, φR).

Moreover, the function uψ evaluated at t0 is u(x, t0)θ(x)φR(x), thanks to the terminal time condition
in (2.3). Thus, considering ψ as a test function in (2.1) and using that ϕ is a solution of the problem
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(2.3) we obtain ∣∣∣∣∫
Rn
u(x, t0)θ(x)φR(x) dx

∣∣∣∣(2.12)

=

∣∣∣∣∫ t0

0

∫
Rn

[
uϕt(x, t)φR(x)− u(−∆)α/2(ψ(x, t))

]
dx dt

∣∣∣∣
=

∣∣∣∣∫ t0

0

∫
Rn

[
uB(ϕ, φR)(x, t)− uϕ(x, t)(−∆)α/2φR(x)

]
dx dt

∣∣∣∣
6

∫ t0

0

∫
Rn
|uϕ(x, t)| |(−∆)α/2φR(x)| dx dt

+

∫ t0

0

∫
Rn
|u(x, t)| |B(ϕ, φR)(x, t)| dx dt

Then, since θ is supported in BR0 and R0 < R/2, and recalling (2.10), we conclude that∣∣∣∣∫
Rn
u(x, t0)θ(x) dx

∣∣∣∣ 6 ∫ t0

0

∫
Rn
|uϕ(x, t)| |(−∆)α/2φR(x)| dx dt

+

∫ t0

0

∫
Rn
|u(x, t)| |B(ϕ, φR)(x, t)| dx dt

=: I1(R) + C(n, α) I2(R).(2.13)

It remains to show that
lim
R→∞

I1(R) + I2(R) = 0.

Indeed, since

|(−∆)α/2φR(x)| = R−α
∣∣∣((−∆)α/2φ

) ( x
R

)∣∣∣ 6 C0R
−α,

by (2.9), it follows that

I1(R) 6 C0R
−α
∫ t0

0

∫
Rn
|uϕ(x, t)| dx dt 6 C0M2R

−α

and so

(2.14) lim
R→∞

I1(R) = 0.

Now we are going to estimate I2(R). For this we cover Rn ×Rn with six domains suitably described
by the radii R/4, R/2, R and 2R and represented (for n = 1) in the following picture:

R
4

R
2

R 2R

R/4
R/2

R

2R

A1

A2

A3

A4

A5

A5

C

C

C
C
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Therefore

R2n =

(
5⋃

k=1

Ak

)
∪ C,

where

A1 := {(x, y) : |x| > R/2, |y| 6 R/4}, A2 := {(x, y) : |x| 6 R/4, |y| > R/2},

A3 := {(x, y) : |x| > 2R, R/4 < |y| < R}, A4 := {(x, y) : R/4 < |x| < R, |y| > 2R},

A5 := {(x, y) : R/4 < |x| < 2R, R/4 < |y| < 2R}
and

C := {(x, y) : |x| 6 R/2, |y| 6 R/2} ∪ {(x, y) : |x| > R, |y| > R}.

From (2.10), we know that φR(x)− φR(y) = 0 if (x, y) ∈ C , and so

I2(R) =

∫ t0

0

∫
Rn
|u(x, t)|

∫
Rn

|ϕ(x, t)− ϕ(y, t)| |φR(x)− φR(y)|
|x− y|n+α

dy dx dt

6
5∑

k=1

IAk2 (R),(2.15)

where

IAk2 (R) =

∫ t0

0

∫
Ak

|u(x, t)| |ϕ(x, t)− ϕ(y, t)| |φR(x)− φR(y)|
|x− y|n+α

dy dx dt,

for k = 1, . . . , 5.

We are going to estimate each of these five integral separately. For (x, y) ∈ A1 we get that |x−y| >
C|x|. Moreover by (2.4) it follows that

|ϕ(x, t)|+ |ϕ(y, t)| 6 C

1 + |y|n+α
.

Therefore

IA1
2 (R) 6

∫ t0

0

∫
|x|>R/2

|u(x, t)|
|x|n+α

∫
|y|6R/4

C

1 + |y|n+α
dy dx dt

6 C

∫ t0

0

∫
|x|>R/2

|u(x, t)|
|x|n+α

dx dt.(2.16)

Following the same ideas, since for (x, y) ∈ A2 we obtain that

(2.17) |ϕ(x, t)|+ |ϕ(y, t)| 6 C

|x|n+α
, and |x− y| > C|y|,

then

IA2
2 (R) 6

∫ t0

0

∫
|x|6R/4

|u(x, t)|
|x|n+α

∫
|y|>R/2

C

|y|n+α
dy dx dt

6 CR−α
∫ t0

0

∫
|x|6R/4

|u(x, t)|
|x|n+α

dx dt.(2.18)

Also, since for (x, y) ∈ A3 (2.17) is satisfied, then

(2.19) IA3
2 (R) 6 CR−α

∫ t0

0

∫
|x|>2R

|u(x, t)|
|x|n+α

dx dt.
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Similarly, using again the good decay of ϕ and the fact that |x− y| > C|y| for every (x, y) ∈ A4, we
obtain that

(2.20) IA4
2 (R) 6 CR−α

∫ t0

0

∫
R/4<|x|<R

|u(x, t)|
|x|n+α

dx dt.

Then, using the Monotone Convergence Theorem, by (2.9) and the fact that u ∈ L1([0, t0],L α/2(Rn)),
from (2.16), (2.18), (2.19) and (2.20) it follows that

(2.21) lim
R→∞

IA1
2 (R) = lim

R→∞
IA2

2 (R) = lim
R→∞

IA3
2 (R) = lim

R→∞
IA4

2 (R) = 0.

To estimate IA5
2 (R) we will treat separately the cases α ∈ [0, 1) and α ∈ [1, 2).

We start with the case α ∈ [0, 1) and (x, y) ∈ A5. Since in A5 the roles of x and y are symmetric,
we deduce from (2.4) that, in this case,

(2.22) |ϕ(x, t)|+ |ϕ(y, t)| 6 C

|x|n+α
.

Also

|φR(x)− φR(y)| 6 C

R
|x− y|.

Thus

(2.23) IA5
2 (R) 6

C

R

∫ t0

0

∫
R
4

6|x|62R

|u(x, t)|
|x|n+α

∫
R
4

6|y|62R

1

|x− y|n+α−1
dy dx dt.

By the change of variables ỹ := x− y, it follows from (2.23) that

IA5
2 (R) 6

C

R

∫ t0

0

∫
R
4

6|x|62R

|u(x, t)|
|x|n+α

∫
R
4

6|x−ỹ|62R

1

|ỹ|n+α−1
dỹ dx dt

6
C

R

∫ t0

0

∫
R
4

6|x|62R

|u(x, t)|
|x|n+α

∫
|ỹ|64R

1

|ỹ|n+α−1
dỹ dx dt.

6 CR−α
∫ t0

0

∫
R
4

6|x|62R

|u(x, t)|
|x|n+α

dx dt.(2.24)

Therefore, using that u ∈ L1([0, t0],L α/2(Rn)), we conclude that

(2.25) lim
R→∞

IA5
2 (R) = 0, when α ∈ [0, 1).

We consider now the case α ∈ [1, 2). By (2.8), we get that

(2.26) |ϕ(x, t)− ϕ(y, t)| 6 C

1 + |z|n+α
|x− y|,

for some z in the segment joining x and y. We take the family

Q :=

{
(x, y) ∈ A5 : |x− y| 6 R

100

}
.
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Note that, if (x, y) ∈ Q then every point z lying on the segment from x to y verifies |z| > C|x|.
Hence, (2.26) and the previous estimate for φR, gives that∫ t0

0

∫
(x,y)∈Q

|u(x, t)| |(φR(x)− φR(y))(ϕ(x, t)− ϕ(y, t))|
|x− y|n+α

dy dx dt

6
∫ t0

0

∫
(x,y)∈Q

|u(x, t)| C

R|x|n+α|x− y|n+α−2
dy dx dt

6
C

R

∫ t0

0

∫
R
4

6|x|62R

|u(x, t)|
|x|n+α

∫
R
4

6|y|62R

1

|x− y|n+α−2
dy dx dt

6
C

R

∫ t0

0

∫
R
4

6|x|62R

|u(x, t)|
|x|n+α

∫
R
4

6|x−ỹ|62R

1

|ỹ|n+α−2
dỹ dx dt

6 CR1−α
∫ t0

0

∫
R
4

6|x|62R

|u(x, t)|
|x|n+α

dx dt.(2.27)

On the other hand, if (x, y) ∈ A5 \Q we have that

(2.28) |x− y| > R

100
> C|y|.

Then by (2.22) and (2.28) it follows that∫ t0

0

∫
(x,y)∈A5\Q

|u(x, t)| |(φR(x)− φR(y))(ϕ(x, t)− ϕ(y, t))|
|x− y|n+α

dy dx dt

6
C

R

∫ t0

0

∫
(x,y)∈A5\Q

|u(x, t)| |(ϕ(x, t)− ϕ(y, t))|
|x− y|n+α−1

dy dx dt

6
C

R

∫ t0

0

∫
(x,y)∈A5\Q

|u(x, t)|
|x|n+α

1

|y|n+α−1
dy dx dt

6
C

R

∫ t0

0

∫
R
4

6|x|62R

|u(x, t)|
|x|n+α

∫
R
4

6|y|62R

1

|y|n+α−1
dy dx dt

6 CR−α
∫ t0

0

∫
R
4

6|x|62R

|u(x, t)|
|x|n+α

dx dt.(2.29)

Therefore, from (2.27) and (2.29)

IA5
2 (R) 6

∫ t0

0

∫
(x,y)∈Q

|u(x, t)| |(φR(x)− φR(y))(ϕ(x, t)− ϕ(y, t))|
|x− y|n+α

dy dx dt

+

∫ t0

0

∫
(x,y)∈A5\Q

|u(x, t)| |(φR(x)− φR(y))(ϕ(x, t)− ϕ(y, t))|
|x− y|n+α

dy dx dt

6 CR1−α
∫ t0

0

∫
R
4

6|x|62R

|u(x, t)|
|x|n+α

dx dt

+ CR−α
∫ t0

0

∫
R
4

6|x|62R

|u(x, t)|
|x|n+α

dx dt.(2.30)

Then, since u ∈ L1([0, t0],L α/2(Rn)), using the Monotone Convergence Theorem we obtain

(2.31) lim
R→∞

IA5
2 (R) = 0, when α ∈ [1, 2).

That is, by (2.25) and (2.31), we get

(2.32) lim
R→∞

|IA5
2 (R)| = 0, whenever α ∈ (0, 2).
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Putting together (2.15), (2.21) and (2.32) it follows that

(2.33) lim
R→∞

I2(R) = 0, when α ∈ (0, 2).

Therefore, from (2.13), by (2.14) and (2.33) we conclude that

lim
R→∞

∫
Rn
u(x, t0)θ(x) dx = 0,

for an arbitrary θ ∈ C∞0 (BR0), R0 < 2R. �

3. UNIQUENESS FOR STRONG POSITIVE SOLUTIONS

In this section we will establish the representation of the positive strong solutions of the fractional heat
equation as the Poisson integral of the initial value. That is

Theorem 3.1. Let (x, t) ∈ Rn × (0, T ). If u(x, t) > 0 is a strong solution of the fractional heat
equation, then ∫

Rn
Pt(x− y)u(y, 0) dy = u(x, t).

To prove this theorem we will need some previous results that we present as follows. First of all, we
establish that, among all possible positive solutions of the fractional heat equation, the smallest one
is given by a formula that involves the convolution with the fractional heat kernel (see Lemma 3.3). To
prove it we will use the following

Lemma 3.2 (A maximum principle). Set DT := Ω× (0, T ) and let v(x, t) ∈ C (Ω× [0, T )) satisfy,
pointwise, the following problem

(3.1)

{
vt + (−∆)α/2v 6 0 for (x, t) ∈ DT ,
v(x, t) 6 0 in

(
Rn × [0, T )

)
\DT .

Then v 6 0 in Ω× [0, T ).

Proof. Fixing an arbitrary T ′ ∈ (0, T ), we define

v(x0, t0) := max
Ω×[0,T ′]

v(x, t).

Our goal is to show that v(x0, t0) 6 0. The proof is by contradiction, assuming that

(3.2) v(x0, t0) > 0.

Then, (x0, t0) cannot lie in (∂Ω × [0, T )) ∪ (Ω × {0}), since v 6 0 there, thanks to the boundary
conditions in (3.1). As a consequence, (x0, t0) lies in Ω × (0, T ′] and therefore vt(x0, t0) = 0.
Therefore the equation in (3.1) implies that

0 > (−∆)α/2v(x0, t0) = Cn,αP.V.

∫
Rn

v(x0, t0)− v(y, t0)

|y − x0|n+α
dy

= Cn,α

(
P.V.

∫
Ω

v(x0, t0)− v(y, t0)

|y − x0|n+α
dy +

∫
Rn\Ω

v(x0, t0)− v(y, t0)

|y − x0|n+α
dy
)

> Cn,αP.V.

∫
Rn\Ω

v(x0, t0)− v(y, t0)

|y − x0|n+α
dy.

Since v(y, t0) 6 0 for y ∈ Rn \ Ω, thanks to (3.1), we obtain that the latter integrand is strictly
positive, due to (3.2), and this is a contradiction. �

Now we are able to prove that strong solutions are upper bounds for the kernel convolutions:
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Lemma 3.3. Let (x, t) ∈ Rn × (0, T ). If u(x, t) > 0 is a strong solution of the fractional heat
equation then

(3.3) I :=

∫
Rn
Pt(x− y)u(y, 0) dy 6 u(x, t),

where Pt(x) is the function defined in (1.2).

Proof. First of all, observe that the integral I = I(x, t) exists, for is given by the integration of two
(measurable) positive functions, although we do not know a priori that I is finite. However, this will be
a consequence of our result that gives the inequality I 6 u(x, t) for every (x, t) ∈ Rn × [0, T ). To
this aim, we let

(3.4) φR(x) :=

 1, |x| 6 R− 1,
R− |x|, R− 1 6 |x| 6 R,
0, |x| > R.

We define

vR(x, t) :=

∫
Rn
Pt(x− y)φR(y)u(y, 0) dy = (Pt(·) ∗ φRu(·, 0))(x).

Then 
∂vR
∂t

+ (−∆)α/2vR = 0 for (x, t) ∈ Rn × (0, T ),
vR(x, t) > 0 for (x, t) ∈ Rn × (0, T ),
vR(x, 0) = φR(x)u(x, 0) in Rn.

Let |x| > R. As u(x, t) ∈ C (Rn × [0, T )) we can define the real number

MR := sup
|y|<R

u(y, 0) <∞.

By (2.6) we have that

0 6 vR(x, t) 6 MR

∫
BR

Pt(x− y) dy

6 CMR

∫
BR

T

|x− y|n+α
dy

6 C(T,MR)

∫
BR

dy

||x| −R|n+α

= C(T,MR, n)
Rn

||x| −R|n+α
,

for any (x, t) ∈ (Rn \BR)× (0, T ).

Then, for every ε > 0 it follows that

(3.5) 0 6 vR(x, t) 6 ε, for any |x| > ρ, t ∈ (0, T ),

where

ρ = R +

(
C(T,MR, n)Rn

ε

) 1
n+α

> 0.

Moreover, as u(x, t) > 0 in Rn × [0, T ) we obtain that

(3.6) 0 6 vR(x, t) 6 ε 6 ε+ u(x, t), for any |x| > ρ, t ∈ (0, T )

and

(3.7) vR(x, 0) = φR(x)u(x, 0) 6 u(x, 0) 6 ε+ u(x, 0), for any |x| 6 ρ.
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Consider the cylinder
Dρ,T = Bρ × (0, T ).

We define the function
w(x, t) := vR(x, t)− u(x, t)− ε.

Then, by (3.6) and (3.7), we get that w(x, t) 6 0 in Rn × [0, T ) \Dρ,T . Therefore, since u(x, t) is
a strong solution of the fractional heat equation in Rn × [0, T ), applying Lemma 3.2 in Dρ,T to the
function w(x, t) we have that

vR(x, t) 6 ε+ u(x, t), for |x| 6 ρ and t ∈ [0, T ).

Therefore, from (3.6), it follows that

vR(x, t) 6 ε+ u(x, t), for x ∈ Rn and t ∈ [0, T ).

Since ε is fixed but arbitrary, the previous inequality implies that

vR(x, t) 6 u(x, t), for every x ∈ Rn and t ∈ [0, T ).

Finally, by the Monotone Convergence Theorem, as lim
R→∞

φR = 1, we conclude that

0 6 v(x, t) = lim
R→∞

vR(x, t) =

∫
Rn
Pt(x− y)u(y, 0)dy 6 u(x, t). �

By a simple time translation, we obtain from Lemma 3.3 the following:

Corollary 3.4. Let 0 < τ < T and (x, t) ∈ Rn × (0, T − τ). If u(x, t) > 0 is a strong solution of
the fractional heat equation then

(3.8)

∫
Rn
Pt(x− y)u(y, τ) dy 6 u(x, t+ τ),

where Pt(x) is the function defined in (1.2). As a consequence, for every x ∈ Rn and t ∈ [0, T − τ)
we have

(3.9)

∫ T−t

0

∫
Rn
Pt(x− y)u(y, τ) dy dτ 6

∫ T−t

0

u(x, t+ τ)dτ .

Moreover we have the following

Corollary 3.5. Let (x, t) ∈ Rn × (0, T ). If u(x, t) > 0 is a strong solution of the fractional heat
equation then, u(·, t) ∈ L α/2(Rn).

Proof. Let 0 < T ′ < T . Taking t = T − T ′ in (3.8), from (2.2), we get that

T − T ′

C

∫
Rn

u(y, τ)

(T − T ′)n+α
α + |x− y|n+α

dy 6
∫

Rn
PT−T ′(x− y)u(y, τ) dy

6 u(x, T − T ′ + τ) <∞.(3.10)

Let

C(T ) := min

{
1,

1

(T − T ′)n+α
α

}
.
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Then, since
1

(T − T ′)n+α
α + |y|n+α

> C(T )
1

1 + |y|n+α
,

taking x = 0 in (3.10), we conclude that∫
Rn

|u(y, t)|
(1 + |y|n+α)

dy <∞. �

We also have

Corollary 3.6. Let (x, t) ∈ Rn × (0, T ). If u(x, t) > 0 is a strong solution of the fractional heat
equation, then u(·, t) ∈ L1([0, T ′],L α/2(Rn)) for every 0 < T ′ < T.

Proof. Take an arbitrary 0 < T ′ < T . By (3.9) with t = T − T ′ we have that∫ T ′

0

∫
Rn
PT−T ′(x− y)u(y, τ) dy dτ 6

∫ T ′

0

u(x, τ)dτ .

Then, as u ∈ C (Rn × [0, T ′]) we get∫ T ′

0

∫
Rn
PT−T ′(x− y)u(y, τ) dy dτ <∞.

Therefore doing as the proof of Corollary 3.5 we get that∫ T ′

0

∫
Rn

|u(y, t)|
(1 + |y|n+α)

dy dt <∞.

That is, u ∈ L1([0, T ′],L α/2(Rn)) for every 0 < T ′ < T. �

Note that Corollary 3.6 affirms that if u(x, t) > 0 is a strong solution of the fractional heat equation
then u is also a weak solution of the same equation.

Now we are able to prove our main result:

Proof of Theorem 1.4. By Corollary 3.6 we get that u ∈ L1([0, T ′],L α/2(Rn)) for every 0 < T ′ <
T. Moreover if we define

p(x, t) :=

∫
Rn
Pt(x− y)u(y, 0) dy,

by (3.9) with t = T − T ′, we also have that p ∈ L1([0, T ′],L α/2(Rn)). Let now the function

w(x, t) := u(x, t)− p(x, t) > 0.

It is clear thatw is a strong solution of the fractional heat equation. Moreover, asw ∈ L1([0, T ′],L α/2(Rn)),
then w(x, t) is also a solution in the weak sense with zero initial datum. Therefore applying Theorem
2.1 we conclude that w(x, t) = 0 for every (x, t) ∈ Rn × [0, T ). �
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3.1. About viscosity solutions. As was said at the beginning of this work, it is natural to consider
viscosity solutions of the fractional heat equation. Our purpose here is to describe some cases in
which a positive viscosity solution has the unique representation in terms of the kernel Pt.

Proposition 3.7. Let {un} be a sequence of non-negative, strong solutions of the fractional heat
equation converging, uniformly over compact sets, to a given function u. Then u > 0 is a viscosity
solution of (1.1) satisfying

(3.11)

∫
Rn
Pt(x− y)u(y, 0) dy 6 u(x, t), (x, t) ∈ Rn × (0, T )

and

(3.12) u ∈ L1([0, T ′],L α/2(Rn)) for every 0 < T ′ < T.

That is, the conclusions of Lemma 3.3 and Corollary 3.6 are satisfied.

Proof. By Lemma 3.3 it follows that∫
Rn
Pt(x− y)un(y, 0) dy 6 un(x, t), (x, t) ∈ Rn × (0, T ).

Applying the Fatou Lemma we obtain (3.11). Therefore, doing as in the proof of the Corollary 3.6 we
conclude (3.12). Note also that, by the comparison principle (Corolary 2.1.6 of [10]), un > 0 is a
viscosity solution of (1.1) for every n ∈ N. Therefore, since u is the uniform limit over compact sets of
viscosity solutions, we get that u is also a viscosity solution of (1.1). �

Notice that to conclude the equality in (3.11) we would need to know that u is a weak solution.

If we add a monotonicity condition over the sequence {un} then we obtain the following

Proposition 3.8. Let {un} be a monotone sequence of non-negative, strong solutions of the fractional
heat equation converging, uniformly over compact sets, to a given function u. Then u > 0 is a strong
solution of (1.1) satisfying

(3.13)

∫
Rn
Pt(x− y)u(y, 0) dy = u(x, t), (x, t) ∈ Rn × (0, T ).

Proof. Since, for every n ∈ N, un > 0 satisfies Theorem 1.4, by the Monotone Convergence Theo-
rem we obtain (3.13). Clearly this implies that u > 0 is a strong solution of (1.1). �

Remark 3.9. It would be interesting to find the biggest class of positive viscosity solution for which the
representation property (3.13) holds. This seems to be an open problem as far as we know.

4. FURTHER RESULTS.

As in the local case (see [13]), given a solution u, one can define the enthalpy

v(x, t) =

∫ t

0

u(x, s) ds

which is also a solution of the fractional heat equation. Indeed we have the following result:

Lemma 4.1. Let (x, t) ∈ Rn × [0, T ). If u(x, t) is a strong solution of the fractional heat equation
with vanishing initial condition, then the entalpy term

v(x, t) =

∫ t

0

u(x, s) ds

is also a strong solution of the fractional heat equation. Moreover if u is positive the function v is
increasing in t for x fixed and α/2-subharmonic as a function of x in the weak sense.
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Proof. Let (x, t) ∈ Rn × [0, T ). First of all note that v(x, t) satisfies the conditions i)-iii) of the
Definition 1.3. Therefore, since u(x, t) is a strong solution of the fractional heat equation, by the
Fundamental Theorem of Calculus and Fubini Theorem it follows that

C(n, α)P.V.

∫
Rn

v(x, t)− v(y, t)

|x− y|n+α
dy

= C(n, α)P.V.

∫
Rn

∫ t
0
u(x, s) ds−

∫ t
0
u(y, s) ds

|x− y|n+α
dy

= C(n, α)P.V.

∫
Rn

∫ t

0

u(x, s)− u(y, s)

|x− y|n+α
ds dy

=

∫ t

0

(−∆)α/2u(x, s) ds

= −
∫ t

0

us(s, t) ds

= −u(x, t)

= −vt(x, t),
for any (x, t) ∈ Rn × (0, T ]. Then, v(x, t) satisfies the fractional heat equation in the strong sense.
Also if u > 0 from the calculations done before we deduce that

−(−∆)α/2v(x, t) = vt(x, t) = u(x, t) > 0.

So v is α/2-subharmonic as a function of x and increasing in t for x fixed. �

Lemma 4.1 shows that the enthalpy belongs to the special class of positive strong solutions that are
also α/2-subharmonic. This class naturally satisfies a polynomial estimate, as shown by the following
result.

Proposition 4.2. Let (x, t) ∈ Rn × [0, T ). Let u(x, t) > 0 such that

i) u(x, t) is an α/2-subharmonic function with respect to the variable x.
ii) u(x, t) is a strong solution of the fractional heat equation.

Then u(x, t) 6 C(t)(1 + |x|n+α) if (x, t) ∈ Rn × [0, T ).

Proof. By hypothesis it is clear that u is an α/2-subharmonic function with respect to the variable x
for t fixed and therefore u is increasing in time.
Let now 0 < t1 < T and 0 < t0 < T − t1. By Corollary 3.4 we have that∫

Rn
Pt(x− y)u(y, t1)dy 6 u(x, t+ t1), for any 0 < t < T − t1.

Therefore

Mt0 :=

∫
Rn
Pt0(y)u(y, t1)dy 6 u(0, t0 + t1) <∞.

Our objective is to show that

(4.1) |u(x, t1)| 6 C(1 + |x|n+α).

Once this is done, using that u is increasing in time, we would get

0 6 u(x, t) 6 u(x, t1) 6 C(1 + |x|n+α) for every (x, t) ∈ Rn × (0, t1).

But, since t0 and t1 are fixed but arbitrary, we would conclude that

|u(x, t)| 6 C(1 + |x|n+α).
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So, we are left to showing that (4.1) is true. Note that from Corollary 3.5 we have that u ∈ L α/2(Rn).
Then as u is α/2-subharmonic, by Proposition 2.2.6 of [10] u also satisfies the following mean value
property:

(4.2) u(x0, t) 6
∫

Rn
γλ(y − x0)u(y, t)dy for every x0 ∈ Ω ⊆ Rn and λ 6 dist(x0, ∂Ω),

where
γλ(x) := (−∆)α/2Γλ(x),

and

Γλ(x) :=
1

λn−α
Γ
(x
λ

)
.

Here Γ is a C1,1 function that coincides with Φ(x) := c|x|α−n outside the ball Bλ and Γ is a parabo-
loid inside this ball. Note that Φ is the fundamental solution of (−∆)α/2. From (4.2) we have

u(x, t1)(1 + |x|n+α)−1 6 (1 + |x|n+α)−1

∫
Rn
γλ(y)u(x− y, t1) dy

= (1 + |x|n+α)−1

∫
{y: |y|>λ}

γλ(y)u(x− y, t1) dy

+ (1 + |x|n+α)−1

∫
{y: |y|6λ}

γλ(y)u(x− y, t1) dy

:= I1(x) + I2(x).(4.3)

Choosing

(4.4) λ = |x|/4,
we have that |x− y| 6 5|y|. Therefore, by Proposition 2.2.3 of [10], we obtain

I1(x) 6 C(1 + |x|n+α)−1

∫
{y: |y|>λ}

u(x− y, t1)

|y|n+α
dy

6 C(1 + |x|n+α)−1

∫
Rn

u(x− y, t1)

|x− y|n+α
dy

6 C‖u‖L α/2(Rn) := C1.(4.5)

Moreover, using that the fractional Laplacian of a paraboloid is bounded, by (2.2) and (4.4), it follows
that

I2(x) 6 C(1 + |x|n+α)−1

∫
{y: |y|6λ}

u(x− y, t1) dy

6 C(1 + |x|n+α)−1

∫
{z: |x−z|6λ}

u(z, t1) dz

6 C(1 + |x|n+α)−1

∫
{z: |z|62|x|}

u(z, t1)P1(z)
1

P1(z)
dz

6 C(1 + |x|n+α)−1(1 + (2|x|)n+α)

∫
{z: |z|62|x|}

u(z, t1)P1(z) dz

6 CM1(1 + |x|n+α)−1(1 + (2|x|)n+α)

6 C(n, α)u(0, 1 + t1) := C2.(4.6)

By (4.3), (4.5) and (4.6), we obtain (4.1) and we conclude the proof. �

Remark 4.3. It would be interesting to prove that the pointwise behavior in Proposition 4.2 and some
comparison arguments provide an alternative proof to our main result, namely, the representation of
every solution as a convolution with the associated Poisson kernel.
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