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Abstract

In the article the fundamental solution of a variant of the three-dimensional wave equa-
tion known as “unidirectional pulse propagation equation” (UPPE) and its paraxial approx-
imation is obtained. It is shown that the fundamental solution can be presented as a pro-
jection of a fundamental solution of the wave equation to some functional subspace. We
discuss the degree of equivalence of the UPPE and the wave equation in this respect.
In particular, we show that the UPPE, in contrast to the widespread belief, describes the
wave propagation in both directions simultaneously, and remark non-causal character of
its solutions.

1 Introduction

In many cases, the problem of light propagation in a nonlinear homogeneous isotropic medium
requires solving the nonlinear wave equation (WE)

□E(t, r) ≡ ∆E(t, r)− 1

c2
∂ttE(t, r) = Q[E], (1)

where r = {x, y, z} are the spatial coordinates, t is time, ∆ = ∂zz + ∂yy + ∂xx, E(t, r) ∈ R
represents the electric field (we assume in the following the scalar field, that is, linear polarization
and nonlinearity which does not alter the polarization state). Q[E] is, in general, a nonlinear
operator describing response of the medium. For instance, for the case of an electromagnetic
wave propagating in a plasma we have Q = µ0∂tJ , where J is the plasma current, µ0 is the
vacuum permeability. In the case of strong optical fields the plasma current J depends itself on
E in rather complicated way [1–4], making the equation nonlinear.

Independently on the nature of inhomogeneity Q, Eq. (1) is typically accomplished with initial
and boundary conditions. Unfortunately, this problem is, in large number of practically important
cases, is extremely difficult to treat numerically. A typical situation is a propagation of a few-cycle
pulse through a waveguide [5–10] or in a long filament [2,11], which assumes large extension in
one spatial dimensions (say, z), making the amount of data required for solving the initial value
problem intractably large. To deal with such cases, so-called unidirectional pulse propagation
equation (UPPE) were formulated [2, 12], which is the best written for the Fourier-transformed
electric field E(z, ω,k⊥) ∈ C.

∂zE(ω, z,k⊥)− iβzE(ω, z,k⊥) =
1

2iβz

Q̃[E], (2)

Here, E(ω, z,k⊥) = F{t,x,y}[E(t, r)], Q̃ = F{t,x,y}[Q], F{t,x,y} is the Fourier transform

from coordinates {t, x, y} to {ω, kx, ky}, βz =
√

ω2/c2 − k2
⊥, k⊥ = {kx, ky}. Eq. (9), if we
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consider it in the {t, r} space, is now not a PDE anymore, but belongs to more general class
of pseudo-differential equations; The problem is completed by providing the field E(t, x, y) at
z = 0 and boundary conditions, and is solved along z-direction rather in time. Note that the
problem remains in the same extended class if we include nontrivial dispersion of the medium,
that is, assume c = c(ω).

Eq. (2) is formally a result of a kind of factorization of the original WE Eq. (1), typically [2,
12,13] (but not necessary [14]) neglecting the waves propagating backward in z-direction. Very
schematically, the factorization can be maid in the following way: the WE, after the partial Fourier
transform F{t,x,y}, can be written as (∂z − iβz)(∂z + iβz)E = Q. The dispersion relation of
the homogeneous WE contains two branches kx = ±βz. If we have a short optical pulse, that
is, a wave-packet, that propagates in certain direction in z in a medium with relatively weak
nonlinearity and dispersion, it is located, in the Fourier domain, near one of those two branches.
Therefore, we can approximate, for instance, ∂z + iβz by 2iβz, which gives us Eq. (2).

Eq. (2), its 1-dimensional analogs and other modifications are nowadays heavily used in op-
tics to describe ultrashort pulses and ultra-broad spectra (see [2, 5–11, 14–25] and references
therein), because they include minimal assumptions about the spectral width of E(t, r).

Both Eq. (1) and Eq. (2) can be solved analytically only in exceptional cases. Nevertheless, if we
consider the wave equation Eq. (1), a lot can be said about the general behavior of solutions,
considering the right hand side Q as a pre-known quantity and thus Eq. (1) as a linear inhomo-
geneous PDE. In particular, in the plasma example given above, with Q = µ0J , it is sometimes
useful to consider an approximation when the current J does not depend on E.

It is well known, that a solution of the linear inhomogeneous variant of Eq. (1) with “well enough
defined” inhomogeneity Q(r, t) can be obtained using a fundamental solution approach, which
is the solution (in the sense of generalized functions) with the inhomogeneity in the form of Dirac
δ-function Q = δ(r, t). The two most useful linearly-independent fundamental solutions of □
are known to be:

E□± =
−1

4πr
δ(t∓ r/c), (3)

where r = |r|. They describe spherical waves propagating forward (E□+) or backward (E□−)
in time. In particular, physically meaningful solution of Eq. (1) for an arbitrary “good enough”
function Q is given by a convolution E□+ ⋆ Q, whereas E□− ⋆ Q does not fulfill the causality
principle.

In the similar way, one can think about the fundamental solution of Eq. (2) (formulated in {r, t}-
space, see Eq. (9)), that is, its generalized solution with the inhomogeneity Q = δ(r, t). Nev-
ertheless, up to now neither the fundamental solution, nor its basic properties are known for the
UPPE Eq. (2) [Eq. (9)].

In the present article, we construct a fundamental solution of Eq. (2) [Eq. (9)] and show that
it is a projection of the fundamental solution of Eq. (1) to some functional subspace, formed
by waves, propagating either “forward-” or “backward-” in z-direction (see Theorem 4.1). We
explore some consequences of this result such as the intrinsic non-causality of Eq. (2) [Eq. (9)].
We also consider a variation of Eq. (2) [Eq. (9)] where the right-hand side is taken in the paraxial
approximation.
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2 Assumptions and Denotations

In the present article we use the following assumptions: we consider the solution in the sense
of distributions, that is we assume that all objects u(r, t) we work with are tempered distribu-
tions u ∈ S ′(R3 × R) belonging to the space dual to Schwartz space S (R3 × R), with
the scalar product defined as ⟨u, ϕ⟩ =

∫
uϕd3rdt. With this assumption, we ensure that the

Fourier transform of all distributions considered here exists. In the following we define the the
Fourier transform of distributions F [u] as ⟨Fu, ϕ⟩ ≡ ⟨u,Fϕ⟩ [26], and the inverse one as
⟨F−1u, ϕ⟩ ≡ ⟨u,F−1ϕ⟩. The Fourier transform of ϕ ∈ S (R3 × R) is defined as:

F [ϕ(r, t)](k, ω) =

∫
ϕ(r, t) exp (−ikr+ iωt)dxdydzdt, (4)

where k = {kx, ky, kz}. The inverse transform is then defined as:

F−1[ϕ(k, ω)](r, t) = 1/(2π)4
∫

ϕ(k, ω) exp (ikr− iωt)dkxdkydkzdω. (5)

Note that the signs in spatial and temporal parts of the Fourier transform are different, following
the convention often used in electrodynamics [27].

We will use also partial Fourier transformations in respect to subsets of coordinates. For exam-
ple, the Fourier transform F(r⊥,t) in transverse coordinates r⊥ = {x, y} and time is defined
as:

F(r⊥,t)[ϕ(r, t)](k⊥, z, ω) =

∫
ϕ(r, t) exp (−ik⊥r⊥ + iωt)dxdydt, (6)

where k⊥ = {kx, ky}. We note that in this formulation the partial Fourier transform of the Dirac
delta-function is F(r⊥,t)[δ(r, t)] = δ(z). The partial Fourier transforms and their combinations
are always possible for the test functions (and hence for tempered distributions) because every
of particular Fourier transforms leave the test function ϕ ∈ S (R3 × R) in S (R3 × R). An
important relation we will use is the known Plancherel’s formula, which allows to define the
scalar product in the Fourier domain:

⟨u, ϕ⟩ = 1

(2π)4
⟨ Fu,Fϕ⟩, (7)

Similar expressions also valid for all partial Fourier transforms.

We also use the following definition of the Heaviside step-function:

Θ(x) =
1

2
(1 + sign(x)) . (8)

Using the definitions above we can now reformulate Eq. (2) in the {r, t}-space as:

∂zE(r, t)− iβ̂zE(r, t) =
1

2i
β̂iQ(r, t), (9)
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where E,Q ∈ S ′(R3 × R) and where we explicitly assume that Q does not depend on E,
thus making the equation linear. Here, by definition,

β̂zE(r, t) = F−1 [βzF [E(r, t)]] , (10)

β̂iE(r, t) = F−1

[
1

βz

F [E(r, t)]

]
, (11)

With βz defined below Eq. (2). We remark that, if u ∈ S ′(R3 ×R), then β̂iu ∈ S ′(R3 ×R).
In contrast, β̂zu may not be in S ′(R3 × R) anymore. However, for us it is important that the

operator eiβ̂zz is always in S ′(R3 × R) for any z ∈ R.

We can now define the fundamental solution of Eq. (9) as following:

Definition 2.1. Fundamental solution of Eq. (9) is a tempered distribution E ∈ S ′(R3 × R)
giving a solution (in the sense of distributions) of Eq. (9) with Q = δ(r, t).

We remark that if the fundamental solution exists, the solution of Eq. (9) for an arbitrary Q ∈
S ′(R3 × R) is given by a convolution E ⋆ Q, if it exists. A convolution ⋆ is defined as a
multiplication in Fourier domain:

[E ⋆ Q](r, t) = F−1 [F [E ](k, t)F [Q](k, t)] (r, t), (12)

where k = {kx, ky, kz}. Of course, the fundamental solution is defined up to a solution of a
homogeneous problem. We will aim to find the fundamental solution which is ”most similar” to
the one of the WE defined by Eq. (3).

3 Forward- and Backward- Propagating Waves

Eq. (9) which we are going to consider is in some sense anisotropic. Namely, the direction
z, in contrast to the wave equation Eq. (1), is not on the same footing with the other spa-
tial coordinates. Thus, before we proceed further, we must define the notion of “forward-” and
“backward-” propagating waves having in mind z- direction. First, we do this for the functions,
representing plane waves in the form f(r, t) = eikr−iωt. The function f(r, t) for arbitrary
k = {kx, ky, kz} ∈ R3, ω ∈ R, ω ̸= 0, kz ̸= 0 is a eigenfunction of both operator □ and

the operators β̂z, β̂i in Eq. (9). Solving Eq. (1) or Eq. (9) with E|t=0 = f(r, 0), we see that f
“propagates” in z as t increases, either backward or forward, that is, E(t−τ, r) = E(t, r+R)
for arbitrary τ ∈ R and R = ωτk/k2, where k = |k|. That is, if we change the sign of the
product ωkz, the direction of propagation along z changes. Thus, we can define the plane wave
as “forward-” or “backward- propagating” in the direction z using the condition

sign kz = ± signω, (13)

with + for forward and − for backward case (see Fig. 1). The values on the axes (kz = 0 or
ω = 0) we deliberately ascribe to both forward- and backward waves.

Being able to define the propagation direction along z-axis for a single wave, we can track it
down to an arbitrary combination of such waves using the Fourier transform;
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Definition 3.1. We now define the projecting operators P̂z+,P̂z−, P̂+,P̂−,P̂ij, i, j = 0, 1 act-
ing from S ′(R3 × R) to S ′(R3 × R) as:

P̂iju = F−1 [Pij(kz, ω)F [u]] , (14)

P̂+ = P̂00 + P̂11, P̂− = P̂01 + P̂10, (15)

P̂z+ = P̂00 + P̂01, P̂z− = P̂10 + P̂11, (16)

where Pij(kz, ω) = Θ ((−1)iω)Θ ((−1)jkz) i, j = 0, 1, u is an arbitrary tempered distribu-
tion u ∈ S ′(R3 × R), Θ is defined by Eq. (8).

kz

ω

z

kz>0, ω>0

P̂00u

kz<0, ω>0

P̂10u

kz>0, ω<0

P̂01u

kz<0, ω<0

P̂11u

Figure 1: The forward- and backward propagating waves in {kz, ω}-plane, defined by projectors
P̂ij from Eq. (14). The arrows parallel to z-axis show the direction of propagation of waves of
every type.

That is, the projector P̂00 cuts off the part of the spectrum of u, which does not belongs to the
quadrant with kz > 0, ω > 0 (that is, it keeps only the upper right quadrant in the {kz, ω}-
plane, see Fig. 1). In the same way, P̂01 keeps only the right lower quadrant, P̂01 — the left
upper quadrant and finally P̂11 — the left lower quadrant in the {kz, ω}-plane. It is easy to
see that according to Eq. (8) the border values kz = 0 or ω = 0 make an equal impact to
both forward- and backward-propagating waves. Obviously, all the operators defined above are
continuous and linear, and possess the property

P̂2
i = P̂i, i = ±, z±; P̂2

ij = P̂ij, i, j = 0, 1, (17)

which is common for projecting operators.

Definition 3.2. A tempered distribution u ∈ S ′(R3×R), u ̸= 0, is called forward- (backward-)
propagating in z-direction iff P̂+u = u (P̂−u = u).

Equipped with these definitions we can formulate the following result:
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Lemma 3.3. An arbitrary u(r, t) ∈ S ′(R3 × R) can be decomposed into the sum forward-
and backward- propagating in z-direction functions.

From Def. 3.1 we easily see that P̂+ + P̂− = Î , where Î is a unit operator. Thus, u = P̂+u +
P̂−u.

It should be noted that the decomposition defined by lemma 3.3 is not unique, since we can pre-
scribe both forward- and backward- direction to the parts of uwith F [u] (k, ω)|kz=0, F [u] (k, ω)|ω=0.
Nevertheless, for the subspace (u ∈ S ′(R3 × R) : F [u]kz=0 = 0 , F [u]ω=0 = 0) the de-
composition is, indeed, unique.

Definition 3.4. We can also define the action of P̂ij , P̂±, P̂z± to the functions ϕ ∈ S (R3×R)
in the following way: we postulate, that for an arbitrary u ∈ S ′(R3 × R):

⟨u, P̂iϕ⟩ = ⟨P̂z±u, ϕ⟩, i = ±, z±, ⟨u, P̂ijϕ⟩ = ⟨P̂iju, ϕ⟩, i, j = 0, 1. (18)

Comparing this definition with Eq. (7) we see, that P̂±u,P̂z±u, P̂ij in application to the test func-
tions do the same job as in the case of tempered distributions, that is, cut off the corresponding
parts in the Fourier domain.

Remark 3.5. The fundamental solutions of the WE E□± [Eq. (3)] contain parts propagating both
forward and backward in z.

This can be seen by making the temporal Fourier transform of Eq. (3), which gives−e±iωr/c/(4πr).
This expression does not change upon the change of the sign of z, therefore its z-Fourier trans-
form must contain components both with z > 0 and z < 0 for every ω.

4 The Fundamental Solution for the UPPE Eq. (9)

Now, equipped with the definitions in Sec. 2, 3, we can formulate our main result:

Theorem 4.1. The fundamental solution E ∈ S ′(R3 × R) of Eq. (9) exists and can be repre-
sented as:

E = Θ(z)P̂z+ {E□+ + E□−} , (19)

where E□±, Pz+ and Θ(z) are given by Eq. (3), Eq. (16) and Eq. (8).

Before we proceed with a prove of this theorem, few remarks are needed. The fundemental
solution given by Eq. (19) is visualized in Fig. 2. For z > 0, t > 0, it coincides with E□+ and
for z > 0, t < 0 with E□−. Nevertheless, two features making it different from the fundamental
solution of the wave equation can be immediately seen:

Remark 4.2. In contrast to every of the two fundamental solutions of the wave equation E□±,
the fundamental solution E of the UPPE is extended in both directions in time.

We also note, that the projection operator P̂z+ does not project to the set of only forward- or only
backward- propagating functions. Thus, taking into account the Remark 3.5 we can conclude
that:
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Figure 2: Visual representaion of the fundamental solution E defined by Eq. (19) projected to
{t, x, z}- (or, equivalently, to {t, x, z}-) plane.

Remark 4.3. The fundamental solution of the UPPE E [Eq. (19)] contains parts propagating
both forward and backward in z.

The rest of the section is a technical proof of the Theorem 4.1. We proceed by solving Eq. (2), the
Fourier-transformed analog of Eq. (9) forQ = δ(z) (recall that Eq. (9) is written in {z, kx, ky, ω}
space so that F [δ(r, t)] = δ(z)). As it is known (see for example [26]) the fundamental solution
of the operator d

dz
+ a for any a ∈ C exists and is given by the expression Θ(z)e−az.

This gives us immediately fundamental solution E of Eq. (9), which also obviously belongs to
S ′(R3 × R):

E(r, t) = Θ(z)F−1
r⊥,t

[
exp(iβzz)

2iβz

]
, (20)

We will use also the following relation:

exp(iβzz) = −iF−1
z

[{
1

kz − βz − i0
− 1

kz − βz + i0

}]
, (21)

where we define limϵ→0 f(x ± iϵ) as f(x ± i0). Of course, Eq. (21) should be understood
in the sense of distributions. Eq. (21) follows directly from the Sokhotsky’s formulas 1/(x ±
i0) = ∓iπδ(0) + P[1/x]. In addition, taking into account that k2

z + β2
z = k2 + β2 (where

k = {kz,k⊥}, k2 = k2
z + k2

⊥, β = ω/c), the expressions 1/(kz − βz ± i0) can be rewritten
as:

±1

kz − βz ∓ i0
= ± kz + βz

k2 − β2 ∓ i0
= ± kz + βz

k2 − (β ± i0 sign β)2
. (22)

Substituting Eq. (21), Eq. (22) into Eq. (20) and dividing the resulting expression into parts
corresponding to the summands in Eq. (22), we will have:

E ≡ Θ(z)(E+ + E−); E± = ±F−1

[
kz + βz

2βz

1

k2 − (β ∓ i0 sign β)2

]
. (23)
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We can explicitly perform the Fourier transform F−1
t , that is, make the integration over ω, thus

obtaining:

E± = ± ic

2
F−1

x,y,z

[
Θ(kz)

e∓ickt

k

]
. (24)

Θ(kz) appears because the integration over ω gives βz → |kz| and thus kz+βz → kz+|kz| =
2Θ(kz)|kz|. Taking into account that E□± can be rewritten as [27]

E□± = −cΘ(±t)F−1
x,y,z

[
sin (ckt)

k

]
, (25)

and using Eq. (23) we obtain finally Eq. (19).

5 the UPPE with the Paraxial Nonlinearity

The UPPE in Eq. (9) is completely free from the paraxial approximation, that is, no assumptions
is taken about the ratio kz/k allowed in the solution. On the other hand, sometimes [11, 20] a
simplified (but computationally more effective) variant of the UPPE is considered:

∂zE − iβ̂zE =
1

2i
β̂i0Q, (26)

where

β̂i0E(r, t) = F−1

[
F [E(r, t)]

β

]
, (27)

that is, βz is replaced by β in denominator of right hand side of Eq. (26) [cf. Eq. (9), Eq. (11)].
This equation can be obtained using the approximation kz/k ≪ 1 for the right hand side of
Eq. (9).

Definition 5.1. We will call the Eq. (26) the paraxial UPPE.

Theorem 5.2. The fundamental solution Ep ∈ S ′(R3 × R) of Eq. (26) exists and is given by:

Ep = cΘ(z)

∫ t

−∞
∂z {E+ − E−} dτ, (28)

where E± are given by Eq. (23).

Proceeding as in the previous section, that is, introducing Ep± similar to Eq. (23) so that Ep =
Θ(z)(Ep++Ep−), we obtain, that the analogous formula for Ep± contains only additional factor
βz/β in the Fourier-image of the analog of Eq. (23), and thus the factor kz/k in the analog of
Eq. (24), in other respects it is the same. This fact can be in {r, t}-space expressed as:

Ep± = ±c

∫ t

−∞
∂zE± dτ, (29)

which gives finally Eq. (28).
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6 Discussions and Conclusions

We see now that, although in the 3-dimensional UPPE Eq. (2) [Eq. (9)] the “selected axis” z is
pre-imposed, it in many respects remains similar to the 3-dimensional wave equation. Never-
theless, in contrast to the WE, an inhomogeneity in the form of δ-function in the UPPE produces
waves propagating also both forward and backward in z-direction, and in both directions in
time, as formulated in Eq. (19), Remarks 4.2 and 4.3. This is in some contradiction with the
commonly-used name “unidirectional” given to this equation. On the other hand, if the inhomo-
geneity Q belongs to the class of forward- or backward-propagating in z-direction waves, the
solution E ⋆Q also “almost” belongs to the same class with the only deviation resulting from the
presence of Θ-function in Eq. (19), which extends the spectrum of the solution to both kz < 0
and kz > 0 even it is not so for the spectrum of Q.

Strictly speaking, the fact that the inhomogeneity Q excites the waves which propagate in both
directions in time breaks the causality principle; that is, the solution of the UPPE at some dis-
tance from the excitation Q is determined not only by the past but also by the future of the
excitation history. Nevertheless, when the UPPE is applied to the short pulses and the inhomo-
geneity is created by nonlinearity, the “waves from the future” interact with the pulse only very
limited time, and quickly travel away, remaining very weak. In this situation, using of the UPPE
is, of course, acceptable.

The results above allow to see immediately also some important qualitative features of the
UPPE response in some particular cases. For instance, assuming the source is created by a
plasma current J near some spatial point r0, that is, Q ∝ J , the solution will be given by
E ∝ ∂tJ , as in the case of the 3D wave equation, but unlike 1D wave equation, where we
would have E ∝ J instead [26,28].

The author is thankful to S. Skupin, J. Herrmann, L. Bergé and Sh. Amiranashvili for useful
discussions, and to DFG (Deutsche Forschungsgemeinschaft) for the financial support.
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