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ABSTRACT. This paper studies the relationship between the material derivative method, the shape de-
rivative method, the min-max formulation of Correa and Seeger, and the Lagrange method introduced
by Céa. A theorem is formulated which allows a rigorous proof of the shape differentiability without the
usage of material derivative; the domain expression is automatically obtained and the boundary expression
is easy to derive. Furthermore, the theorem is applied to a cost function which depends on a quasi-linear
transmission problem. Using a Gagliardo penalization the existence of optimal shapes is established.

1. INTRODUCTION

A map defined on a set of subsets of Rd is called shape function. The study of these functions is the
main topic of shape optimization. The concept of derivative in Banach spaces does not apply to shape
functions since there is no immediate vector space structure on its domain of definition. Nevertheless, it
is possible to introduce a derivative for a shape function called shape derivative. To be more precise, let
a shape function

J : Ξ → R,

with Ξ ⊂ {Ω : Ω ⊂ Rd} be given and assume that it is shape differentiable, i.e., the limit

(1.1) dJ(Ω)[θ] = lim
t↘0

(J(Ωt)− J(Ω)) /t,

exists and θ 7→ dJ(Ω)[θ] is continuous and linear. Here, we defined Ωt := Φt(Ω), where the mapping
Φt is the flow generated by the differentiable vector field θ : Rd → Rd with compact support. Zolésio’s
structure theorem [Delfour and Zolésio, 2011] states that the shape derivative depends only on the normal
part θn := θ · n of the vector field θ on the boundary Γ := ∂Ω. Moreover, if the boundary Γ is smooth
enough, the shape derivative has the form

(1.2) dJ(Ω)[θ] =

∫
Γ

gΓ θnds,

where gΓ ∈ L1(Γ) is an integrable function. We call the integral over the boundary Γ in (1.2) boundary
expression of the shape derivative.

There are mainly three ways to identify the boundary expression (1.2) of the shape derivative of a cost
function constraint by a PDE. The first is the shape derivative method [Sokołowski and Zolésio, 1992],
the second is the min-max formulation by [Delfour and Zolésio, 2011] and finally there is Céa’s Lagrange
method introduced in [Céa, 1986].

The shape derivative method analyzes the differentiablity of the PDE with respect to the domain. The
material derivative is introduced to derive the shape differentiability, but it is not present in the final formula
of the shape derivative.

Céa’s Lagrange method incorporates the PDE constraints in a Lagrangian, but assumes that the shape
derivatives of the PDE and the adjoint equation exist. While the shape derivative method gives a rigorous
proof of the differentiability of the shape function, this is different for Céa’s Lagrange method. There are
examples (see [Pantz, 2005]), where Céa’s Lagrange method fails.

The min-max formulation first introduced by [Correa and Seeger, 1985] and later applied to shape opti-
mization by [Delfour and Zolésio, 2011], extends Céa’s Lagrange method. This formulation provides rig-
orous a way to prove shape differentiability under the assumption that the corresponding Lagrangian has
saddle points. As we will see, there are examples where the Lagrangian fails to have a saddle point and
makes this method restrictive.

It is desirable to a have a criterion which tells us when the min-max method works without the saddle point
assumption. In this paper we show that a careful analysis of the Lagrangian shows that it is often possible
to avoid the material and shape derivative without any saddle point assumption. The only ingredient
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needed is the differentiability of the Lagrangian with respect to the primal variable. The provided result
can be seen as an extension of the Theorem of Correa-Seeger when the Lagrangian has a special
structure.

Despite the problem to identify the boundary expression of the shape derivative, it is important to use the
subsequently introduced distributed or domain expression. Under certain regularity assumptions for the
domain the shape derivative has the following form

(1.3) dJ(Ω)[θ] =

∫
Ω

F (θ, ∂θ, ∂2θ, . . .) dx,

where F (·, ·, ·, ·) ∈ L1(Rd,R2d, . . .). The domain integral on the right hand side of (1.3) is called
domain expression of the shape derivative. For the numerical implementation its usage has several ad-
vantages compared with the boundary expression. First of all, the domain expression is more general. For
instance, for PDE constrained shape optimization problems the regularity obtained by the weak formula-
tion is mostly enough to derive the shape differentiability, see [Sturm et al., 2013]. Moreover, the domain
expression makes mostly sense for mere open sets and for PDE constraint problems for Lipschitz do-
mains. In the forthcoming paper [Laurain and Sturm, 2013], there will be many examples and guidelines
on how to use the domain expression in combination with level-set methods.

The contribution of the paper at a glance

1. We prove a theorem which allows the rigorous computation of the shape derivative for PDE con-
strained optimization problems without using the material derivative.

2. Application of the theorem to non-linear transmission problem for which we proof
(a) the existence of optimal shapes by a Gagliardo penalization,
(b) the existence of the shape derivative and a formula for the boundary and volume expression.

The paper is organized as follows.

In Section 2, we explain the material and shape derivative method. We compare the methods with a Mod-
ification of Cés Lagrange method and the min-max formulation. Moreover, we show why Céa’s Lagrange
method does not always apply and explain the reasons.

In Section 3, the main result is presented and we explain how the assumptions can be fulfilled. As we will
see in the example, it allows an efficient computation of the shape derivative without using the material
derivative but some additional differentiability of the Lagrangian.

In Section 4, we apply the results of Section 3 to a non-linear transmission problem. We present a mini-
mization problem with penalization and its shape differentiability.

2. REVIEW OF METHODS TO IDENTIFY THE SHAPE DERIVATIVE

First we give some basic definitions and introduce the notation. In order to compare the material derivative
method, the shape derivative method, Cea’s Lagrange method and the min-max method by Correa and
Seeger, a simple example is studied.

2.1. Notations and definitions. Let E and F be a Banach spaces and U ⊂ E an open subset. We
denote by C(U ;F ) the space of all continuous functions f : U → F . The space C(U ;F ) comprises
all continuous and bounded functions f : U → F and it is endowed with the norm ‖f‖C(U ;F ) :=

supx∈U ‖f(x)‖F < ∞. We call a function f : U → F differentiable in x ∈ U if it is Fréchet dif-
ferentiable at x ∈ U and denote the derivative by ∂f(x). The function is called differentiable if it is
differentiable at every point x ∈ U . For k ≥ 1 the space of all k-times continuously differentiable func-
tions f : U → F is denoted by Ck(U ;F ). The Gateàux derivative of f : U → F at x ∈ U in direction
v ∈ E is denoted by ∂vf(x). For a differentiable function f : U → F , we have ∂f(x)(v) = ∂vf(x)
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for all x ∈ U and v ∈ E. For a function f : E1 × · · · × En → F , where E1, . . . , En are Banach
spaces, we also write ∂xkf(x1, . . . , xn)(x̂k) := ∂(0,...,x̂k,...,0)f(x1, . . . , xn), where k, l ≥ 0 are such
that 1 ≤ k ≤ n < ∞. In the case F = R, we have that ∂f(x) : E → R is a continuous, linear
mapping and therefore we may write by the Riesz representation theorem ∂f(x)(v) = v · ṽ for some
element ṽ ∈ E. The vector ṽ is then called gradient of f at x and denoted by ∇f(x). For p ≥ 1 the

space of all measurable functions f : Ω→ R for which ‖f‖Lp(Ω) :=
(∫

Ω
|f |p dx

)1/p
<∞ is denoted

by Lp(Ω). The space of functions of bounded variations on D are denoted by BV (D). For the right
sided limit limt→0

t>0
we write limt↘0.

Let d ∈ N+. Assume that D ⊂ Rd is an open and bounded subset with Lipschitz boundary. For any
k ≥ 1, we define the space

CkD(Rd) := {θ ∈ Ck(Rd; Rd) : supp(θ) ⊂ D}.
The flow of a vector field θ ∈ CkD(Rd) is defined for each x0 ∈ D by Φθ

t (x0) := x(t), where x :
[0, τ ]→ Rd solves

ẋ(t) = θ(x(t)) in (0, τ),

x(0) = x0.

In the sequel, we write Φt instead of Φθ
t . For an invertible matrix L ∈ Rd,d, we have (L−1)T = (LT )−1

and therefore we define L−T := (L−1)T .1 Henceforth, the following abbreviations are frequently used in
the paper

(2.1) ξ(t) := det(∂Φt), A(t) := ξ(t)∂Φ−1
t ∂Φ−Tt , B(t) := ∂Φ−Tt .

Note that by the chain rule
(∂(Φ−1

t )) ◦ Φt = (∂Φt)
−1 =: ∂Φ−1

t .

We use the notation θn := θ · n for the normal component of the vector field θ, where n ∈ Rd such
that |n| = 1. Let us recall some useful facts about the transformation Φt associated with the vector field
θ ∈ CkD(Rd).

Lemma 2.1. Fix k ≥ 1. Let θ ∈ CkD(Rd) be given and Φt the associated vector field.

1. Assume p > 1 and f ∈ Lp(R
d). Then limt↘0 ‖f ◦ Φ−1

t − f‖Lp(Rd) = limt↘0 ‖f ◦ Φt −
f‖Lp(Rd) = 0.

2. Let f ∈ H1(Rd). Then limt↘0 ‖f ◦ Φt − f‖H1(Rd) = 0.
3. The jacobian ξ(t) is differentiable from the right side with derivative

lim
t↘0

(ξ(t)− 1)/t = div (θ) in C(D).

4. The limit limt↘0(A(t)− A(0))/t exists in C(D; Rd,d) and is given by

(2.2) A′(0) = div (θ)Id,d − ∂θ − ∂θT .
5. The derivative A′(t) is continuous, i.e., A′(t)→ A′(0) in C(D; Rd,d).

Proof. See [Delfour and Zolésio, 2011, p.527], [Sokołowski and Zolésio, 1992] and [Ito et al., 2008]. �

Definition 2.2 (Eulerian semi-derivative). Suppose we are given a shape function J : Ξ → R on the set
Ξ ⊂ {Ω| Ω ⊂ Rd}. Denote by Φt : D×R→ Rd the flow generated by the vector field θ ∈ CkD(Rd),
where k ≥ 1 and set Ωt := Φt(Ω). Then the Eulerian semi-derivative of J at Ω ⊂ D in the direction
θ is defined as the limit (if it exists)

dJ(Ω)[θ] := lim
t↘0

1

t
(J(Ωt)− J(Ω)) .

1It follows from (L−1)TLT = (LL−1)T = I = (L−1L)T = LT (L−1)T , that (LT )−1 = (L−1)T .



4

In general, the derivative dJ(Ω)[θ] can be non-linear in θ.

Definition 2.3. Let Ω ⊂ D and D ⊂ Rd be open sets. The functional J is said to be shape differen-
tiable at Ω if the Eulerian semi-derivative dJ(Ω)[θ] exists for all θ ∈ C∞D (Rd) and the map

θ 7→ dJ(Ω)[θ] : C∞D (Rd)→ R,

is linear and continuous.

Finally, we state the following Theorem from [Delfour and Zolésio, 2011, pp. 483-484] , which allows later
to calculate the boundary expression of the shape derivative.

Theorem 2.4. Let θ ∈ CkD(Rd), where k ≥ 1. Fix τ > 0 and let ϕ ∈ C(0, τ ;W 1,1
loc (R3)) ∩

C1(0, τ ;L1
loc(R

3)) and an open bounded domain Ω with Lipschitz boundary Γ be given. The right sided
derivative of the function

f(t) :=

∫
Ωt

ϕ(t) dx

at t = 0 is given by
d+

dt
f(0) =

∫
Ω

ϕ′(0) dx+

∫
Γ

ϕ(0) θn dx,

where d+

dt
f(0) := limt↘0(f(t)− f(0))/t.

2.2. Material derivative method. Let Ω ⊂ Rd be an open, bounded set with smooth boundary ∂Ω. We
consider the state equation

−∆u = f, in Ω,

u = 0, on ∂Ω,
(2.3)

where f : Rd → R is a smooth function. The function u : Ω → R is called state. To simplify the
exposition, we choose as objective function

(2.4) J(Ω) :=

∫
Ω

|u− ud|2 dx,

where ud ∈ H2(Rd) is given and | | denotes the absolute value. We call u ∈ H1
0 (Ω) a weak solution of

(2.3) if

(2.5)

∫
Ω

∇u · ∇ψ dx =

∫
Ω

fψ dx, for all ϕ ∈ H1
0 (Ω).

We aim to calculate the shape derivative of (2.4). For this purpose, we consider the perturbed cost function

(2.6) J(Ωt) =

∫
Ωt

|ut − ud|2 dx,

where ut denotes the weak solution of (2.5) on the domain Ωt := Φt(Ω), that is, ut ∈ H1
0 (Ωt) solves

(2.7)

∫
Ωt

∇ut · ∇ψ̂ dx =

∫
Ωt

fψ̂ dx, for all ψ̂ ∈ H1
0 (Ωt).

As it is difficult to differentiate the function ut : Ωt → R with respect to t, we use the change of variables
Φt(x) = y to rewrite (2.6)

(2.8) J(Ωt) =

∫
Ω

ξ(t)|ut − ud ◦ Φt|2 dx,

where ut := Ψt(ut) : Ω→ R is a function on the fixed domain Ω. We introduce the mapping Ψt(ϕ) :=
ϕ ◦ Φt with inverse Ψt(ϕ̂) := Ψ−1

t (ϕ̂) = ϕ̂ ◦ Ψ−1
t . To study the differentiability of (2.8), we can study

the function t 7→ ut.
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Definition 2.5. The limit

u̇ := lim
t↘0

ut − u
t

,

is called strong material derivative if we consider this limit in the norm convergence inH1
0 (Ω) and weak

material derivative if we consider the weak convergence in H1
0 (Ω).

We can derive an equation for ut if the transformation Ψt maps H1(Ω) functions to H1(Ω) function.

Lemma 2.6. The mapping Ψt : H1
0 (Ωt) → H1

0 (Ω) constitutes a bijection between function spaces.
Moreover, we have the following properties2

(Ψt ◦Ψt)(ϕ) = ϕ for all ϕ ∈ H1
0 (Ω), (Ψt ◦Ψt)(ϕ̂) = ϕ̂ for all ϕ̂ ∈ H1

0 (Ωt),

and

(2.9) H1
0 (Ω) = {Ψt(ϕ̂)| ϕ̂ ∈ H1

0 (Ωt)}, H1
0 (Ωt) = {Ψ−1

t (ϕ)| ϕ ∈ H1
0 (Ω)}.

Proof. The proof can be found in [Ziemer, 1989, Theorem 2.2.2, p. 52]. �

Henceforth, we make use of the following convention. Whenever a function f : D → R on the hold-all
D is given, we denote by f t := Ψt(f) the ’pulled back’ of f .

Next, using the change of variables Φt(x) = y to bring (2.7) back to the fixed domain, we get that ut

satisfies

(2.10)

∫
Ω

A(t)∇ut · ∇ψ dx =

∫
Ω

ξ(t)f tψ dx, for all ϕ ∈ H1
0 (Ω),

where we used the notation from (2.1). By formally differentiating this equation with respect to t (this
can be made rigorous, cf. [Sokołowski and Zolésio, 1992]) we see that the strong material derivative u̇ is
given as the solution of

(2.11)

∫
Ω

∇u̇ · ∇ψ dx+

∫
Ω

A′(0)∇u · ∇ψ dx =

∫
Ω

div (θ)fψ dx+

∫
Ω

∇f · θψ dx,

for all ψ ∈ H1
0 (Ω), whereA′(0) := div (θ)I−∂θT−∂θ. We are now in the position to calculate the do-

main expression of the shape derivative and then deduce the boundary expression. First, we differentiate
(2.8) with respect to t

dJ(Ω)[θ] =

∫
Ω

div (θ)|u− ud|2 dx+

∫
Ω

2(u− ud)∇ud · θ dx+

∫
Ω

2(u− ud)u̇ dx.(2.12)

In order to eliminate the material derivative in the last equation, the so called adjoint equation is introduced

(2.13) Find p ∈ H1
0 (Ω) :

∫
Ω

∇p · ∇ψ dx = −2

∫
Ω

(u− ud)ψ dx, for all ψ ∈ H1
0 (Ω).

Finally, testing the adjoint equation with u̇ and the material derivative equation (2.11) with p, we arrive at
the domain expression

dJ(Ω)[θ]
(2.13)
=

∫
Ω

div (θ)|u− ud|2 dx+

∫
Ω

2(u− ud)∇ud · θ dx−
∫

Ω

∇p · ∇u̇ dx

(2.11)
=

∫
Ω

div (θ)|u− ud|2 dx+

∫
Ω

2(u− ud)∇ud · θ dx

+

∫
Ω

A′(0)∇u · ∇p dx−
∫

Ω

div (θ)fp dx−
∫

Ω

∇f · θp dx.

(2.14)

Remark that the domain expression already makes sense if u, p ∈ H1
0 (Ω). In the next subsection, we

see that this regularity is not enough to obtain the boundary expression.

2In differential geometry the map Ψt : H1(Ωt)→ H1(Ω) is called pull-back, see [Conlon, 2001].
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2.3. Shape derivative method. Assuming the solutions u and p and the boundary ∂Ω are smooth, the
domain expression (2.14) can be transformed into an integral over ∂Ω either by integration by parts or in
the following way. Instead of transporting the cost function back to Ω, one may directly differentiate

J(Ωt) =

∫
Ωt

|Ψt(ut)− ud|2 dx,

by invoking the transport Theorem 2.4, to obtain

(2.15) dJ(Ω)[θ] =

∫
∂Ω

|u− ud|2θn ds+

∫
Ω

(u− ud)(u̇−∇u · θ) dx.

Definition 2.7. The function

u′ := u̇−∇u · θ,
is called shape derivative of u at Ω in direction θ associated with the parametrization Ψt. It is linear with
respect to θ, i.e. u′(λ1θ1 + λ2θ2) = λ1u

′(θ1) + λ2u
′(θ2) for all θ1, θ2 ∈ CkD(Rd) and λ1, λ2 ∈ R.

Note that since Ψ0 = id, we have Ψt ◦ Ψ−t = Ψ0 = idH1
0 (Ω) and Ψ−t ◦ Ψt = Ψ0 = idH1

0 (Ωt). Note
that

u′ =
d

dt
Ψt(ut)|t=0 =

d

dt
(ut ◦ Φ−1

t )|t=0,

where ut := Ψt(ut). Therefore the shape derivative decomposes into two parts, namely

u′ = ∂tΨ
t(ut)|t=0︸ ︷︷ ︸
∈L2(Ω)

+ Ψ0(u̇)︸ ︷︷ ︸
∈H1

0 (Ω)

,

where

∂tΨ
t(ut)|t=0 := lim

t↘0
(Ψt(ut)−Ψ0(ut))/t = −∇u · θ.

Assuming that the solution u belongs to u ∈ H1
0 (Ω) ∩H2(Ω), we have

(2.16) u′ = ∂tΨ
t(ut)|t=0︸ ︷︷ ︸
∈H1(Ω)

+ Ψ0(u̇)︸ ︷︷ ︸
∈H1

0 (Ω)∩H2(Ω)

.

The perturbed state equation (2.7) can be rewritten as∫
Ωt

∇(Ψt(ut)) · ∇(Ψt(ϕ)) dx =

∫
Ωt

fΨt(ϕ) dx, for all ϕ ∈ H1
0 (Ω),

where we used (2.9). Then by [Sokołowski and Zolésio, 1992] we know that ut is differentiable in 0 ∈
[0, τ ] as a map from [0, τ ] intoH1(Ω), thus we are allowed to differentiate the last equation and achieve,
using the transport Theorem 2.4∫

Ω

∇u′ · ∇ψ dx−
∫

Ω

∇u · ∇(∇ϕ · θ) dx+

∫
∂Ω

∇u · ∇ϕ θnds

=

∫
∂Ω

fϕ θnds−
∫

Ω

f(∇ϕ · θ) dx, for all ϕ ∈ H1
0 (Ω),

(2.17)

where θn := θ · n.

Remark 2.8. Note that u′ does not belong to H1
0 (Ω), but only to H1(Ω). As the shape derivative does

not belong to the solution space of the state equation, it may lead to false or incomplete formulas for the
boundary expression of the shape derivative.
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Remark 2.9. Let γ : [0, 1]→ Γ be a smooth curve in the boundary with γ(0) = p ∈ Γ and γ′(0) = v.
Assume u : Ω→ R admits an extension in a neighborhood of Γ, denoted also by u, then we compute

0 =
d

dt
(u(γ(t))|t=0 = ∇u · γ′(0) = ∇Γu · v + (∂nu)n · v.

Note that v lies in the tangential plane at p, thus v · n = 0. Since v was arbitrary, we conclude

∇Γu = 0 on Γ.

The remark shows that∇u = ∇Γu+ (∂nu)n = (∂nu)n. Then integrating by parts in (2.17) yields∫
Ω

∇u̇ · ∇ϕ dx−
∫
∂Ω

∂nu ∂nψ θn ds+

∫
Ω

∇u · θ∆ϕ dx =

∫
∂Ω

fϕ θn ds.(2.18)

Lastly, we eliminate u̇ in dJ(Ω)[θ] given by (2.15) using (2.13) and (2.18)

dJ(Ω)[θ]
(2.13)
=

∫
∂Ω

|u− ud|2 θn ds−
∫

Ω

∇u̇ · ∇p dx+

∫
Ω

2∇u · θ(u− ud) dx

(2.18)
=

∫
∂Ω

|u− ud|2 θn ds+

∫
∂Ω

(∇u · ∇p− ∂nu ∂np− fp) θnds

+

∫
Ω

(−∆p+ 2(u− ud))∇u · θ dx.

Finally, assuming that p solves the adjoint equation in the strong sense, we get

dJ(Ω)[θ] =

∫
∂Ω

(|u− ud|2 − ∂nu ∂np) θn ds.(2.19)

What we observe in the calculations above is that there is no material derivative u̇ or shape derivative u′ in
the final expression (2.14) or (2.19). This suggests that there might be a way to obtain this formula without
the computation of u̇. In the next section, we see one possible way to avoid the material derivatives.

2.4. The min-max formulation of Correa and Seeger. Let ϕ, ψ ∈ H1
0 (Ω) be two functions. Instead

of differentiating the cost function and the state equation separately, we can incorporate both in the
Lagrangian

(2.20) L(Ω, ϕ, ψ) :=

∫
Ω

‖ϕ− ud‖2 dx+

∫
Ω

∇ϕ · ∇ψ dx−
∫

Ω

fψ dx.

The point of departure for the min-max formulation is the observation that

J(Ω) = min
ϕ∈H1

0 (Ω)
sup

ψ∈H1
0 (Ω)

L(Ω, ϕ, ψ),

since for all ϕ ∈ H1
0 (Ω)

sup
ψ∈H1

0 (Ω)

L(Ω, ϕ, ψ) =

{
J(Ω) if ϕ = u,
+∞ if ϕ 6= u,

where u is the unique solution of (2.5). We need the following definition.

Definition 2.10. Let A,B be sets and G : A× B → R a map. Then a pair (u, p) ∈ A× B is said to
be a saddle point on A×B if

(2.21) G(u, ψ) ≤ G(u, p) ≤ G(ϕ, p) for all ϕ ∈ A, for all ψ ∈ B.

We have the following equivalent condition for (u, p) being a saddle point.
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Lemma 2.11. A pair (u, p) ∈ A×B is a saddle point of G(, ) if and only if

(2.22) min
û∈A

sup
p̂∈B

G(û, p̂) = max
p̂∈B

inf
û∈A

G(û, p̂),

and it is equal toG(u, p), where u being the attained minimum and p the attained maximum, respectively.

Proof. A proof can be found in [Ekeland and Temam, 1976, p.166-167]. �

Remark 2.12. Note that the equality

inf
û∈A

sup
p̂∈B

G(û, p̂) = G(u, p) = sup
p̂∈B

inf
û∈A

G(û, p̂)

does not easily allow us to conclude that (u, p) is a saddle point.

Since for every open Ω ∈ Rd the Lagrangian L is convex and differentiable with respect to ϕ, and
concave and differentiable with respect to ψ, we know from [Ekeland and Temam, 1976, Proposition 1.6]
that the saddle points can be characterized by

u ∈ H1
0 (Ω) : ∂ψL(Ω, u, p)(ψ̂) = 0, for all ψ̂ ∈ H1

0 (Ω),

p ∈ H1
0 (Ω) : ∂ϕL(Ω, u, p)(ϕ̂) = 0, for all ϕ̂ ∈ H1

0 (Ω).
(2.23)

The last equations are exactly the state equation (2.5) and the adjoint equation (2.13). To compute the
shape derivative of J , we consider for t > 0

(2.24) J(Ωt) = min
ϕ̂∈H1

0 (Ωt)
sup

ψ̂∈H1
0 (Ωt)

L(Ωt, ϕ̂, ψ̂) = min
ϕ∈H1

0 (Ω)
sup

ψ∈H1
0 (Ω)

L(Ωt,Ψ
t(ϕ),Ψt(ψ)),

where the saddle points of L(Ωt, ·, ·) are again given by the solutions of (2.5) and (2.13), but the domain
Ω has to be replaced by Ωt. By definition of a saddle point

(2.25) L(Ωt, ut, ψ̂) ≤ L(Ωt, ut, pt) ≤ L(Ωt, ϕ̂, pt) for all ψ̂, ϕ̂ ∈ H1
0 (Ωt).

Since Ψt : H1
0 (Ωt)→ H1

0 (Ω) is a bijection it is easily seen that the saddle points of

G(t, ϕ, ψ) := L(Ωt,Ψ
t(ϕ),Ψt(ψ))

are given by ut = Ψt(ut) and pt = Ψt(pt). It can also be verified that the function ut solves (2.10) and
applying the change of variables Φt(x) = y to (2.13) shows that pt solves

(2.26)

∫
Ω

A(t)∇ψ · ∇ptdx = −2

∫
Ω

ξ(t)(ut − utd)ψdx, for all ψ ∈ H1
0 (Ω).

Moreover, the functions ut, pt satisfy

G(t, ut, ψ) ≤ G(t, ut, pt) ≤ G(t, ϕ, pt) for all ψ, ϕ ∈ H1
0 (Ω),

where G takes, after applying the change of variables Φt(x) = y, the explicit form

(2.27) G(t, ϕ, ψ) =

∫
Ω

ξ(t)‖ϕ− utd‖2 dx+

∫
Ω

A(t)∇ϕ · ∇ψ dx−
∫

Ω

ξ(t)f tψ dx.

From Lemma 2.11, we conclude

(2.28) g(t) := min
ϕ∈H1

0 (Ω)
sup

ψ∈H1
0 (Ω)

G(t, ϕ, ψ) = G(t, ut, pt),

where we used that (ut, pt) is a saddle point of G(t, , ). Moreover, we have the relation

(2.29) g(t) = G(t, ut, ψ)

for all ψ ∈ H1
0 (Ω), since ut solves (2.10). In view of (2.24), we can obtain the shape derivative dJ(Ω)[θ]

by calculating the derivative of g(t) at t = 0. When we use (2.28) have to find conditions which show
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that we are allowed to differentiate the min-max of the function G with respect to t at t = 0. On the other
hand the relation (2.29) shows that

dJ(Ω)[θ] =
d

dt
G(t, ut, ψ)∣∣

t=0

,

for all ψ ∈ H1
0 (Ω), that means the differentiability of the min-max of G is equivalent to the differentiablity

of G(t, ut, ψ) and it is independent of ψ. Sufficient conditions for the differentiability are provided by the
Theorem of Correa-Seeger. Note the relation (2.28) is also true for a general function G when ut, pt are
saddle points, but the relation (2.29) only for the special structure (2.27) of G. It is clear, if the functions
ut and G are sufficiently differentiable the derivative d

dt
(g(t))t=0 exists. The purpose of the reformulation

of the cost function as an inf-sup is to avoid the material derivatives u̇. Let us introduce the sets

E(t) =

{
u ∈ H1

0 (Ω) : sup
ψ∈H1

0 (Ω)

G(t, u, ψ) = inf
ϕ∈H1

0 (Ω)
sup

ψ∈H1
0 (Ω)

G(t, ϕ, ψ)

}
,

and

F (t) =

{
p ∈ H1

0 (Ω) : inf
ϕ∈H1

0 (Ω)
G(t, ϕ, p) = sup

ψ∈H1
0 (Ω)

inf
ϕ∈H1

0 (Ω)
G(t, ϕ, ψ)

}
.

Without any knowledge of the material derivative u̇ or ṗ, we conclude by the theorem of Correa and
Seeger [Delfour and Zolésio, 2011, pp.555-558, Theorem 5.1]

dJ(Ω)[θ] = inf
ϕ∈E(0)

sup
ψ∈F (0)

d

dt
G(t, ϕ, ψ)|t=0 = sup

ϕ∈F (0)

inf
ψ∈E(0)

d

dt
G(t, ϕ, ψ)|t=0,

and its value is equal to ∂tG(t, u, p)|t=0. Clearly the sequence (ut)t≥0 and the function G can not be
arbitrary. Let us sketch the proof of the theorem of Correa-Seeger at the concrete example where G is of
the form (2.27) and show that it is applicable. To be more precise we want to establish the following.

Proposition 2.13. The function [0, τ ] 3 t 7→ G(t, ut, ψ) is differentiable from the right side in 0.
Moreover, we have the following

(2.30)
d

dt
G(t, ut, ψ)|t=0 = ∂tG(0, u, p),

for arbitrary ψ ∈ H1
0 (Ω) and p ∈ F (0).

Proof. At first, from inequalities (2.25), we obtain

G(t, ut, pt) ≤ G(t, u, pt), G(0, u, p) ≤ G(0, ut, p),

and therefore setting ∆(t) := G(t, ut, pt)−G(0, u, p) gives

G(t, ut, p)−G(0, ut, p) ≤ ∆(t) ≤ G(t, u, pt)−G(0, u, pt).

Using the mean value theorem, we find for each t ∈ [0, τ ] numbers ζt, ηt ∈ (0, 1) such that

(2.31) t∂tG(tζt, u
t, p) ≤ ∆(t) ≤ t∂tG(tηt, u, p

t),

where

∂tG(t, ϕ, ψ) =

∫
Ω

div (θt) ◦ Φt|ut − utd|2 dx−
∫

Ω

2ξ(t)(ut − utd)B(t)∇utd · θt dx

+

∫
Ω

A′(t)∇ϕ · ∇ψ dx−
∫

Ω

div (θt) ◦ Φtf
tψ +B(t)∇f t · θtψ dx.

(2.32)

It can be verified from this formula that (t, ϕ) 7→ ∂tG(t, ϕ, p) and (t, ψ) 7→ ∂tG(t, u, ψ) are weakly
continuous. Moreover, from (2.10) and (2.26) it can be inferred that (ut)t≥0 and (pt)t≥0 are bounded in
H1

0 (Ω) and therefore ut ⇀ w pt ⇀ v for two elements w, v ∈ H1
0 (Ω). Passing to the limit in (2.10)

and (2.26) and taking into account Lemma 2.1, we see that w solves the state equation and v the adjoint
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equation. By uniqueness of the state and adjoint equation we get w = u and v = p. Thus we conclude
from (2.31)

(2.33) lim inf
t→0

∆(t)/t ≥ ∂tG(0, u, p), lim sup
t→0

∆(t)/t ≤ ∂tG(0, u, p),

which leads to
lim sup
t→0

∆(t)/t = lim inf
t→0

∆(t)/t,

and thereby prove (2.30) and thus the shape differentiability of J . �

Evaluating the derivative ∂tG(t, u, p)|t=0 leads to the formula (2.14). Then the boundary expression is
obtained by

dJ(Ω)[θ] =
d

dt
L(Ωt,Ψ

t(u),Ψt(p))|t=0,

and the usage of the transport Theorem 2.4. We find the expression

dJ(Ω)[θ] =

∫
Γ

(|u− ud|2 +∇u · ∇p)θn ds+

∫
Ω

∇ũ · ∇p dx

+

∫
Ω

(u− ud)ũ dx+

∫
Ω

∇u · ∇p̃ dx−
∫

Ω

fp̃ dx,

(2.34)

where ũ = ∂t(Ψ
t(ut))|t=0 = −∇u · θ, p̃ = ∂t(Ψ

t(pt))|t=0 = −∇p · θ. To rewrite the equation into
an integral over Γ, we integrate by parts and obtain

dJ(Ω)[θ] =

∫
Γ

(|u− ud|2 +∇u · ∇p) θn ds+

∫
∂Ω

ũ ∂npds

+

∫
∂Ω

∂nu p̃ds−
∫

Ω

ũ (∆p+ 2(u− ud)) dx−
∫

Ω

p̃ (∆u− f) dx.

Finally, using the strong solvability of u and p, and taking into account Remark 2.9, we arrive at (2.19).

Remark 2.14. (i) We point out that the inequality (2.25) is the key to avoid the material derivatives.
Nevertheless, without the assumption of convexity of G with respect to ϕ it is difficult to prove this
inequality.

(ii) We remark that t 7→ E(t) = {ut} and t 7→ F (t) = {pt} are single valued. More generally, the
maps t 7→ E(t) = {ut} and t 7→ F (t) = {pt} will be always single valued for a convex-concave
function G as long as the corresponding PDEs obtained as the partial derivatives

∂ϕG(t, u, p)(ϕ̂) = 0 for all ϕ̂ ∈ E,

∂ψG(t, u, p)(ψ̂) = 0 for all ψ̂ ∈ F,
have a unique solution (u, p).

2.5. A modification of Céa’s Lagrange method. Let the function G be defined by (2.27). Assume that
G is sufficiently differentiable with respect to t, ϕ and ψ. Additionally, assume that the strong material
derivative u̇ exist in H1

0 (Ω). Then we may calculate as follows

(2.35) dJ(Ω)[θ] =
d

dt
(G(t, ut, p))|t=0 = ∂tG(t, u, p)|t=0︸ ︷︷ ︸

shape derivative

+ ∂ϕG(0, u, p)(u̇)︸ ︷︷ ︸
adjoint equation

,

and due to u̇ ∈ H1
0 (Ω) it implies

dJ(Ω)[θ] = ∂tG(t, u, p)|t=0.

Therefore, we can follow the lines of the calculation of the previous section to obtain the boundary and
volume expression of the shape derivative.
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Remark 2.15. In the original work [Céa, 1986], it was calculated as follows

dJ(Ω)[θ] = ∂ΩL(Ω, u, p) + ∂ϕL(Ω, u, p)(u′) + ∂ψL(Ω, u, p)(p′),

and assumed that u′ and p′ belong to H1
0 (Ω), which leads to the wrong formula

dJ(Ω)[θ] =

∫
Γ

(|u− ud|2 + ∂nu ∂np) θn ds.

3. AVOIDING THE MATERIAL DERIVATIVE

We have seen in the previous section that the shape derivative of a PDE constrained shape optimization
problem can be expressed as the derivative of the function

(3.1) g(t) := G(t, ut, ψ),

at t = 0. The theorem of Correa-Seeger shows that in order to compute this derivative it is not necessary
to compute the material derivative u̇. The main assumption in the theorem is the existence of saddle
points. We prove now that the saddle point assumption can be replaced by a differentiability assumption
on G.

3.1. Differentiability of the Lagrangian without material derivatives. LetE andF be Banach spaces.
Consider a function

G : [0, τ ]× E × F → R, (t, ϕ, ψ) 7→ G(t, ϕ, ψ),

such that for all (u, t) ∈ E × [0, τ ]

Gu,t : F → R : ψ 7→ G(t, u, ψ),

is affine-linear. Introduce the solution set of the state

(3.2) Λ(t) := {u ∈ E| ∂ψG(t, u, p)(ψ̂) = 0 for all ψ̂ ∈ F},
is independent of p ∈ F .

Let us introduce the following hypothesis.

Assumption (B1). (i) For all t ∈ [0, τ ], ut ∈ E(t), u0 ∈ E(0) and ψ ∈ F the mapping

s 7→ G(t, u0 + s(ut − u0), ψ),

is absolutely continuous on [0, 1]. This implies that the derivative exists for almost all s ∈ [0, 1]

∂xG(t, u0 + s(ut − u0), ψ)(ut − u0)

= lim
h→0

G(t, u0 + (s+ h)(ut − u0), ψ)−G(t, u0 + s(ut − u0), ψ))

h
,

and in particular

G(t, ut, ψ)−G(t, u0, ψ) =

∫ 1

0

∂xG(t, u0 + s(ut − u0), ψ)(ut − u0) ds

(ii) For every (ϕ, t) ∈ E × [0, τ ] the mapping

F → R : ψ 7→ G(t, ϕ, ψ),

is affine-linear.
(iii) For all t ∈ [0, τ ], ut ∈ E(t), u0 ∈ E(0), ϕ ∈ E and ψ ∈ F the limit

∂xG(t, u0 + s(ut − u0), ψ)(ϕ)

= lim
h→0

G(t, u0 + s(ut − u0) + hϕ, ψ)−G(t, u0 + s(ut − u0), ψ))

h
.

(3.3)

exists and s 7→ ∂xG(t, u0 + s(ut − u0), ψ)(ϕ) belongs to L1(0, 1).
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(iv) For every t ∈ [0, τ ], ϕ ∈ E and ψ ∈ F the partial derivative ∂tG(t, ϕ, ψ) exists.

For given ut ∈ Λ(t) and u ∈ Λ(0), consider the problem to find q ∈ F such that

(3.4)

∫ 1

0

∂ϕG(t, [ut, u]s, q)(ϕ̂) ds = 0 for all ϕ̂ ∈ E,

where we used the notation [ut, u]s := sut + (1− s)u. Introduce the following subset of F

(3.5) Υ(t) := {q ∈ F | It exist ut ∈ Λ(t) and u ∈ Λ(0) such that q solves (3.4)}.

We prove now a theorem which enables us to calculate the shape derivative without the knowledge of the
material derivative u̇.

Theorem 3.1. Let the Banach spaces E and F , the real number τ > 0, and the function

G : [0, τ ]× E × F → R, (t, ϕ, ψ) 7→ G(t, ϕ, ψ),

be given. Additionally to Assumption (B1), we make the following hypothesis.

(B2) For all t ∈ [0, τ ] the sets Υ(t) 6= ∅ and Λ(t) 6= ∅ are not empty. Moreover, Λ(t) is single valued
for all t ∈ [0, τ ] and also Υ(0) is single valued.

(B3) For any sequence (tn)n∈N converging to zero, tn → 0 as n → ∞, there exists a sub-sequence
(tnk)k∈N and for every k ≥ 1 there is a pnk ∈ Υ(tnk) such that for u0 ∈ Λ(0) and p0 ∈ Υ(0)

lim
k→0
t↘0

∂tG(t, u0, pnk) = ∂tG(0, u0, p0).

Then for all ψ ∈ F
d

dt
(G(t, ut, ψ))|t=0 = ∂tG(0, u0, p0).

Proof. Let t ∈ [0, τ ] and p̄t ∈ Υ(t), p0 ∈ Υ(0), ut ∈ Λ(t), u0 ∈ Λ(0) be given. Write

G(t, ut, ψ)−G(0, u0, ψ) = G(t, ut, p̄t)−G(0, u0, p0)

= G(t, ut, p̄t)−G(t, u0, p̄t) +G(t, u0, p̄t)−G(0, u0, p̄t),
(3.6)

for all ψ ∈ F , where we used that ψ 7→ G(t, ϕ, ψ) is affine-linear for all (t, ϕ) ∈ E × [0, τ ] and
therefore

G(0, u0, p̄t)−G(0, u0, p0) = 0.

By the mean value theorem and (B1) part (iv), we find for each t ∈ [0, τ ] a number ηt ∈ (0, 1) such that

G(t, u0, p̄t)−G(0, u0, p̄t) = t∂tG(ηtt, u
0, p̄t).

This equation and (B1) part (i) and (ii) yield that (3.6) can be written as

G(t, ut, ψ)−G(t, u0, ψ) =

∫ 1

0

∂ϕG(t, sut + (1− s)u0, p̄t)
(
ut − u0

)
ds+ t∂tG(ηtt, u

0, p̄t),

for all ψ ∈ F . Using that p̄t ∈ Υ(t) and (ut − u0) ∈ E, we get

G(t, ut, ψ)−G(0, u, ψ) = t∂tG(ηtt, u
0, p̄t), for all ψ ∈ F.

Let ψ ∈ F be arbitrary and set δ(t) := G(t, ut, ψ) − G(0, u0, ψ). Define dg(0) := lim inft↘0 δ(t)/t

and dg(0) := lim supt↘0 δ(t)/t. There are sub-sequences (ln)n∈N and (sn)n∈N of (tn)n∈N such that

lim
n→∞

δ(ln)/ln = dg(0) and lim
n→∞

δ(sn)/sn = dg(0).

Owing to (B3), we deduce that for every k ≥ 1 there is pnk ∈ Υ(lnk) such that for u0 ∈ Λ(0)

lim
k→0
t↘0

∂tG(t, u0, pnk) = ∂tG(0, u0, p0).
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This shows that
lim
n→∞

δ(ln)/ln = lim
k→∞

δ(lnk)/lnk = dg(0) = ∂tG(t, u0, p0),

and the same argumentation leads to

lim
n→∞

δ(sn)/sn = lim
k→∞

δ(snk)/snk = dg(0) = ∂tG(t, u0, p0).

Finally, we conclude

dg(0) = dg(0) = lim
t↘0

∂tG(ηtt, u
0, p̄t) = ∂tG(0, u0, p0).

Since ψ ∈ F was arbitrary we finish the proof. �

Remark 3.2. In concrete applications the conditions have the following meaning.

(i) The condition (B1) yields that G is sufficiently differentiable.
(ii) Condition (B2) ensures that the perturbed state equation has a unique solution. The set Υ(t) can

be understood as the solution of some averaged linearized state equation.
(iii) Condition (B3) can be verified by showing that p̄t converges weakly to p0 and that (t, ψ) 7→

G(t, u0, ψ) is weakly continuous. Note that there is no assumption on the convergence of ut ∈
Λ(t) to u0 ∈ Λ(0), but in applications we need the convergence ut → u to prove pt → p in some
topologies.

(iv) The set Λ(t) corresponds to the solution of the state equation on the perturbed domain Ωt brought
back to the fixed domain Ω.

3.2. Comparison of the methods. We want to compare the material derivative method (MDM), the
Modified Céa’s Lagrange method (MCLM) and the min-max formulation of Correa-Seeger. Assuming that
the function G from the last section is sufficiently differentiable, the following chain of implications is valid

MDM =⇒ MCLM =⇒ Theorem 3.1 =⇒ Theorem of Correa-Seeger

and all methods allow a rigorous proof of the shape differentiability. We point out that the MDM is the
most difficult to prove and it can involve the usage of the implicit function theorem. Despite the difficulties
the method has been successfully applied to variational inequalities ([Sokołowski and Zolésio, 1992]),
non-linear PDEs ([Myśliński, 1993]) and coupled systems ([Leugering et al., 2011]).

On the other hand the MCLM is using the material derivatives and has therefore the same difficulties, but
the formulas for the boundary and domain expression are obtained in an efficient way.

The Theorem 3.1 fills the gap between the Theorem of Correa-Seeger and the material derivative method.
Provided the corresponding function G is sufficiently differentiable, it implies main part of the conclusions
of the theorem of Correa-Seeger.

The verification of the necessary conditions to apply the theorem of Correa-Seeger is challenging. In
particular, the assumption that G has saddle points is restrictive. Moreover, an application to coupled
systems of PDEs is hard. Nevertheless, the theorem has been applied to a variety of linear problems, for
instance, eigenvalue problems ([Delfour and Zolésio, 2011]). It is worth to mention that the theorem can
be still applied if the cost function is only quasi-convex ([Delfour and Zolésio, 1991]).

4. A QUASI-LINEAR TRANSMISSION PROBLEM

As an application of Theorem 3.1, we investigate a non-linear transmission problem and use it to compute
the shape derivative. We associate with the transmission problem a minimization problem. To achieve the
well-posedness of the minimization problem a Gagliardo regularization is used. The considered model
constitutes a generalization of the electrical impedance tomography (EIT) problem, which can be found
in [Afraites et al., 2007].
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D

Ω−

n+

FIGURE 1. Domain D which contains Ω = Ω+ and Ω−, where Γ is the boundary of Ω.

4.1. The problem setting. LetD ⊂ R2 be open and bounded set with C2 boundary ∂D and Ω ⊂⊂ D
be a compactly contained subset with C2 boundary. We set Ω+ := Ω, Ω− := D \ Ω and Γ := ∂Ω+

such that we have the decomposition D = Ω+ ∪ Ω− ∪ Γ. An example of a domain D with subset
Ω = Ω+ ⊂ D is depicted in Figure 4.1. We consider for p ∈ [1,∞) and 0 < s < 1/p the cost function

(4.7) J(Ω) := J1(Ω) + αJ2(Ω) :=

∫
D

|u(Ω)− ud|2 dx+ α|χΩ|pW s
p (D),

constrained by the equations

− div (β+(|∇u+|2)∇u+) = f+ in Ω+,

− div (β−(|∇u−|2)∇u−) = f− in Ω−,

u = 0 on ∂D,

(4.8)

complemented by transmission conditions

[u]Γ = 0 on Γ,[
β(|∇u|2, x)∂nu

]
Γ

= 0 on Γ,
(4.9)

where n := n+ denotes the outward unit normal vector along the boundary Γ = ∂Ω+ of Ω+. We denote
by n− := −n = −n+ the outward unit normal vector of Ω−. The bracket

[φ]Γ (x) := lim
z→x,z∈Ω+

φ(z)− lim
z→x,z∈Ω−

φ(z)

denotes the jump of a function φ across Γ at x ∈ Γ. For a given function ϕ : D → R, we write ϕ+ for
the restriction ϕ|Ω+ : Ω+ → R and likewise ϕ− for ϕ|Ω− : Ω− → R. The penalty term in (4.7) is called
Gagliardo semi-norm and defined by

|χΩ|pW s
p (D) :=

∫
D

∫
D

|χΩ(x)− χΩ(y)|p

|x− y|d+sp
dxdy.

For later usage it is convenient to introduce the functions βχ : R×R→ R

βχ(y, x) := χ(x)β+(y) + χc(x)β−(y)

where χ is a characteristic function and χc := (1 − χ) and β′χ : R × R → R by β′χ(y, x) :=
χ(x)∂yβ+(y) + χc(x)∂yβ−(y). Subsequently, the characteristic function χ = χΩ is always defined by
the set Ω = Ω+ ⊂ D. To simplify notation, we write β(|∇u|2, x) instead of βχ(|∇u|2, x) and similarly
β′(|∇u|2, x) for β′χ(|∇u|2, x). We make the following assumptions.

Assumption 4.1. We require the functions β+, β− : R→ R to satisfy the following conditions.
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1. There exist constants β̄+, β+, β̄−, β− > 0, such that

β̄+ ≤ β+(x) ≤ β+, β̄− ≤ β−(x) ≤ β− for all x ∈ R2.

2. For all x, y ∈ R, we have

(β+(x)− β+(y))(x− y) ≥ 0 and (β−(x)− β−(y))(x− y) ≥ 0.

3. The functions β+, β− are C2 regular, i.e., β+, β− ∈ C2(R2).
4. There are constants k,K > 0 such that

k‖η‖2 ≤ β±(‖p‖2)‖η‖2 + 2β′±(‖p‖2)|p · η|2 ≤ K‖η‖2, for all η, p ∈ R2.

Moreover, we assume that ud ∈ H2(D) and f ∈ C2(D).

Finally, the weak formulation of (4.8),(4.9) reads

u ∈ H1
0 (D) :

∫
D

βχ(|∇u|2, x)∇u · ∇ψ dx =

∫
D

fψ dx for all ψ ∈ H1
0 (D).(4.10)

4.2. Existence of optimal shapes. We are interested in the question under which restriction on the
characteristic functions a minimization of (4.7) admits a solution. We investigate the problem

(4.11) min
χ∈BW s

p (D)
Ĵ(χ),

where Ĵ(χΩ) := J(Ω) and J is given by (4.7). For every p ∈ [1,∞) and 0 < s < 1/p, we introduce
the space

(4.12) BW s
p (D) := {χΩ : R→ R| Ω ⊂ D, χΩ(1− χΩ) = 0 in D and |χΩ|W s

p (D) <∞},
which is not empty since BV (D) ∩ L∞(D) ⊂ BW s

p (D), see [Delfour and Zolésio, 2011, p.253, Theo-
rem 6.9.,(ii)]. Compared with the perimeter3 PD(Ω) the function |χΩ|pW s

p (D) provides a weaker regulariza-
tion. In particular, the regularization term and its shape derivative are domain integrals. This makes the
regularization favorable for numerical simulations. We begin with the study of the state equation (4.10).

Theorem 4.2. The equation (4.10) admits a unique weak solution in H1
0 (D).

Proof. Let (x, z) 7→ h±(x, z) : Rd ×R→ R be two functions. Let

h
(1)
± (x, z) := ∂zh±(x, z), h

(2)
± (x, z) := ∂2

zh±(x, z),

Given an open domain D and another domain Ω ⊂ D, let χ = χΩ be its characteristic function and
consider the energy functional

E(χ, ϕ) =

∫
D

1

2
[χ(x)h+(x, |∇ϕ(x)|2) + (1χ(x))h+(x, |∇ϕ(x)|2)]+

+ f(x)ϕ(x)dx

and its differential in u in the direction ϕ

dE(χ, u;ϕ) =

∫
D

χ(x)h+(x, |∇u(x)|2) + (1− χ(x))h−(x, |∇u(x)|2)∇u(x) · ∇ϕ(x)

−
∫
D

f(x)ϕ(x) dx

The primitive h± of β± is given by

h±(x, z) = c±(x) +

∫ z

0

β±(s) ds,

3The perimeter of a set Ω ⊂ Rd is defined as PD(Ω) := sup
ϕ∈C1c (D;Rd)

‖ϕ‖L∞(D)<∞

∫
Rd div (ϕ)χΩdx.
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for some arbitrary bounded measurable functions c±(x) and we may choose c±(x) = 0. The Hessian
of E(χ, ϕ) is given by

d2E(χ, u;ϕ, ψ) =

∫
D

[χ(x)h+(x, |∇u(x)|2) + (1− χ(x))h−(x, |∇ϕ(x)|2)∇ψ(x) · ∇ϕ(x) dx

+

∫
D

χ(x)h+(|∇u(x)|2) + (1− χ(x))h−(|∇ϕ(x)|2)∇u(x) · ∇ϕ(x)∇u(x) · ∇ψ(x) dx.

Therefore,

d2E(χ, u;ϕ, ϕ) =

∫
D

χ(x)h+(x, |∇u(x)|2) + (1− χ(x))h−(x, |∇ϕ(x)|2)|∇ϕ(x)|2 dx

+

∫
D

χ(x)h+(x, |∇u(x)|2) + (1− χ(x))h−(x, |∇ϕ(x)|2)|∇u(x) · ∇ϕ(x)|2 dx.

According to Assumption 4.1 part 4, there exist k > 0 and K > 0 such that for all η, p ∈ Rd

k‖η‖2 ≤ β±(‖p‖2)‖η‖2 + 2β
(1)
± (‖p‖2)|p · η|2 ≤ K‖η‖2

or in terms of the primitives

k‖η‖2 ≤ h
(1)
± (‖p‖2)‖η‖2 + 2h

(2)
± (‖p‖2)|p · η|2 ≤ K‖η‖2

Therefore, for all u, ϕ ∈ H1
0 (D),

k

∫
D

|∇ϕ(x)|2 dx ≤ d2E(χ, u;ϕ, ϕ) ≤ K

∫
D

|∇ϕ(x)|2 dx.

The functional E(χ, ϕ) is strictly (and even strongly) convex and twice differentiable. So there exists a
unique minimizing solution in u ∈ H1

0 (D) to the variational equation

∃u ∈ H1
0 (D), ∀ϕ ∈ H1

0 (D), dE(χ, u;ϕ) = 0.

�

Let us introduce the set of all characteristic functions

X(D) := {χΩ : Ω ⊂ D is measurable and χΩ(χΩ − 1) = 0 a.e. in D}.

The next Lemma proves the Lipschitz continuity of the mapping X(D) 3 χ 7→ u(χ) ∈ H1
0 (D), where

u(χ) denotes the weak solution (4.10) and X(D) is endowed with the Lp(D) norm.

Lemma 4.3. Assume that the weak solution (4.10) belongs to u ∈ W 1,2+γ(D) for some γ > 0. Then
there is a constant C > 0 and q > 2 such that for all chacteristic functions χ1, χ2 ∈ X(D)

‖u(χ1)− u(χ2)‖H1(D) ≤ C‖χ1 − χ2‖Lq(D),

where u(χ1) and u(χ2) are solution of the state (4.10).

Proof. Let u(χ1) = u1 and u(χ2) = u2 be solutions in H1
0 (D) of (4.10) associated with two character-

istic functions χ1, χ2. Then by boundedness of βχ1 and βχ2 , we obtain

C1‖u1 − u2‖2
H1(D) ≤

∫
D

βχ1(|∇u1|2, x)∇(u1 − u2) · ∇(u1 − u2) dx

=

∫
D

(βχ2(|∇u2|2, x)− βχ1(|∇u1|2, x))∇(u1 − u2) · ∇u2 dx
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and also

C2‖u1 − u2‖2
H1(D) ≤

∫
D

βχ2(|∇u2|2, x)∇(u1 − u2) · ∇(u1 − u2) dx

=

∫
D

(βχ2(|∇u2|2, x)− βχ1(|∇u1|2, x))∇(u1 − u2) · ∇u1 dx.

Adding both inequalities yields with C := C1 + C2

C‖u1 − u2‖2
H1(D) ≤

∫
D

(βχ2(|∇u2|2, x)− βχ1(|∇u1|2, x))∇(u1 − u2) · ∇(u1 + u2) dx

=

∫
D

(χ2β+(|∇u2|2)− χ1β+(|∇u1|2))∇(u1 − u2) · ∇(u1 + u2) dx

+

∫
D

(χc2β−(|∇u2|2)− χc1β−(|∇u1|2))∇(u1 − u2) · ∇(u1 + u2) dx

and therefore

C‖u1 − u2‖2
H1(D) ≤

∫
D

(χ2 − χ1)β+(|∇u2|2))∇(u1 − u2) · ∇(u1 + u2) dx

+

∫
D

χ1(β+(|∇u2|2)− β+(|∇u1|2))∇(u1 − u2) · ∇(u1 + u2) dx

+

∫
D

(χ1 − χ2)β−(|∇u2|2)∇(u1 − u2) · ∇(u1 + u2) dx

+

∫
D

χc1(β−(|∇u2|2)− β−(|∇u1|2))∇(u1 − u2) · ∇(u1 + u2) dx.

(4.13)

Now we use the monotonicity of β+ and β− to conclude∫
D

χc1(β−(|∇u2|2)− β−(|∇u1|2))(∇u1 −∇u2) · (∇u1 +∇u2) dx

= −
∫
D

(1− χ1)(β−(|∇u2|2)− β−(|∇u1|2))(|∇u2|2 − |∇u1|2) dx ≤ 0

and similarly ∫
D

χ1(β+(|∇u2|2)− β+(|∇u1|2))(∇u1 −∇u2) · (∇u1 +∇u2)

= −
∫
D

χ1(β+(|∇u2|2)− β+(|∇u1|2))(|∇u2|2 − |∇u1|2) ≤ 0.

By assumption there are γ > 1 and C > 0 such that ‖u(χ)‖W 1,2+γ(D) ≤ C for all χ ∈ BW s
p (D).

Therefore using Hölder’s inequality, we deduce from (4.13)

C‖u1 − u2‖2
H1(D) ≤ (β̄+ + β̄−)‖χ2 − χ1‖L2q′ (D)‖∇(u1 − u2)‖L2(D)‖∇(u1 + u2)‖L2q(D),

where q = 2+γ
2

and q′ := q
q−1

= 2
γ

+ 1. �

Corollary 4.4. For given characteristic function χ = χΩ, where Ω ⊂ D is of classC2, the state equation
(4.10) has a unique solution.

With all the proves in the above paragraph the main result can be proved.

Theorem 4.5. Let p ∈ [1,∞) and s > 0 be such that 0 < s < 1/p. Then the optimization problem
(4.11) has at least one solution χ = χΩ ∈ BW s

p (D).
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Proof. First note that BW s
p (D) ⊂ Lp(D) is a bounded subset for each p ∈ [1,∞). By Theorem 7.1.

[Di Nezza et al., 2012], we have that BW s
p (D) is totally bounded in Lp(D). Since Lp(D) is a complete

vector space, this is equivalent to being relatively compact. Thus for any bounded sequence (χn)n∈N
in BW s

p (D), there exists a sub-sequence (χnk)k∈N, converging in Lp(D). Now let us denote by j :=

infχ∈BW s
p (D) Ĵ(χ). Since Ĵ(χ∅) is finite, we conclude j < ∞. Then pick a sequence of (χn)n∈N

in BW s
p (D) such that limn→∞ Ĵ(χn) = j. After the preceding, we may choose a sub-sequence still

denoted by (χn)n∈N such that χn → χ inLp(D), where χ ∈ BW s
p (D). Using Lemma 4.3, we conclude

u(χn)→ u(χ) in H1(D) and thus

Ĵ(χ) ≤ lim
n→∞

Ĵ(χn) = inf
χ∈BW s

p (D)
Ĵ(χ).

�

4.3. Shape derivative of J2. We show that the penalty term J2(Ω) = |χΩ|pW s
p (D) is shape differentiable.

Lemma 4.6. Let θ ∈ C2
D(Rd). Fix p ∈ [1,∞) and 0 < s < 1/p. Then, for given open set Ω ⊂ D such

that |χΩ|W s
p (D) <∞ the mapping

Ω 7→ J2(Ω) := |χΩ|pW s
p (D),

is shape differentiable with derivative

dJ2(Ω)[θ] = 2

∫
Ω

∫
D\Ω

div (θ)(x) + div (θ)(y)

|x− y|d+sp
dxdy

+ c

∫
Ω

∫
D\Ω

(x− y)

|x− y|d+sp+1
· (θ(x)− θ(y)) dxdy

where c := −2(d+ ps). This can be written in terms of χΩ as

dJ2(Ω)[θ] =

∫
D

∫
D

( div (θ)(x) + div (θ)(y))
|χΩ(x)− χΩ(y)|p

|x− y|d+sp
dxdy

+
c

2

∫
D

∫
D

|χΩ(x)− χΩ(y)|p

|x− y|d+ps+1
(x− y) · (θ(x)− θ(y)) dxdy.

(4.14)

Proof. Using the change of variables x̂ = Φt(x) gives

J(Ωt) = 2

∫
Ω

∫
D\Ω

ξ(t)(x)ξ(t)(y)

|Φt(x)− Φt(y)|d+ps
dxdy,

and consequently using that Φt is infective, we obtain the desired formula by differentiating the above
equation at t = 0. �

Remark 4.7. Note that due to the Lipschitz continuity of θ and supp(θ) ⊂ D the shape derivative (4.14)
is well-defined.

4.4. Shape differentiability of J1. We are going to prove that the cost function J1 given by (4.7) is
shape differentiable. Moreover, we derive the boundary and domain expression of the shape derivative.
To be more precise, Theorem 3.1 is applied to show the next theorem.

Theorem 4.8. Let D ⊂ R2 be a bounded, open and smooth set. Fix an open set Ω ⊂⊂ D ⊂ R2

and assume its boundary Γ := ∂Ω is of class C2.4 Then the shape function J1 given by (4.7) is shape

4Note that for an open set Ω ⊂ Rd of class C2, we have χΩ ∈ BV (D) ∩ L∞(D) and therefore χΩ ∈ BW s
p (D).
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differentiable for every θ ∈ C2
D(R2).5 The domain form reads

dJ1(Ω)[θ] =

∫
D

div (θ)|u− ud|2 dx−
∫
D

2(u− ud)∇ud · θ dx−
∫
D

div (θ)fp dx

−
∫
D

∇f · θp dx+

∫
D

β(|∇u|2, x)A′(0)∇u · ∇p dx

−
∫
D

2β′(|∇u|2, x)(∂θT∇u · ∇u)(∇u · ∇p) dx.

(4.15)

Moreover, the boundary expression is given by

dJ1(Ω)[θ] =−
∫

Γ

[
2β′(|∇u|2, x)(∇Γu · ∇Γp+ ∂nu ∂np)∂nu ∂nu

]
Γ
θnds

+

∫
Γ

[
β(|∇u|2, x)∇Γu · ∇Γp− β(|∇u|2, x)∂nu ∂np

]
Γ
θn ds

(4.16)

where u ∈ H1
0 (D) satisfies (4.10) and p ∈ H1

0 (Ω) solves∫
D

2β′(|∇u|2, x)(∇u · ∇p)(∇u · ∇ψ) dx+

∫
Ω

β(|∇u|2, x)∇ψ · ∇p dx

= −
∫
D

2(u− ud)ψ dx for all ψ ∈ H1
0 (D).

(4.17)

We apply Theorem 3.1 to the function

G(t, ϕ, ψ) =
∑

ς∈{+,−}

(∫
Ως
ξ(t)|ϕ− utd|2 dx+

∫
Ως
βς(|B(t)∇ϕς |2)A(t)∇ϕς · ∇ψς dx

)
−

∑
ς∈{+,−}

∫
Ως
ξ(t)(f ς ◦ Φt)ψ

ς dx,

(4.18)

with E = H1
0 (D) and F = H1

0 (D), to show the previous Theorem. Notice that J(Ωt) = G(t, ut, ψ),
where ut ∈ H1

0 (D) solves

(4.19)

∫
D

β(|B(t)∇ut|2, x)A(t)∇ut · ∇ψ dx =

∫
D

ξ(t)f tψ dx, for all ψ ∈ H1
0 (D).

Roughly spoken the function G constitutes the sum of the perturbed cost functional J(Ωt) and the weak
formulation (4.19). Condition (i) and (ii) of hypothesis (B1) are satisfied due to the differentiability of the
functions β+, β− and the Assumption 4.1. Condition (iii) is satisfied by construction. Condition (iv) is valid
since A(t), B(t) and ξ(t) are smooth. Moreover, condition (B2) is valid since Λ(t) = {ut}, where
ut ∈ H1

0 (D) is the solution of the state equation (4.19) and Υ(t) = {p̄t}, where p̄t ∈ H1
0 (D) is the

unique solution of∫ 1

0

∫
D

2ξ(t)β′(|B(t)∇ust |2, x)(B(t)∇ust ·B(t)∇p̄t)(B(t)∇ust ·B(t)∇ψ) dx ds

+

∫ 1

0

∫
D

β(|B(t)∇ust |2, x)A(t)∇ψ · ∇p̄t dx ds

= −
∫ 1

0

∫
D

ξ(t)2(ust − ud)ψ dx ds, for all ψ ∈ H1
0 (D),

(4.20)

where ust := sut + (1 − s)u. To prove that the previous equation has indeed a unique solution, we
first check that all integrals are finite in the previous equation. To verify this we use Hölder’s inequality to

5We use the notation A ⊂⊂ B indicate that A ⊂ B and A ⊂ B is compact.
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obtain ∫
D

2ξ(t)β′(|B(t)∇ust |2, x)(B(t)∇ust ·B(t)∇p̄t)(B(t)∇ust ·B(t)∇ψ) dx

≤ c

(∫
D

2β′(|B(t)∇ust |2, x)(B(t)∇ust ·B(t)∇p̄t)2 dx

)1/2

·(∫
D

2β′(|B(t)∇ust |2, x)(B(t)∇ust ·B(t)∇ψ)2 dx

)1/2

and∫
D

β(|B(t)∇ust |2, x)A(t)∇ψ · ∇p̄t dx

≤ c

(∫
D

β(|B(t)∇ust |2, x)|B(t)∇ψ|2 dx
)1/2(∫

Ω

β(|B(t)∇ust |2, x)|B(t)∇p̄t|2 dx
)1/2

.

Adding both equations and using part 4 of Assumption 4.1, we get∫
D

2ξ(t)β′(|B(t)∇ust |2, x)(B(t)∇ust ·B(t)∇p̄t)(B(t)∇ust ·B(t)∇ψ) dx

+

∫
D

β(|B(t)∇ust |2, x)A(t)∇ψ · ∇p̄t dx

≤ c‖ψ‖H1(D)‖p̄t‖H1(D),

(4.21)

and the constant c > 0 is independent of s.

The existence of a solution p̄t follows from the theorem of Lax-Milgram, since A(t) is positive definite
independently, i.e., there are numbers λ > 0 and τ > 0 such that for all t ∈ [0, τ ] and ζ ∈ R2, we
have A(t)ζ · ζ ≥ λ|ζ|2. Moreover, by Assumption 4.1, we conclude β′ ≥ 0 and β ≥ c > 0. Note
that p0 = p ∈ Υ(0) is the unique solution of the adjoint equation (4.17). To verify (B3), we show that
there is a sequence (p̄tk)k∈N, where p̄tk ∈ Υ(tk) converging weakly in H1

0 (D) to the solution of the
adjoint equation and that (t, ψ) 7→ ∂tG(t, u0, ψ) is weakly continuous. In order to prove this, we need
the following lemma.

Lemma 4.9. For t small the mapping t 7→ ut := Ψt(ut) ∈ H1
0 (D) is continuous from the right in 0, i.e.,

for every ε > 0 there exists a δ > 0 such that

for all t > 0 with t < δ =⇒ ‖ut − u‖H1(D) ≤ ε.

Proof. At first recall that the function A(t) = ξ(t)∂Φ−1
t ∂Φ−Tt is positive definite. Therefore, using the

change of variables Φt(x) = y, we see that for arbitrary f ∈ H1(D), there exist C > 0 and τ > 0,
such that for all t ∈ [0, τ ]∫

D

|∇(f ◦ Φ−1
t )|2dx =

∫
D

A(t)∇f · ∇fdx ≥ C

∫
D

|∇f |2dx.

Further, we get from this estimate that there are constants c > 0 and τ > 0, such that for all t ∈ [0, τ ]

(4.22) c‖f‖H1(D) ≤ ‖f ◦ Φ−1
t ‖H1(D).

Now setting χ1 := χΩ and χ2 := χΩt = χΩ ◦ Φ−1
t and denoting the corresponding solutions of (4.10)

by u := u(χΩ) and ut := u(χΩt), we infer from Lemma 4.3 and (4.22)

c‖u ◦ Φt − ut‖H1(D) ≤ ‖ut − u‖H1(D) ≤ C‖χΩ − χΩ ◦ Φ−1
t ‖Lq(D),
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for some q > 1, where ut := ut ◦ Φt. Notice that c and C are independent of t. In summary, there are
constants c̃ > 0 and τ > 0 such that for all t ∈ [0, τ ]

‖u− ut‖H1(D) ≤ ‖u− u ◦ Φt‖H1(D) + ‖u ◦ Φt − ut‖H1(D)

≤ c̃(‖u− u ◦ Φt‖H1(D) + ‖χΩ − χΩ ◦ Φ−1
t ‖Lq(D)).

Finally, taking into account part 1. and 2. of Lemma 2.1, we obtain the desired continuity. �

With this Lemma we are able to show the following.

Lemma 4.10. The solution p̄t of (4.21) converges weakly in H1
0 (D) to the solution p of the adjoint

equation (4.17).

Proof. The existence of a solution of (4.21) follows from the Theorem of Lax-Milgram. Inserting ψ = p̄t as
test function in (4.21), we see that estimate ‖ut‖H1(D) ≤ C implies ‖p̄t‖H1(D) ≤ C for t sufficient small.
From the boundedness, we infer that (p̄t)t≥0 converges weakly to some w ∈ H1

0 (D). In Lemma 4.9 we
proved ut → u in H1(D) which we can use to pass to the limit in (4.21) and obtain

p̄tk ⇀ p in H1(D), for tk → 0, as k →∞,

where p ∈ H1
0 (D) solves the adjoint equation (4.17). By uniqueness we conclude w = p. �

Finally, differentiating (4.18) at t > 0, yields

∂tG(t, ϕ, ψ) = −
∫
D

2(ϕ− utd)B(t)∇utd · θt dx+

∫
D

div (θt) ◦ Φt|ϕ− utd|2 dx

+

∫
D

β′(|∇ϕ|2, x)2(B′(t)∇ϕ ·B(t)∇ϕ)A(t)∇ϕ · ∇ψ dx

−
∫
D

div (θt) ◦ Φtf
tψ dx−

∫
D

ξ(t)B(t)∇f t · θtψ dx

−
∫
D

β(|B(t)∇ϕ|2, x)A′(t)∇ϕ · ∇ψ dx,

(4.23)

and this shows that for fixed ϕ ∈ H1
0 (D) the mapping (t, ψ) 7→ ∂tG(t, ϕ, ψ) is weakly continuous. This

finishes the proof that condition (B3) is satisfied. Consequently, we may apply Theorem 3.1 and obtain

dJ1(Ω)[θ] = ∂tG(0, u, p),

where u ∈ H1
0 (D) solves the state equation (4.10) and p ∈ H1

0 (D) is a solution of the adjoint equation
(4.17). This proves formula (4.15).

We continue to show that the boundary expression of dJ1(Ω) is given by formula (4.16). It can be seen
from the domain expression (4.15), that the mapping dJ1(Ω) : C∞c (D)→ R is linear and continuous for
the C1

c (D) topology. It is known from Zolésio’s structure theorem [Delfour and Zolésio, 2011, p.480] that
under the assumption that Γ is C2, the shape derivative is of the form

dJ1(Ω)[θ] = 〈h, θn〉C2(Γ),

for some distribution h ∈ (C2(Γ))∗ and if additionally h ∈ L1(Γ) then

(4.24) dJ1(Ω)[θ] =

∫
Γ

h θnds.

One way to derive the boundary expression is to integrate by parts in the domain expression (4.15). Since
this process is quite tedious, we go another way described in the sequel.

In the following, we make the following assumption.
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Assumption 4.11. The solution u of (4.10) is a classical solution in the sense that there is some 0 <
α < 1 such that

∂xixju
+, ∂xiu

+ ∈ C0,α(Ω+), ∂xixju
−, ∂xiu

− ∈ C0,α(Ω−) (i, j = 1, 2).

Moroever, the partial derivatives are bounded by a constant C > 0.

Note first, by taking appropriate test functions in the weak formulation of the adjoint equation (4.17) that
p solves

− div (β+(|∇u+|2)∇p+ + 2β′+(|∇u+|2)(∇u+ · ∇p+)∇u+) = −2(u+ − ud) in Ω+,

− div (β−(|∇u−|2)∇p− + 2β′−(|∇u−|2)(∇u− · ∇p−)∇u−) = −2(u− − ud) in Ω−,

p = 0 on ∂D,

(4.25)

complemented by transmission conditions

[p]Γ = 0 on Γ,[
β(|∇u|2, x) ∂np+ 2β′(|∇u|2, x)∇u · ∇p ∂nu

]
Γ

= 0 on Γ.
(4.26)

The same argumentation shows that the solution u of (4.10) solves in fact the strong formulation (4.8),(4.9).
We collect this in the following Lemma.

Lemma 4.12. The functions u and p solve the state and adjoint equation in the strong sense (4.8),(4.9)
and (4.25),(4.26), respectively.

Using the change of variables Φt(x) = y, the function G can be rewritten as

G(t, ut, ψ̂) =
∑

ς∈{+,−}

(∫
Ωςt

|Ψt(uς,t)− utd|2 dx−
∫

Ωςt

f ςΨt(ψ̂t,ς) dx

)

+
∑

ς∈{+,−}

∫
Ωςt

βς(|∇(Ψt(ut,ς))|2)∇(Ψt(ut,ς)) · ∇(Ψt(ψ̂t,ς)) dx,

(4.27)

where ut,ς := Ψt(u
ς
t) and ψ ∈ H1

0 (D). Therefore using the transport Theorem 2.4 yields

dJ1(Ω)[θ] =
∑

ς∈{+,−}

∫
Ως

2(u− ud)ũς dx+

∫
Ως

2β′ς(|∇uς |2)(∇uς · ∇ũς)∇uς · ∇pς dx

+
∑

ς∈{+,−}

∫
Ως
βς(|∇uς |2)∇ũς · ∇pς dx+

∫
Ως
βς(|∇uς |2)∇uς · ∇p̃ς dx

−
∑

ς∈{+,−}

∫
Ως
f ς p̃ς dx+

∑
ς∈{+,−}

∫
∂Ως

βς(|∇uς |2)∇uς · ∇pς θnςds

−
∑

ς∈{+,−}

∫
∂Ως

f ςpς θnςds,

(4.28)

where we use the notation ũς = −∇uς · θ and p̃ς = −∇pς · θ.

Remark 4.13. Note that

(4.29) p̃(x) :=

{
p̃+(x), x ∈ Ω+

p̃−(x), x ∈ Ω−
, ũ(x) :=

{
ũ+(x), x ∈ Ω+

ũ−(x), x ∈ Ω−
,

are piecewise H1 functions, but do not belong to H1
0 (D). Therefore it is not allowed to insert these

functions as test functions in the adjoint or state equation.
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Integrating by parts in (4.28) gives

dJ1(Ω)[θ] = −
∑

ς∈{+,−}

{∫
Ως

div
(
βς(|∇uς |2)∇pς + 2β′ς(|∇uς |2)(∇uς · ∇pς)∇uς

)
ũς dx

+

∫
Ως

2(u− ud)ũς dx
}
−

∑
ς∈{+,−}

∫
Ως

(
div

(
βς(|∇uς |2)∇uς

)
+ f ς

)
p̃ς dx

+
∑

ς∈{+,−}

∫
∂Ως

βς(|∇uς |2)ũς∂nςp
ς + βς(|∇uς |2)p̃ς∂nςu

ς dx

+
∑

ς∈{+,−}

∫
∂Ως

βς(|∇uς |2)∇uς · ∇pς θnς + 2β′ς(|∇uς |2)(∇uς · ∇pς)∂nςuς ũςds,

and taking into account Lemma 4.12, we see that the first two lines vanish and thus

dJ1(Ω)[θ] =
∑

ς∈{+,−}

∫
Γ

βς(|∇uς |2)(−∇uς · θ)∂nςpς − βς(|∇uς |2)∂θp
ς∂nςu

ς dx

+
∑

ς∈{+,−}

∫
Γ

βς(|∇uς |2)∇uς · ∇pς θnςds−
∫

Γ

2β′ς(|∇uς |2)(∇uς · ∇pς)∂nςuς∂θuςds,
(4.30)

where ∂θuς := ∇uς · θ. According to (4.24) the right hand side of (4.30) depends linearly on θn = θ · n.
This can be accomplished by splitting θ into normal and tangential part in two different ways on Γ,

θ+
T := θ − θn+n+, θ−T := θ − θn−n−,

where θn− := θ · n− and θn+ := θ · n+. Note that θn+n+ = θn−n
− implies θ+

T − θ
−
T = 0 and

∇p+ · θ+
T = ∇Γp

+ · θ+
T = ∇Γp

− · θ−T = ∇p− · θ−T ,

since ∇Γu
+ = ∇Γu

− on Γ due to Remark 2.9. Thus we see that the tangential terms in (4.30) vanish,
since ∑

ς∈{+,−}

∫
Γ

βς(|∇uς |2)(∇pς · θ)∂nςuς dx =
∑

ς∈{+,−}

∫
Γ

βς(|∇uς |2)(∂nςp
ς∂nςu

ς)θnς dx

+
∑

ς∈{+,−}

∫
Γ

βς(|∇uς |2)∂nςu
ς(∇Γp

ς · θςT ) dx︸ ︷︷ ︸
=0,(4.10)

,

and similarly∑
ς∈{+,−}

∫
Γ

βς(|∇uς |2)(∇uς · θ)∂nςpς dx+

∫
Γ

β̂′ς,uς (∇uς · ∇pς)∂nςuς(∇uς · θ)ds

=
∑

ς∈{+,−}

∫
Γ

βς(|∇uς |2)∂nςu
ς∂nςp

ςθn dx+

∫
Γ

β̂′ς,uς (∇uς · ∇pς)∂nςuς∂nςuςθnds

+
∑

ς∈{+,−}

∫
Γ

(βς(|∇uς |2)∂nςp
ς + β̂′ς,uς (∇uς · ∇pς∂nςuς)(∇Γu

ς · θςT ) dx︸ ︷︷ ︸
=0,(4.26)
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where we abbreviated β̂′ς,uς := 2β′ς(|∇uς |2). Thus we finally obtain from (4.30) the boundary expression

dJ1(Ω)[θ] = −
∑

ς∈{+,−}

∫
Γ

2β′ς(|∇uς |2)(∇uς · ∇pς)(∂nςuς)2 θnςds

+
∑

ς∈{+,−}

∫
Γ

βς(|∇uς |2)∇Γu
ς · ∇Γp

ς θnς − βς(|∇uς |2)∂nςu
ς∂nςp

ς θnςds,

which is equivalent to (4.16).

Remark 4.14. If the transmission coefficients are constant in each domain, that is β′(|∇u|2, x) = 0, the
formula is in coincidence with the one in [Afraites et al., 2007]. To the authors knowledge this formula also
corrects the one in [Cimrák, 2012]. When β′(|∇u|2, x) 6= 0 the linear case differs from the non-linear by
the term

−
∫

Γ

[
2β′(|∇u|2, x)(∇u · ∇p)∂nu∂nu

]
Γ
θnds.

Remark 4.15. Using Cea’s original method, would lead to the wrong formula

dJ1(Ω)[θ] =

∫
Γ

[
β(|∇u|2, x)∇u · ∇p

]
Γ
θn ds.

CONCLUSION

We compared different methods to prove the shape differentiability. In the main result of the paper, we pre-
sented a theorem which allows to prove the shape differentiability without computing material derivatives.
In contrast to the theorem of Correa-Seeger, we do not need any saddle point assumption. We applied
the method to a quasi-linear transmission problem and showed existence of an associated optimization
problem.

We emphasis that Theorem 3.1 can be applied to curl curl and div div equations, but then a different
parametrization Ψt has to be chosen. For instance for a curl curl equation in R3, we can use the
transformation (see [Monk, 2003])

(4.31) Ψt(v) := (∂ΦT
t )(v ◦ Φt), v ∈H1

curl (D).

For div div equations, we can use (see [Sokołowski and Zolésio, 1992])

(4.32) Ψt(v) := ξ−1(t)∂(ξ(t)(v ◦ Φt)), v ∈H1
div (D).

A slight modification of Theorem 3.1 shows that it is also applicable to non-linear coupled systems. In
summary, there is little restriction of this method except some differentiability assumption, which might be
in some applications not desirable. We conclude that Theorem 3.1 represents an effective tool to prove
the shape differentiability and to derive the boundary and domain expression of the shape derivative.
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