Weierstraß-Institut für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint
ISSN 0946-8633

A simple formula for the second-order subdifferential of maximum functions

Konstantin Emich, René Henrion
submitted: July 25, 2013

Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: konstantin.emich@wias-berlin.de rene.henrion@wias-berlin.de

No. 1819
Berlin 2013

[^0]Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: $\quad+4930$ 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

Abstract

We derive a simple formula for the second-order subdifferential of the maximum of coordinates which allows us to construct this set immediately from its argument and the direction to which it is applied. This formula can be combined with a chain rule recently proved by Mordukhovich and Rockafellar [9] in order to derive a similarly simple formula for the extended partial second-order subdifferential of finite maxima of smooth functions. Analogous formulae can be derived immediately for the full and conventional partial secondorder subdifferentials.

1 Introduction

In 1976, B. S. Mordukhovich introduced a nonconvex normal cone and a corresponding subdifferential with the intention to derive necessary optimality conditions for optimal control problems with endpoint geometric constraints [4]. These constructions, meanwhile carrying his name, may have appeared unusual in the beginning because they fell outside the duality scheme between tangents and normals or directional derivatives and subdifferentials dominating the ideas of variational analysis at that time. Soon it became evident, however, that the renunciation of convexity was a key property for precise characterizations in dual terms of optimality conditions or stability of multifunctions. The significance of Mordukhovich's normal cone and related objects such as the associated coderivative relies on the fact that they are small on the one hand but robust on the other, the latter property being the basis for a surprisingly rich calculus which made it possible to benefit from these constructions in more and more complex settings. Among the abundant proofs for the striking usefulness of the mentioned concepts, we just mention Mordukhovich's celebrated coderivative criterion for the Aubin property (and related) of general multifunctions (see, e.g., [5]). As stated in the monograph by Rockafellar/Wets [10], "the Mordukhovich criterion... is the key to a Lipschitzian calculus for set-valued mappings". For a comprehensive account of similar results, the reader is referred to the basic monograph [6]. In the beginning, first order variational analysis was a primary field of application. Later, the focus shifted from 'raw' objects to derived ones, e.g. from constraint mappings to solution mappings to generalized equations. A typical need for this transition arises in the derivation of dual necessary optimality conditions for hierarchical problems such as bilevel optimization or, more generally, mathematical programming with equilibrium constraints. A typical problem of interest in this context is given by

$$
\min \{g(x, y) \mid y \in S(x)\}, \quad S(x):=\left\{y \in Y \mid 0 \in \nabla_{y} f(x, y)+N_{C}(y)\right\} .
$$

This bilevel problem has numerous applications, for instance in the characterization of equilibria in electricity spot markets (see, e.g., [3]). Upon observing that the feasible set of this problem,
i.e. the graph of S, can be equivalently described by

$$
\operatorname{gr} S=\Phi^{-1}\left(\operatorname{gr} N_{C}\right), \quad \Phi(x, y):=\left(y,-\nabla_{y} f(x, y)\right),
$$

it becomes evident that dual necessary optimality conditions require the analysis of normal cones to derived objects which are related to normal cones themselves. This means, that one actually deals with second order variational analysis. Corresponding indispensable calculus rules (first of all chain rules) for the so-called (full) second-order subdifferential can be found in [6]. The application of the full second-order subdifferential is limited in the setting above, however, to functions f of class \mathcal{C}^{2} and to sets C not depending on x. Recently, however, increasing interest has arised in more general settings, e.g., when considering moving sets $C(x)$ as in the control of the sweeping process [1] or functions f being just of class $\mathcal{C}^{1,1}$ as in conditioning of linear-quadratic two-stage stochastic optimization problems [2]. In these cases it is rather the so-called extended partial second-order subdifferential introduced in [9] whose calculus is of interest. A fundamental chain rule for this object has been established in [9] which basically allows to reduce the computation of the extended partial second-order subdifferential of some composite function to the computation of the full second-order subdifferential of the outer function. An extensive application can be found in the recent paper [8]. An important special case of composite functions is given by maximum functions. For instance, the mapping S considered above could be generalized to

$$
S(x):=\left\{y \in Y \mid 0 \in \partial_{y} f(x, y)+N_{C}(y)\right\}, \quad f(x, y):=\max _{i=1, \ldots, m}\left\{f_{i}(x, y)\right\}
$$

where the f_{i} are possibly smooth. A potential application would again arise from electricity spot market models with convex, nonsmooth bidding functions. Then, f is no longer differentiable and so one deals with multi-valued base mappings. Lipschitz properties of mappings S with such multivalued base have been studied in [7].

In the context of such maximum functions, the chain rule mentioned above requires an efficient computation of the full second-order subdifferential of the maximum of coordinates. In principle, this can be realized by using a formula provided in [9, Lemma 4.4]. A concrete application of this formula, however, requires to evaluate differences of certain critical faces to the standard simplex (see 5) which may be tedious work within a systematic study. In this paper we present a very simple formula for the second-order subdifferential of the maximum of coordinates which provides an immediate construction given the initial data, i.e., the point in the graph and the direction of interest. The obtained formula is then used to prove a similarly immediate expression for the extended partial second-order subdifferential of a finite maximum of smooth functions.

2 Basic concepts and notation

As usual, we denote by 'gr M ' the graph of some multifunction M and by Z^{0} the polar of some set Z. We recall the following definitions (see [6]):

Definition 1. Let $C \subseteq \mathbb{R}^{m}$ be a closed subset and $\bar{x} \in C$. The Mordukhovich normal cone to C at \bar{x} is defined by

$$
N_{C}(\bar{x}):=\left\{x^{*} \mid \exists\left(x_{n}, x_{n}^{*}\right) \rightarrow\left(\bar{x}, x^{*}\right): x_{n} \in C, x_{n}^{*} \in\left[T_{C}\left(x_{n}\right)\right]^{0}\right\} .
$$

Here, $\left[T_{C}\left(x_{n}\right)\right]^{0}$ refers to the Fréchet normal cone to C at x_{n}, which is the polar of the contingent cone

$$
\begin{equation*}
T_{C}(x):=\left\{d \in \mathbb{R}^{m} \mid \exists t_{k} \downarrow 0, d_{k} \rightarrow d: x+t_{k} d_{k} \in C, \forall k\right\} \tag{1}
\end{equation*}
$$

to C at x_{n}. For an extended-real-valued, lower semicontinuous function $f: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$ with $|f(\bar{x})|<\infty$, the Mordukhovich normal cone induces a subdifferential via

$$
\partial f(\bar{x}):=\left\{x^{*} \mid\left(x^{*},-1\right) \in N_{\text {epi } f}(\bar{x}, f(\bar{x}))\right\} .
$$

Definition 2. Let $M: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m}$ be a multifunction with closed graph. The Mordukhovich coderivative $D^{*} M(\bar{x}, \bar{y}): \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{n}$ of M at some $(\bar{x}, \bar{y}) \in \operatorname{gr} M$ is defined as

$$
D^{*} M(\bar{x}, \bar{y})\left(y^{*}\right):=\left\{x^{*} \in \mathbb{R}^{n} \mid\left(x^{*},-y^{*}\right) \in N_{\mathrm{gr} M}(\bar{x}, \bar{y})\right\}
$$

Definition 3. For a lower semicontinuous function $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ which is finite at $x \in \mathbb{R}^{n}$ and for an element $s \in \partial f(x)$ the second-order subdifferential of f is a multifunction $\partial^{2} f(x, s)$: $\mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ defined by

$$
\partial^{2} f(x, s)(u):=\left(D^{*} \partial f\right)(x, s)(u) \quad \forall u \in \mathbb{R}^{n} .
$$

Definition 4. For a lower semicontinuous function $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$ which is finite at $(x, y) \in$ $\mathbb{R}^{n} \times \mathbb{R}^{m}$, the partial subdifferential is defined as $\partial_{y} f(x, y):=\partial f(x, \cdot)(y)$. Following [9], for $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ and any $s \in \partial_{y} f(x, y)$ the (extended) partial second-order subdifferential of f is a multifunction $\tilde{\partial}_{y}^{2} f(x, y, s): \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{n} \times \mathbb{R}^{m}$ defined by

$$
\tilde{\partial}_{y}^{2} f(x, y, s)(u):=\left(D^{*} \partial_{y} f\right)(x, y, s)(u) \quad \forall u \in \mathbb{R}^{m}
$$

3 A formula for the second-order subdifferential of the maximum of coordinates

Let $\theta: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be defined as

$$
\theta(x):=\max _{i=1, \ldots, m} x_{i} .
$$

Our aim is to calculate the second-order subdifferential of θ. We denote by $J(x)$ the set of active indices at x :

$$
J(x):=\left\{i \in\{1, \ldots, m\} \mid x_{i}=\theta(x)\right\}
$$

and by $J^{c}(x)$ its complement. Furthermore for any fixed $(\bar{x}, \bar{s}) \in \operatorname{gr} \partial \theta$ we introduce the following index sets

$$
K:=\left\{i \in J(\bar{x}) \mid \bar{s}_{i}=0\right\}, \quad L:=\left\{i \in J(\bar{x}) \mid \bar{s}_{i}>0\right\} .
$$

Theorem 5. For any fixed $(\bar{x}, \bar{s}) \in \operatorname{gr} \partial \theta$ and any fixed $u \in \mathbb{R}^{m}$ the second-order subdifferential $\partial^{2} \theta(\bar{x}, \bar{s})(u)$ is nonempty if and only if $u_{i}=c$ for all $i \in L$, where c is a constant. In this case it holds that

$$
\begin{equation*}
\partial^{2} \theta(\bar{x}, \bar{s})(u)=\left\{w \mid \sum_{i=1}^{m} w_{i}=0, w_{i} \geq 0 \forall i \in J_{>}, w_{i}=0 \forall i \in J^{c}(\bar{x}) \cup J_{<}\right\} \tag{2}
\end{equation*}
$$

where $J_{>}:=\left\{i \in J(\bar{x}) \mid u_{i}>c\right\}$ and $J_{<}:=\left\{i \in J(\bar{x}) \mid u_{i}<c\right\}$.

Proof. We first notice that the function θ can be written in the equivalent form:

$$
\begin{equation*}
\theta(x)=\max _{v \in S}\langle v, x\rangle, \quad \text { where } S:=\left\{s \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} s_{i}=1, s_{i} \geq 0, i=1, \ldots, m\right\} \tag{3}
\end{equation*}
$$

Denoting by e_{i} the canonical unit vectors of \mathbb{R}^{m}, the subdifferential of θ at \bar{x} is well known to admit the representation:

$$
\partial \theta(\bar{x})=\operatorname{conv}\left\{e_{i} \mid i \in J(x)\right\} \subseteq S
$$

Accordingly, the fixed $(\bar{x}, \bar{s}) \in \operatorname{gr} \partial \theta$ satisfies

$$
\begin{equation*}
\sum_{i=1}^{m} \bar{s}_{i}=1, \bar{s}_{i}>0 \forall i \in L, \bar{s}_{i}=0 \forall i \in J^{c}(\bar{x}) \cup K, \tag{4}
\end{equation*}
$$

In particular, $L \neq \emptyset$. It is easy to see that the contingent cone $T_{S}(\bar{s})$ to the simplex S at $\bar{s} \in \partial \theta(\bar{x})$ is given by

$$
T_{S}(\bar{s})=\left\{h \mid \sum_{i=1}^{m} h_{i}=0, h_{i} \geq 0 \forall i \in J^{c}(\bar{x}) \cup K\right\} .
$$

By [9, Lemma 4.4], the second-order subdifferential of θ at (\bar{x}, \bar{s}) in direction u can be characterized as follows:

$$
\begin{align*}
\partial^{2} \theta(\bar{x}, \bar{s})(u)= \begin{cases}w & \mid \text { there are closed faces } K_{1} \supseteq K_{2} \text { of } T_{S}(\bar{s}) \cap \bar{x}^{\perp} \text { such that } \\
& \left.w \in K_{1}-K_{2},-u \in\left(K_{1}-K_{2}\right)^{0}\right\}\end{cases}
\end{align*}
$$

We claim that the critical cone to S at \bar{s} is given by

$$
\begin{equation*}
T_{S}(\bar{s}) \cap \bar{x}^{\perp}=\left\{h \mid \sum_{i=1}^{m} h_{i}=0, h_{i} \geq 0 \forall i \in K, h_{i}=0 \forall i \in J^{c}(\bar{x})\right\} . \tag{6}
\end{equation*}
$$

Indeed, if $h \in T_{S}(\bar{s}) \cap \bar{x}^{\perp}$, then, by $h_{i} \geq 0$ for all $i \in J^{c}(\bar{x})$,

$$
\begin{equation*}
0=\langle\bar{x}, h\rangle=\theta(\bar{x}) \sum_{i \in J(\bar{x})} h_{i}+\sum_{i \in J^{c}(\bar{x})} \bar{x}_{i} h_{i} \leq \theta(\bar{x}) \sum_{i=1}^{m} h_{i}=0 \tag{7}
\end{equation*}
$$

which implies that the inequality above actually holds as an equality and, thus,

$$
\sum_{i \in J^{c}(\bar{x})} h_{i}\left(\bar{x}_{i}-\theta(\bar{x})\right)=0 .
$$

Since $\bar{x}_{i}<\theta(\bar{x})$ for $i \in J^{c}(\bar{x})$, it follows that $h_{i}=0$ for all $i \in J^{c}(\bar{x})$, whence h belongs to the right-hand side of (6). Conversely, if h belongs to the right-hand side of (6), then clearly $h \in T_{S}(\bar{s})$. Now, (7) can be read from the right to the left in order to derive that $h \in \bar{x}^{\perp}$. This proves (6).

The application of (5) requires the knowledge of the closed faces of $T_{S}(\bar{s}) \cap \bar{x}^{\perp}$. Owing to (6), these are given by:

$$
M_{I}:=\left\{h \mid \sum_{i=1}^{m} h_{i}=0, h_{i} \geq 0 \forall i \in K \backslash I, h_{i}=0 \forall i \in J^{c}(\bar{x}) \cup I\right\} \quad(I \subseteq K) .
$$

We show that

$$
\begin{equation*}
I_{1} \subseteq I_{2} \Leftrightarrow M_{I_{1}} \supseteq M_{I_{2}} \quad \forall I_{1}, I_{2} \subseteq K \tag{8}
\end{equation*}
$$

The direction ' \Rightarrow ' is evident. For the reverse direction let $I_{1}, I_{2} \subseteq K$ and assume that $I_{1} \nsubseteq I_{2}$. Then there exists some $i^{\prime} \in I_{1} \backslash I_{2}$. As observed below (4), we may choose some index $i^{*} \in L$. Recall that $K \cap L=\emptyset$. Hence, $i^{*} \notin K$ and $i^{\prime} \neq i^{*}$. This allows us to define h by setting $h_{i^{\prime}}:=1, h_{i^{*}}:=-1$ and $h_{i}:=0$ for all remaining i. Then, $h_{i} \geq 0$ for all $i \in K \backslash I_{2}$ due to $i^{*} \notin K$. Furthermore, $i^{\prime}, i^{*} \notin I_{2}$ and $i^{\prime}, i^{*} \in J(\bar{x})$ due to $K, L \subseteq J(\bar{x})$. This implies that $h_{i}=0$ for all $i \in J^{c}(\bar{x}) \cup I_{2}$, whence $h \in M_{I_{2}}$. On the other hand, $i^{\prime} \in I_{1}$, so that $h_{i^{\prime}}=1$ leads to $h \notin M_{I_{1}}$. Altogether this proves (8).
Combining (8) with (5), we arrive at

$$
\begin{equation*}
\partial^{2} \theta(\bar{x}, \bar{s})(u)=\left\{w \mid \exists I_{1} \subseteq I_{2} \subseteq K: w \in M_{I_{1}}-M_{I_{2}},-u \in\left(M_{I_{1}}-M_{I_{2}}\right)^{0}\right\}, \tag{9}
\end{equation*}
$$

We show next that for $I_{1} \subseteq I_{2} \subseteq K$ the sets $M_{I_{1}}-M_{I_{2}}$ and $\left(M_{I_{1}}-M_{I_{2}}\right)^{0}$ are given by:

$$
\begin{align*}
M_{I_{1}}-M_{I_{2}} & =\left\{p \mid \sum_{i=1}^{m} p_{i}=0, p_{i} \geq 0 \quad \forall i \in I_{2} \backslash I_{1}, p_{i}=0 \quad \forall i \in J^{c}(\bar{x}) \cup I_{1}\right\} \tag{10}\\
\left(M_{I_{1}}-M_{I_{2}}\right)^{0} & =\left\{p^{*} \mid \exists \tilde{c} \in \mathbb{R}: p_{i}^{*} \leq \tilde{c} \quad \forall i \in I_{2} \backslash I_{1}, p_{i}^{*}=\tilde{c} \quad \forall i \in J(\bar{x}) \backslash I_{2}\right\} . \tag{11}
\end{align*}
$$

The inclusion ' \subseteq ' in (10) follows readily from the definitions. For the reverse inclusion, let p belong to the right-hand side of (10) and define $h^{(1)}, h^{(2)}$ by

$$
\begin{aligned}
h_{i}^{(1)} & :=p_{i}, \quad h_{i}^{(2)}:=0 \quad \forall i \in J^{c}(\bar{x}) \cup I_{2} \\
h_{i}^{(1)} & :=\left[p_{i}\right]_{+}, \quad h_{i}^{(2)}:=\left[p_{i}\right]_{-} \forall i \in J(\bar{x}) \backslash\left(I_{2} \cup\left\{i^{*}\right\}\right) \\
h_{i^{*}}^{(1)} & :=-\sum_{i \in J c}^{c}(\bar{x}) \cup I_{2}
\end{aligned} p_{i}-\sum_{i \in J(\bar{x}) \backslash\left(I_{2} \cup\left\{i^{*}\right\}\right)}\left[p_{i}\right]_{+}, \quad h_{i^{*}}^{(2)}:=-\sum_{i \in J(\bar{x}) \backslash\left(I_{2} \cup\left\{i^{*}\right\}\right)}\left[p_{i}\right]_{-}, ~ l
$$

where, $\left[p_{i}\right]_{+},\left[p_{i}\right]_{-}$denote the positive and negative parts of p_{i}, respectively, and i^{*} is an arbitrarily selected index of the nonempty set $L \subseteq J(\bar{x})$ as it has already been used before. Then, by construction, $\sum_{i=1}^{m} h_{i}^{(1)}=0$. The properties of p and the inclusion $I_{1} \subseteq I_{2}$ ensure that $h_{i}^{(1)}=p_{i}=0$ for all $i \in J^{c}(\bar{x}) \cup I_{1}$. Finally, if $i \in K \backslash I_{1}$ is arbitrary then $i \neq i^{*}$ due to $K \cap L=\emptyset$. We distinguish the cases $i \notin I_{2}$ and $i \in I_{2}$. In the first case it follows that $i \in J(\bar{x}) \backslash\left(I_{2} \cup\left\{i^{*}\right\}\right)$ by $K \subseteq J(\bar{x})$. Then, $h_{i}^{(1)}:=\left[p_{i}\right]_{+} \geq 0$. Otherwise, $i \in I_{2} \backslash I_{1}$ and $h_{i}^{(1)}=p_{i} \geq 0$. Summarizing, $h_{i}^{(1)} \geq 0$ for all $i \in K \backslash I_{1}$ and, thus, $h^{(1)} \in M_{I_{1}}$. Similarly, by construction, $\sum_{i=1}^{m} h_{i}^{(2)}=0$ and $h_{i}^{(2)}=0$ for all $i \in J^{c}(\bar{x}) \cup I_{2}$. Moreover, if $i \in K \backslash I_{2}$ is
arbitrary then $i \neq i^{*}$ due to $K \cap L=\emptyset$. Therefore, $i \in J(\bar{x}) \backslash\left(I_{2} \cup\left\{i^{*}\right\}\right)$ by $K \subseteq J(\bar{x})$. We conclude that $h_{i}^{(2)}=\left[p_{i}\right]_{-} \geq 0$, whence $h^{(2)} \in M_{I_{2}}$. It remains to show that $p=h^{(1)}-h^{(2)}$. Indeed, by construction one has the following exhaustive cases:

$$
\begin{aligned}
h_{i}^{(1)}-h_{i}^{(2)} & =p_{i} \forall i \in J^{c}(\bar{x}) \cup I_{2} \\
h_{i}^{(1)}-h_{i}^{(2)} & =\left[p_{i}\right]_{+}-\left[p_{i}\right]_{-}=p_{i} \quad \forall i \in J(\bar{x}) \backslash\left(I_{2} \cup\left\{i^{*}\right\}\right) \\
h_{i^{*}}^{(1)}-h_{i^{*}}^{(2)} & =-\sum_{i \in J c(\bar{x}) \cup I_{2}} p_{i}-\sum_{i \in J(\bar{x}) \backslash\left(I_{2} \cup\left\{i^{*}\right\}\right)} p_{i}=p_{i^{*}} .
\end{aligned}
$$

Here, the last equality follows from $\sum_{i=1}^{m} p_{i}=0$. Altogether this proves (10).
By duality theory for systems of linear equalities and inequalities we have that $p^{*} \in\left(M_{I_{1}}-\right.$ $\left.M_{I_{2}}\right)^{0}$ if and only if there are coefficients $\tilde{c}, \lambda_{i} \in \mathbb{R}$ for $i \in J^{c}(\bar{x}) \cup I_{1}$ and $\mu_{i} \leq 0$ for $i \in I_{2} \backslash I_{1}$ such that

$$
p^{*}=\tilde{c} \mathbf{1}+\sum_{i \in J^{c}(\bar{x}) \cup I_{1}} \lambda_{i} e_{i}+\sum_{i \in I_{2} \backslash I_{1}} \mu_{i} e_{i},
$$

where $\mathbf{1}=(1, \ldots, 1)^{T}$. For $j \in I_{2} \backslash I_{1}$ it follows that $j \notin J^{c}(\bar{x}) \cup I_{1}$, whence $p_{j}^{*}=\tilde{c}+\mu_{j} \leq \tilde{c}$. For $j \in J(\bar{x}) \backslash I_{2}$ it follows that $j \notin J^{c}(\bar{x}) \cup I_{1}$ (due to $I_{1} \subseteq I_{2}$) and also $j \notin I_{2} \backslash I_{1}$, whence $p_{j}^{*}=\tilde{c}$. Summarizing, $p^{*} \in\left(M_{I_{1}}-M_{I_{2}}\right)^{0}$ if and only if it satisfies the conditions on the right-hand side of (11).

$$
\left(M_{I_{1}}-M_{I_{2}}\right)^{0}=\left\{p^{*} \mid J(\bar{x}) \backslash I_{2} \subseteq\left\{i \in J(\bar{x}) \mid p_{i}^{*}=\max _{j \in J(\bar{x}) \backslash I_{1}} p_{j}^{*}\right\}\right\}
$$

By (9) it holds that

$$
\partial^{2} \theta(\bar{x}, \bar{s})(u)=\left\{w \mid \exists I_{1} \subseteq I_{2} \subseteq K: \begin{array}{l}
\sum_{i=1}^{m} w_{i}=0, \tag{12}\\
\\
w_{i} \geq 0 \quad \forall i \in I_{2} \backslash I_{1}, \\
w_{i}=0 \forall i \in J^{c}(\bar{x}) \cup I_{1}, \\
J(\bar{x}) \backslash I_{2} \subseteq\left\{i \in J(\bar{x}) \mid u_{i}=\min _{j \in J(\bar{x}) \backslash I_{1}} u_{j}\right\}
\end{array}\right\}
$$

With the notations

$$
\begin{align*}
& A_{I_{1}, I_{2}}:=\left\{w \mid \sum_{i=1}^{m} w_{i}=0, w_{i} \geq 0 \forall i \in I_{2} \backslash I_{1}, w_{i}=0 \forall i \in J^{c}(\bar{x}) \cup I_{1}\right\}, \tag{13}\\
& J(I)=\left\{i \in J(\bar{x}) \mid u_{i}=\min _{j \in J(\bar{x}) \backslash I} u_{j}\right\} \tag{14}
\end{align*}
$$

(12) can be written as

$$
\left.\begin{array}{rl}
\partial^{2} \theta(\bar{x}, \bar{s})(u)= & \bigcup_{\substack{I_{1} \subseteq I_{2} \subseteq K \\
J(\bar{x}) \backslash I_{2} \subseteq J\left(I_{1}\right)}} A_{I_{1}, I_{2}}= \\
& A_{I_{1}, I_{2}} \tag{15}\\
& =\bigcup_{\substack{I_{1} \subseteq I_{2} \subseteq K \\
J(\bar{x}) \backslash J\left(I_{1}\right) \subseteq I_{2}}} \bigcup_{\substack{I_{1} \subseteq K \\
J(\bar{x}) \backslash J\left(I_{1}\right) \subseteq K}}\left\{\bigcup_{\substack{I_{1} \subseteq I_{2} \subseteq K \\
J(\bar{x}) \backslash J\left(I_{1}\right) \subseteq I_{2}}} A_{I_{1}, I_{2}}\right\}
\end{array}\right\}
$$

In the iterated union on the right-hand side we consider the inner union over sets I_{2} to be conditional with respect to the set $I_{1} \subseteq K$ fixed in the outer union. Note that in case of $J(\bar{x}) \backslash J\left(I_{1}\right) \nsubseteq K$ there exists no I_{2} satisfying the conditions of the inner union which allows us to add the condition $J(\bar{x}) \backslash J\left(I_{1}\right) \subseteq K$ to the outer union. Now, for any fixed I_{1} satisfying the conditions of the outer union let $I_{2}^{a} \subseteq I_{2}^{b}$ be two index sets satisfying the conditions for I_{2} in the inner union. By (13), it then holds that $A_{I_{1}, I_{2}^{a}} \supseteq A_{I_{1}, I_{2}^{b}}$. Thus, one may shrink the inner union to the minimal set I_{2} of the indicated family which is evidently given by $I_{2}=I_{1} \cup\left(J(\bar{x}) \backslash J\left(I_{1}\right)\right)$. Consequently, for $M:=\{I \subseteq K \mid J(\bar{x}) \backslash J(I) \subseteq K\}$ we have that

$$
\begin{equation*}
\partial^{2} \theta(\bar{x}, \bar{s})(u)=\bigcup_{I \in M} A_{I, I \cup(J(\bar{x}) \backslash J(I))}=\bigcup_{I \in M} \tilde{A}_{I} \quad \text { with } \quad \tilde{A}_{I}:=A_{I, I \cup(J(\bar{x}) \backslash J(I))} \quad(I \in M) \tag{16}
\end{equation*}
$$

From $J(\bar{x}) \backslash K=L$ and (14) we derive that

$$
\begin{equation*}
M=\{I \subseteq K \mid L \subseteq J(I)\}=\left\{I \subseteq K \mid u_{i}=\min _{j \in J(\bar{x} \backslash \backslash I} u_{j} \quad \forall i \in L\right\} \tag{17}
\end{equation*}
$$

Note that $J(\bar{x}) \backslash I \neq \emptyset$ for all $I \in M$ because of $I \subseteq K$ and, thus, $\emptyset \neq L=J(\bar{x}) \backslash K \subseteq$ $J(\bar{x}) \backslash I$. This implies that M is nonempty if and only if u_{i} is constant for all $i \in L$ which is the first assertion of the theorem.

To show the asserted formula (2), assume now that $M \neq \emptyset$, hence $u_{i}=c$ for all $i \in L$ and for some constant c. Consequently, for $J_{<}$as introduced below (2), one has that $J_{<} \subseteq$ $J(\bar{x}) \backslash L=K$. Moreover, by (17),

$$
\begin{equation*}
I \in M \Longleftrightarrow I \subseteq K \text { and } u_{j} \geq c \forall j \in J(\bar{x}) \backslash I \Longleftrightarrow J_{<} \subseteq I \subseteq K \tag{18}
\end{equation*}
$$

In particular, because of $J_{<} \subseteq K$, we infer that $J_{<} \in M$ and that $J_{<}$is in fact the smallest member of M.
In the last step of the proof we show that \tilde{A}_{I} defined in (16) is a decreasing family of sets. To this aim, we define $J_{I}:=J(\bar{x}) \backslash(J(I) \cup I)$ for $I \in M$, and observe that $J_{I}=[I \cup$ $(J(\bar{x}) \backslash J(I))] \backslash I$, whence by definition of \tilde{A}_{I} and by (13)

$$
\begin{equation*}
\tilde{A}_{I}=\left\{w \mid \sum_{i=1}^{m} w_{i}=0, w_{i} \geq 0 \forall i \in J_{I}, w_{i}=0 \forall i \in J^{c}(\bar{x}) \cup I\right\} \tag{19}
\end{equation*}
$$

From the definitions of J_{I} and $J(I)$ we conclude that

$$
\begin{equation*}
J_{I}=\left\{i \in J(\bar{x}) \backslash I \mid u_{i}>\min _{j \in J(\bar{x}) \backslash I} u_{j}\right\} \tag{20}
\end{equation*}
$$

Now let $I^{a}, I^{b} \in M$ be arbitrary with $I^{a} \subseteq I^{b}$. We claim that $\tilde{A}_{I^{b}} \subseteq \tilde{A}_{I^{a}}$. For arbitrarily given $w \in \tilde{A}_{I^{b}}$ one has by (19) that

$$
\begin{equation*}
\sum_{i=1}^{m} w_{i}=0, w_{i} \geq 0 \forall i \in J_{I^{b}}, w_{i}=0 \forall i \in J^{c}(\bar{x}) \cup I^{b} \tag{21}
\end{equation*}
$$

Since $I^{a} \subseteq I^{b}$, it is sufficient to show that $w_{i} \geq 0$ for all $i \in J_{I^{a}} \backslash J_{I^{b}}$. Let such i be arbitrarily given. Then, by (20), $i \in J(\bar{x}) \backslash I^{a}$ and by (17)

$$
\begin{equation*}
u_{i}>\min _{j \in J(\bar{x}) \backslash I^{a}} u_{j}=c \tag{22}
\end{equation*}
$$

Moreover, $i \notin J_{I^{b}}$ leaves two possibilities according to (20): either $i \notin J(\bar{x}) \backslash I^{b}$ which by $i \in J(\bar{x}) \backslash I^{a}$ leads to $i \in I^{b} \backslash I^{a}$, whence $w_{i}=0$ (see (21)); or, again relying on (17),

$$
u_{i} \leq \min _{j \in J(\bar{x}) \backslash \backslash^{b}} u_{j}=c
$$

which is a contradiction with (22). Summarizing, $w_{i} \geq 0$ and, thus, $\tilde{A}_{I^{b}} \subseteq \tilde{A}_{I^{a}}$.
The fact that \tilde{A}_{I} defined in (16) is a decreasing family of sets yields along with (18) that

$$
\begin{aligned}
& \partial^{2} \theta(\bar{x}, \bar{s})(u)=\bigcup_{I \in M} \tilde{A}_{I}=\tilde{A}_{J_{<}} \\
&=\left\{w \mid \sum_{i=1}^{m} w_{i}=0, w_{i} \geq 0 \forall i \in J_{J_{<}}, w_{i}=0 \forall i \in J^{c}(\bar{x}) \cup J_{<}\right\}
\end{aligned}
$$

by (19). Observing that by (20), (18) and (17)

$$
J_{J_{<}}=\left\{i \in J(\bar{x}) \backslash J_{<} \mid u_{i}>c\right\}=\left\{i \in J(\bar{x}) \mid u_{i}>c\right\}=J_{>}
$$

for $J_{>}$being defined below (2), we finally derive the asserted formula (2).
Corollary 6. In the setting of Theorem 5 one has that

$$
\partial^{2} \theta(\bar{x}, \bar{s})(0)=\left\{w \mid \sum_{i=1}^{m} w_{i}=0, w_{i}=0 \forall i \in J^{c}(\bar{x})\right\}
$$

Proof. Since $L \neq \emptyset$, it follows that $c=0$ for the constant c defined in the statement of Theorem 5. Accordingly, $J_{<}=J_{>}=\emptyset$ and the assertion follows from (2).

In order to illustrate how Theorem 5 reduces the effort to calculate the second order subdifferential of a maximum of coordinates, we pick up an example from [9]:
Example 7 ([9], Example 3.5). Let $m=4, \bar{x}=(0,0,0,0), \bar{s}=\left(\frac{1}{2}, \frac{1}{2}, 0,0\right), u=(0,0,1,-1)$. Then, $J(\bar{x})=\{1,2,3,4\}, J^{c}(\bar{x})=\{\emptyset\}$ and $L=\{1,2\}$. Since $u_{i}=0=: c$ for all $i \in L$, it follows that $J_{>}=\{3\}, J_{<}=\{4\}$. Thus,

$$
\partial^{2} \theta(\bar{x}, \bar{s})(u)=\left\{w \mid \sum_{i=1}^{4} w_{i}=0, w_{3} \geq 0, w_{4}=0\right\}
$$

4 A formula for the extended partial second-order subdifferential of a finite maximum of smooth functions

We are now going to apply the result of Theorem 5 to the maximum not just of coordinates but of general smooth functions:

$$
\varphi(x, y):=\max _{i=1, \ldots, m} g_{i}(x, y) .
$$

We partition the argument into two parts in order to discuss the extended second-order subdifferential of φ. A completely analogous result will hold true for the conventional second-order subdifferential. Clearly we may write $\varphi=\theta \circ g$ with $\theta\left(z_{1}, \ldots, z_{m}\right):=\max _{i=1, \ldots, m} z_{i}$ and $g(x, y):=\left(g_{1}(x, y), \ldots, g_{m}(x, y)\right)^{T}$. We assume that $g: \mathbb{R}^{n} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ is of class \mathcal{C}^{2}. The key tool for our result is the following chain rule:

Theorem 8 ([9], Theorem 3.3 \& Theorem 4.3). Fix any (\bar{x}, \bar{y}) and $\bar{s} \in \partial_{y} \varphi(\bar{x}, \bar{y})$. Assume that the basic second-order constraint qualification

$$
\begin{equation*}
\left.\left.\partial^{2} \theta(g(\bar{x}, \bar{y})), v\right)\right)(0) \cap \operatorname{ker} \nabla_{y}^{T} g(\bar{x}, \bar{y})=\{0\} \tag{23}
\end{equation*}
$$

is satisfied at some $v \in \partial \theta(g(\bar{x}, \bar{y}))$ with $\bar{s}=\nabla_{y}^{T} g(\bar{x}, \bar{y}) v$. Then, v is uniquely defined and for all $u \in \mathbb{R}^{d}$ it holds that

$$
\tilde{\partial}_{y}^{2} \varphi(\bar{x}, \bar{y}, \bar{s})(u)=\left[\begin{array}{c}
\nabla_{x y}^{2}\langle v, g\rangle(\bar{x}, \bar{y}) \tag{24}\\
\nabla_{y y}^{2}\langle v, g\rangle(\bar{x}, \bar{y})
\end{array}\right] u+\left[\begin{array}{c}
\nabla_{x}^{T} g(\bar{x}, \bar{y}) \\
\nabla_{y}^{T} g(\bar{x}, \bar{y})
\end{array}\right] \partial^{2} \theta(g(\bar{x}, \bar{y}), v)\left(\nabla_{y} g(\bar{x}, \bar{y}) u\right),
$$

The basic second-order constraint qualification (23) motivates us to introduce the following weakened form of a linear independence condition:

Definition 9. A set $\left\{z_{1}, \ldots, z_{s}\right\}$ of vectors is called graphically linearly independent if the set $\left\{\left(z_{1}, 1\right), \ldots,\left(z_{s}, 1\right)\right\}$ of enhanced vectors is linearly independent in the classical sense.

Clearly, graphical linear independence is a strictly weaker notion than classical linear independence. Recalling that

$$
\tilde{\partial}_{y} \varphi(\bar{x}, \bar{y})=\operatorname{conv}\left\{\nabla_{y} g_{i}(\bar{x}, \bar{y})\right\}_{i \in I(\bar{x}, \bar{y})} \quad \text { where } \quad I(\bar{x}, \bar{y}):=\left\{i \mid g_{i}(\bar{x}, \bar{y})=\max _{j} g_{j}(\bar{x}, \bar{y})\right\}
$$

we observe that any $\bar{s} \in \tilde{\partial}_{y} \varphi(\bar{x}, \bar{y})$ can be written in the form

$$
\bar{s}=\sum_{i \in I(\bar{x}, \bar{y})} v_{i} \nabla_{y} g_{i}(\bar{x}, \bar{y}), \quad \sum_{i \in I(\bar{x}, \bar{y})} v_{i}=1
$$

or

$$
(\bar{s}, 1)=\sum_{i \in I(\bar{x}, \bar{y})} v_{i}\left(\nabla_{y} g_{i}(\bar{x}, \bar{y}), 1\right) .
$$

It follows that the multipliers v_{i} are uniquely defined by \bar{s}. Now, we are in a position to make formula (24) for the extended second-order partial subdifferential fully explicit:

Theorem 10. In the setting of Theorem 8 assume that the set $\left\{\nabla_{y} g_{i}(\bar{x}, \bar{y})\right\}_{i \in I(\bar{x}, \bar{y})}$ is graphically linearly independent. Denote by $v \in \partial \theta(g(\bar{x}, \bar{y}))$ the unique element defined by $\bar{s}=$ $\nabla_{y}^{T} g(\bar{x}, \bar{y}) v$ (see discussion above) and let $L:=\left\{i \in I(\bar{x}, \bar{y}) \mid v_{i}>0\right\}$. Then, for arbitrary $u \in \mathbb{R}^{d}$, one has that:

$$
\begin{equation*}
\tilde{\partial}_{y}^{2} \varphi(\bar{x}, \bar{y}, \bar{s})(u) \neq \emptyset \Longleftrightarrow \exists c \in \mathbb{R}:\left\langle\nabla_{y} g_{i}(\bar{x}, \bar{y}), u\right\rangle=c \quad \forall i \in L \tag{25}
\end{equation*}
$$

In this case it holds that

$$
\tilde{w} \in \tilde{\partial}_{y}^{2} \varphi(\bar{x}, \bar{y}, \bar{s})(u) \Longleftrightarrow\left\{\begin{array}{l}
\exists w \in \mathbb{R}^{m}: \tag{26}\\
\tilde{w}=\left[\begin{array}{c}
\nabla_{x y}^{2}\langle v, g\rangle(\bar{x}, \bar{y}) \\
\nabla_{y y}^{2}\langle v, g\rangle(\bar{x}, \bar{y})
\end{array}\right] u+\left[\begin{array}{c}
\nabla_{x}^{T} g(\bar{x}, \bar{y}) \\
\nabla_{y}^{T} g(\bar{x}, \bar{y})
\end{array}\right] \\
\sum_{i=1}^{m} w_{i}=0 \\
w_{i} \geq 0 \forall i \in I_{>} \\
w_{i}=0 \forall i \in I^{c}(\bar{x}, \bar{y}) \cup I_{<}
\end{array}\right.
$$

where

$$
\begin{aligned}
I_{>} & :=\left\{i \in I(\bar{x}, \bar{y}) \mid\left\langle\nabla_{y} g_{i}(\bar{x}, \bar{y}), u\right\rangle>c\right\} \\
I_{<} & :=\left\{i \in I(\bar{x}, \bar{y}) \mid\left\langle\nabla_{y} g_{i}(\bar{x}, \bar{y}), u\right\rangle<c\right\} \\
I^{c}(\bar{x}, \bar{y}) & :=\{1, \ldots, m\} \backslash I(\bar{x}, \bar{y}) .
\end{aligned}
$$

Proof. By Corollary 6 we have that

$$
\begin{equation*}
\partial^{2} \theta(g(\bar{x}, \bar{y}), v)(0)=\left\{w \mid \sum_{i=1}^{m} w_{i}=0, w_{i}=0 \forall i \in I^{c}(\bar{x}, \bar{y})\right\} \tag{27}
\end{equation*}
$$

Then, evidently the inclusion ' \supseteq ' in (23) is satisfied. Conversely, if w belongs to the left-hand side of (23), then w satisfies (27) and $w \in \operatorname{ker} \nabla_{y}^{T} g(\bar{x}, \bar{y})$. Hence,

$$
\sum_{i \in I(\bar{x}, \bar{y})} w_{i}\left(\nabla_{y} g_{i}(\bar{x}, \bar{y}), 1\right)=\sum_{i=1}^{m} w_{i}\left(\nabla_{y} g_{i}(\bar{x}, \bar{y}), 1\right)=(0,0)
$$

The assumed graphical linear independence of the set $\left\{\nabla_{y} g_{i}(\bar{x}, \bar{y})\right\}_{i \in I(\bar{x}, \bar{y})}$ provides that $w_{i}=$ 0 for all $i \in I(\bar{x}, \bar{y})$. Along with $w_{i}=0$ for all $i \in I^{c}(\bar{x}, \bar{y})$ by (27), we arrive at the desired conclusion $w=0$. Thus, (23) is satisfied and we may invoke Theorem 8 in order to derive (25). Our first conclusion from (24) is that

$$
\tilde{\partial}_{y}^{2} \varphi(\bar{x}, \bar{y}, \bar{s})(u) \neq \emptyset \Longleftrightarrow \partial^{2} \theta(g(\bar{x}, \bar{y}), v)\left(\nabla_{y} g(\bar{x}, \bar{y}) u\right) \neq \emptyset .
$$

By virtue of Theorem 5 this entails (25). Similarly, (26) follows from (24) upon using the explicit representation (2).

Remark 11. Exploiting similar chain rules to the one given in Theorem 8 but relating to the full and conventional partial second-order subdifferential rather than to its extended partial one (see [6], [9]) one may derive in the same way corresponding fully explicit formulae for those other types of second-order subdifferentials of finite maxima of smooth functions.

As an illustration of Theorem 10 we consider the following example:
Example 12. Define $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $g(x, y):=\left(-x y, x y^{2}\right)$ and consider the point $(\bar{x}, \bar{y}):=$ $(1,0)$. Then, $\varphi(\bar{x}, y)=\max \left\{-y, y^{2}\right\}$ and $\partial_{y} \varphi(\bar{x}, \bar{y})=[-1,0]$. Moreover, $I(\bar{x}, \bar{y})=$ $\{1,2\}$. Due to $\nabla_{y} g_{1}(\bar{x}, \bar{y})=-1$ and $\nabla_{y} g_{2}(\bar{x}, \bar{y})=0$ the active gradients are graphically linearly independent (while not linearly independent) as required in Theorem 10. Clearly, for any $\bar{s} \in \partial_{y} \varphi(\bar{x}, \bar{y})$ the vector v has the unique representation $v=(-\bar{s}, 1+\bar{s})$. Now, (25) yields that $\partial_{y}^{2} \varphi(\bar{x}, \bar{y}, \bar{s})(u) \neq \emptyset$ if $L=\{1\}$ or $L=\{2\}$ or finally, if $L=\{1,2\}$ and $u=0$. In these cases, formula (26) reduces with our concrete data to:

$$
\tilde{\partial}_{y}^{2} \varphi(\bar{x}, \bar{y}, \bar{s})(u)=\left\{\left.\binom{-v_{1} u}{2 v_{2} u-w_{1}} \right\rvert\, w_{1}=-w_{2}, w_{i} \geq 0\left(i \in I_{>}\right), w_{i}=0\left(i \in I_{<}\right)\right\}
$$

Now, let $u \in \mathbb{R}$ be arbitrary. We consider three cases:
$1 \bar{s}=-1$. Then, $v=(1,0), L=\{1\}, c=-u$. If $u>0$, then $I_{>}=\{2\}$ else $I_{>}=\emptyset$. Similarly, if $u<0$, then $I_{<}=\{2\}$ else $I_{<}=\emptyset$. Thus,

$$
\tilde{\partial}_{y}^{2} \varphi(\bar{x}, \bar{y}, \bar{s})(u)=\{(-u, t) \mid t \in A\} \quad \text { where } \quad A=\left\{\begin{array}{cc}
t \geq 0 & \text { if } u>0 \\
t \in \mathbb{R} & \text { if } u=0 \\
t=0 & \text { if } u<0
\end{array}\right.
$$

$2 \bar{s}=0$. Then, $v=(0,1), L=\{2\}, c=0$. If $u<0$, then $I_{>}=\{1\}$ else $I_{>}=\emptyset$. Similarly, if $u>0$, then $I_{<}=\{1\}$ else $I_{<}=\emptyset$. Thus,

$$
\tilde{\partial}_{y}^{2} \varphi(\bar{x}, \bar{y}, \bar{s})(u)=\{(0,2 u-t) \mid t \in A\} \quad \text { where } \quad A= \begin{cases}t=0 & \text { if } u>0 \\ t \in \mathbb{R} & \text { if } u=0 \\ t \geq 0 & \text { if } u<0\end{cases}
$$

$3-1<\bar{s}<0$. Then, $v=(-\bar{s}, 1+\bar{s}), L=\{1,2\}, c=-u$. As mentioned above, $\tilde{\partial}_{y}^{2} \varphi(\bar{x}, \bar{y}, \bar{s})(u)=\emptyset$ if $u \neq 0$. If $u=0$ then $I_{>}=I_{<}=\emptyset$. Thus, $\tilde{\partial}_{y}^{2} \varphi(\bar{x}, \bar{y}, \bar{s})(u)=$ $\{0\} \times \mathbb{R}$.

References

[1] G. Colombo, R. Henrion, N.D. Hoang, and B.S. Mordukhovich. Optimal control of the sweeping process. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19:117159, 2012.
[2] K. Emich, R. Henrion, and W. Römisch. Conditioning of linear-quadratic two-stage stochastic optimization problems. Mathematical Programming, 2013.
[3] R. Henrion, J. Outrata, and T Surowiec. On regular coderivatives in parametric equilibria with non-unique multiplier. Mathematical Programming, 136:111-131, 2012.
[4] B. S Mordukhovich. Maximum principle in problems of time optimal control with nonsmooth constraints. J. Appl. Math. Mech., 40:960-969, 1976.
[5] B. S Mordukhovich. Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions. Trans. Amer. Math. Soc., 340:1-36, 1993.
[6] B. S. Mordukhovich. Variational Analysis and Generalized Differentiation I: Basic Theory, volume 330 of Grundlehren der mathematischen Wissenschaften. Springer, 2006.
[7] B. S. Mordukhovich and N. M. Nam. Variational analysis of extended generalized equations via coderivative calculus in asplund spaces. J. Math. Anal. Appl., 350:663-679, 2009.
[8] B. S. Mordukhovich, N. M. Nam, and N.T.Y. Nhi. Partial second-order subdifferentials in variational analysis and optimization. Numer. Func. Anal. Optim., page to appear, 2013
[9] B. S. Mordukhovich and R. T. Rockafellar. Second-order subdifferential calculus with applications to tilt stability in optimization. SIAM J. Optim., 22(3):953-986, 2012.
[10] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis, volume 317 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin, 1998.

[^0]: 2010 Mathematics Subject Classification. 49J52, 49J53.
 Key words and phrases. Second-order subdifferential, extended partial second-order subdifferential, maximum function, calculus rules.

