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ABSTRACT. This paper studies the relationship between the material derivative method, the shape de-
rivative method, the min-max formulation of Correa and Seeger, and the Lagrange method introduced
by Céa. A theorem is formulated which allows a rigorous proof of the shape differentiability without the
usage of material derivative; the domain expression is automatically obtained and the boundary expression
is easy to derive. Furthermore, the theorem is applied to a cost function which depends on a quasi-linear
transmission problem. Using a Gagliardo penalization the existence of optimal shapes is established.

1. INTRODUCTION

A map defined on a set of subsets of R? is called shape function. The study of these functions is the
main topic of shape optimization. The concept of derivative in Banach spaces does not apply to shape
functions since there is no immediate vector space structure on its domain of definition. Nevertheless, it
is possible to introduce a derivative for a shape function called shape derivative. To be more precise, let
a shape function

J:Z — R,
with = C {Q: Q C R?} be given and assume that it is shape differentiable, i.e., the limit
(11 AII6) =l () = T() /1,

exists and 6 — d.J(2)[] is continuous and linear. Here, we defined 2, := ®,(£2), where the mapping
®, is the flow generated by the differentiable vector field 8 : R¢ — R? with compact support. Zolésio’s
structure theorem [Delfour and Zolésio, 2011] states that the shape derivative depends only on the normal
part #,, := 6 - n of the vector field & on the boundary I' := 0f). Moreover, if the boundary I' is smooth
enough, the shape derivative has the form

(12 41(©)6) = [ ov 0,

r
where gr € L;(I") is an integrable function. We call the integral over the boundary I" in (1.2) boundary
expression of the shape derivative.

There are mainly three ways to identify the boundary expression (1.2) of the shape derivative of a cost
function constraint by a PDE. The first is the shape derivative method [Sokotowski and Zolésio, 1992],
the second is the min-max formulation by [Delfour and Zolésio, 2011] and finally there is Céa’s Lagrange
method introduced in [Céa, 1986].

The shape derivative method analyzes the differentiablity of the PDE with respect to the domain. The
material derivative is introduced to derive the shape differentiability, but it is not present in the final formula
of the shape derivative.

Céa’s Lagrange method incorporates the PDE constraints in a Lagrangian, but assumes that the shape
derivatives of the PDE and the adjoint equation exist. While the shape derivative method gives a rigorous
proof of the differentiability of the shape function, this is different for Céa’s Lagrange method. There are
examples (see [Pantz, 2005]), where Céa’s Lagrange method fails.

The min-max formulation first introduced by [Correa and Seeger, 1985] and later applied to shape opti-
mization by [Delfour and Zolésio, 2011], extends Céa’s Lagrange method. This formulation provides rig-
orous a way to prove shape differentiability under the assumption that the corresponding Lagrangian has
saddle points. As we will see, there are examples where the Lagrangian fails to have a saddle point and
makes this method restrictive.

It is desirable to a have a criterion which tells us when the min-max method works without the saddle point
assumption. In this paper we show that a careful analysis of the Lagrangian shows that it is often possible
to avoid the material and shape derivative without any saddle point assumption. The only ingredient



needed is the differentiability of the Lagrangian with respect to the primal variable. The provided result
can be seen as an extension of the Theorem of Correa-Seeger when the Lagrangian has a special
structure.

Despite the problem to identify the boundary expression of the shape derivative, it is important to use the
subsequently introduced distributed or domain expression. Under certain regularity assumptions for the
domain the shape derivative has the following form

(1.3) d1(9)[0] = / F(6,00,0%, ...) dx,
Q
where F(-,-,-,-) € Li(R% R ...). The domain integral on the right hand side of (1.3) is called

domain expression of the shape derivative. For the numerical implementation its usage has several ad-
vantages compared with the boundary expression. First of all, the domain expression is more general. For
instance, for PDE constrained shape optimization problems the regularity obtained by the weak formula-
tion is mostly enough to derive the shape differentiability, see [Sturm et al., 2013]. Moreover, the domain
expression makes mostly sense for mere open sets and for PDE constraint problems for Lipschitz do-
mains. In the forthcoming paper [Laurain and Sturm, 2013], there will be many examples and guidelines
on how to use the domain expression in combination with level-set methods.

The contribution of the paper at a glance

1. We prove a theorem which allows the rigorous computation of the shape derivative for PDE con-
strained optimization problems without using the material derivative.
2. Application of the theorem to non-linear transmission problem for which we proof
(a) the existence of optimal shapes by a Gagliardo penalization,
(b) the existence of the shape derivative and a formula for the boundary and volume expression.

The paper is organized as follows.

In Section 2, we explain the material and shape derivative method. We compare the methods with a Mod-
ification of Cés Lagrange method and the min-max formulation. Moreover, we show why Céa’s Lagrange
method does not always apply and explain the reasons.

In Section 3, the main result is presented and we explain how the assumptions can be fulfilled. As we will
see in the example, it allows an efficient computation of the shape derivative without using the material
derivative but some additional differentiability of the Lagrangian.

In Section 4, we apply the results of Section 3 to a non-linear transmission problem. We present a mini-
mization problem with penalization and its shape differentiability.

2. REVIEW OF METHODS TO IDENTIFY THE SHAPE DERIVATIVE

First we give some basic definitions and introduce the notation. In order to compare the material derivative
method, the shape derivative method, Cea’s Lagrange method and the min-max method by Correa and
Seeger, a simple example is studied.

2.1. Notations and definitions. Let £ and F' be a Banach spaces and U C FE an open subset. We
denote by C(U; F') the space of all continuous functions f : U — F. The space C(U; F') comprises
all continuous and bounded functions f : U — F and it is endowed with the norm || f||c@.r) =
sup,cp || f(2)||F < oo. We call a function f : U — F differentiable in = € U if it is Fréchet dif-
ferentiable at x € U and denote the derivative by 0f(x). The function is called differentiable if it is
differentiable at every point € U. For k£ > 1 the space of all k-times continuously differentiable func-
tions f : U — F is denoted by C*(U; F'). The Gateaux derivative of f : U — F atx € U in direction
v € F is denoted by 0, f(x). For a differentiable function f : U — F, we have 0f(x)(v) = 0,f(z)



forallz € U and v € E. Forafunction f : ] x --- X E, — F,where E, ..., E, are Banach
spaces, we also write 0y, f (21, ..., 2n)(Zk) == Oo,..4p,..00f (%1, ..., 2,), where k,1 > 0 are such
that 1 < k < n < oo.Inthe case F' = R, we have that df(x) : E — R is a continuous, linear
mapping and therefore we may write by the Riesz representation theorem 0 f(x)(v) = v - ¥ for some
element © € E. The vector © is then called gradient of f at « and denoted by V f(x). For p > 1 the
space of all measurable functions f : €2 — R for which || f|| ) = ([ [f]? dx)l/p < oo is denoted
by L,(€2). The space of functions of bounded variations on D are denoted by BV (D). For the right

sided limit limtﬂg we write limy .
t>

Letd € N*. Assume that D C R is an open and bounded subset with Lipschitz boundary. For any
k > 1, we define the space
ChH(RY) = {0 € C*(R* RY) : supp(d) C D}.
The flow of a vector field 6 € C¥(R?) is defined for each xy € D by ®Y(xq) := x(t), where z :
[0, 7] — R? solves
(t) = 0(x(t)) in(0,7),
z(0) = xy.

In the sequel, we write ®; instead of ®Y. For an invertible matrix L € R%%, we have (L~1)T = (LT)~!
and therefore we define L= := (Lfl)T.1 Henceforth, the following abbreviations are frequently used in
the paper
(2.1) E(t) :=det(0®;),  A(t) := &)o@, '0d, T, B(t) :=0d; .
Note that by the chain rule

(O(®; 1) 0 @) = (0D) ! =: 0D, .
We use the notation 6,, := 6 - n for the normal component of the vector field 8, where n € R? such

that |n| = 1. Let us recall some useful facts about the transformation ®; associated with the vector field
0 € Ch(RY).

Lemma 2.1. Fixk > 1. Letd € C%(R?) be given and ®; the associated vector field.

1. Assumep > 1 and [ € Lp(Rd). Then limp o || f © ot — f||Lp(Rd) = limp o || f o @ —
f”Lp(Rd) - 0

2. Let f € H'(R"). Thenlimy o ||f o ®; — f| g1 (ray = 0.

3. The jacobian &(t) is differentiable from the right side with derivative

lim(€(t) — 1)/t = div (8) in C(D).

t\.0
4. The limitlimp o(A(t) — A(0))/t exists in C(D; R%) and is given by
(2.2) A/(O) = div (H)Id,d — 00 — 60T

5. The derivative A'(t) is continuous, i.e., A'(t) — A’(0) in C(D; R%%).

Proof. See [Delfour and Zolésio, 2011, p.527], [Sokotowski and Zolésio, 1992] and [lto et al., 2008]. [

Definition 2.2 (Eulerian semi-derivative). Suppose we are given a shape function J : = — R on the set
= C {Q] 2 C R%}. Denote by ®; : D x R — R the flow generated by the vector field § € C¥ (R?),
where k > 1 and set Q) := ®,(2). Then the Eulerian semi-derivative of J at$) C D in the direction
0 is defined as the limit (if it exists)

1

AJ(QIO] = lim 5 (J(Q) = J(©).

"t follows from (L)LY = (LL~ )T =T = (L7 'L)T = LT(L=Y)7 that (LT)~! = (L7 1)7.



In general, the derivative d.J(2)[0] can be non-linear in 6.

Definition 2.3. Let Q) C D and D C R be open sets. The functional .J is said to be shape differen-
tiable at () if the Eulerian semi-derivative dJ (2)[0] exists for all § € C3(R?) and the map

0 — dJ(Q)0] : CZ(RY) — R,

is linear and continuous.

Finally, we state the following Theorem from [Delfour and Zolésio, 2011, pp. 483-484] , which allows later
to calculate the boundary expression of the shape derivative.

loc

C1(0,7; LL (R?)) and an open bounded domain §) with Lipschitz boundary T" be given. The right sided

loc

derivative of the function

Theorem 2.4. Let § € Ci(RY), where k > 1. Fix T > 0 and let ¢ € C(0,7; WL (R?)) N

f(t) = / o(t) dz

att = 0 is given by

d+

@ ro) = / 2/(0) da + / 2(0)6, d,
dt Q r

where 9 £(0) := limp o(f () — £(0))/t.

2.2. Material derivative method. Let 2 C R be an open, bounded set with smooth boundary 0S2. We
consider the state equation

“Au=f, inQ,

23) u=20, onodf,

where f : R — R is a smooth function. The function u : €2 — R is called state. To simplify the
exposition, we choose as objective function

(2.4) J(Q) = / lu — ug|* de,
Q

where ug € H?(R?) is given and | | denotes the absolute value. We call u € H} () a weak solution of
(2.3) if

(2.5) / Vu- Vi de = / fi dx, forallg € Hy(RQ).
We aim to calculate the shagrz)e derivative of (2.4)§.2For this purpose, we consider the perturbed cost function
(2.6) J(§) = i, |y — ugl? da,
where u; denotes the weak solution of (2.5) on the domain €, := ®,(Q), that is, u; € H} () solves
(2.7) Vu, - Vipdo = | fide, forall € HY().

Q Q4

As it is difficult to differentiate the function u; : €2; — R with respect to ¢, we use the change of variables
®,(x) = y to rewrite (2.6)

28 5@ = [ €'~ uso v
Q

where u! := W, (u;) : Q© — Reis a function on the fixed domain €2. We introduce the mapping W; () :=
@ o ®, with inverse W (p) := U, 1(p) = ¢ o U, L. To study the differentiability of (2.8), we can study
the function ¢ — u’.



Definition 2.5. The limit
. . ut—u
w = lim
N0
is called strong material derivative if we consider this limit in the norm convergence in Hg (§)) and weak

material derivative if we consider the weak convergence in H} ().

?

We can derive an equation for u! if the transformation ¥, maps H'(2) functions to H'(£2) function.

Lemma 2.6. The mapping ¥, : H; () — H}(Q) constitutes a bijection between function spaces.
Moreover, we have the following properties?

(W, 0 W) (p) = pforallp € Hy(Q), (W oW,)(p)=¢forallp e Hy(),

and
(2.9) Hy(Q) = {T(@)| ¢ € Hy(Q)},  Hy(%) = {¥7 ' (9)] v € Hy(V)}.
Proof. The proof can be found in [Ziemer, 1989, Theorem 2.2.2, p. 52]. 0

Henceforth, we make use of the following convention. Whenever a function f : D — R on the hold-all
D is given, we denote by f* := W,(f) the ’pulled back’ of f.

Next, using the change of variables ®;(x) = y to bring (2.7) back to the fixed domain, we get that ut
satisfies

(2.10) /QA(t)Vut -V dr = /Qg(t)f%p dx, forallp € Hy(),

where we used the notation from (2.1). By formally differentiating this equation with respect to ¢ (this
can be made rigorous, cf. [Sokotowski and Zolésio, 1992]) we see that the strong material derivative 1 is
given as the solution of

(2.11) /Qvu-vwdx%—/QA'(O)Vu-dex:/Qdiv(@)f@bd:ﬂ—l—/gi-@@/zdx,

forally € Hg (), where A’(0) := div (6)I — 067 — 6. We are now in the position to calculate the do-
main expression of the shape derivative and then deduce the boundary expression. First, we differentiate
(2.8) with respect to ¢

(212)  dJ(Q)[0] :/ div (0)|u — ugl? dx+/2(u—ud)Vud-9dx—|—/2(u—ud)u dx.
Q Q Q

In order to eliminate the material derivative in the last equation, the so called adjoint equation is introduced

(2.13) Find p € Hy(9) : / Vp - Vi dz = —2/(u —ug)y dx, forallyy € Hy(9),
Q Q

Finally, testing the adjoint equation with 7 and the material derivative equation (2.11) with p, we arrive at
the domain expression

dJ ()] = /Q div (0)u — ug|? dz + /

2(u — ug)Vug -0 dx — / Vp - Vi dr
Q Q

(2.14) e / div (0)|u — ug|? dz + / 2(u — uq)Vug - 0 dz
Q Q

—l—/QA’(O)Vu-Vpd:E—/QdiV(@)fpdx—/QVf-Gpdx.

Remark that the domain expression already makes sense if u,p € H&(Q). In the next subsection, we
see that this regularity is not enough to obtain the boundary expression.

2In differential geometry the map ¥, : H'(Q;) — H'(Q) is called pull-back, see [Conlon, 2001].



2.3. Shape derivative method. Assuming the solutions u and p and the boundary 0f2 are smooth, the
domain expression (2.14) can be transformed into an integral over 02 either by integration by parts or in
the following way. Instead of transporting the cost function back to {2, one may directly differentiate

J(y) = W (u') — ug|? da,
Q
by invoking the transport Theorem 2.4, to obtain
(2.15) dJ(Q)[0] = / lu — ug|*0, ds + /(u — ug)(t — Vu-0) dx.
1) Q
Definition 2.7. The function
W i=1u—Vu-0,

is called shape derivative of u at () in direction 6 associated with the parametrization V. It is linear with
respect to 9, ie. ul(>\101 + >\292) = )\lu’(el) + )\2@6’(92) for all (91, 92 c C%(Rd) and )\17 >\2 € R.

Note that since ¥° = id, we have W' o W~" = W0 = id1 () and U~ o W' = W = idy(q,). Note
that

d d
U = E\Pt(ut”t:o = E(Ut 0 ®; )]0,

where u! 1= \I/t(ut). Therefore the shape derivative decomposes into two parts, namely
Ul = 8t\11t(ut)|t:0 —f— \PO<U),
—_———  ——
€L2(Q) €HJ(Q)

where

O (u!)|i—o = lim (W' (u') — W°(u)) /¢ = ~Vu 6.

Assuming that the solution u belongs to u € Hj(Q) N H?(1), we have

(2.16) u =V (U)o +  WO(u1)
— ~—~—
€HY(Q) EHL(Q)NH2(Q)

The perturbed state equation (2.7) can be rewritten as

V(0 () - V(0 () da — / FU () dz, forall g € HA(Q),

Qt Qt

where we used (2.9). Then by [Sokotowski and Zolésio, 1992] we know that u! is differentiable in 0 &
0, 7] as a map from [0, 7] into H'(£2), thus we are allowed to differentiate the last equation and achieve,
using the transport Theorem 2.4

/Vu"V¢dx—/Vu~V(V<p~€)dx+ Vu-Vb6,ds
Q 0

(2.17) o0

= fo bnds — / f(Vp-0)dr, forallpc Hi(Q),
o9 Q
where 8,, := 0 - n.

Remark 2.8. Note that u' does not belong to H} (), but only to H*(2). As the shape derivative does
not belong to the solution space of the state equation, it may lead to false or incomplete formulas for the
boundary expression of the shape derivative.



Remark 2.9. Let~ : [0, 1] — I' be a smooth curve in the boundary withy(0) = p € T" and+'(0) = w.
Assume u : {2 — R admits an extension in a neighborhood of I, denoted also by u, then we compute

d
0= %(U(V(tmt:(l = Vu-v'(0) = Vru- v+ (Ouu)n - v.
Note that v lies in the tangential plane at p, thus v - n = 0. Since v was arbitrary, we conclude

Vru=0 onl.
The remark shows that Vu = Vru + (9,u)n = (9,u)n. Then integrating by parts in (2.17) yields

(2.18) /V&~Vgp dx—/ Ontt Op) 0, ds+/Vu-9Agp dx = fp 0, ds.
Q a0 Q

o0
Lastly, we eliminate u in d.J(£2)[6] given by (2.15) using (2.13) and (2.18)

2.13)

I ()0 & /8Q]u—ud\2 Qnds—/QViL'Vpdx—l—/QQVuﬂ(u—ud) dz

(2;8)/ lu — ug|? gnd3+/ (Vu - Vp — 0pu0pp — fp) Opds
90 o0N

+ /(—Ap +2(u — uq))Vu - 0 de.
Q
Finally, assuming that p solves the adjoint equation in the strong sense, we get

(2.19) 47(Q)[0] = / (tt — ugl? — Do Oyp) Oy ds.
15)9)

What we observe in the calculations above is that there is no material derivative 1 or shape derivative u in
the final expression (2.14) or (2.19). This suggests that there might be a way to obtain this formula without
the computation of . In the next section, we see one possible way to avoid the material derivatives.

2.4. The min-max formulation of Correa and Seeger. Let p, ¢ € H}(Q) be two functions. Instead
of differentiating the cost function and the state equation separately, we can incorporate both in the
Lagrangian

(2.20) L(Q, ¢, 1) = / I — uql|? da +/ V- Vi do — / fo du.
Q 0 Q
The point of departure for the min-max formulation is the observation that

J(€) = min  sup L(Q, 7)),
PEHG(Q) e HL(Q)

since for all p € H}(Q)

J(Q) ifp=u
sup L(Q,9,9) = { : ’
YeHL(Q) ( ) +oo  ifp #u,

where u is the unique solution of (2.5). We need the following definition.

Definition 2.10. Let A, B be setsand G : A x B — R a map. Then a pair (u,p) € A x B is said to
be a saddle pointon A x B if

(2.21) G(u,v) < G(u,p) < G(p,p) forallp € A, forally € B.

We have the following equivalent condition for (u, p) being a saddle point.



Lemma 2.11. A pair (u,p) € A X B is a saddle point of G(, ) if and only if
(2.22) minsup G(4, p) = max inf G(4, p),
7 peEB 4cA

ueA pEB

and it is equal to G (u, p), where u being the attained minimum and p the attained maximum, respectively.

Proof. A proof can be found in [Ekeland and Temam, 1976, p.166-167]. ([l

Remark 2.12. Note that the equality
inf sup G(u, p) = G(u,p) = sup inf G(u,p)

W€A pep peB UeA

does not easily allow us to conclude that (u, p) is a saddle point.

Since for every open 0 € R the Lagrangian £ is convex and differentiable with respect to p, and
concave and differentiable with respect to ¢, we know from [Ekeland and Temam, 1976, Proposition 1.6]
that the saddle points can be characterized by

uwe HYQ) . 9,L(Q,u,p) () =0, foralld e HH(Q),
p€ Hy(Q): 0,L(Qu,p)(p) = forall ¢ € Hy(€).
2.5) and the adjoint equation (2.13). To compute the

(2.23)

The last equations are exactly the state equation (
shape derivative of .J, we consider for ¢ > 0

(2.24) J(£;) = min sup EQ,A,@ min  sup L(€, ¥ Ul (),
(€2) sty b (4, &,9) = e e (Q, (), U'(1)))

where the saddle points of £(€;, -, ) are again given by the solutions of (2.5) and (2.13), but the domain
) has to be replaced by {2;. By definition of a saddle point

(225) E(Qt,uhi) < E(Qt,ut,pt) < L(Qt,@,pt) for a"i/},@ S H&(QQ
Since U, : HJ () — HJ () is a bijection it is easily seen that the saddle points of
G(t, 0, 0) = L(, V' (p), ¥ (1))

are given by u’ = W;(u,;) and p' = W,(p;). It can also be verified that the function u’ solves (2.10) and
applying the change of variables ®,(z:) = y to (2.13) shows that p’ solves

(2.26) / At)V - Vptde = —2/ () (u' — ul)dr, forallyp € Hy(Q).
Q Q
Moreover, the functions u!, p satisfy

G(t,u',v) < G(t,u',p") < Glt,p,p") forally, o € Hy(Q),

where G takes, after applying the change of variables ®;(x) = y, the explicit form

(2.27) G(t,p,¢) = / Et)lo — ugll® dz + / At)Ve - Vi dr — / () f' da.
Q Q Q
From Lemma 2.11, we conclude

(2.28) g(t):= min  sup Gt p,¥) =Gt u',p"),
PEHG(Q) e HE ()

where we used that (u', p') is a saddle point of G(¢, , ). Moreover, we have the relation
(2.29) g(t) = G(t,u', )

forall b € Hy(£2), since u' solves (2.10). In view of (2.24), we can obtain the shape derivative d.J({2)[6]
by calculating the derivative of g(t) at ¢ = 0. When we use (2.28) have to find conditions which show



that we are allowed to differentiate the min-max of the function GG with respect to ¢ at £ = 0. On the other

hand the relation (2.29) shows that
d
dJ(Q)[6] = —G(t,ut,@/)) ,
dt .

for all ¢ € H}(Q), that means the differentiability of the min-max of G is equivalent to the differentiablity
of G(t,u’, 1) and it is independent of 1. Sufficient conditions for the differentiability are provided by the
Theorem of Correa-Seeger. Note the relation (2.28) is also true for a general function G when u!, p! are
saddle points, but the relation (2.29) only for the special structure (2.27) of G5. It is clear, if the functions
ut and G are sufficiently differentiable the derivative %(g(t))t:g exists. The purpose of the reformulation
of the cost function as an inf-sup is to avoid the material derivatives . Let us introduce the sets

YeHL(Q) PEHG(Q) e HE ()

and

F(t) = {p € Hy(Q): inf G(t,p,p)= sup  inf G(t,gp,l/z)} .

PpEH () YeHL(Q) PEH(Q)
Without any knowledge of the material derivative 1 or p, we conclude by the theorem of Correa and
Seeger [Delfour and Zolésio, 2011, pp.555-558, Theorem 5.1]

d d
dJ(Q)0] = inf sup —G(t,p, —o = su inf —G(t, o, -0,
()= int, swp GGl p o= s inf GG 6 ¥y

and its value is equal to 9,G(t, u, p)|:—o. Clearly the sequence (u');>o and the function G can not be
arbitrary. Let us sketch the proof of the theorem of Correa-Seeger at the concrete example where G is of
the form (2.27) and show that it is applicable. To be more precise we want to establish the following.

Proposition 2.13. The function [0,7] > t — G(t, ut,zb) is differentiable from the right side in O.
Moreover, we have the following

d
(2.30) %G(@ u', ¥)|i=0 = G (0, u, p),

for arbitrary 1 € H}(Q) andp € F(0).

Proof. At first, from inequalities (2.25), we obtain
G(t,u',p') < G(t,u,p), G(0,u,p) < G(0,u,p),
and therefore setting A(t) := G(t, u’, p') — G(0, u, p) gives
G(t,u',p) — G(0,u',p) < A(t) < G(t,u,p") — G(0,u,p").

Using the mean value theorem, we find for each ¢ € [0, 7] numbers ;, 7; € (0, 1) such that

(231) tatG(tCtvutvp) S A(t) S tatG(t/r’t?uapt)a
where
0:G(t,p, 1) = / div (") o ®;|u’ — uly|* dov — / 2£(t) (ut — uly) B(t)Vu), - 0" dx
Q Q

(2.32)
+ / AtV - Vi do — / div (6") o @, f4p + B(t)V £ - 0" du.
Q Q

It can be verified from this formula that (¢, ) — 0,G(t, ¢, p) and (t,¢) — 0.G(t,u,1)) are weakly
continuous. Moreover, from (2.10) and (2.26) it can be inferred that (u');>0 and (p')¢>0 are bounded in
H;(2) and therefore u' — w p' — v for two elements w,v € Hy(£2). Passing to the limit in (2.10)
and (2.26) and taking into account Lemma 2.1, we see that w solves the state equation and v the adjoint
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equation. By uniqueness of the state and adjoint equation we get w = u and v = p. Thus we conclude
from (2.31)
(2.33) hItIl ioan(t)/t > 0,G(0,u,p), limsup A(t)/t < 9,G(0,u,p),
- t—0
which leads to
limsup A(t)/t = lirtn iglf A(t)/t,

t—0
and thereby prove (2.30) and thus the shape differentiability of .J. [

Evaluating the derivative 0,G(t, u, p)|;=o leads to the formula (2.14). Then the boundary expression is
obtained by
d

dJ( Q0] = = L, ¥ (), ¥ (p))li=o,

and the usage of the transport Theorem 2.4. We find the expression

dJ(Q)[0] —/(|u—ud|2+Vu-Vp)9nds+/Vft-Vp dx
r Q

+/(u—ud)ﬁd:v+/Vu-V]5da:—/fﬁd:z:,
Q Q Q

where @ = O, (V' (u"))|i=o = —Vu -0, p = 0,(V'(p*))|1=0 = —Vp - 0. To rewrite the equation into
an integral over I', we integrate by parts and obtain

dJ(Q)[0] = /(|u —ugl* + Vu - Vp) 0, ds +/ U Oppds
r 20

(2.34)

+ Gnuﬁds—/&(Ap+2(u—ud)) dm—/ﬁ(Au—f) dx.
a0 Q Q
Finally, using the strong solvability of « and p, and taking into account Remark 2.9, we arrive at (2.19).

Remark 2.14. (i) We point out that the inequality (2.25) is the key to avoid the material derivatives.
Nevertheless, without the assumption of convexity of G with respect to o it is difficult to prove this
inequality.

(i) We remark thatt — E(t) = {u'} andt — F(t) = {p'} are single valued. More generally, the
mapst — E(t) = {u'} andt — F(t) = {p'} will be always single valued for a convex-concave
function GG as long as the corresponding PDEs obtained as the partial derivatives

0,G(t,u,p)(p) =0 forallp € E,

~

dyG(t,u,p)(¥) =0 forally € F,

have a unique solution (u, p).

2.5. A modification of Céa’s Lagrange method. Let the function (G be defined by (2.27). Assume that
G is sufficiently differentiable with respect to ¢, ¢ and 1. Additionally, assume that the strong material
derivative u exist in HJ (€2). Then we may calculate as follows

d
(2.35) dJ(Q)0) = 2 (G(t,u',p))li=0 = Gt u, p)li=o + 9,G(0, u, p) (@),

shape derivative adjoint equation
and due to u € H}(Q) it implies
dJ(Q)[0] = 0:G(t, u, p)li=o-

Therefore, we can follow the lines of the calculation of the previous section to obtain the boundary and
volume expression of the shape derivative.
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Remark 2.15. In the original work [Céa, 1986, it was calculated as follows
dJ()[0] = 0o L(Q u, p) + 0o L(2 u,p)(u') + 0p L(2,u, p)(P),

and assumed that v’ and p' belong to H; ()), which leads to the wrong formula

dJ(Q)[0] = /F(|u — ugl?® + 0,u 0,p) 0, ds.

3. AVOIDING THE MATERIAL DERIVATIVE

We have seen in the previous section that the shape derivative of a PDE constrained shape optimization
problem can be expressed as the derivative of the function

(3.1) g(t) = G(t,u', ),
att = 0. The theorem of Correa-Seeger shows that in order to compute this derivative it is not necessary
to compute the material derivative u. The main assumption in the theorem is the existence of saddle

points. We prove now that the saddle point assumption can be replaced by a differentiability assumption
on (.

3.1. Differentiability of the Lagrangian without material derivatives. Let £’ and F' be Banach spaces.
Consider a function
G:[0,7]x ExXF =R, (t,p,¥)— G(t,p,0),
such that for all (u,t) € E x [0, 7]
Gui: F—=R:¢— G(tu, ),
is affine-linear. Introduce the solution set of the state
(3.2) A(t) := {u € E| 8,G(t,u,p) () = 0 forallih € F},
is independent of p € F.
Let us introduce the following hypothesis.
Assumption (B1). (i) Forallt € [0,7],u' € E(t),u’ € E(0) and1) € F the mapping
s G(t,u’ + s(u’ — u"), 1),

is absolutely continuous on [0, 1]. This implies that the derivative exists for almost all s € [0, 1]

0,G(t,u’ + s(u' — u°),¥) (v — u°)
G(t,u® + (s + h)(ul —u®),v) — G(t,u® + s(ut — u°),))

I

= lim
h—0

and in particular

1
G(t,u',v) — G(t,ul ) = /o 0,G(t,u’ + s(u' — u®),¥)(u' —u°) ds

(i) Forevery (¢,t) € E x [0, 7] the mapping
F—=R: Y- Gt 1),

is affine-linear.
(iiiy Forallt € [0,7], u' € E(t),u’ € E(0), p € E and) € F the limit
0,G(t,u’ + s(u" —u’), ¥) ()
(3.3) — lim G(t,u® + s(ut —u®) + hp, ) — G(t,u® + s(ut — u®), 1))
h—>0 h '
exists and s — 0, G (t,u’ + s(u' — u®),v)(¢) belongs to L1(0, 1).
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(iv) Foreveryt € [0,7], p € E andt) € F the partial derivative 0,G(t, ¢, 1) exists.

For given u' € A(t) and u € A(0), consider the problem to find ¢ € F' such that
(3.4) / 0,G(t, [u',uls,q) () ds = Oforall ¢ € E,

where we used the notation [u’, u], := su' + (1 — s)u. Introduce the following subset of F'
(3.5) Y(t):={q € F| ltexistu’ € A(t) and u € A(0) such that g solves (3.4)}.
We prove now a theorem which enables us to calculate the shape derivative without the knowledge of the
material derivative .
Theorem 3.1. Let the Banach spaces X and F, the real number T > 0, and the function
G:[0,7] x ExXF =R, (t,p,¢)— G(t,p,1),

be given. Additionally to Assumption (B1), we make the following hypothesis.

(B2) Forallt € [0, 7] the sets Y (t) # 0 and A(t) # () are not empty. Moreover, A(t) is single valued

forallt € [0, 7] and also Y (0) is single valued.

(B3) For any sequence (t,,),en converging to zero, t, — 0 asn — oo, there exists a sub-sequence
(tn, )xen and for every k > 1 there is ap™ € Y (t"*) such that foru® € A(0) and p° € Y(0)

lim 0,G(t, u’, p"*) = 9,G(0,u°, p°).
10

Then for ally) € F
d

dt
Proof. Lett € [0, 7] and p' € Y(¢), p° € T(0), u' € A(t), u® € A(0) be given. Write
G(t,u', ) — G(0,u°,9) = G(t, ', p') — G(0,u’, p")
= G(t,u',p') = G(t,u°, p') + G(t, ", p') — G(0,u°,p"),

for all v € F, where we used that 1 — G(t, ¢, ) is affine-linear for all (t,) € E x [0,7] and
therefore

—(G(t, u", 9))]e=o = 0,G(0,u°,p°).
(3.6)

G(0,u°, p") — G(0,u’, p°) = 0.
By the mean value theorem and (B1) part (iv), we find for each ¢ € [0, 7| a number 7, € (0, 1) such that
G(t,u’, p") — G(0,u°, p) = t0,G (net, u°, p").
This equation and (B1) part (i) and (ii) yield that (3.6) can be written as

1
G(t,u' ) — G t,uo,w = 0,G(t,sut + (1 — s)uo,ﬁt) ut —u®) ds +t8tG(ntt,u0,pt),
%

forally) € F. Using that p* € Y(t) and (u! — u") € E, we get

G(t,u', ) — G(0,u, ) = t0,G(net,u°, '), forallyy € F.
Let 1) € F be arbitrary and set 6(t) := G(t,u', 1)) — G(0,u’, ). Define dg(0) := lim infy o 6(t)/t
and dg(0) := limsupy o 6(t)/t. There are sub-sequences (I,,)nen and (S, )nen Of (£, )nen such that

lim 6(1,)/1, = dg(0) and  lim d(s,)/s, = dg(0).

Owing to (B3), we deduce that for every k > 1 there is p™* € Y(l,,, ) such that for u’ € A(0
k

lim 0,G (¢, uo,p"") = 0,G(0, u, po)_
150
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This shows that
lim 6(1,) /1, = klirn §(Ln) /1, = dg(0) = 0,G(t,u°, p"),

and the same argumentation leads to
lim §(s,)/sn = klim 6(8n, )/ 8n, = dg(0) = 0,G(t,u", p°).

Finally, we conclude

dg(0) = dg(0) = lim 8,G(mt, ", ') = 8GO, p°).
Since 1 € F' was arbitrary we finish the proof. 0
Remark 3.2. In concrete applications the conditions have the following meaning.

(i) The condition (B1) yields that G is sufficiently differentiable.

(i) Condition (B2) ensures that the perturbed state equation has a unique solution. The set Y (t) can
be understood as the solution of some averaged linearized state equation.

(i) Condition (B3) can be verified by showing that p' converges weakly to p° and that (t,) —
G (t, uo, 1/1) is weakly continuous. Note that there is no assumption on the convergence of u! €
A(t) tou® € A(0), but in applications we need the convergence u' — w to prove p' — p in some
topologies.

(iv) The set A(t) corresponds to the solution of the state equation on the perturbed domain 2, brought
back to the fixed domain ().

3.2. Comparison of the methods. We want to compare the material derivative method (MDM), the
Modified Céa’s Lagrange method (MCLM) and the min-max formulation of Correa-Seeger. Assuming that
the function GG from the last section is sufficiently differentiable, the following chain of implications is valid

MDM =— MCLM =— Theorem 3.1 = Theorem of Correa-Seeger

and all methods allow a rigorous proof of the shape differentiability. We point out that the MDM is the
most difficult to prove and it can involve the usage of the implicit function theorem. Despite the difficulties
the method has been successfully applied to variational inequalities ([Sokotowski and Zolésio, 1992]),
non-linear PDEs ([Myslinski, 1993]) and coupled systems ([Leugering et al., 2011]).

On the other hand the MCLM is using the material derivatives and has therefore the same difficulties, but
the formulas for the boundary and domain expression are obtained in an efficient way.

The Theorem 3.1 fills the gap between the Theorem of Correa-Seeger and the material derivative method.
Provided the corresponding function (G is sufficiently differentiable, it implies main part of the conclusions
of the theorem of Correa-Seeger.

The verification of the necessary conditions to apply the theorem of Correa-Seeger is challenging. In
particular, the assumption that G has saddle points is restrictive. Moreover, an application to coupled
systems of PDEs is hard. Nevertheless, the theorem has been applied to a variety of linear problems, for
instance, eigenvalue problems ([Delfour and Zolésio, 2011]). It is worth to mention that the theorem can
be still applied if the cost function is only quasi-convex ([Delfour and Zolésio, 1991]).

4. A QUASI-LINEAR TRANSMISSION PROBLEM

As an application of Theorem 3.1, we investigate a non-linear transmission problem and use it to compute
the shape derivative. We associate with the transmission problem a minimization problem. To achieve the
well-posedness of the minimization problem a Gagliardo regularization is used. The considered model
constitutes a generalization of the electrical impedance tomography (EIT) problem, which can be found
in [Afraites et al., 2007].



14

FIGURE 1. Domain D which contains {2 = Q1 and 2, where I is the boundary of ().

4.1. The problem setting. Let D C R? be open and bounded set with C2 boundary 9D and 2 CC D
be a compactly contained subset with C boundary. We set Q* := Q, Q™ := D\ Qand ' := Q"
such that we have the decompositon D = QT U Q= U I'. An example of a domain D with subset
2 = Q" C D is depicted in Figure 4.1. We consider for p € [1,00) and 0 < s < 1/p the cost function

(4.7) J(Q) = Jl(Q) + OéJQ(Q) = / |U(Q) - Ud|2 dzr + OZ‘XQ‘IP;Vs(D)a
D 2

constrained by the equations
—div (B, (|Vut ) Vut) = £+ in o QF,
(4.8) —div(B_(|[Vu P)Vu) = f~ in Q,

complemented by transmission conditions
[ulp=0 on T,
(4.9) 2 19 B r
[B(IVuf*,2)0,u] . =0 on T,

where n := n™ denotes the outward unit normal vector along the boundary I' = 9Q* of 2. We denote

by n~ := —n = —n™ the outward unit normal vector of {2~. The bracket
= i — I
[Cb]F (x) z—»xl,rzréﬂ‘*‘ gb(Z) zaml,gelﬂ— ¢(Z>

denotes the jump of a function ¢ across I at 2z € I". For a given function ¢ : D — R, we write ¢ for
the restriction ¢+ : Q" — R and likewise ¢~ for Y- 0~ — R. The penalty term in (4.7) is called
Gagliardo semi-norm and defined by

P [Xe(z) — xa(y)[”
Ixeliv; o) ‘_/D/D |z — y|drer dudy.

For later usage it is convenient to introduce the functions 3, : R x R — R

Bily, ) == x(x)B+(y) + X () -(y)
where x is a characteristic function and x* := (1 — x) and 3, : R x R — R by f(y,7) =
X(2)0,8+(y) + x°(x)0,5-(y). Subsequently, the characteristic function xy = xq, is always defined by
the set Q = QT C D. To simplify notation, we write 3(|Vu/|?, z) instead of 3, (|Vu|?, z) and similarly
B'(|Vul?, z) for B,(|Vul?, ). We make the following assumptions.

Assumption 4.1. We require the functions 3., 5_ : R — R to satisfy the following conditions.



15

1. There exist constants 37, @Jr, 8-, B~ >0, such that
B <pi(z)<pt, [ <p_(x)<p” forallz € R
. Forallxz,y € R, we have - -
(8" () = BT (y)(x —y) = 0and (B~ (z) = B~ (y))(z —y) > 0.

The functions 3, 3_ are C* regular, i.e., 3., 3 € C*(R?).
. There are constants k, K > 0 such that

Ellnll* < B=(lpI)Inll* + 265 (pl*)lp - nl* < Klnll*, forail n,p € R*.

Moreover, we assume thatu, € H*(D) and f € C?(D).

N

» o

Finally, the weak formulation of (4.8),(4.9) reads
(4.10) u € Hy(D) : / B (|Vul?,2)Vu - Vip do = / f1 dx forall ¢ € Hy(D).
D D

4.2. Existence of optimal shapes. We are interested in the question under which restriction on the
characteristic functions a minimization of (4.7) admits a solution. We investigate the problem

A

411 i J ,
(4.11) en (x)

where j(xg) := J(2) and J is given by (4.7). For every p € [1,00) and 0 < s < 1/p, we introduce
the space

(4.12) BWJ(D) :={xa: R —=R|[QCD, xa(l — xo) =0in D and [xa|wsmn) < oo},
which is not empty since BV (D) N Lo (D) C BW; (D), see [Delfour and Zolésio, 2011, p.253, Theo-
rem 6.9.,(ii)]. Compared with the perimeter® Pp(£2) the function | xq |€V5(D) provides a weaker regulariza-

tion. In particular, the regularization term and its shape derivative are domain integrals. This makes the
regularization favorable for numerical simulations. We begin with the study of the state equation (4.10).

Theorem 4.2. The equation (4.10) admits a unique weak solution in H} (D).

Proof. Let (x,2) — hi(z, z) : R x R — R be two functions. Let
h(il)(:n,z) = 0.hy(x, 2), h(f)(x,z) = 0%hy(m, 2),

Given an open domain D and another domain 2 C D, let Y = xq be its characteristic function and
consider the energy functional

E(x,¢) = /D%[X(«%’)fu(% IVe(@)*) + (x(@)h(z, [V () )+

+ f(@)p(x)dx
and its differential in w in the direction ¢

dE(x, u; ) =/ X(@)hi (@, [Vu(@)]*) + (1 = x(@)h-(z, [Vu(@) ") Vu(@) - Vi(z)

D
- [ fayela) da
D
The primitive h4 of 34 is given by

hai(z,z) =ce(x) + /OZ B+ (s) ds,

3The perimeter of a set @ C R is defined as Pp(f) := sup wecl (prdy Jra div (@)xadz.

lellL oo (D) <0
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for some arbitrary bounded measurable functions ¢ () and we may choose ¢4 () = 0. The Hessian
of E(x, ¢) is given by

CE(x, uip,y) = / [x(@)ha (2, [Vu(@)[?) + (1 = x(2))h- (2, [Ve(2) ") Vi (@) - Vio(z) da

+/DX(SC)h+(!Vu($)\2)+(1—X(ﬂi))h(IV@(:U)IZ)VU(&?)-VSO(CE)Vu(&?)-WJ(SU) dz.

Therefore,

d*E(x, v so,so)z/DX(I)M(L!VU(JC)\QHG—X(x))h(fU,IVSO(w)V)IVSO(SU)Ide

+/ X(@)hy (2, [Vu(@)[?) + (1 = x(2))h-(z, [Ve(2)*)[Vu(z) - V() do.
D
According to Assumption 4.1 part 4, there exist k > 0 and K > 0 such that for all n, p € R?

Ellnll> < Be(lplP) 19l + 288 (Ipl)p - nl* < K 0]

or in terms of the primitives

1 2
kllnll? < B (I )2 + 208 (lplP)p - 0> < K|ln||?

Therefore, for all u, ¢ € H} (D),

k / V(o) de < PE(x w0, 0) < K / Ve(a)? de.
D D

The functional E(x, ¢) is strictly (and even strongly) convex and twice differentiable. So there exists a
unique minimizing solution in u € H} (D) to the variational equation

Ju € Hy(D),Yp € Hy(D), dE(x,u;p) =0.

Let us introduce the set of all characteristic functions
X(D) :={xa: ©Q C D is measurable and xo(xq — 1) = 0 a.e.in D}.

The next Lemma proves the Lipschitz continuity of the mapping X (D) > x — u(x) € Hi (D), where
u(x) denotes the weak solution (4.10) and X (D) is endowed with the L,,(D) norm.

Lemma 4.3. Assume that the weak solution (4.10) belongs to u € W12T7(D) for some y > 0. Then
there is a constant C' > 0 and q > 2 such that for all chacteristic functions x1, x2 € X (D)

lu(x1) = uw(x2) || oy < Cllx1 — xallL,(p)

where u(x1) and u(xz) are solution of the state (4.10).

Proof. Let u(x1) = u; and u(x2) = usy be solutions in H} (D) of (4.10) associated with two character-
istic functions 1, x2. Then by boundedness of 3,, and 3,,, we obtain

Cillin — ol oy = [ BVl 0) Vo — ) - Vi — ) o
D

B / (5X2(\Vu2|2,g;) - BX1(|VU1|2>55))V(U1 —Uy) - Vuy dx
D
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and also

Collus — 21y < / B[ Vusl?, @)V (ur — ua) - V(ur — up) d
D

- / B IV, 2) — B, (Vs 2))V (1 — 3) - Vaty d
D

Adding both inequalities yields with C' := C; + (5
Cllur — 2|2 (py < / (B (VU 2) = By (V] 2)) V(ur — uz) - V(ug + un) da
D
— [ (V) = B (9 2) Vi — ua) - Vi + ) da
D

+ [ (80 (1F0aP) = B (Va2 ¥ (0 = 09) - W + )
D
and therefore

Cllur = ugl|F1(py < /(X2 — X1) B+ (|Vua| ) V(w1 — ug) - V(uy + us) d
D

+/ X1(5+(’VU2‘2) - 5+(|VU1’2))V(U1 —Up) - V(ug + us) dx
(4.13) b

T /D (1 — X2)B (V) ¥ (11 — ) - V(s + ) dt
+ /DX{i(ﬁ(Wuz\Q) — B-(IVur|*))V(uy — uz) - V(uy + up) dz.

Now we use the monotonicity of 5, and 3_ to conclude

/Dxi(ﬁ(\VuﬂZ) — B_(|Vur ) (Vuy — Vug) - (Vuy + Vug) dr

- /D (1= x0) (B (V) — B (|Veu[2) ([ Vel — [Ver ) dir < 0

and similarly

/Dxl(ﬁ+(|VU2|2) = B+ (IVua)) (Vs = V) - (Vur + Vug)

. /D 31 (B (Vual?) — B (| Vs [2))(|Vaf? — [V ?) < 0.

By assumption there are v > 1and C' > 0 such that [[u(x)|lw1.2+(py < C forall x € BW; (D).
Therefore using Holder’s inequality, we deduce from (4.13)

Clluy = u2ll3py < (67 + 87)lIx2 = Xall Ly, ()| V (1 = u2) | o0y |V (w1 + 2)|| Loy ()
whereq:%T”andq’::q_il:%—i—l. O

Corollary 4.4. For given characteristic function Y = Yq, where ) C D is of class C?, the state equation
(4.10) has a unique solution.

With all the proves in the above paragraph the main result can be proved.

Theorem 4.5. Letp € [1,00) and s > 0 be such that) < s < 1/p. Then the optimization problem
(4.11) has at least one solution x = xq € BW;(D).
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Proof. First note that BW (D) C L, (D) is a bounded subset for each p € [1,00). By Theorem 7.1.
[Di Nezza et al., 2012], we have that BIV;(D) is totally bounded in L, (D). Since L, (D) is a complete
vector space, this is equivalent to being relatively compact. Thus for any bounded sequence (X7 )neN
in BW3 (D), there exists a sub-sequence (X, )reN, converging in L, (D). Now let us denote by j :=

infyeBws(p) J(x). Since J(xg) is finite, we conclude j < oo. Then pick a sequence of (Xn)nen

in BW (D) such that lim,, . j(xn) = 7. After the preceding, we may choose a sub-sequence still
denoted by (xn)nen suchthat x,, — xin L, (D), where xy € BW(D). Using Lemma 4.3, we conclude
u(xn) — u(x) in H'(D) and thus

J(x) < lim J(x,) = inf  J(x).

XEBWS(D)

O

4.3. Shape derivative of .J,. We show that the penalty term J2(€2) = | Xl p) is shape differentiable.
p

Lemma 4.6. Letd € C%(RY). Fixp € [1,00) and0 < s < 1/p. Then, for given open set) C D such
that | XQ|W;( p) < 00 the mapping

Q= () = |xalw; )

is shape differentiable with derivative

di div (0
dJo (2 —2// vO)@ + v O)W) 4,
D\Q |1‘— |d+sp
- (0(z) — 0(y)) dxd
ve [ [ e 0~ 00 dray
where ¢ := —2(d + ps). This can be written in terms of xq as
IXa(z) = xa()l”
dJo($2 // (div (0)(x) + div (0)(y)) 7 — gt dxdy

(4.14)

* 5/]3 D |X|Qx<_) |d§§s(+%)| (x —y) - (0(x) = 0(y)) dzdy.

Proof. Using the change of variables & = ®,(x) gives

-1 [ S

and consequently using that ®; is infective, we obtain the desired formula by differentiating the above
equation att = 0. ]

Remark 4.7. Note that due to the Lipschitz continuity of 0 and supp(0) C D the shape derivative (4.14)
is well-defined.

4.4. Shape differentiability of ./;. We are going to prove that the cost function .J; given by (4.7) is
shape differentiable. Moreover, we derive the boundary and domain expression of the shape derivative.
To be more precise, Theorem 3.1 is applied to show the next theorem.

Theorem 4.8. Let D C R? be a bounded, open and smooth set. Fix an open set ) CC D C R?
and assume its boundary ' := OS2 is of class C.* Then the shape function J, given by (4.7) is shape

“Note that for an open set 2 C R¢ of class C?, we have o € BV (D) N Lo (D) and therefore xq € BW; (D).
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differentiable for every 0§ € C%(R?).° The domain form reads

dJl(Q)[H]:/Ddiv(G)\u—ud]Q dx—/ 2(u—ud)Vud-9da:—/ div (60) fp da

D D

(4.15) —/ Vf-op dx+/ﬁ(|Vu|2,x)A’(0)Vu-Vp dx
D D

— [ (Ve 00V V(- V)
D
Moreover, the boundary expression is given by

I ( Q0] = — / 28 (1Vuf, 2)(Vete - Vep + 01t 0,p) Oyt ytt] . ol
(4.16) L
+/ [B(IVul?, 2)Vru - Viep — B(IVul?, 2)8,u 9,p] . 0 ds
r

where w € H} (D) satisfies (4.10) andp € H} () solves

/26’(\Vu\2,x)(Vu -Vp)(Vu - V) dr + / B(|Vul?, )V - Vp dx
(4.17) p @
= —/ 2(u — ug)y dx forallh € Hy(D).
D

We apply Theorem 3.1 to the function

Gltow)= Y ( Ol dot [ AIBOVERADTS T do)

seft,—

(4.18)

Z So®y)° du,

se{+.,—}

with E = H}(D) and F = H}(D), to show the previous Theorem. Notice that J(€2;) = G(t, u’, ),
where u' € H} (D) solves

(4.19) /Dﬁ(|B(t)Vut|2,x)A(t)Vut -V do = /Dg(t)f%z) dx, forallyy € Hy(D).

Roughly spoken the function GG constitutes the sum of the perturbed cost functional J(£2;) and the weak
formulation (4.19). Condition (i) and (ii) of hypothesis (B1) are satisfied due to the differentiability of the
functions (3,, B_ and the Assumption 4.1. Condition (iii) is satisfied by construction. Condition (iv) is valid
since A(t), B(t) and £(t) are smooth. Moreover, condition (B2) is valid since A(t) = {u'}, where
u' € H}(D) is the solution of the state equation (4.19) and Y'(¢) = {p'}, where p' € H}(D) is the
unique solution of

[ 2603080V (B 0V BV B0V - BlEVY) drds
(4.20) +/ / B(|B(t)Vui|?, 2)A(t)Ve - V' dx ds
/ / () — ug)tp dw ds, forallyp € Hy(D),
where u; = sul + (1 — s)u. To prove that the previous equation has indeed a unique solution, we

first check that all integrals are finite in the previous equation. To verify this we use Hoélder’s inequality to

SWe use the notation A CC B indicate that A C B and A C B is compact.
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obtain
[ 203 (BOVa. BV BOVH) BV - BOTY) do
1/2
gc(/D2@’(;B(t)vu§|2,x)(B(t)vug.B(t)vﬁ)wx) .
1/2
( [ 2 1B D(BOVa - B)Ve) dm)
and

[ BUBOVAE 2 A0 VY- T ds
D
1/2 1/2
<o [ susovaraipovera) ([ spovarop0vrE )
D Q
Adding both equations and using part 4 of Assumption 4.1, we get

/D?é(t)ﬁ’(lB(t)VUfF,x)(B(t)VUf - B()Vp')(B(t)Vu; - B(t)VY)) d

(4.21) +/ﬁ(|B(t)Vuf|2,x)A(t)V1/)'th d
D

< c[Yllg )17 1 ()
and the constant ¢ > 0 is independent of s.

The existence of a solution p' follows from the theorem of Lax-Milgram, since A(t) is positive definite
independently, i.e., there are numbers A > 0 and 7 > 0 such that forall ¢t € [0,7] and ( € R?, we
have A(t)¢ - ¢ > M|C|. Moreover, by Assumption 4.1, we conclude 3/ > 0 and 3 > ¢ > 0. Note
that p° = p € Y(0) is the unique solution of the adjoint equation (4.17). To verify (B3), we show that
there is a sequence (P )ren, where p'* € T(t;) converging weakly in H} (D) to the solution of the
adjoint equation and that (¢, %) — 0;G(t,u°, ) is weakly continuous. In order to prove this, we need
the following lemma.

Lemma 4.9. Fort small the mappingt — u' := W, (u;) € H}(D) is continuous from the right in 0, i.e.,
for every £ > 0 there exists ad > 0 such that

forallt > 0 witht < § = ||u’ — ul|i(py < e.
Proof. At first recall that the function A(t) = £(t)0®; '0®, " is positive definite. Therefore, using the

change of variables ®;(x) = y, we see that for arbitrary f € H'(D), there exist C > 0 and 7 > 0,
such that for all ¢ € [0, 7]

/ IV(fo® Hdr = / AV f-Vfde > C/ IV f|*du.
D D D
Further, we get from this estimate that there are constants ¢ > 0 and 7 > 0, such that for all t € [0, 7]

(4.22) cll ey < N f o @ Ml py)-

Now setting x1 := X and x2 := Xq, = X © CIDt_l and denoting the corresponding solutions of (4.10)
by u := u(xq) and u; := u(xq,), we infer from Lemma 4.3 and (4.22)

clluo @ — ul| i py < llue — ullmpy < Cllxa — xa © @ |,p),
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for some ¢ > 1, where u! := wu; o ®,. Notice that ¢ and C are independent of t. In summary, there are
constants ¢ > 0 and 7 > 0 such that for all t € [0, 7]

Ju — UtHHl(D) < |lu —uo @ gipy + [[uo P — utHHl(D)
< (llu—wo @l (p) + lIxe — X 0 @, lr,m)-

Finally, taking into account part 1. and 2. of Lemma 2.1, we obtain the desired continuity. 0]

With this Lemma we are able to show the following.

Lemma 4.10. The solution p' of (4.21) converges weakly in Hg(D) to the solution p of the adjoint
equation (4.17).

Proof. The existence of a solution of (4.21) follows from the Theorem of Lax-Milgram. Inserting 1) = p' as
test function in (4.21), we see that estimate ||u' || g1 (py < C'implies ||p*|| g1 (py < C for ¢ sufficient small.
From the boundedness, we infer that (ﬁt)tzo converges weakly to some w € H&(D). In Lemma 4.9 we
proved u! — w in H'(D) which we can use to pass to the limit in (4.21) and obtain

ﬁtk ;pm ]——[1<Z))7 fortk — 0’ as k — 00,

where p € H}(D) solves the adjoint equation (4.17). By uniqueness we conclude w = p. [

Finally, differentiating (4.18) at ¢ > 0, yields

aG(tg.0) = [

2(p — ul) B(t)Vuly - 6" do + / div (6") o @4 — uy[* dz
D

D

n / B (Vo2 2)2(B'(t) Ve - Bt)V)A(t)V - Vi da
(4.23) D

- / div (0%) o ®; f') dw — / E)B@E)V - 0" dx
D D

- [ BUBOTeR )40V Vi da,

and this shows that for fixed ¢ € H} (D) the mapping (¢,1) — 0,G(t, , 1) is weakly continuous. This
finishes the proof that condition (B3) is satisfied. Consequently, we may apply Theorem 3.1 and obtain

dJ ()[0] = 6:G(0, u, p),

where u € Hy (D) solves the state equation (4.10) and p € Hy (D) is a solution of the adjoint equation
(4.17). This proves formula (4.15).

We continue to show that the boundary expression of d.J; (€) is given by formula (4.16). It can be seen
from the domain expression (4.15), that the mapping d.J;(£2) : C2°(D) — Ris linear and continuous for
the C1(D) topology. It is known from Zolésio’s structure theorem [Delfour and Zolésio, 2011, p.480] that
under the assumption that I" is C?, the shape derivative is of the form

dJ1<Q)[9] — <h70n>02(1")7
for some distribution 4 € (C*(T"))* and if additionally 4 € L,(T") then

(4.24) dJi(Q)[0] :/h Onds.
r

One way to derive the boundary expression is to integrate by parts in the domain expression (4.15). Since
this process is quite tedious, we go another way described in the sequel.

In the following, we make the following assumption.
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Assumption 4.11. The solution u of (4.10) is a classical solution in the sense that there is some 0 <
o < 1 such that

Oy ut, Opu™ € CO (), Oppyu, Opu € CO*(Q7) (4,5 =1,2).

Moroever, the partial derivatives are bounded by a constant C' > (.

Note first, by taking appropriate test functions in the weak formulation of the adjoint equation (4.17) that
p solves

—div (B4 ([Vu* ) Vp* + 28 ([Vu* ) (Vu' - V) Vu') = =2(ut —uq) in QF,
(4.25) —div (B_(|Vu [P )Vp~ +28-(|Vu *)(Vu™ - Vp )Vu ) = =2(u” —ug) in Q7
p=0 ondD,
complemented by transmission conditions
plp=0 on T,
[B(IVul?, 2) 8,p + 268’ (|Vul*,2) Vu - Vpdpu] . =0 on T.

The same argumentation shows that the solution u of (4.10) solves in fact the strong formulation (4.8),(4.9).
We collect this in the following Lemma.

(4.26)

Lemma 4.12. The functions u and p solve the state and adjoint equation in the strong sense (4.8),(4.9)
and (4.25),(4.26), respectively.

Using the change of variables ®;(x) = y, the function G can be rewritten as
Gty = 3 ([ W) i e [ ) do
ef+-) \7¢ i
(4.27) SEUT

+ 3 / 519 (B () )V (0 () - V(4 (4)) da
where u"* := U, (uj) and ¢ € Hl(D). Therefore using the transport Theorem 2.4 yields

dL Q0] = ) /Q u—ud)<dx+/ 268 (|Vus|?)(Vus - Vis)Vus - Vp* da

se{+,—}
b [ BV Ty det | A(VEP)Ve V5 dr
se{+,—} s
(4.28)
- > / P de+ > / B(|VusP)Vus - Vps eds
sef{+,—3 /¥ se{+,—}
- / S Busds,
se{+,—} ol
where we use the notation ©* = —Vu* - 0 and p* = —Vp° - 0.

Remark 4.13. Note that

am = {50 ST = { T 5

are piecewise H' functions, but do not belong to H} (D). Therefore it is not allowed to insert these
functions as test functions in the adjoint or state equation.



23

Integrating by parts in (4.28) gives

dJ,(Q)[0] = — Z {/ div (B:(|Vu?)Vp* + 28.(|Vus?)(Vus - VP )Vu) @ do

ce{+,—} )

+/§2(u—ud)a< dx} > /Q (div (B.(Vus V) + ) 5 da

se{+,—-}

+ Z B(|Vu )i Oy p° + Be(|Vus ) Ops s dax

ce{t,—} o

+ Z B (Vs P)Vus - Vp© O + 26| Vus|*) (Vus - Vp©)Opsuttsds,
se{+,—} o

and taking into account Lemma 4.12, we see that the first two lines vanish and thus

dJ,()[0] = /ﬁg VU |?) (=Vus - 0)0,sp® — B(|Vus|?)0pp Opsu® da
se{+,—}
(4.30)
+ Z /ﬁg (|Vus )V - Vp* O,eds — /2ﬁé(]Vu§|2)(Vug-Vpg)f)ncuc@gugds
se{+-} r

where Oyu® := Vu* - . According to (4.24) the right hand side of (4.30) depends linearly on #,, = 6 - n.
This can be accomplished by splitting € into normal and tangential part in two different ways on I,

0 =0 —0,+n", 0 =0—0,-n",
where 0, := 0 -n~ and 0,+ := 0 - n". Note that 6,,-n* = 0,-n~ implies 0} — 6. = 0 and
Vpt -0 =Vrpt 05 =Vrp -0, =Vp 07,

since Vrut = Vru™ on I due to Remark 2.9. Thus we see that the tangential terms in (4.30) vanish,
since

Z /ﬁg (|Vus |2 (Vp* - 0)0pus Z /ﬁg VU |?) (O p° Ops )0y da

ce{+,—} se{+,—}
£ 3 [ A0VEP) e (T 07) da,
se{+,—-} )
=0}110)
and similarly
/ﬂg |Vu<| W (Vus - 0)0,p° da;—l—/ﬁguc $Vp*)Opsut (Vus - 0)ds
se{+,—}
= ) /ﬁg VS [2)Dps S By 6, dx+/ﬁw< (VS - V) Ops s Dy us O, ds
se{+,—}
+ Z /ﬁg |Vus|?)Ope pt —|—ﬁ<u<(Vu VpOpsu®)(Vru® - 65) do
<€{+ -}

J/

=0,(4.26)
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where we abbreviated Béug := 2(.(|Vus|?). Thus we finally obtain from (4.30) the boundary expression

AL =~ > [ 28V P)(Vus - Vp*) (Opeti®)? Opeds
se{+,—} r
+ Z /5§<|vu§|2)vFug - Vrp® Ops — 5§<|VU§|2)87L<UC s D° Opeds,
sef{+,-1 7T

which is equivalent to (4.16).

Remark 4.14. If the transmission coefficients are constant in each domain, that is 3'(|Vu|?, z) = 0, the
formula is in coincidence with the one in [Afraites et al., 2007]. To the authors knowledge this formula also
corrects the one in [Cimréak, 2012]. When 3'(|Vu|?, z) # 0 the linear case differs from the non-linear by
the term

— / [26'(IVul?, 2)(Vu - Vp)Opudpu] . Onds.
r
Remark 4.15. Using Cea’s original method, would lead to the wrong formula

dJl(Q)[e]:/F[ﬁ(wuy?,x)vu.vp}r 6, ds.

CONCLUSION

We compared different methods to prove the shape differentiability. In the main result of the paper, we pre-
sented a theorem which allows to prove the shape differentiability without computing material derivatives.
In contrast to the theorem of Correa-Seeger, we do not need any saddle point assumption. We applied
the method to a quasi-linear transmission problem and showed existence of an associated optimization
problem.

We emphasis that Theorem 3.1 can be applied to curl curl and div div equations, but then a different
parametrization W, has to be chosen. For instance for a curlcurl equation in R?, we can use the
transformation (see [Monk, 2003])

(4.31) U, (v) := (00])(vod,), ve H. (D).
For div div equations, we can use (see [Sokotowski and Zolésio, 1992])
(4.32) Uy (v) == (1)AE(H) (v o ®y)), v e Hy, (D).

A slight modification of Theorem 3.1 shows that it is also applicable to non-linear coupled systems. In
summary, there is little restriction of this method except some differentiability assumption, which might be
in some applications not desirable. We conclude that Theorem 3.1 represents an effective tool to prove
the shape differentiability and to derive the boundary and domain expression of the shape derivative.
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