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ABSTRACT. We derive an annealed large deviation principle (LDP) for the normalised and rescaled local times
of a continuous-time random walk among random conductances (RWRC) in a time-dependent, growing box
in Zd. We work in the interesting case that the conductances are positive, but may assume arbitrarily small
values. Thus, the underlying picture of the principle is a joint strategy of small conductance values and large
holding times of the walk. The speed and the rate function of our principle are explicit in terms of the lower tails
of the conductance distribution as well as the time-dependent size of the box.

An interesting phase transition occurs if the thickness parameter of the conductance tails exceeds a certain
threshold: for thicker tails, the random walk spreads out over the entire growing box, for thinner tails it stays
confined to some bounded region. In fact, in the first case, the rate function turns out to be equal to the p-th
power of the p-norm of the gradient of the square root for some p ∈ ( 2d

d+2 , 2). This extends the Donsker-
Varadhan-Gärtner rate function for the local times of Brownian motion (with deterministic environment) from
p = 2 to these values.

As corollaries of our LDP, we derive the logarithmic asymptotics of the non-exit probability of the RWRC
from the growing box, and the Lifshitz tails of the generator of the RWRC, the randomised Laplace operator.

To contrast with the annealed, not uniformly elliptic case, we also provide an LDP in the quenched setting for
conductances that are bounded and bounded away from zero. The main tool here is a spectral homogenisation
result, based on a quenched invariance principle for the RWRC.

1. INTRODUCTION AND MAIN RESULTS

Random motions in random media have attracted the attention of researchers for decades because of vari-
ous reasons. On one hand, they exhibit various critical behaviours that strongly differ from the classical theory
in non-random media, and are sometimes surprising and on the first view counter-intuitive. This makes this
subject a fascinating enterprise, a source of inspiration and beautiful mathematics and an incitation for find-
ing new ideas and arguments. On the other hand, the introduction of randomness in the medium makes
applications in many fields much more realistic and the model therefore much more valuable. For example,
random impurities in glasses, random retardations of electrical currents and much more are most efficiently
modeled with the background of a random medium.

In this paper, we consider a special case of what is often called random walk in random environment; in
fact it is one of its most-studied continuous-time analogues, the random conductance model (RCM), where
the randomness in the medium appears via weights on the bonds. This model was recently studied a lot
(and continues to do so) with stress on the long-time behaviour of the diffusing particle in that medium, the
random walk among random conductances (RWRC). People were interested in deriving laws of large num-
bers, central limit theorems and invariance principles [SS04, FM06, M08, BP07, BD10, ABDH13] in both the
quenched and the annealed setting, under various assumptions on the distribution of the medium. Further-
more, heat kernel estimates [BBHK08] and certain aspects of anomalous behaviour of the walk [BB10] and
connections with trapping models [BČ11] were studied. See [B11] for a survey on recent progress on the
random conductance model with special emphasis on homogenisation and martingale techniques.

However, our focus is not on the long-time behaviour in the vicinity of invariance principles in the entire
space, but on the clumping behaviour in given boxes. More precisely, we derive a large-deviation principle
(LDP) for the local times of a RWRC caught in boxes in the annealed setting, i.e., averaging over both
randomnesses. This type of question stands in the tradition of the famous pioneering large-deviation results
for the occupation times of random walks and Brownian motion from the 1970s [DV75-83, G77]. Furthermore,
there are close connections with the Lifshitz tails of the generator of the random walk in the boxes.

The present paper is a continuation of our recent study [KSW12], where we consider fixed boxes, not de-
pending on time. In the present paper, we study large boxes that increase with time. Again, in contrast to the
uniformly elliptic case, which is most often studied, we work under the assumption that the conductances are
positive, but can attain arbitrarily small values, and we specify their lower tails. Then the speed of the LDP is
a power of the time, and the rate function turns out to be the p-th power of the p-norm of the gradient of the
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square root for some p ∈ ( 2d
d+2

, 2). The boundary case p = 2 is the case of the Donsker-Varadhan-Gärtner
LDP mentioned above. This explicit form of the rate function makes the LDP rather appealing, and the
question about the minimisers contains interesting analytical questions. This rate function is the continuous
version of the rate function that we introduced in [KSW12].

Like in [KSW12], the annealed asymptotics are determined by a joint strategy of the medium and the walk,
in that the conductances assume very small, time-dependent values in order to help the walk to realise large
holding times in the growing box. Even more interestingly, it also turns out that there is an interesting sharp
transition when the tails of the conductances at zero become thin enough: the optimal strategy consists now
of an even much stronger clumping behaviour; in fact the walk confines to a fixed region that does not grow
with time. In both cases, we are able to say something interesting about the non-exit probability of the walk
from the growing box, and this leads, via a standard device, to the identification of the Lifshitz tails of the
generator of the RWRC, the randomised Laplace operator.

One of our motivations for the present work was the desire to understand the parabolic Anderson model
(PAM) with the underlying diffusion taken as a RWRC, a project that we plan to attack in future. The PAM
describes a random mass flow through a random potential of sinks and sources and is determined by spectral
theory of the Anderson Hamiltonian [GK05, KW13+]. In fact, both the generator of the PAM (the Anderson
Hamiltonian) and the generator of the RWRC are important examples of random operators, and their spectral
properties are of high interest. The interplay between these spectral properties and the long-time behaviour
of the random walk generated makes these two models particularly interesting. As the PAM possesses
self-attractive forces, the description of its behaviour heavily draws on the understanding of the clumping
behaviour in given boxes, i.e., on the research brought out in the present paper.

To contrast with the annealed setting where the conductances help the RWRC by assuming extremely small
values, we also provide in Section 1.6 a quenched (i.e., almost surely with respect to the conductances)
LDP in growing boxes in the uniformly elliptic case, where the conductances are bounded away from zero. In
this case, the conductances form a homogenised environment in which the RWRC satisfies a Donsker-type
invariance principle, and the rescaled local times satisfy an LDP with rate function given by the Dirichlet
energy of the limiting Brownian motion.

In the remainder of this first section, we give an introduction and formulate and comment our main results.
The new contributions of this paper appear in Sections 1.3 (LDPs in large boxes), 1.4 (non-exit probabilities
and a relevant variational problems), 1.5 (Lifshitz tails) and 1.6 (a quenched LDP for uniformly elliptic conduc-
tances). Section 1.7 explains the connection with the PAM, Section 1.8 gives heuristics, and in Section 1.9
we list some interesting problems that are left open in this paper.

1.1 Random Walk among random conductances

Consider the lattice Zd with d ≥ 1 and a family a = (axy)x,y∈Zd of non-negative random variables axy.
We write Pr for the corresponding probability and 〈·〉 for the expectation. We assume that, Pr-almost surely,
axy = ayx for all x, y ∈ Zd and axy = 0 unless x ∼ y, that is, unless x and y are nearest neighbours in the
lattice. Hence, we attach to any bond on the lattice a positive random weight, and the bonds are undirected.
We also sometimes write ax,y instead of axy. This model is often referred to as the random conductance
model (RCM). The most important object throughout this work will be the associated discrete Laplacian

∆a = ∇∗A(x)∇, where
(
A(x)

)
ij

= δijax,x+ei , x ∈ Zd, i, j ∈ {1, . . . , d}, (1.1)

ei is the i-th unit vector (with 1 in the i-th component and zero everywhere else) in the lattice and δij is the
Kronecker delta. On functions f : Zd → R, the random Laplacian acts like

∆af(x) =
∑

y∈Zd : y∼x

axy[f(y)− f(x)]. (1.2)
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For e ∈ N = {e1, . . . , ed}, the set of unit vectors in the lattice, we introduce a(x, e) as a shortcut for
ax,x+e. We assume that the conductances are independent and identically distributed, that is,(

a(x, e)
)
x∈Zd,e∈N (1.3)

is an i.i.d. family of random variables.

The operator ∆a is symmetric and generates the continuous-time random walk (Xt)t∈[0,∞) in Zd, the ran-
dom walk among random conductances (RWRC). This process starts at x ∈ Zd under Pax and evolves as
follows. When located at y, it waits an exponential random time with parameter πy =

∑
z∈Zd : z∼y ay,z, i.e.,

with expectation 1/πy, and then jumps to a neighbouring site z′ with probability ay,z′/πy. We write Ea
x for

expectation w.r.t. Pax.

1.2 Large deviations for local times in boxes

The main object of our study is the family of local times of the walk,

`t(z) =

∫ t

0

δXs(z) ds, z ∈ Zd, t > 0, (1.4)

which register the amount of time that the walker spends in z by time t. More precisely, we are interested
in large-deviation principles (LDPs) for 1

t
`t as t → ∞, conditional on not leaving a given bounded region

B ⊂ Zd. For a given choice of the conductances a, one of the main statements in that direction was provided
by Donsker and Varadhan [DV75-83] and Gärtner [G77].

Theorem 1.1 (Donsker-Varadhan-Gärtner LDP on a finite region). Fix a bounded set B ∈ Zd containing 0
and a conductance configuration a = (axy)x,y∈Zd . Then, under the measures Pa0( · |supp(`t) ⊂ B), the
normalised local times 1

t
`t satisfy a large deviation principle on the space

M = {g2 : g ∈ `2(Zd), supp(g) ⊂ B, ‖g‖2 = 1}
of probability measures on B with scale t and rate function I (d)

a,0 = I (d)
a − infM I (d)

a , where

I (d)

a (g2) =
∑
e∈N

∑
z∈Zd

az,z+e
[
g(z + e)− g(z)

]2
, g2 ∈M. (1.5)

Here, ‖ · ‖2 denotes the norm in `2(Zd), and the superscript d highlights that B is a discrete space. Note
that the terms in the sum on the right-hand side of (1.5) are non-zero only if either z ∈ B or z+ e ∈ B, that
is, we are looking at a finite sum. More verbosely, the LDP says that the level sets {g2 ∈M : I (d)

a (g2) ≤ s}
for s ≥ 0 are compact, and that

lim inf
t→∞

1

t
log Pa0(`t ∈ O, supp(`t) ⊂ B) ≥ − inf

g2∈O
I (d)

a (g2), forO ⊂M open, (1.6)

lim sup
t→∞

1

t
log Pa0(`t ∈ C, supp(`t) ⊂ B) ≤ − inf

g2∈C
I (d)

a (g2), for C ⊂ M closed. (1.7)

Theorem 1.1 is a quenched result, as the conductances are kept fixed. There is no interesting effect coming
from the randomness of the conductances, as the number of involved random variables is finite and fixed.

For the annealed regime, i.e., when also averaging over the conductances, there is an interesting question
that arises. Under what assumptions on the environment is the annealed behaviour on a different scale than
the quenched one? Is it possible that the conductances ‘help’ the walker to spend much time in B by attain-
ing very small t-dependent values, which slow down the movement and increase the holding times? Conse-
quently, there would be an interplay, a compromise, between the medium and the motion. This happens in
the case where the conductances are positive, but can assume arbitrarily small values. More precisely, we
make the following assumption on the lower tails of the conductances.
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Assumption 1.2. For any x ∼ y ∈ Zd,

Pr(ax,y > 0) = 1 and essinf(ax,y) = 0. (1.8)

Moreover, there exist positive parameters η and D such that, for any x ∼ y ∈ Zd,

log Pr(ax,y ≤ ε) ∼ −Dε−η as ε↘ 0. (1.9)

The parameter η measures the thickness of the tails at zero; the two extreme cases correspond to con-
ductances bounded away from zero (η = ∞) and conductances that might be zero as well (η = 0). Under
Assumption 1.2, the annealed asymptotic behavior of the normalised local times is indeed on a smaller scale
than t. In our recent paper [KSW12], we obtained the following result.

Theorem 1.3 (Annealed LDP, finite region). Suppose that Assumption 1.2 holds. Then, under the annealed
measures 〈Pa0( · |supp(`t) ⊂ B)〉, the normalised local times 1

t
`t satisfy a large deviation principle on the

spaceM with scale t
η
η+1 and rate function J (d)

0 = J (d) − infM J (d), where

J (d)(g2) = Kη,D

∑
e∈N

∑
z∈Zd

∣∣g(z + e)− g(z)
∣∣ 2η

1+η , g2 ∈M. (1.10)

Here, Kη,D =
(
1 + 1/η

)
(Dη)1/(1+η).

1.3 LDPs in growing boxes

Now we come to the main purpose of the present paper: we extend the annealed LDP of Theorem 1.3 to a
region B that depends on time t and tends to Zd. Our main motivation for this problem stems from the wish
to understand a version of the parabolic Anderson model (PAM) where the underlying diffusion is itself taken
random as the random conductance model; see Section 1.7 below.

Consider a spatial scaling function αt ∈ (1,∞) with 1 � αt � t1/2 and replace B by a time-dependent,
growing set Bt = αtG ∩ Zd, where we fix G ⊂ Rd as an open, connected and bounded set containing the
origin and having a sufficiently regular boundary. In order to properly incorporate the t-dependence of the
set Bt, we consider the normalised and rescaled version Lt of `t, given by

Lt(x) :=
αdt
t
`t(bαtxc), x ∈ Rd, t > 0. (1.11)

Observe that Lt is an L1-normalised random step function on Rd, having support in G on the event
{supp(`t) ⊂ αtG}. Hence, Lt is a member of the set

F = {f 2 : f ∈ L2(G), ‖f‖2 = 1},
which we equip with the weak topology of integrals against bounded continuous functions G → R. In the
simple case of constant non-random conductances axy ≡ 1, i.e., simple random walk, it is already known
that Lt conditioned on the event {supp(`t) ⊂ αtG} satisfies a large deviation principle on F with scale
tα−2

t and rate function I (c)

0 = I (c) − infF I
(c), where

I (c)(f 2) =

{∑d
i=1

∫
G

(
∂if(y)

)2
dy = ‖∇f‖22, f ∈ H1

0 (G),

∞, otherwise,
(1.12)

see e.g. [GKS07]. Here, the superscript c stands for continuous, as the local times have rescaled to a contin-
uous object. The additional factor of α−2

t in the scale results from the transition from squares of differences
(that occur in the Donsker-Varadhan-Gärtner rate function) to squares of derivatives in the rate function
above. This also reflects the natural scaling behavior of the Laplacian, and a simple argument involving the
central limit theorem easily shows that tα−2

t is the exponential scale of the non-exit probability from a box
with radius αt up to time t.
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Let us turn to annealed asymptotics in the presence of random conductances. We now establish a continuous
analog to Theorem 1.3. Introduce a new scale function γ by

γt = t
η

1+ηα
d−2η
1+η

t .

A continuous analog to the rate function in Theorem 1.3 is given by J (c)

0 = J (c) − infF J
(c), where

J (c)(f 2) =

{
Kη,D

∑d
i=1

∫
G

∣∣∂if(y)
∣∣ 2η

1+η dy = Kη,D

∑d
i=1 ‖∂if‖pp, if f ∈ H1

0 (G),

∞, otherwise,
(1.13)

where p = 2η
1+η
∈ (0, 2), and Kη,D is as in Theorem 1.3. (Note that there is no standard notation for this

in terms of∇f .) It turns out that J (c) has compact level sets in the case η > d/2 only. This corresponds to
conductances the tails of which at zero are not too thick. In the converse case, we thus cannot hope for a
full LDP to hold. Let us for that reason consider the case η > d/2 first. Recall that G is a bounded open set
containing the origin with regular boundary.

Theorem 1.4 (Annealed asymptotics, time-dependent region). Suppose that Assumption 1.2 holds, and
assume that η > d/2. In case d = 1, suppose that η ≥ 1. Furthermore, assume that the conductances
are bounded almost surely and that axy1l{axy ≤ ε} possesses, for some ε > 0, a density that is non-
decreasing. Pick a scale function (αt)t>0 such that 1� αd+2

t � t(log t)−(1+η)/η.

Then the distributions of Lt under the conditional annealed measures 〈Pa0( · | supp(`t) ⊂ αtG)〉 satisfies a
large-deviation principle on F with good rate function J (c)

0 .

More explicitly, Theorem 1.4 says that J (c)

0 is has compact level sets, and

lim inf
t→∞

1

γt
log〈Pa0(Lt ∈ O, supp(`t) ⊂ αtG)〉 ≥ −Kη,Dχ

(c)(G,O), forO ⊂ F open, (1.14)

lim sup
t→∞

1

γt
log〈Pa0(Lt ∈ C, supp(`t) ⊂ αtG)〉 ≤ −Kη,Dχ

(c)(G, C), for C ⊂ F closed, (1.15)

where

χ(c)(G,A) = inf
{ d∑

i=1

∫
G

∣∣∂if(y)
∣∣ 2η

1+η dy : f ∈ H1
0 (G), ‖f‖2 = 1, f 2 ∈ A

}
. (1.16)

A heuristic explanation of Theorem 1.4 is in Section 1.8. The proof is in Section 4. The technical assumption
on the existence of an increasing density of small conductances will be used in the proof of the lower bound,
where we will confine the conductances very strongly. The technical assumption on the boundedness and
the additional logarithmic term in the upper bound for αt will help us to make the proof of the upper bound
less cumbersome.

There is no reason to expect that the rate function J (c)

0 is convex. In (1.34) we give an alternative formula
for J (c)

0 , but also this gives no hint at convexity, since the min-max-formula for interchange of infimum and
supremum [DZ98, p. 151] cannot be applied, unlike in [CGZ00] at the end of Section 3. Rather we presume
that J (c)

0 is not convex. See [K00, Prop. 4] for a proof of convexity in the case p ≥ 2.

As we already mentioned in connection with Theorem 1.3, and as we will explain in detail in Section 1.8,
the main contribution of the conductances to the LDP is to assume very small values, in order to make it
easier for the walk to stay in the set αtG for t time units; this is a large-deviation event by the assumption
1� αt � t

1
d+2 . By the assumption η > d/2, the probabilistic cost for this contribution is small enough that

it can be performed all over the growing set αtG∩Zd, as the cost for assuming small values is not too high.
We will see in the next section that d/2 is precisely the threshold for η for this to happen.
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1.4 Non-exit probabilities, variational formulas, and the case η ≤ d/2

Let us look at non-exit probabilities and find two independent arguments, a probabilistic and an analytic one,
for the existence of an interesting phase transition, as η traverses d/2.

As a corollary of Theorem 1.3, we pointed out in [KSW12] that the non-exit probability from the finite region
B satisfies

log〈Pa0
(
supp(`t) ⊂ B

)
〉 ∼ −t

η
1+ηKη,Dχ

(d)(B), (1.17)

where

χ(d)(B) = inf
{∑
e∈N

∑
z∈Zd

∣∣g(z + e)− g(z)
∣∣ 2η

1+η : g ∈ `2(Zd), supp(g) ⊂ B, ‖g‖2 = 1
}
. (1.18)

In the same way, we obtain as a corollary from Theorem 1.4 that, in the case η > d/2,

log〈Pa0
(
supp(`t) ⊂ αtG

)
〉 ∼ −t

η
1+ηα

d−2η
1+η

t Kη,Dχ
(c)(G), (1.19)

where χ(c)(G) = χ(c)(G,F) is the continuous version of χ(d)(B); see (1.16).

However, in the case η ≤ d/2, (1.19) is awkward, since the left-hand side is obviously non-decreasing in αt,
but the right-hand side is non-increasing. This suggests that χ(c)(G) = 0 in that case. The following result
shows that the non-exit probability is in fact on a slower scale.

Theorem 1.5. Suppose 1 � αt � t
η

d(η+1) and that Assumption 1.2 holds. In addition, assume that η ≤
d/2. Then,

(i) The level sets of J (c) are not closed and in particular not compact,
(ii) for all finite and connected sets B ⊂ Zd containing the origin,

lim inf
t→∞

t−
η
η+1 log〈Pa0

(
supp(`t) ⊂ αtG

)
〉 ≥ −Kη,Dχ

(d)(B), (1.20)

(iii)
lim sup
t→∞

t−
η
η+1 log〈Pa0

(
supp(`t) ⊂ αtG

)
〉 ≤ −Kη,Dχ

(d)(Zd). (1.21)

In the case η = d/2 we have the corresponding lower bound

lim inf
t→∞

t−
η
η+1 log〈Pa0

(
supp(`t) ⊂ αtG

)
〉 ≥ −Kη,Dχ

(d)(Zd). (1.22)

Hence, the leading-order logarithmic asymptotics of the non-exit probability do not depend on the set G ⊂
Rd nor on the scale function αt. The proof of Theorem 1.5 is in Section 5. We will see in Section 1.8 below
that the heuristics for the LDP of Theorem 1.4 also apply for the case η ≤ d/2 of Theorem 1.5. Its Assertion
(i) gives a first reason why nevertheless the LDP does not hold true. Assertion (iii) gives another one: Except
for the special case η = d/2, we clearly have

γt = t
η

1+ηα
d−2η
1+η

t � t
η

1+η .

This means that the non-exit probability is on a slower (i.e., probabilistically less costly) scale than the one
the LDP in Theorem 1.4 would imply.

A heuristic explanation is the fact that η ≤ d/2 corresponds to a high probabilistic cost for very small
conductances. Therefore, the non-exit probability is governed by the event where conductances are very
small only on a bounded number of sites, or at the most on a set of sites much smaller that Bt, in contrast
to the event where conductances are small everywhere which would lead to the scale γt. The random walk
is then slowed down so much that it does not even leave the smaller set. Theorem 1.5 shows that this is
exactly the behavior that governs annealed asymptotics, at least those of non-exit probabilities, in the case
η ≤ d/2.
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Combining the results of Theorems 1.4 and 1.5, we would like to remark that the scale of the non-exit
probabilities is decreasing in η across all values η > 0, since under the restriction that 1� αt � t

η
d(η+1) ,

γt = t
η

1+ηα
d−2η
1+η

t � t
η∗

1+η∗ for any η > η∗ = d/2.

The different behaviours in the two regimes are also reflected by analytic properties of the arising variational
problems, as we will see now. In fact, for η > d/2, the continuous variational problems are well-behaved
and admit standard compactness arguments, but not the discrete ones, and vice versa. Recall that χ(c)(G)
equals χ(c)(G,F) defined in (1.16).

Proposition 1.6. (i) Assume that η > d/2. Then,
• χ(c)(G) > 0, and the continuous variational problem in (1.16) for A = F possesses at

least one minimiser. In the case d = 1, we need to make the additional assumption that
η ≥ 1.
• χ(d)(Zd) = 0 and the discrete variational problem in (1.18) (withB = Zd) has no minimiser.

(ii) Assume that η ≤ d/2. Then,
• χ(c)(G) = 0 and the continuous variational problem in (1.16) forA = F has no minimiser.
• χ(d)(Zd) > 0 if and only if d > 1.

The proof of Proposition 1.6 is in Section 2.

1.5 Lifshitz tails for the principal eigenvalue

Let us denote by λa(B) the bottom of the spectrum of−∆a in the connected setB ⊂ Zd with Dirichlet (i.e.,
zero) boundary condition. Using the abbreviation a(x, e) = ax,x+e, the well-known Rayleigh-Ritz formula
reads

λa(B) = inf
{∑
z∈Zd

∑
e∈N

a(z, e)(g(z + e)− g(z))2 : g ∈ `2(Zd), ‖g‖2 = 1, supp(g) ⊂ B
}
. (1.23)

Under Assumption 1.2, λa(B) is a positive random variable with essential infimum equal to zero, and its tails
at zero are of high interest from the viewpoint of Lifshitz tails of the random operator −∆a. In [KSW12], we
proved as a corollary of Theorem 1.3 that, for B a fixed bounded set, the Lifshitz tails are given by

lim
ε↓0

εη log Pr(λa(B) ≤ ε) = −Dχ(d)(B)η+1. (1.24)

Now, Theorem 1.4 also yields the analogous corollary for the Lifshitz tails in the t-dependent set B = Bt =
αtG ∩ Zd with G ⊂ Rd as in Theorem 1.4. For simplicity, we restrict to the case where αt is a power of t.

Corollary 1.7. Suppose that the assumptions of Theorem 1.4 are satisfied; in particular we assume that
η > d/2. Furthermore, assume that αt = ts/(d−2η) for some s ∈ (0, d−2η

d+2
). Then

lim
ε↓0

εη+s log Pr(λa(αtG ∩ Zd) ≤ ε1−s) = −
(1

η
χ(c)(G)

)η+1

(1− s)1−s(η + s)η+s. (1.25)

Certainly, from Theorem 1.5, one can deduce an analogous statement also in the case η = d/2, but our
precision in the case η < d/2 is not high enough for deriving Lifshitz tails.

The proof of Corollary 1.7 is a variant of the proof of (1.24) in [KSW12]. It uses the fact that

log
〈
etλ

a(αtG∩Zd)〉 ∼ log
〈
Pa0
(
supp(`t) ⊂ αtG

)〉
, t→∞,

which is easy to show by standard arguments (also using that we indeed prove the upper bound in (1.15)
for any starting point uniformly). Using now the asymptotics from (1.19) and applying de Bruijn’s exponential
Tauberian theorem [BGT89, Theorem 4.12.9] yields the assertion.
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1.6 A quenched LDP for uniformly elliptic conductances

To contrast with the main topic of the present paper (the annealed setting for conductances whose essential
infimum is zero) we give now a result in the quenched setting (i.e., with probability one with respect to the
conductances) for conductances that are bounded and bounded away from zero, in which case the envi-
ronment is called uniformly elliptic. Again, we consider an open bounded set G that contains the origin and
a scale function αt � 1 and consider the RWRC in the growing box Bt = αtG ∩ Zd. In this case, the
conductances cannot have any tendency to assume extreme values, but will form a more or less homoge-
neous environment, and the random walk will behave qualitatively like in the LDP of [GKS07] (mentioned
around (1.12)) in this homogenised environment. Accordingly, we will be using techniques from the theory of
stochastic homogenisation, and we will rely on a quenched functional central limit theorem. The latter states
that the RWRC, rescaled in the standard way as in Donsker’s invariance principle, converges in probabil-
ity towards a Brownian motion with covariance matrix ceff Id, see [ABDH13], e.g. The constant ceff > 0 is
called effective diffusion constant or effective conductivity and depends in a rather complex way upon the
conductance distribution.

For simplicity, we restrict to the case where G is a cube.

Theorem 1.8 (Quenched LDP for uniformly elliptic conductances). Assume that λ ≤ axy ≤ 1
λ

almost surely,
for some λ ∈ (0, 1). Moreover, assume that G = (0, 1)d is the open unit cube. Then, Pr-almost surely, the
rescaled local times Lt under Pa0

(
· |supp(`t) ⊂ αtG

)
satisfy a large deviation principle on F with scale

tα−2
t and rate function ceffI

(c)

0 defined in (1.12).

We will prove this theorem in Section 6. The proof relies on a spectral homogenisation result from [BD03],
which states that the eigenvalues and eigenfunctions of the rescaled discrete random Laplacian on Bt =
αtG ∩ Zd behave on the large scale like those of the continuous counterpart ceff∆ on G. We mention that
this assertion has been proved only for i.i.d. conductances yet.

1.7 Relevance for the parabolic Anderson model

As we mentioned above, one of our main motivations for the present study stems from the interest in under-
standing the parabolic Anderson model (PAM) with additional randomness in the diffusivity given by random
conductances. The usual PAM is the solution to the heat equation on Zd with random potential, see [GK05]
and [KW13+] and the references therein for more background. Consider u : [0,∞]×Zd solving the Cauchy
problem {

∂
∂t
u(t, z) = ∆u(t, z) + ξ(z)u(t, z), (t, z) ∈ [0,∞]× Zd,

u(0, z) = δ0(z), z ∈ Zd,

where ξ = (ξ(z))z∈Zd is a real-valued random potential. For simplicity, we assume that ξ is an i.i.d. collection
of random variables. The solution u can be represented in terms of the Feynman-Kac formula as an expec-
tation over a continuous-time simple random walk with generator ∆. Its total mass U(t) =

∑
z∈Zd u(t, z)

can then be written as
U(t) = E0

(
exp

{∑
z∈Zd

ξ(z)`t(z)
})
.

From here, one can already suspect that one of the keys in understanding, or at least proving, the large-
t behaviour would be a good control on the large deviations of the local times of the walks, and in many
research papers this indeed turned out to be decisive. This gets even more convincing when we look at the
expectation of U(t) with respect to ξ, which equals, as one can see from an elementary calculation,

E0

(
exp

{∑
z∈Zd

H(`t(z))
})
, (1.26)
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where H(`) = log E(e`ξ(0)) denotes the logarithm of the moment generating function. Since H is a con-
vex function, this term has a self-attracting effect on the random walk, hence the description of the large-t
behaviour requires a deep understanding of the asymptotic behaviour of the local times in boxes on length
scales that are much smaller than the scale of the central limit theorem, i.e., having radii�

√
t. The size of

the relevant box depends on the large-` asymptotics ofH(`). An example is the case where ξ(0) has double
exponential tails, where the relevant box turns out not to depend on t [GM98]. For bounded potentials, it has
a radius that diverges like a power ≤ 1/(d+ 2) of t [BK01].

It is of interest to introduce randomness also in the diffusivity, i.e., to replace the Laplace operator ∆ by the
randomised one, ∆a, and the study of this model is our future goal. From the above, it is clear that all we
have to do for identifying the expected total mass is to replace E0 in (1.26) by Ea

0, i.e., the simple random
walk by the RWRC. Hence, the large-deviation principles of the present paper will be an indispensable help
for this future task.

1.8 Heuristic derivation of Theorem 1.4

Let us present a heuristic derivation of the LDP of Theorem 1.4, will serve also as an outline for the proof of
the lower bound in Theorem 1.4, and it introduces some notation that will be frequently used later. Let us fix
any η ∈ (0,∞); the following does not depend on whether η is smaller or larger than d/2. We intend to find
the asymptotics for the annealed probability of the event {Lt ≈ f 2} for any f 2 ∈ F , and we keep in mind
that this event is to be interpreted as {Lt ≈ f 2, supp(`t) ⊂ αtG}.
The main idea is to find the conductance profile contributing optimally to the probability of the event, and to
apply an LDP for the local times given this particular conductance profile. As opposed to the finite region
case, the optimal realisation of conductances will depend on time. Let us therefore consider the rescaled
conductance field

at(y, e) = βta(bαtyc, e), e ∈ N , y ∈ G, (1.27)

and the scale function βt � 1 will be chosen along the way (recall our convention a(z, e) = az,z+e for
z ∈ Zd and e ∈ N ). We consider the event that at resembles a given function ϕ : G×N → (0,∞), i.e.,
we approximate

〈Pa(Lt ≈ f 2)〉 ≈ 〈Pa(Lt ≈ f 2)1l{at ≈ ϕ on G×N}〉 (1.28)

for some optimal conductance shape ϕ. Let us first calculate the exponential decay rate of the probability of
{at ≈ ϕ on G×N}. Based on Assumption 1.2, we obtain

log Pr(at ≈ ϕ on G×N ) ≈ log
(∏
e∈N

∏
z∈αtG∩Zd

Pr
(
a(z, e) ≈ β−1

t ϕ(z/αt, e)
))

≈ −Dβηt
∑
e∈N

∑
z∈αtG∩Zd

ϕ(z/αt, e)
−η

≈ −βηt αdt
∑
e∈N

D

∫
G

ϕ(y, e)−η dy. (1.29)

(We will present a more rigorous version of this in Lemma 3.4.) On the other hand, we may evaluate the
Pa-probability of {Lt ≈ f 2} on the event {at ≈ ϕ on G × N} in terms of a rescaled version of the
famous Donsker-Varadhan-Gärtner large deviation principle. In analogy with the large deviation principle for
Lt mentioned in Section 1.1 for the simple random walk case,

Pa(Lt ≈ f 2) ≈ exp
(
− t

α2
tβt

∑
e∈N

∫
G

ϕ(y, e)
(
∂ef
)2

(y) dy
)

(1.30)

on the event where {at ≈ ϕ on G × N}. This is well-aligned with the rate function given in (1.12), and
Proposition 3.1 in Section 3 gives an account of this in a more rigorous way. Combining the approximations
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in (1.29) and (1.30) with (1.28), we obtain

log〈Pa(Lt ≈ f 2)〉 ≈ − t

α2
tβt

∑
e∈N

∫
G

ϕ(y, e)
(
∂ef
)2

(y) dy − βηt αdt
∑
e∈N

D

∫
G

ϕ(y, e)−η dy. (1.31)

The decay rate on the right-hand side is minimal if we choose βt such that

t

α2
tβt

= βηt α
d
t , i.e., βt =

( t

αd+2
t

) 1
1+η
. (1.32)

Note that the condition αt � t
1
d+2 from Theorem 1.4 ensures that βt � 1. Furthermore, the optimal scale

is now seen to be equal to

γt =
t

α2
tβt

= βηt α
d
t = t

η
1+ηα

d−2η
1+η

t . (1.33)

The optimal shape ϕ is determined by the minimisation of the sum of the two integrals on the right-hand side
of (1.30). Minimizing term by term, we see that

ϕ(y, e) = arg inf
{
r
(
∂ef(y)

)2
+Dr−η : r ∈ [0,∞]

}
,

which yields

ϕ(y, e)
(
∂ef(y)

)2
+Dϕ(y, e)−η = Kη,D

∣∣∂ef(y)
∣∣p, y ∈ G, e ∈ N ,

with Kη,D as in Theorem 1.4 and p = 2η
η+1

. In particular, we have identified the rate function J (c) of (1.13)
as

J (c)(f 2) = inf
ϕ : G×N→(0,∞)

[∑
e∈N

∫
G

ϕ(y, e)
(
∂ef
)2

(y) dy +
∑
e∈N

D

∫
G

ϕ(y, e)−η dy
]
. (1.34)

This ends our heuristic explanation of the LDP in Theorem 1.4.

1.9 Open problems

The present work leaves open a number of interesting questions, both on the analytic and the probabilistic
side. It is open whether or not the rate functions J (c) and J (d) are linked with some interesting operator on
its own right, like the pseudo-p-Laplacian. See [BK04] for the study of a problem that is closely related with
the analysis of the minimiser(s) of J (c). Another question concerns the precise behaviour of the minimisers
of the formula for χ(d)(B) for B ↑ Zd in the three cases η < d/2, η = d/2 and η > d/2: do we have
convergent subsequences, and does a continuous or a discrete picture arise? On the probabilistic side, it
would be interesting to find methods to determine the asymptotic shape of the local times conditional on
staying in αtG for η ≤ d/2, where we expect a discrete picture to arise. Furthermore, the methods of
the present paper are not strong enough to rigorously identify the behaviour of the conductances under
the annealed law, conditional on the walk not leaving the set αtG; also this is interesting. Moreover, the
quenched setting (i.e., with probability one with respect to the conductances) is rather interesting as well; is
it true that a similar picture as for the PAM arises: the random walk quickly moves to a remote small region
in which the conductances create a particularly preferable environment? And lastly, of course the model that
gave the main motivation of this paper remains to investigated, the PAM with diffusivity taken equal to the
RWRC.

2. THE CHARACTERISTIC VARIATIONAL PROBLEMS

In this section, we prove Proposition 1.6. It follows from a couple of lemmas that we are going to state and
prove. All results of this section are self-contained and do not need any probabilistic input. Nevertheless, the
proof of the upper bound in Theorem 1.4 also relies on some of the results presented in this section.
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Let us state, for future reference, a form of the Rellich-Kondrashov theorem, which the reader may find in
[LL01, Theorem 8.9], for instance.

Theorem 2.1 (Rellich-Kondrashov). Let 1 ≤ p ≤ ∞ and f, f1, f2, . . . ∈ W 1,p
0 (G) such that fn → f

weakly. Then

i) If p < d, then ‖fn − f‖q → 0 for all q with 1 ≤ q < dp
d−p .

ii) If p = d, then ‖fn − f‖q → 0 for all q ∈ (0,∞).
iii) If p > d, then ‖fn − f‖∞ → 0.

Lemma 2.2. If η > d/2 (in dimension d = 1, assume in addition that 2η
η+1
≥ 1), then the continuous

variational problem in (1.16) forA = F has a minimiser.

Proof. Put p = 2η
η+1

< 2 and choose a sequence (fn)n∈N in H1
0 (G) with ‖fn‖2 = 1 for all n ∈ N that

satisfies
lim
n→∞

∑
e∈N

‖∂efn‖pp = χ(c)(G).

Clearly, the p-norms of all derivatives ∂efn with e ∈ N must be bounded as the sequence approximates the
infimum. In addition, we may estimate

‖fn‖pp = ‖fn1l{fn>1}‖pp + ‖fn1l{fn≤1}‖pp ≤ ‖fn‖2 + |G| = 1 + |G|,
which means that the sequence (fn)n is bounded in W 1,p. Consequently, we may assume that it converges
weakly towards some f ∈ W 1,p. We now have to check the conditions in the Rellich-Kondrashov theorem
above (with the choice q = 2) to establish strong convergence of fn in L2(G).

Case d ≥ 2: On the one hand, p > 2d
d+2

, so in particular p ≥ 1. On the other, we have p < 2 ≤ d. In order
to use Theorem 2.1 i) with q = 2, we just estimate

dp

d− p
=

2dη

dη + d− 2η
> 2.

Case d = 1: By the additional assumption, p ≥ 1. Therefore, we may either use Theorem 2.1 ii) or iii).

We have now shown that fn → f strongly in L2(G) and in particular ‖f‖2 = 1. As ∂efn → ∂ef weakly for
all e ∈ N andLp-norms are lower semicontinuous with regard to the weak topology (see e.g. [LL01], Section
2.11), we have that

∑
e∈N ‖∂ef‖pp ≤

∑
e∈N lim infn→∞ ‖∂efn‖pp, i.e., f is a minimiser. This finishes the

proof of Lemma 2.2. �

Remark 1 The case d = 1 and p = 2η
η+1

< 1 is not accessible to the techniques above as the map
f 7→ (

∫
G
fp)1/p is not even a seminorm if p < 1.

In the following, we write | · |r for the standard r-norm on Rd.

Lemma 2.3. If η ≤ d/2, then χ(c)(G) = 0 and the continuous variational problem in (1.16) for A = F
does not have a minimiser.

Proof. It will be sufficient to show that χ(c)(G) = 0. Pick ε0 > 0 such that the open ball with radius ε0

around the origin is contained in G. The proof is separated into the cases d = 1 and d ≥ 2.

Case d = 1: Here, we have p ≥ 2d/(d + 2) = 2/3. For r > 0, define fr(x) = Ar(ε0 − |x|)r1l{|x|<ε0}
withA2

r = 2r+1
2ε2r+1

0

. We easily check that fr ∈ H1
0 (G), ‖fr‖2 = 1 and |f ′(x)| = rAr(ε0−|x|)r−11l{|x|<ε0}.

Then, ∫
G

|f ′(x)|p dx = 2rpApr
1

pr − p+ 1
εpr−p+1
0 ≤ Crprp/2ε−pr0 r−1εpr0 = Cr

3p
2
−1
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for some constant C > 0. As the last term obviously vanishes for r → ∞, the assertion is shown in the
case d = 1.

Case d ≥ 2: We construct a family (fε)ε∈(0,ε0) of functions inH1
0 (G) with ‖fε‖2 = 1 and

∑
e ‖∂efε‖pp → 0

as ε→ 0, where we recall that p = 2η
1+η

. Choose some γ ∈ (d/4, d/2) and put

f̃ε(x) =
(
|x|−2γ

2 − ε−2γ
)1/2

1l{|x|2<ε},

to obtain

‖f̃‖22 = dΩd

∫ ε

0

[r−2γ − ε−2γ]rd−1 dr = C1ε
d−2γ,

where Ωd denotes the volume of the unit ball in Rd, C1 is some appropriate constant, and the existence
of the integral above follows from γ < d/2. Choosing A2

ε = C−1
1 ε2γ−d, the functions fε = Aεf̃ε are

L2(G)-normed. Moreover, for x ∈ Rd with |x|2 < ε,

|∇fε(x)|22 =
d∑
i=1

∣∣∣ ∂
∂xi

[
Aε
(
|x|−2γ

2 − ε−2γ
)1/2]∣∣∣2

= A2
ε

d∑
i=1

∣∣∣1
2

(
|x|−2γ

2 − ε−2γ
)−1/2 · γ|x|−2γ−2

2 · 2xi
∣∣∣2

= A2
εγ

2
(
|x|−2γ

2 − ε−2γ
)−1|x|−4γ−4

2

d∑
i=1

|xi|2

= A2
εγ

2 |x|−4γ−2
2

|x|−2γ
2 − ε−2γ

.

We may estimate the p-norm | · |p on Rd against a constant C2 times the 2-norm | · |2 and get that∫
G

|∇fε(x)|pp dx ≤ C2

∫
G

|∇fε(x)|p2 dx. (2.1)

We calculate the integral on the right as∫
G

|∇fε(x)|p2 dx = Ap/2ε γp/2
∫ ε

0

( r−4γ−2

r−2γ − ε−2γ

)p/2
rd−1 dr

= Ap/2ε γp/2
(
ε−2γ−2

)p/2
εd
∫ 1

0

( s−4γ−2

s−2γ − 1

)p/2
sd−1 ds.

(2.2)

The integral in the last term is obviously finite if, for some δ > 0,∫ δ

0

s−pγ−p+d−1 ds <∞ and

∫ 1

1−δ

1

s−2γ − 1
ds <∞. (2.3)

As p ≤ 2d/(d+ 2) by assumption, it follows (d− p)/p ≥ d/2 > γ, which means the exponent in the first
integral in (2.3) is greater than −1 and that integral is finite. For the second integral in (2.3), we substitute
r = s−2γ − 1 and estimate∫ 1

1−δ

1

s−2γ − 1
ds =

1

2γ

∫ 1

1−δ
r−1(r + 1)

1−2γ
2γ dr ≤ 1

γ

∫ 1

1−δ
r

1−4γ
2γ dr,

which is finite as γ > d/4 ≥ 1/2. Thus, with some constant C3 > 0, (2.1) and (2.2) yield

J (c)(f 2
ε ) ≤ C3ε

(γ−d/2)p/2ε−pγ−pεd = C3ε
(−2pγ−pd−4p+4d)/4.
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The assertion of Lemma 2.3 follows if −2pγ − pd− 4p + 4d > 0. This is again satisfied as γ < d/2 and
p ≤ 2d/(d+ 2). �

Let us in the following consider the discrete variational problem. In the next statement, we write Qn =
[−n, n]d ∩ Zd for the discrete cube of side length 2n+ 1.

Lemma 2.4. If d = 1 or η > d/2, then χ(d)(Qn)→ 0 as n→∞. In particular, χ(d)(Zd) = 0.

Proof. The case d = 1 is straightforward. We just consider the sequence of functions fn = n−1/21l[−n,n].
Then, up to a constant that arises from norming,

χ(d)(Qn) ≤
∑
z∈Z

|fn(z + 1)− fn(z)|
2η
η+1 = 2n−

η
η+1

and we are done. In the case η > d/2, a more careful argument works in all dimensions. For some fixed
and L2(G)-normed g ∈ C1

c ((−1, 1)d) (i.e., g possesses continuous partial derivatives and has compact
support), define the discretisations

g(n)(z) =
[
n−d

∫
[0,1]d

g2
(z + y

n

)
dy
]1/2

, z ∈ Zd.

These are normed and, at least for large n, supported on Qn. Therefore

χ(d)(Qn) ≤
∑
e∈N

∑
z∈Zd
|g(n)(z + e)− g(n)(z)|

2η
η+1 . (2.4)

By Hölder’s and Jensen’s inequalities, we find∑
e∈N

∑
z∈Zd
|g(n)(z + e)− g(n)(z)|

2η
η+1 ≤ n−

dη
η+1

∑
z∈Zd
e∈N

[ ∫
[0,1]d

∣∣∣g(z + y + e

n

)
− g
(z + y

n

)∣∣∣2 dy
] η
η+1

.
[∑
e∈N

∑
z∈Zd

∫
[0,1]d

∣∣∣g(z + y + e

n

)
− g
(z + y

n

)∣∣∣2 dy
] η
η+1

= n
d
η+1

[∑
e∈N

∫
Rd

∣∣∣g(y +
e

n

)
− g(y)

∣∣∣2 dy
] η
η+1
.

(2.5)
Replacing the difference under the last integral according to the fundamental theorem of calculus, we see
that

r.h.s. of (2.5) = n
d−2η
η+1

[ d∑
i=1

∫
Rd

∫ 1

0

∣∣∣∂ig(y +
sei
n

)∣∣∣2 ds dy
] η
η+1

= n
d−2η
η+1

[ d∑
i=1

∫
Rd
|∂ig(y)|2 dy

] η
η+1
,

where the term in parentheses is obviously finite. This shows that the right-hand side in (2.4) tends to 0 as
n→∞ and thus completes the proof of Lemma 2.4. �

Lemma 2.5. If d > 1 and η ≤ d/2, then χ(d)(Zd) > 0.

Proof. As χ(d)(Zd) is non-increasing with η, it suffices to consider the case η = d/2 and we abbreviate
p = 2η

η+1
= 2d

d+2
. We prove the case d = 2 and d ≥ 3 separately.

The proofs rely on a discrete Sobolev inequality the reader may find in [S10, Lemma 3.2.10], see also [KS12].
It states that in dimension d ≥ 2, we have for all g : Zd → [0,∞) with g(z)→ 0 as |z| → ∞∑

z∈Zd
g(z)

d
d−1 ≤

( ∑
z∈Zd,e∈N

|g(z + e)− g(z)|
) d
d−1
. (2.6)
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Case d = 2: Here, p = 1 and d
d−1

= 2. It follows directly from (2.6) that
∑

z,e |f(z + e) − f(z)| ≥ 1 for
all normed functions f ∈ `2(Z2). This shows the assertion.

Case d ≥ 3: Take an arbitrary normed function f ∈ `2(Zd). Without loss of generality, we may assume that
f is non-negative. Put α = 2d−2

d
> 1, consider (2.6) with g = fα and apply the mean value theorem to

each summand. It follows

1 ≤
∑

z∈Zd,e∈N

|f(z + e)α − f(z)α| ≤
∑

z∈Zd,e∈N

α|f(z + e)− f(z)|(f(z + e)α−1 + f(z)α−1),

which in combination with Hölder’s inequality yields

1 ≤ 2dα
( ∑
z∈Zd,e∈N

|f(z + e)− f(z)|p
) 1
p
(∑
z∈Zd

f(z)
(α−1)p
p−1

) p−1
p
.

The second sum is equal to 1 as (α−1)p
p−1

= 2 due to the choices p = 2d
d+2

and α = 2d−2
d

. Rearrangement of
the equation above yields the desired result. �

Lemma 2.6. Assume η ≥ d
2
. Consider, for n ∈ N, the boxes Qn = [−n, n]d ∩ Zd. Then

lim
n→∞

χ(d)(Qn) = χ(d)(Zd). (2.7)

Proof. As obviously χ(d)(Qn) ≥ χ(d)(Zd), it remains to show that

lim sup
n→∞

χ(d)(Qn) ≤ χ(d)(Zd). (2.8)

To that end, write p = 2η
η+1

and choose some arbitrarily small δ > 0. Then there exists some normed

g ∈ `2(Zd) such that ∑
e∈N

∑
z∈Zd
|g(z + e)− g(z)|p ≤ χ(d)(Zd) + δ. (2.9)

We will now cut off this g in a sufficiently smooth way to obtain an upper bound for χ(d)(Qn). Define ξ : Rd →
R by

ξ(x) =


1, |x|2 ≤ 1,

2− |x|2, 1 < |x|2 < 2,

0, |x|2 ≥ 2.

(2.10)

Then, the norm r(n) of gn defined as gn(z) = g(z)ξ(z/n), z ∈ Zd, obviously tends to 1 as n → ∞.
Moreover, we have in the case p ≤ 1,

χ(d)(Q2n+1) ≤ r(n)−p
∑
e∈N

∑
z∈Zd
|gn(z + e)− gn(z)|p

≤ r(n)−p
∑
e∈N

∑
z∈Zd
|g(z + e)− g(z)|pξ

(
(z + e)/n

)p
+ r(n)−p

∑
e∈N

∑
z∈Zd
|g(z)|p

∣∣ξ((z + e)/n
)
− ξ(z/n)

∣∣p.
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In the case p > 1, we obtain as an analogous estimate by Minkowski’s inequality(
χ(d)(Q2n+1)

)1/p ≤ 1

r(n)

(∑
e∈N

∑
z∈Zd
|gn(z + e)− gn(z)|p

)1/p

≤ 1

r(n)

(∑
e∈N

∑
z∈Zd
|g(z + e)− g(z)|pξ

(
(z + e)/n

)p)1/p

+
1

r(n)

(∑
e∈N

∑
z∈Zd
|g(z)|p

∣∣ξ((z + e)/n
)
− ξ(z/n)

∣∣p)1/p

.

In both cases, the first term on the right-hand side clearly tends to χ(d)(Zd) + δ and its 1/p-th power,
respectively. As δ was chosen arbitrarily small, it is enough to show that the sums in the respective second
terms vanish as n→∞. For some positive constants c1 < c2 that depend on dimension only, it is obvious
that

|ξ
(
(z + e)/n

)
− ξ(z/n)| = 0 if z /∈ Qbc2nc \Qbc1nc, e ∈ N , (2.11)

if n is large enough. Moreover, the same difference is of course always bounded by n−1. Therefore, we may
estimate, with the help of Hölder’s inequality,∑

e∈N

∑
z∈Zd
|g(z)|p

∣∣ξ((z + e)/n
)
− ξ(z/n)

∣∣p ≤ (d ∑
z∈Zd\Qbc1nc

|g(z)|2
)p/2(

d
∑

z∈Qbc2nc

n−
2p

2−p

) 2−p
2

≤ c3

( ∑
z∈Zd\Qbc1nc

|g(z)|2
)p/2(

nd−
2p

2−p

) 2−p
2

with a constant c3 > 0 that also depends on the dimension only. As g was assumed to be `2-normed, the
assertion follows if only d− 2p

2−p ≤ 0. But this is tantamount to η ≥ d
2
. �

3. AUXILIARY LARGE DEVIATION STATEMENTS

In this section, we prove two tools that will be important for the proof of the main results later and have
also some interest in their own right: a rescaled LDP of Donsker-Varadhan-Gärtner type with deterministic
conductances in Section 3.1, and a version of an LDP for the conductances in Section 3.2.

3.1 Donsker-Varadhan-Gärtner type LDP for deterministically rescaling conductances. In this section,
we prove an LDP for the rescaled local times, Lt, for a time-dependent sequence of conductances that
rescale to some fixed profile. More precisely, for ϕ : G×N → (0,∞) we define its ‘unscaled’ version by

ϕt(z, e) =

∫
[0,1]d

ϕ
(z + y

αt
, e
)

dy, z ∈ Bt, e ∈ N . (3.1)

Here, we recall that Bt = αtG∩Zd. The following is an extension of [GKS07, Lemma 3.1] from ϕ ≡ 1 (i.e.,
simple random walk) to a much larger class of conductances.

Proposition 3.1. Fix ϕ : G ×N → (0,∞) such that ϕ(·, e) ∈ C(G) for any e ∈ N and such that m ≤
ϕ ≤ M for some 0 < m < M < ∞. Then the rescaled local times Lt under Pβ−1

t ϕt conditioned on the
event {supp(`t) ⊂ αtG} satisfy an LDP onF with scale tα−2

t β−1
t and rate function I (c)

ϕ,0 = I (c)
ϕ − infF I

(c)
ϕ

where

I (c)

ϕ (f 2) =

{∑
e∈N

∫
G
ϕ(y, e)

(
∂ef
)2

(y) dy, if f ∈ H1
0 (G)

∞, else.
(3.2)
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Here, the spaceF is equipped with the weak topology of test integrals against bounded continuous functions
V : G→ R.

We follow partly the proof of [GKS07, Lemma 3.1] and use the Gärtner-Ellis theorem, i.e., we identify the
exponential rate of exponential test integrals against bounded continuous functions. However, we cannot
rely on the local central limit theorem here, but rather use an eigenvalue expansion. Hence we will have to
control the principal eigenvalue and the corresponding eigenfunction. This will be done in Lemmas 3.2 and
3.3, respectively, which are the two main steps in the proof of Proposition 3.1.

For V in Cb(G), the set of bounded continuous functions G → R, we define its unscaled discretisation
analogously to (3.1):

Vt(z) =

∫
[0,1]d

dy V
(z + y

αt

)
, z ∈ αtG ∩ Zd (3.3)

Then, denote by λ(t)(ϕ, V ) the principal (i.e., smallest) eigenvalue of−α2
t∆

ϕt+Vt inBt with zero boundary
condition. Analogously, we call λ1(ϕ, V ) the largest eigenvalue of the continuous operator

−∆ϕ + V = −∇∗A∇+ V

on H1
0 (G), where the space-dependent matrix A is given by

Aij(y) = δijϕ(y, ei), y ∈ G, i, j ∈ {1, . . . , d}.

The Rayleigh-Ritz principle can be written as

λ1(ϕ, V ) = inf
f∈F
{I (c)

ϕ (f 2) + (V f, f)}.

It turns out that the discrete eigenvalue converges towards the continuous one if the discrete region grows.

Lemma 3.2. Fix ϕ as in Proposition 3.1. Then, for any V ∈ Cb(G),

lim
t→∞

λ(t)

1 (ϕ, V ) = λ1(ϕ, V ).

Proof. Let us write λ(t)

1 and λ1 instead of λ(t)

1 (ϕ, V ) and λ1(ϕ, V ). We need to show that

lim sup
t→∞

λ(t)

1 ≤ I (c)

ϕ (f 2) + (V f, f), for all f ∈ F and (3.4)

lim inf
t→∞

λ(t)

1 ≥ λ1. (3.5)

Proof of (3.4). This equation is only non-trivial for functions f in H1
0 (G), so let f be such a function. As

C∞c (G) is dense in H1
0 (G), there exists a sequence of functions f (n) ∈ C∞c (G) with ‖f − f (n)‖H1 ≤ 1

n
for

any n ∈ N. Moreover, we may assume that the H1-norms of all these functions f (n) are bounded by some
constant N > 0. With the convention

ft(z)2 = α−dt

∫
[0,1)d

f
(z + y

αt

)2

dy, z ∈ αtG ∩ Zd,

we have by the Rayleigh-Ritz formula

λ(t)

1 ≤ α2
t

∑
z∈αtG∩Zd,e∈N

ϕt(z, e)(f
(n)

t (z + e)− f (n)

t (z))2 +
∑

z∈αtG∩Zd
Vt(z)f (n)

t (z)2. (3.6)
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We estimate the first sum by∑
z,e

ϕt(z, e)(f
(n)

t (z + e)− f (n)

t (z))2

= α−dt
∑
z,e

ϕt(z, e)
[( ∫

[0,1)d
f (n)

(z + x+ e

αt

)2

dx
) 1

2 −
(∫

[0,1)d
f (n)

(z + x

αt

)2

dx
) 1

2
]2

≤ α−dt
∑
z,e

ϕt(z, e)

∫
[0,1)d

[
f (n)

(z + x+ e

αt

)
− f (n)

(z + x

αt

)]2
dx

≤
∑
e

∫
G

ϕt(bαtyc, e)
[
f (n)

(
y +

e

αt

)
− f (n)

(
y
)]2

dy

≤ α−2
t

∑
e

∫ 1

0

∫
G

ϕt(bαtyc, e)∂ef (n)

(
y +

se

αt

)2

dy ds,

making use of Hölder’s inequality in the second step, an integral substitution in the third, and the fundamental
theorem of calculus combined with Jensen’s inequality and Fubini’s theorem in the fourth. From here, we may
estimate by the triangle inequality

α2
t

∑
z,e

ϕt(z, e)(f
(n)

t (z + e)− f (n)

t (z))2 ≤
∑
e

∫
G

ϕ(y, e)(∂ef)2(y) dy +R1 +R2 +R3

with

R1 =
∑
e

∫ 1

0

∫
G

ϕt(bαtyc, e)
[
∂ef

(n)

(
y +

se

αt

)2

− ∂ef (n)(y)2
]

dy ds,

R2 =
∑
e

∫
G

ϕt(bαtyc, e)
[
∂ef

(n)(y)2 − ∂ef(y)2
]

dy,

R3 =
∑
e

∫
G

[
ϕt(bαtyc, e)− ϕ(y, e)

]
(∂ef)2(y) dy.

Firstly, by Hölder’s and Minkowski’s inequalities, we have

|R1| ≤ 2MN
∑
e

∫ 1

0

∫
G

[
∂ef

(n)

(
y +

se

αt

)
− ∂ef (n)(y)

]2
dy ds,

which converges to zero with t → ∞ as f (n) is bounded and continuous. Again with Hölder’s and
Minkowski’s inequalities, we find that |R2| ≤ 2MN

n
. The term R3 goes to zero with t→∞ as ϕ is bounded

and continuous. Finally, convergence of
∑

z∈αtG∩Zd Vt(z)f (n)

t (z)2 towards (V f, f) follows in a similar way
by dint of Lebesgue’s theorem. This means we have

lim sup
t→∞

λ(t)

1 ≤ I (c)

ϕ (f 2) + (V f, f) +
2MN

n
(3.7)

for all n ∈ N and f ∈ H1
0 (G). Letting n→∞, we obtain (3.4).

Proof of (3.5). We denote by vt the `2-normed and positive principal eigenfunction of the operator−α2
t∆

ϕt+
Vt in Bt with zero boundary condition corresponding to the eigenvalue λ(t)

1 . The strategy is to construct a
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sequence of functions ft ∈ H1
0 (G) satisfying

−α2
t

(
∆ϕtvt, vt

)
= I (c)

ϕ

(
f 2
t

)
, (3.8)

lim inf
t→∞

(
Vtvt, vt

)
= lim inf

t→∞

(
V ft, ft

)
, (3.9)

lim
t→∞
‖ft‖2 = 1. (3.10)

Given such a sequence, we then easily deduce

lim inf
t→∞

(
− α2

t

(
∆ϕtvt, vt

)
+
(
Vtvt, vt

))
= lim inf

t→∞

(
‖ft‖−2

2 I (c)

ϕ

(
f 2
t

)
+ ‖ft‖−2

2

(
V ft, ft

))
≥ inf

f∈F

[
I (c)

ϕ (f 2) +
(
V f, f

)]
= λ1,

which implies (3.5) as the vt are the discrete principal eigenfunctions.

The construction uses a finite element approach which was used in a similar way in [BK12] and involves
an extension of the discrete eigenfunctions vt onto the continuous space αtG by linear interpolation along
certain simplices and subsequent rescaling. The unit cube K = [0, 1]d is split into d! simplices as follows:
For each permutation σ ∈ Σd of the set {1, . . . , d}, let Tσ denote the interior of the convex hull of the
integer vertices 0, eσ(1), eσ(1) + eσ(2), . . . , eσ(1) + . . . + eσ(d) with ei the i-th unit vector. Consequently,
the sets Tσ with σ ∈ Σd are pairwise disjoint. For Lebesgue-almost all x ∈ R we find σx ∈ Σd such that
x− bxc is in Tσx . We may consequently define, for t > 0, almost all x ∈ αtG and i ∈ {1, . . . , d},

g(t)

i (x) =
(
xσx(i) − bxσx(i)c

)[
vt
(
bxc+ eσx(1) + . . .+ eσx(i)

)
− vt

(
bxc+ eσx(1) + . . .+ eσx(i−1)

)]
.

Let us now define the sequence ft with the desired properties. If y ∈ G with αty − bαtyc belonging to
some Tσ, let

ft(y) = α
d/2
t vt

(
bαtyc

)
+ α

d/2
t

d∑
i=1

g(t)

i (αty). (3.11)

We may extend the functions ft continuously to the whole space G as is shown in [BK12], and they are
clearly differentiable in all points y ∈ G with αty−bαtyc belonging to some Tσ, which means ft ∈ H1

0 (G).
It is easily seen that the functions ft satisfy (3.8): For almost all y ∈ G,

∂eft(y) = α
1+d/2
t

[
vt(bαtyc+ e)− vt(bαtyc)

]
, e ∈ N , t > 0. (3.12)

In particular, ∂eft is almost everywhere constant on the boxes α−1
t (z + [0, 1]d) with z ∈ αtG ∩ Zd, thus

α2
t

(
∆ϕtvt, vt

)
= αd+2

t

∑
e∈N

∫
G

ϕt(bαtyc, e)
[
vt(bαtyc+ e)− vt(bαtyc)

]2
dy

=
∑
e∈N

∫
G

ϕt(bαtyc, e)
(
∂eft(y))2 dy

=
∑
e∈N

∫
G

ϕt(bαtyc, e)
(
∂eft(y))2 dy = −I (c)

ϕ

(
f 2
t

)
.

Let us in a next step show that the functions ft also satisfy (3.10). By the triangle inequality applied to (3.11),
it is enough to show that the L2(G)-norms of each sequence of functions αd/2t g(t)

i (αt·), i = 1, . . . , d,
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vanish as t→∞. We calculate

αdt ‖
d∑
i=1

g(t)

i (αt·)‖22 = αdt

∫
G

(
d∑
i=1

g(t)

i (αty))2 dy

≤
d∑
i=1

(∫
αtG

(
yσy(i) − byσy(i)c

)2[
vt
(
byc+ eσy(1) + . . .+ eσy(i)

)
− vt

(
byc+ eσy(1) + . . .+ eσy(i−1)

)]2
dy
)

≤
d∑
i=1

(∫
αtG

[
vt
(
byc+ eσy(1) + . . .+ eσy(i)

)
− vt

(
byc+ eσy(1) + . . .+ eσy(i−1)

)]2
dy
)

=
∑
e∈N

∫
αtG

[
vt
(
byc+ e

)
− vt

(
byc
)]2

dy

≤ m−1
∑

z∈αtG∩Zd,e∈N

ϕt(z, e)
[
vt(z + e)− vt(z)

]2
. (3.13)

The last expression must converge to zero as t→∞ as the converse would imply

lim sup
t→∞

α2
t

(
−∆ϕtvt, vt

)
=∞

in contradiction to (3.4) that we have already proven. Equation (3.9) is seen as follows. By the triangle
inequality, ∣∣∣(Vtvt, vt)− (V ft, ft)∣∣∣ ≤ ∑

z∈αtG∩Zd

∣∣Vt(z)− V (z/αt)
∣∣(vt(z)

)2
+

∫
G

∣∣V (y)
∣∣∣∣∣αdt (vt(bαtyc))2 − (ft(y)

)2∣∣∣ dy,
where the second term vanishes with t→∞ due to (3.10) and the fact that V is bounded. As vt is normed,
we obtain an upper bound for the first term by replacing

(
vt(z)

)2
with δz(zt) where

zt = arg max
∣∣Vt(z)− V (z/αt)

∣∣.
Then, (3.9) follows considering that

∣∣Vt(zt) − V (zt/αt)
∣∣ → 0 as V is uniformly continuous. This finishes

the proof of (3.5). �

Recall that vt denotes the `2-normed and positive principal eigenfunction of−α2
t∆

ϕt+Vt inBt = αtG∩Zd

with zero boundary condition corresponding to the eigenvalue λ(t)

1 = λ(t)

1 (ϕ, V ).

Lemma 3.3. Under the assumptions of Lemma 3.2,

lim inf
t→∞

βtα
2
t

t
log vt(0) ≥ 0.

Proof. We treat the cases d = 1 and d ≥ 2 separately.

Case d = 1: There is a unique L2-normed g ∈ H1
0 (G) such that

I (c)

ϕ (g2) + (V g, g) = λ1(ϕ, V )

and g is strictly positive in the sense that for any compact set K ⊂ G there exists δ > 0 such that
g > δ almost everywhere on K , thus g > δ1 on [−δ2, δ2]d ⊂ G for some fixed positive constants δ1, δ2.
This follows from the spectral theorem for uniformly elliptic operators (compare e.g. [Z90]), note that ϕ is
continuous and 0 < m ≤ ϕ ≤ M < ∞ by assumption. Let ft be the interpolating sequence we have
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constructed in the proof of the previous lemma. We now show that ft converges to g in L∞ towards g
as t → ∞. As every sequence (ftk)k∈N is a minimizing sequence with respect to the Dirichlet energy
associated with −αt∆ϕ

t + Vt, and ϕ is bounded away from zero, this sequence is bounded in H1
0 (G)

and therefore admits a weakly convergent subsequence that we also denote by (ftk)k∈N. By the Rellich-
Kondrashov theorem (Theorem 2.1) in the special case p = 2, d = 1, we have ftk → f in L∞ for some
f ∈ L2(G). As the minimiser g is unique and

I (c)

ϕ (f 2) + (V f, f) ≤ lim inf
k→∞

I (c)

ϕ

(
f 2
tk

)
+ (V ftk , ftk)

by lower semicontinuity of I (c)
ϕ and continuity of V , we have f = g. For t large enough, we have consequently

ft > δ1/2 on [−δ2, δ2]d. As ft interpolates αd/2t vt, this also implies that αd/2t vt(0) > δ1/2. The decay of
vt(0) is therefore only polynomial in t and the assertion is shown.

Case d ≥ 2: As vt is an eigenfunction of −α2
t∆

ϕt + Vt corresponding to the eigenvalue λ(t)(ϕ, V ), we
have

vt(0) = e−λt(V )
(

exp{α2
t∆

ϕt − Vt}vt
)
(0) = e−λt(V )Eα2

tϕt
0

[
exp

{
−
∫ 1

0

Vt(Xs) ds
}
vt(X1)

]
.

Abbreviating v∗t = maxαtG∩Zd vt and V∗ = supG V , we estimate

vt(0) ≥ v∗t e
−λt(V )−V∗ min

x∈αtG∩Zd
Pα

2
tϕt

0

(
X1 = x

)
.

As vt is normed, the decay of its maximal value is slower than exponential as t → ∞, so we only need to
consider the exponential decay of the probability term above. With | · | = | · |1 denoting the lattice distance,
r the radius of the smallest ball to contain G and S1 the random number of jumps a random walk makes up
to time 1, we have

Pα
2
tϕt

0

(
X1 = x

)
=

∞∑
k=|x|

Pα
2
tϕt

0

(
X1 = x, S1 = k

)
≥
(2dM

m

)−2drdαte
Pα

2
tϕt

0

(
S1 ≥ |x|

)
,

as jump times are independent from jump directions and the random walk can always reach the vertex x by
making its last 2drdαte steps in the ‘right’ direction, since this is the maximum lattice distance within αtG.
Certainly the probability of the random walk generated by ∆α2

tϕ to make at least |x| jumps dominates the
probability of the slower simple random walk generated by α2

tm∆ to make at least 2drαt jumps. Thus,

min
x∈αtG∩Zd

Pα
2
tϕt

0

(
X1 = x

)
≥
(2dM

m

)−2drdαte
Pα

2
tm

0

(
S1 ≥ 2drαt)

=
(2dM

m

)−2drdαte
e−2dα2

tm

∞∑
k=2drdαte

(2dα2
tm)k

k!

≥
(2dM

m

)−2drdαte
e−2dα2

tm
(2dα2

tm)2drdαte

(2drdαte)!
.

In the last line, we observe that the fraction in the end is greater than 1 if αt is large enough. Therefore,

log vt(0) ≥ −2dα2
tm+ o(α2

t ). (3.14)

As we are in the case d ≥ 2 and we have chosen βt � 1 such that αdtβ
η
t = tα−2

t β−1
t , we may conclude

α2
t � tα−2

t β−1
t . The assertion follows dividing (3.14) by tα−2

t β−1
t and passing to the limit inferior. �
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Proof of Proposition 3.1. The proof of the LDP in Proposition 3.1 relies on the Gärtner-Ellis-theorem (e.g., in
[DZ98]). It will be sufficient to show that

lim
t→∞

βtα
2
t

t
log Eβ−1

t ϕt
z

[
exp

{
− t

βtα2
t

∫
G

V (y)Lt(y) dy
} ∣∣∣X[0,t] ⊂ αtG

]
= −λ1(ϕ, V ) + λ1(ϕ, 0).

(3.15)
for all V ∈ Cb(G). Then, by the Gärtner-Ellis theorem, the desired result follows as the Legendre transform
of the rate function I (c)

ϕ,0 is given by

V 7→ sup
g2∈F

{
(V, g2)−I (c)

ϕ,0(g
2)
}

= sup
g2∈F

{
(V, g2)−I (c)

ϕ (g2)
}

+λ1(ϕ, 0) = −λ1(ϕ, V )+λ1(ϕ, 0). (3.16)

Here, (·, ·) denotes the L2(G)-scalar product and we have made use of the well-established fact that the
eigenvalue λ1(ϕ, V ) satisfies the variational equality

λ1(ϕ, V ) = inf
g2∈F

{
I (c)

ϕ (g2)− (V, g2)
}
. (3.17)

For V ∈ Cb(G), introduce the operator Pϕ,Vt on `2(αtG ∩ Zd) by

Pϕ,Vt f(z) = Eβ−1
t ϕt
z

[
exp

{
− t

βtα2
t

∫
G

V (y)Lt(y) dy
}

1l{X[0,t] ⊂ αtG}f(Xt)
]
.

Then, (3.15) is shown for all V ∈ Cb(G) if we verify

lim
t→∞

βtα
2
t

t
logPϕ,Vt 1l(0) = −λ1(ϕ, V ) (3.18)

for all such V (including V ≡ 0). Recalling the notation (3.3) and using that Lt is a step function, we
calculate

Pϕ,Vt f(z) = Eβ−1
t ϕt
z

[
exp

{
− 1

βtα2
t

∫ t

0

Vt(Xs) ds
}

1l{X[0,t] ⊂ αtG}f(Xt)
]
.

Consequently, Pϕ,Vt admits the semigroup representation

Pϕ,Vt = exp{t(∆β−1
t ϕt − β−1

t α−2
t Vt)} = exp

{
tβ−1
t α−2

t

[
α2
t∆

ϕt − Vt
]}
,

where the operator in the exponent is considered in `2(αtG ∩ Zd) with zero boundary condition. Note that
Pϕ,Vt has the same principal eigenfunction vt as the operator −α2

t∆
ϕt + Vt has, and the corresponding

principal eigenvalue is given by exp
{
− t

βtα2
t
λ(t)

1 (ϕ, V )
}

. An eigenvalue expansion yields, for each t ≥ 0,

exp
{
− t

βtα2
t

λ(t)

1 (ϕ, V )
}(
vt(0)

)2 ≤ Pϕ,Vt 1l(0) ≤ |αtG|2 exp
{
− t

βtα2
t

λ(t)

1 (ϕ, V )
}
.

Thus, (3.18) follows by Lemmas 3.2 and 3.3. �

Remark 2 In the proof of the lower bound in Theorem 1.4, we in fact use Proposition 3.1 for the local
times Lt under Pβ−1

t (ϕt−δα−2
t ) where 0 < δ < m instead of Pβ−1

t ϕt . It is easily seen that the proof given
above works just as well with this slight modification as we are only subtracting a spatially constant factor
that vanishes as t → ∞. However, we prefer to omit this modification in the proof and in the statement of
the lemma for reasons of conciseness.

3.2 Large deviations for rescaled conductances

In this section, we characterise the asymptotic probability of having a small conductance field. The first
important lemma will be used for the lower bound in Theorem 1.4 and reads like the lower bound of an LDP
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for the rescaled conductances in a growing box. Consider the set

A(B,ψ, δ) = {ψ̃ : B ×N → (0,∞) |ψ − δ ≤ ψ̃ ≤ ψ} (3.19)

and recall the scale function βt � 1 from (1.32). It turns out that we will need a lower estimate for the
probability of the event that βta is δα−2

t -close to ϕt on Bt = αtG ∩ Zd, i.e., lies in A(Bt, ϕt, δα
−2
t ). Here,

ϕt is the unscaled version of ϕ defined in (3.1).

Lemma 3.4. Fix a scale function βt � 1, positive numbers m < M and some ϕ : G × N → (m,M)
such that ϕ(·, e) ∈ Cb(G) for any e ∈ N . Then, for any δ ∈ (0,m),

lim inf
t→∞

1

βηt α
d
t

log Pr
(
βta ∈ A(Bt, ϕt, δα

−2
t )
)
≥ −D

∑
e∈N

∫
G

ϕ(y, e)−η dy. (3.20)

Proof. As a pre-step we first derive this lower estimate for the event that βta is only δ-close, i.e., we prove
(3.20) with δα−2

t replaced by δ. Assumption 1.2 yields the existence of a non-decreasing mapR : [0,∞)→
[0,∞) with R(ε)

ε→0→ 0 such that, for all ε > 0,

−Dε−η(1 +R(ε)) ≤ log Pr(a(0, e1) ≤ ε) ≤ −Dε−η(1−R(ε)).

Therefore, we may estimate

Pr(βta ∈ A(Bt, ϕt, δ)) =
∏
z,e

[
Pr(a(z, e) ≤ β−1

t ϕt(z, e))− Pr(a(z, e) ≤ β−1
t (ϕt(z, e)− δ))

]
≥
∏
z,e

[
e−Dβ

η
t ϕt(z,e)

−η(1+R(β−1
t M)) − e−Dβ

η
t (ϕt(z,e)−δ)−η(1−R(β−1

t M))
]

=
∏
z,e

e−Dβ
η
t ϕt(z,e)

−η(1+R(β−1
t M))

×
∏
z,e

[
1− e−Dβ

η
t

[
(ϕt(z,e)−δ)−η(1−R(β−1

t M))−ϕt(z,e)−η(1+R(β−1
t M))

]]
. (3.21)

Pick some positive δ0 and choose t large enough to satisfy( M

M − δ

)η
>

1 +R(β−1
t M)

1−R(β−1
t M)

+ δ0.

Thus, for all z ∈ Bt,

(ϕt(z, e)− δ)−η(1−R(β−1
t M))− ϕt(z, e)−η(1 +R(β−1

t M)) > 2δ0M
−1.

We may therefore continue (3.21) by

log Pr(βta ∈ A(Bt, ϕt, δ)) ≥ −Dβηt
∑
z,e

ϕt(z, e)
−η(1 +R(β−1

t M)) +d|αtG| log
(
1− e−2DM−1δ0β

η
t
)
.

Finally, by Hölder’s reverse inequality and merging asymptotically negligible terms,

1

βηt α
d
t

log Pr(βta ∈ A(Bt, ϕt, δ)) ≥ −Dα−dt
∑
z,e

ϕt(z, e)
−η + o(1)

= −Dα−dt
∑
z,e

(∫
[0,1]d

ϕ
(z + y

αt
, e
))−η

dy + o(1) ≥ −D
∑
e

∫
G

ϕ(y, e)−η dy + o(1).

Now we prove (3.20). To estimate the asymptotic probability of the event βta ∈ A(Bt, ϕt, δα
−2
t ) instead

of A(Bt, ϕt, δ), we need the additional technical condition on the existence of an increasing density for
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small conductances, which we put in Theorem 1.4. Under this assumption, we may easily estimate for some
C ∈ (0,∞), any x ∈ (m,M) and all sufficiently large t,

Pr
(
x− α−2

t δ ≤ a(z, e) ≤ x
)
≥ C

α2
t

Pr
(
x− δ ≤ a(z, e) ≤ x

)
Using this in what we proved so far, i.e., in (3.20) with δα−2

t replaced by δ, we obtain

log Pr
(
βta ∈ A(Bt, ϕt, δα

−2
t )
)
≥ log

(
1
C
α
−2d|αtG|
t

)
+ log Pr

(
βta ∈ A(Bt, ϕt, δ)

)
.

Since obviously log
(
α
−2d|αtG|
t

)
= o(βηt α

d
t ), we arrive at the desired result. �

For the proof of the upper bound in Theorem 1.4 in Section 4.3 below, we will need also a large-deviations
statement about the rate function of the conductances, applied to the rescaled conductances themselves.
Recall the rescaled conductance field at(y, e) = βta(bαtyc, e) from (1.27) for y ∈ G, e ∈ N .

Lemma 3.5. Fix some scale function βt � 1. Then, for any ε > 0, we have

lim sup
t→∞

1

αdtβ
η
t

log Pr
(∑
e∈N

∫
G

(at(y, e))
−η dy ≥ ε

)
≤ −Dε.

Proof. Choose some positive x < D. By the exponential Chebychev inequality,

Pr
(∑

e

∫
G

(at(y, e))
−η dy ≥ ε

)
≤ e−α

d
t β
η
t xε
〈

exp
{
αdtβ

η
t x
∑
e

∫
G

(at(y, e))
−η dy

}〉
.

Therefore, it will be sufficient to show that

lim sup
t→∞

1

αdtβ
η
t

log
〈

exp
{
αdtβ

η
t x
∑
e

∫
G

(at(y, e))
−η dy

}〉
≤ 0. (3.22)

We make use of the independence of conductances over edges and obtain after rescaling〈
exp

{
αdtβ

η
t x
∑
e

∫
G

(at(y, e))
−η dy

}〉
≤
〈

exp
{
βηt x

∑
e

∑
z∈αtG∩Zd

(βta(z, e))−η
}〉
≤
〈

exa
−η
〉Cαdt

for some constant C > 0 with a = a(0, e1) representing a single conductance. Consequently, it will now
be sufficient to show that 〈exa−η〉 < ∞ for x < D. This is implied by Assumption 1.2. Indeed, with some
bounded residual term r such that r(s)→ 0 as s→∞,

〈exa−η〉 =

∫ ∞
0

Pr
(
exa
−η
> s
)

ds ≤ b+

∫ ∞
b

Pr
(
a < (log s)−1/ηx1/η

)
ds

= b+

∫ ∞
b

exp
{
− (D/x)(log s)[1 + r(s)]

}
ds

for arbitrary b > 0. Choosing b so large that (D/x)[1 + r(s)] > c for all s > b and some c > 1, we arrive
at 〈exa−η〉 ≤ b+

∫∞
b
s−c ds <∞. �

4. PROOF OF THEOREM 1.4

In this section, we assemble the results from the previous sections and prove Theorem 1.4. Recall that we
are working on the space F = {f 2 : f ∈ L2(G), ‖f‖2 = 1}, equipped with the weak topology of integrals
against bounded continuous functions G→ R.
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4.1 Compactness of the level sets of J (c).

Let us show that the level sets

Is = {f 2 ∈ F : J (c)(f 2) ≤ s}, s ∈ [0,∞),

of J (c) are compact. To that end, choose s ≥ 0 and some sequence (fn)n∈N in Is. Abbreviate p = 2η
η+1

. We
need to show the existence of some f ∈ Is such that, along some subsequence,∫

G

f 2
n(y)V (y) dy →

∫
G

f(y)2V (y) dy as t→∞ (4.1)

for all V : G → R bounded and continuous. As F is bounded in L2(G), the Banach-Alaoglu theorem
implies that there exists f ∈ L2(G) such that∫

G

fn(y)V (y) dy →
∫
G

f(y)V (y) dy as t→∞ (4.2)

for all V ∈ L2(G), after choosing a subsequence. By Hölder’s inequality and boundedness of the test
functions, this implies (4.1) for some subsequence. Thus, it remains to show that f ∈ Is. For the requirement
that ‖f‖2 = 1, it is necessary to show convergence of fn in the strong L2(G)-sense. This is implied by the
Rellich-Kondrashov theorem (Theorem 2.1) in analogy with Section 2. At this point, we need the restrictions
on the parameter η made in Theorem 1.4 (η > d/2 and if d = 1, η ≥ 1).

The requirement that J (c)(f 2) ≤ s still needs to be verified. Let i ∈ {1, . . . , d}. As the sequence (∂ifn)n∈N
is bounded inLp(G), we may assume that it converges weakly (that is, with respect to integrals against func-
tions V ∈ Lq(G) where 1/p+1/q = 1) against some gi ∈ Lp(G). As all norms are lower semicontinuous
with respect to the weak topology, we have

∑d
i=1 ‖gi‖pp ≤ s. Since J (c)(f 2) =

∑d
i=1 ‖∂if‖pp, the assertion

is shown if only ∂if = gi for all i ∈ {1, . . . , d}. In order to show this, choose some V ∈ C∞0 (G) ⊂ Lq(G).
On the one hand, ∫

G

∂ifn(y)V (y) dy →
n→∞

∫
G

gi(y)V (y) dy.

On the other hand, ∫
G

fn(y)∂iV (y) dy →
n→∞

∫
G

f(y)∂iV (y) dy

as ∂iV ∈ L2(G) and fn → f weakly in L2(G). The limits above imply (by the definition of the weak
derivative) ∫

G

gi(y)V (y) dy =

∫
G

∂if(y)V (y) dy

for all V ∈ C∞0 (G). This shows ∂if = gi for all i ∈ {1, . . . , d} as both functions are elements of Lp(G),
and C∞0 (G) is dense inLq(G). This means the level sets Is of J (c), and therefore those of J (c)

0 , are compact.

4.2 Proof of Theorem 1.4, lower bound.

Let us go on with the proof of the lower bound. We start by recalling an auxiliary result from [KSW12]. It
ensures a certain continuity property of probabilities of certain events with regard to small changes of the
conductances.

Lemma 4.1. Let ϕ, ψ : Zd×N → (0,∞) with 0 < ψ(x, e)− ε ≤ ϕ(x, e) ≤ ψ(x, e) + ε for some ε > 0
and all x ∈ Zd and e ∈ N . Moreover, let F be some event that depends on the process (Xs)s∈[0,t] up to
time t only. Then

Pϕ0
(
F
)
≥ e−4dεtPψ−ε0

(
F
)
.
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With this tool at hand, we now turn to the proof of the lower bound in Theorem 1.4. Choose an open set O
in F with respect to the weak topology and some function f 2 ∈ O. Our goal is to prove (1.14). We will write
just {Lt ∈ O} for {Lt ∈ O, supp(`t) ⊂ αtG}.
We may assume that f 2 ∈ H1

0 (G) ∩ O since (1.14) is trivial otherwise. For the same reason, it is possible
to assume that f ∈ W 1,p(G) with p = 2η

η+1
. By convolution with an appropriate mollifier and norming, we

consequently obtain functions fε ∈ C1
0(G) such that fε → f as ε ↘ 0 both in H1

0 (G) and in W 1,p(G).
As O is open in the weak L2-topology, it is also open in the strong L2-topology and therefore fε ∈ O for ε
small enough. Let us fix such an ε > 0 and some M > 0 and define

ϕ
(f,ε)
M (y, e) = M−1 ∨ (Dη)

1
η+1 |∂efε(y)|−

2
η+1 ∧M

with the convention 0−
2
η+1 = ∞. Note that this function is continuous in the first argument. In analogy with

Section 3, put

ϕt(z, e) =

∫
[0,1]d

ϕ
(f,ε)
M

(z + y

αt
, e
)

dy, z ∈ Bt, e ∈ N .

Choose some δ ∈ (0,M−1) and βt such that βηt α
d
t = tβ−1

t α−2
t (the condition αt � t

d
d+2 ensures

βt � 1). We restrict the expectation with respect to the conductances to the event where βta lies in At =
A(Bt, ϕt, δα

−2
t ), where we recall (3.19). We estimate

〈Pa0(Lt ∈ O)〉 ≥ 〈Pa0(Lt ∈ O)1l{βta∈At}〉 ≥ inf
ψ∈At

Pβ
−1
t ψ

0 (Lt ∈ O) Pr(βta ∈ At)

≥ e−4dtδα−2
t β−1

t Pβ
−1
t (ϕt−δα−2

t )
0 (Lt ∈ O) Pr(βta ∈ At), (4.3)

where the last step is due to Lemma 4.1. Now, by Proposition 3.1 (taking Remark 2 into consideration) and
Lemma 3.4, we obtain (with our particular choice of βt)

lim inf
t→∞

t−
η

1+ηα
− d−2η

1+η

t log〈Pa0(Lt ∈ O)〉 ≥ −
∑
e

∫
G

(
ϕ

(f,ε)
M (y, e)

(
∂efε(y)

)2
+Dϕ

(f,ε)
M (y, e)−η

)
dy−4dδ.

As δ was chosen arbitrarily small, we may omit the last term in the above inequality. Moreover, the resulting
scale is seen to be equal to γt from Theorem 1.4. Then, it is quickly verified that∑

e

∫
G

(
ϕ

(f,ε)
M (y, e)

(
∂efε(y)

)2
+Dϕ

(f,ε)
M (y, e)−η

)
dy → J (c)

(
f 2
ε

)
as M → ∞ by applying the monotone and dominated convergence theorems on the parts of the integral
where ∂efε is equal to 0, between 0 and 1 and greater than 1, respectively. Since M was chosen arbitrarily,

lim inf
t→∞

1

γt
log〈Pa0(Lt ∈ O)〉 ≥ J (c)

(
f 2
ε

)
.

Letting ε↘ 0, we may also conclude

lim inf
t→∞

1

γt
log〈Pa0(Lt ∈ O)〉 ≥ J (c)(f 2)

as ∂efε → ∂ef in the Lp-norm. We arrive at the desired lower bound by taking the infimum over all functions
f ∈ H1

0 (G) ∩ O remembering that f was chosen arbitrarily inO.

4.3 Proof of Theorem 1.4, upper bound.

Let us now turn to the proof of the upper bound. Let C be a closed set of probability densities on G. We will
show that (1.15) holds, even when we replace the starting point 0 by any other site x ∈ Bt = αtG ∩ Zd,
possibly depending on t, uniformly in x. Note that Lt ∈ C is equivalent to 1

t
`t ∈ Ct, where

Ct = {g2 : g ∈ `2(Bt), ‖g‖ = 1, αdt g
2(bαt·c) ∈ C} (4.4)
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is the set of rescalings of step functions in C. We now fix any starting point x ∈ Bt = αtG∩Zd and estimate
the probability term with the help of [BHK07, Theorem 3.6], which states that

Pax
(
Lt ∈ C, supp(`t) ⊂ αtG

)
= Pax

(
1
t
`t ∈ Ct, supp(`t) ⊂ Bt

)
≤ exp

{
−t inf

µ∈Ct
Λa(Bt, µ)

}
eCt , (4.5)

where we put
Λa(Bt, µ) =

∑
x,y∈Bt : x∼y

ax,y
(√

µ(x)−
√
µ(y)

)2
.

Furthermore, Ct is an error term that can be estimated as follows.

Ct = |Bt| log
(
ηBt
√

8et) + log |Bt|+
|Bt|
4t

,

where
ηBt = max

{
max
x∈Bt

∑
y∈Bt\{x}

|∆a
x,y|,max

y∈Bt

∑
x∈Bt\{y}

|∆a
x,y|, 1

}
is bounded in t, since the conductances are, according to our assumptions. Furthermore, from our upper
bound on αt in Theorem 1.4, we have that log t � βη; see (1.32). This shows that the error term Ct is
negligible on the scale γt = αdtβ

η
t ; see (1.33).

Now we use Hölder’s inequality to estimate, for g2 = µ ∈ Ct having support in Bt,

Λa(Bt, µ) =
∑
e∈N

∑
z∈Zd

a(z, e)|g(z + e)− g(z)|2

≥
(∑

z,e

|g(z + e)− g(z)|
2η
η+1

)(η+1)/η(∑
z,e

(
a(z, e)

)−η)−1/η

.
(4.6)

Recalling the rescaled conductance field at(y, e) = βta(byαtc, e) from (1.27) and introducing the notation

χ(d)(Bt, Ct) = inf
g2∈Ct

∑
e∈N

∑
z∈Zd
|g(z + e)− g(z)|

2η
η+1 , (4.7)

we see that

inf
µ∈Ct

Λa(Bt, µ) ≥ 1

βt α2
t

(
α

2η−d
η+1

t χ(d)(Bt, Ct)
)(η+1)/η(∑

e

∫
G

(
at(y, e)

)−η
dy
)−1/η

.

Pick some small δ > 0. By Lemma 4.2 below, we have, for all t large enough,

inf
µ∈Ct

Λa(Bt, µ) ≥ 1

βtα2
t

[
χ(c)(G, C)− δ

](η+1)/η
(∑

e

∫
G

(
at(y, e)

)−η
dy
)−1/η

. (4.8)

Choose now a large positive number M and some small ε > 0 and define on the environment space of
measurable non-negative functions G×N → (0,∞), the events

An =
{
ϕ :
∑
e

∫
G

ϕ(y, e)−η dy ∈ ((n− 1)ε, nε]
}
, n ∈ N, n ≤M/ε, (4.9)

B1 =
{
ϕ :
∑
e

∫
G

ϕ(y, e)−η dy ≥M
}

and B2 =
{
ϕ :
∑
e

∫
G

ϕ(y, e)−η dy ≤ ε
}
. (4.10)

We proceed by combining (4.5) and (4.8) and splitting the expectation w.r.t. the environment as

Pa0
(
Lt ∈ C, supp(`t) ⊂ αtG

)
≤ Pr(at ∈ B1) +

M/ε∑
n=1

e−tβ
−1
t α−2

t

[
χ(c)(G,C)−δ

](η+1)/η

(nε)−1/η

Pr(at ∈ An)

+ e−tβ
−1
t α−2

t

[
χ(c)(G,C)−δ

](η+1)/η

ε−1/η

Pr(at ∈ B2).
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For the environment terms, we use Lemma 3.5 to calculate their asymptotic behavior, noting that tβ−1
t α−2

t =

βηt α
d
t ,, by the choice of βt in (1.32). The condition αt � t

η
d(η+1) ensures that βt � 1. Noting the definition

of γt in (1.33), this means that

lim sup
t→∞

γ−1
t log〈Pa0

(
Lt ∈ C, supp(`t) ⊂ αtG

)
〉

≤ −DM ∨max
n

[
−
[
χ(c)(G)− δ

] η+1
η (nε)−

1
η −D((n− 1)ε)

]
∨ −

[
χ(c)(G, C)− δ

] η+1
η ε−

1
η

≤ −DM ∨ sup
y∈(ε,M)

[
−
[
χ(c)(G)− δ

] η+1
η y−

1
η −Dy

]
+Dε ∨ −

[
χ(c)(G)− δ

] η+1
η ε−

1
η .

Optimizing over y after choosing M large enough and ε small enough, and finally taking limits δ → 0 and
ε→ 0, yields the desired result.

Lemma 4.2. Let η > d/2. Fix a closed subset C of F with rescaled version Ct defined in (4.4). Then we
have

lim inf
t→∞

α
2η−d
η+1

t χ(d)(Bt, Ct) ≥ χ(c)(G, C).

Proof. We may assume that Ct is nonempty. Pick minimisers gt ∈ Ct of the formula for χ(d)(Bt, Ct) in (4.7)
such that

χ(d)(Bt, Ct) =
∑
e∈N

∑
z∈Zd
|gt(z + e)− gt(z)|

2η
η+1 . (4.11)

Let us consider the rescaled versions f̃t ∈ L2(G) defined as

f̃t(y) = α
d/2
t gt(bαtyc).

Note that f̃t ∈ C. Due to norming of the sequence f̃t and closedness of C, we find f ∈ C such that f̃t → f
in the weak L2-sense, which in turn implies convergence in the weak topology we are considering. Let us
show that

lim inf
t→∞

α
2η−d
η+1

t χ(d)(Bt, Ct) ≥
∑
e∈N

∫
Rd
|∂ef(y)|

2η
η+1 dy,

which instantly yields the desired result. In analogy with the construction in Lemma 3.2, we find functions
ft ∈ H1

0 (G) (trivially extended to Rd) such that for almost all y ∈ G, e ∈ N and t > 0,

∂eft(y) = α
1+d/2
t

[
gt(bαtyc+ e)− gt(bαtyc)

]
. (4.12)

In particular, ∂eft is almost everywhere constant on the boxes α−1
t (z + [0, 1]d) with z ∈ Zd, thus

α
2η−d
η+1

t

∑
e∈N

∑
z∈Zd
|gt(z + e)− gt(z)|

2η
η+1 = α

2η−d
η+1

t αdt
∑
e∈N

∫
Rd

(
α
−1−d/2
t |∂eft(y)|

) 2η
η+1 dy

=
∑
e∈N

∫
Rd
|∂eft(y)|

2η
η+1 dy.

It therefore remains to show that

lim inf
t→∞

∑
e∈N

∫
Rd
|∂eft(y)|

2η
η+1 dy ≥

∑
e∈N

∫
Rd
|∂ef(y)|

2η
η+1 dy. (4.13)

To that end, we need to establish weak convergence of the ft towards f and convergence to 1 of their L2-
norms. Then, (4.13) follows from lower semicontinuity of the functional f 2 7→

∑
e∈N ‖∂ef‖pp (with p = 2η

1+η
),
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which follows from the compactness of the level sets of J (c). Here, we require the assumptions made on the
value of η. According to (3.13), we obtain the desired convergence properties and even ‖ft − f̃t‖ → 0 if∑

e∈N

∑
z∈Zd
|gt(z + e)− gt(z)|2 → 0 as t→∞. (4.14)

As we are on a discrete space and consider normed functions, we may estimate∑
e∈N

∑
z∈Zd
|gt(z + e)− gt(z)|2 ≤ C

∑
e∈N

∑
z∈Zd
|gt(z + e)− gt(z)|

2η
η+1 = Cχ(d)(Bt), (4.15)

for some C > 0. As G is open, it contains the box [−δ, δ]d with some δ > 0. With Qt = αt[−δ, δ]d ∩ Zd,
we have χ(d)(Bt) ≤ χ(d)(Qt). By Lemma 2.4, the latter vanishes as t → ∞. Hence, (4.15) implies (4.14),
and the proof of Lemma 4.2 is complete. �

5. PROOF OF THEOREM 1.5

Let us turn to the case where η ≤ d/2.

5.1 Non-compactness of levels sets of J (c)

We start by showing that the level sets fail to be compact in this case. This property seems obvious after
studying the variational problems in Section 2, but let us provide a rigorous proof.

Lemma 5.1. If η ≤ d/2, the level sets of J (c) are not closed. In particular, they are not compact.

Proof. From Lemma 2.3, we obtain sequences (fn) with fn ∈ H1
0 (G), ‖fn‖2 ≡ 1 for n ∈ N and

J (c)(f 2
n) → 0 as n → ∞. In particular, f 2

n ∈ F and for each level set Is = {f 2 : J (c)(f 2) ≤ s},
s > 0, we have f 2

n ∈ Is for n large enough. As the sequence (fn) is bounded in L2, there exists a weak
limit f . We easily check by Hölder’s inequality that∫

G

f 2
n(y)V (y) dy →

∫
G

f(y)2V (y) dy as t→∞

for all bounded and continuous V : G→ R, so (fn) converges in the right topology. By lower semicontinuity
of norms with regard to weak convergence, J (c)(f 2) = 0. That implies ‖f‖2 = 0 which in turn yields
f 2 /∈ F . As in particular f 2 /∈ Is, the assertion follows. �

5.2 Proof of Theorem 1.5, upper bound

Now, we proceed by showing the main statement, that is,

lim sup
t→∞

t−
η
η+1 log〈Pa0

(
supp(`t) ⊂ αtG

)
〉 ≤ −Kη,D χ

(d)(Zd).

Using a spectral Fourier expansion and estimating in standard way, we estimate the probability term as

Pa0
(
supp(`t) ⊂ αtG

)
≤ |αtG|2 exp{−tλ(t)

1 (a)}, (5.1)

where λ(t)

1 (a) is the principal eigenvalue of the operator ∆a in the box Bt with zero boundary condition.
Using its Rayleigh-Ritz representation and Hölder’s inequality analogously to (4.6), we see that

λ(t)

1 (a) ≥ β−1
t inf

g

(∑
z,e

|g(z + e)− g(z)|
2η
η+1

)(η+1)/η(∑
z,e

(
βta(z, e)

)−η)−1/η

= β−1
t α

− d
η

t (χ(d)(Bt))
(η+1)/η

(∑
e

∫
G

(
at(y, e)

)−η
dy
)−1/η

. (5.2)
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In contrast to the proof of the upper bound in Theorem 1.4, we continue the inequality differently by just
estimating χ(d)(Bt) ≥ χ(d)(Zd). Choose now a large positive number M and some small ε > 0 and
consider the events An, B1 and B2 defined in (4.9) and (4.10). We proceed by combining (5.1) and (5.2)
and splitting the expectation w.r.t. the environment as

|αtG|−2〈Pa0
(
supp(`t) ⊂ αtG

)
〉 ≤ Pr(at ∈ B1) +

M/ε∑
n=1

e−tβ
−1
t α

− dη
t χ(d)(Zd)(η+1)/η(nε)−1/η

Pr(at ∈ An)

+ e−tβ
−1
t α

− dη
t χ(d)(Zd)(η+1)/ηε−1/η

Pr(at ∈ B2).

For the environment terms, we use Lemma 3.5 to calculate their asymptotic probabilities, noting that

tβ−1
t α

− d
η

t = βηt α
d
t = t

η
η+1 ,

by the choice of βt in (1.32). Again, the condition αt � t
η

d(η+1) ensures that βt � 1. The remainder of the
proof is now similar to the analogous part of the proof of the upper bound in Theorem 1.4, which we do not
spell out.

5.3 Proof of Theorem 1.5, lower bound

For any finite and connected set B ⊂ Zd containing the origin and any sufficiently large t, we simply use
that B ⊂ αtG and apply Theorem 1.3, to obtain

lim sup
t→∞

t−
η
η+1 log〈Pa0

(
supp(`t) ⊂ αtG

)
〉 ≥ −Kη,Dχ

(d)(B),

which is exactly (1.20). To obtain the better lower bound in (1.22) in the special case η = d/2, we apply (1.20)
for any [−n, n] ∩ Zd for any n ∈ N. It therefore suffices to show that lim supn→∞ χ

(d)([−n, n] ∩ Zd) ≤
χ(d)(Zd) in the case η = d/2. This was shown in Lemma 2.6.

6. PROOF OF THEOREM 1.8

As in the proof of the LDP in Proposition 3.1 via the Gärtner-Ellis theorem, the main work in proving Theorem
1.8 consists in proving asymptotic rescaling properties of the principal `2(Bt)-eigenvalue, but this time of the
random operator α2

t∆
a + Vt in Bt = αtG∩Zd for large t, where the rescaled version Vt of a bounded and

continuous function V was defined in (3.3). This is done using methods from the field of spectral homogeni-
sation, which provides an answer to this question that actually extends to the full spectrum, not only the
largest eigenvalue. Recall that G = (0, 1)d is the open unit cube and that the conductances are uniformly
elliptic, i.e., stay in (λ, 1/λ) almost surely for some λ ∈ (0, 1).

In Section 6.1, we modify a powerful existing result on spectral homogenisation of ∆a to fit our needs. In
Section 6.2, we use the modified result for a proof of Theorem 1.8.

6.1 Spectral homogenisation in the random conductance model

Let us introduce a number of notations and recall some important facts. Recall that ceff is the diffusion
constant of the limiting Brownian motion that appears in the invariance principle for RWRC. Denote by A =
ceff Id the covariance matrix corresponding to the Brownian motion. For some function V ∈ Cb(G), the set
of bounded and continuous real-valued functions on G, let us consider the operator

−1

2
∇∗A∇+ V = −ceff

2
∆ + V

defined on the Sobolev space H1
0 (G). By the spectral theorem for elliptic operators (compare e.g. Zimmer

[Z90]), the spectrum of this operator is given by a sequence λ1(V ) < λ2(V ) ≤ λ3(V ) ≤ . . . of eigenvalues
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(counted according to their multiplicity) with corresponding L2-normed eigenfunctions v1, v2, . . . ∈ C∞0 (G).
For t ≥ 0, let λ(t)

1 (V ) < λ(t)

2 (V ) ≤ λ(t)

3 (V ) ≤ . . . denote the eigenvalues of −α2
t∆

a + Vt on `2(Bt) with
zero boundary condition, where Vt is defined in (3.3) above. Then, let v(t)

1 , v
(t)

1 , . . . be the corresponding
normed eigenfunctions. The values λ(t)

j (V ) and functions v(t)

j in the case that j is larger than the dimension
of `2(Bt), say j0, are of no importance and we just define them to be equal to λ(t)

j0
(V ) resp. v(t)

j0
.

Theorem 6.1 (Spectral homogenisation). Fix V ∈ Cb(G). Then, for each j ∈ N, as t→∞,

λ(t)

j (V ) −→ λj(V ) and
∥∥v(t)

j − α
−d/2
t vj

( ·
αt+1

)∥∥
2
→ 0. (6.1)

This statement has been proven in the special case V ≡ 0 in [BD03] with ideas going back to Kesavan
([K79]). In order to generalise their result to cover the case of non-zero potential V , we state a version of an
intermediate result from [BD03] based on which we subsequently prove Theorem 6.1. In the following, we
tacitly extend any function f : G→ R trivially (i.e., with the value zero) to a function f : Rd → R and define
f̂n(z) = f(z/(n+ 1)) for z ∈ Zd and n ∈ N.

Lemma 6.2. For n ∈ N, let un ∈ `2(Zd) with supp(un) ⊂ nG and ‖un‖2 = 1. Assume that
n2‖(∆aun)1lnG‖2 is bounded.

Then, almost surely, any subsequence (nk)k∈N of strictly increasing integers contains a further subsequence
(n̂k)k∈N such that there is a function q ∈ H1

0 (G) such that for all ϕ ∈ C(G) ∩ L2(G) and f ∈ {1} ∪
{a(·, e) : e ∈ N} and for all e ∈ N , as n→∞ along n̂k,

n−d/2
∑
z∈Zd

un(z)ϕ̂n(z)f(z) → 〈f〉
∫
G

q(y)ϕ(y) dy, (6.2)

n(2−d)/2
∑
z∈Zd

a(z, e)(un(z + e)− un(z))ϕ̂n(z) → ceff

∫
G

∂eq(y)ϕ(y) dy. (6.3)

If the function q is continuous, we have in addition

‖un − n−d/2q̂n‖2 → 0 as t→∞. (6.4)

This result already encapsulates the input from homogenisation theory and ergodic theory. We turn to the
proof of Theorem 6.1 following the same route as the the proof of the analogous result for V ≡ 0 in [BD03].

Proof of Theorem 6.1. Write λ(t)

j and λj instead of λ(t)

j (V ) and λj(V ). As we consider subsets of the lattice,
we may, without loss of generality, assume that αt takes integer values only. With µ(t)

1 , µ
(t)

1 , . . . the Dirichlet
eigenvalues of the homogeneous discrete operator −1

2
∆ on αtG ∩ Zd, the eigenfunctions v(t)

j , j ∈ N
clearly satisfy

α2
t‖(∆av(t)

j )1lαtG‖2 ≤ λ(t)

j ≤
α2
t

λ
µ(t)

j , (6.5)

where λ ∈ (0, 1) is the ellipticity parameter for the conductances. As the eigenvalues µ(t)

j are known to be
of order α−2

t , the v(t)

j satisfy the prerequisites of Lemma 6.2 and we may conclude that, for j ∈ N, there are
νj ∈ R and qj ∈ H1

0 (G) such that for all ϕ ∈ C(G) ∩ L2(G), as t→∞,

λ(t)

j → νj, (6.6)

α
−d/2
t

∑
z∈Zd

v(t)

j (z)ϕ̂αt(z) →
∫
G

qj(y)ϕ(y) dy, (6.7)

α
(2−d)/2
t

∑
z∈Zd

a(z, e)(v(t)

j (z + e)− v(t)

j (z))ϕ̂αt(z) → ceff

∫
G

∂eqj(y)ϕ(y) dy. (6.8)
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Let us show that the νj are eigenvalues of − ceff
2

∆ + V with corresponding eigenfunction qj . Indeed, for all
ϕ ∈ C∞0 (G), by (6.7),

α
−d/2
t

∑
z∈Zd

(
(−α2

t∆
a + Vt)v

(t)

j (z)ϕ̂αt(z)
)

= λ(t)

j α
−d/2
t

∑
z∈Zd

v(t)

j (z)ϕ̂αt(z) −→
t→∞

νj

∫
G

qj(y)ϕ(y) dy.

(6.9)
On the other hand, by (6.7), (6.8) and integration by parts (using symmetry of the conductances),

α
−d/2
t

∑
z∈Zd

(
(−α2

t∆
a + Vt)v

(t)

j (z)ϕ̂αt(z)
)

=− 1
2
α

(2−d)/2
t

∑
z∈Zd

∑
e∈N

a(z, e)
[
(v(t)

j (z + e)− v(t)

j (z))αt
(
ϕ̂αt(z + e)− ϕ̂αt(z)

)]
+ α

−d/2
t

∑
z∈Zd

(
Vt(z)v(t)

j (z)ϕ̂αt(z)
)

−→
t→∞
− ceff

2

∑
e∈N

∫
G

∂eqj(y)∂eϕ(y) dy +

∫
G

qj(y)V (y)ϕ(y) dy. (6.10)

In the last step, we also used that αt
(
ϕ̂αt(z+e)− ϕ̂αt(z)

)
− ∂̂eϕαt(z) as well as Vt(z)− V̂αt(z) vanish at

least in a weak L2-sense. The limits in (6.9) and (6.10) show that the left-hand sides of these two are equal,
which means the νj are eigenvalues of − ceff

2
∆ + V with eigenfunction qj . It now remains to show that the

νj are in fact all eigenvalues of that operator and therefore constitute the entire H1
0 -spectrum. This is done

in complete analogy with [BD03], Corollary 2, hence we omit it here for conciseness. As the eigenvalues λ(t)

j

are ordered, so are the νj . This means we have, for all j ∈ N, λ(t)

j → νj = λj as t → ∞ and qj = vj .
Finally, as the vj are continuous, (6.1) follows from (6.4) in Lemma 6.2. �

6.2 Proof of Theorem 1.8

The proof is conducted in analogy with the proof of Proposition 3.1 in Section 3. Like in that proof, it will be
sufficient to show that

lim
t→∞

α2
t

t
log Ea

z

[
exp

{
− t

α2
t

∫
G

V (y)Lt(y) dy
} ∣∣∣X[0,t] ⊂ αtG

]
= −λ1(V ) + λ1(0), (6.11)

for all V ∈ Cb(G). For such a V , define the operator Pa,Vt on `2(αtG ∩ Zd) by

Pa,Vt f(z) = Ea
z

[
exp

{
− t

α2
t

∫
G

V (y)Lt(y) dy
}

1l{X[0,t] ⊂ αtG}f(Xt)
]
.

Then, (6.11) is implied by showing

lim
t→∞

α2
t

t
logPa,Vt 1l(0) = −λ1(V )

instead. Recalling the definitions (3.3) of Vt and (1.11) of Lt, we see that

Pa,Vt f(z) = Ea
z

[
exp

{
− 1

α2
t

∫ t

0

Vt(Xs) ds
}

1l{X[0,t] ⊂ αtG}f(Xt)
]
.

Consequently, Pa,Vt admits the semigroup representation

Pa,Vt = exp{t(∆a − α−2
t Vt)} = exp

{
− tα−2

t

[
− α2

t∆
a + Vt

]}
,
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where the operator in the exponent is considered in `2(αtG ∩ Zd) with zero boundary condition. Note
that Pa,Vt has the same principal eigenfunction as the operator −α2

t∆
ϕt + Vt has, and the corresponding

principal eigenvalue is given by exp
{
− t

α2
t
λ(t)

1 (V )
}

. An eigenvalue expansion yields, for each t ≥ 0,

exp
{
− t

α2
t

λ(t)

1 (V )
}(
vt(0)

)2 ≤ Pa,Vt 1l(0) ≤ |αtG|2 exp
{
− t

α2
t

λ(t)

1 (V )
}
.

By Theorem 6.1, λ(t)

1 (V ) → λ1(V ) as t → ∞, so it remains to show that vt(0) decays only polynomially
as t→∞. Since vt is an eigenfunction of −α2

t∆
a + Vt corresponding to the eigenvalue λ(t)

1 (V ), we have

vt(0) = e−λ
(t)
1 (V )

(
exp{α2

t∆
a − Vt}vt

)
(0)

= e−λ
(t)
1 (V )Eα2

ta
0

[
exp

{
−
∫ 1

0

Vt(Xs) ds
}
vt(X1)

]
≥ e−λ

(t)
1 (V )−V∗Eα2

ta
0

[
vt(X1)

]
where V∗ is some upper bound for V . Abbreviating v∗t = maxx∈αtG∩Zd vt(x), we estimate

vt(0) ≥ v∗t e
−λt(V )−V∗ min

x∈Bt
Pα

2
ta

0

(
X1 = x

)
.

As vt is normed, the decay of its maximal value is only polynomial as t → ∞, so we only need to consider
the exponential decay of the probability term above. Here we employ a heat kernel estimate from [BD10,
Theorem 1.2]. It says that there are positive constants c1, c2 such that, for t sufficiently large (depending on
the realisation of the conductances),

Pα
2
ta

0

(
X1 = x

)
= Pa0

(
Xα2

t
= x

)
≥ c1α

−d
t e−c2|x|

2/α2
t

for all x ∈ Zd with |x| ≤ α3
t . As |x|2/α2

t is bounded, we have shown that vt(0) decays only polynomially
as t→∞, and the proof of Theorem 1.8 is finished.
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