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Abstract

The aim of this paper is to prove an isoperimetric inequality relative to a convex domain 2 C R?
intersected with balls with a uniform relative isoperimetric constant, independent of the size of the
radius r > 0 and the position y € Q of the center of the ball. For this, uniform Sobolev, Poincaré and
Poincaré-Sobolev inequalities are deduced for classes of (not necessarily convex) domains that satisfy
a uniform cone property. It is shown that the constants in all of these inequalities solely depend
on the dimensions of the cone, space dimension d, the diameter of the domain and the integrability
exponent p € [1,d).

1 Introduction

Main goal of this paper is to prove a uniform relative isoperimetric inequality for a suitable class of
bounded domains Q C RY intersected with balls. More precisely, we shall verify the following statement:
Let Q C R? be a suitable, bounded domain. Then, there exists a constant Cq > 0 such that for all y € Q,
for all p > 0 and for every L%-measurable set A C Q with finite perimeter in , i.e. P(A,Q) < oo, it
holds:
d—1
min {£1(AN (21 B,(1))), £%(2 N B,)\A)}'T < CaP(A,20 B, (). (1.1)

Here and in the following, d € N denotes the space dimension, £¢ the d-dimensional Lebesgue-measure
and B,(y) C R? the open ball of radius p with center in y € R?. Moreover, 92 stands for the topological
boundary of Q.

As it is pointed out in e.g. [BZ80, pp. 132] the relative isoperimetric constant (in an isoperimetric
inequality relative to a domain ) can be understood as a domain characteristic in the sense that its
value is essentially determined by the geometrical properties of the domain. Thus, in other words, the
domains € suited for (1.1) shall be such that a change of p > 0 or y € Q does not exorbitantly worsen the
geometrical properties of 2N B,(y), so that the respective relative isoperimetric constants Cqn B,(y) can
be bounded uniformly from above. In particular, if QN B,(y) = 2 for p sufficiently large, the respective
relative isoperimetric constant Conp, (,) should coincide with the one for 2.

For a set A such that min {L4(A N (Q N B,(y))), L4 N B,(y)\A)} = LU AN (2N B,(y))) the
relative isoperimetric inequality (1.1) is equivalent to the Poincaré-Sobolev inequality (for functions with
zero mean value) between BV(QN B,(y)) and LY(@=1(Q N B,(y)), applied to the characteristic function
of the finite-perimeter set A. This is exactly the strategy of our proof: We will first verify that the
Poincaré-Sobolev inequality in domains €2 holds with a constant that depends solely on certain geometric
properties of the domain. All the domains with the same geometric properties will be gathered in a class
and it will be shown that, for QN B,(y), changes of p > 0 and y €  do not lead out of this class.

Also for = R? the Poincaré-Sobolev inequality and the isoperimetric inequality (on RY) are equiv-
alent. The isoperimetric inequality in R? states that the perimeter P(A) in R? of an L%-measurable set
A is necessarily larger than the perimeter of a ball with the same volume, i.e.

dwl/ LAY/ < p(A),

where wy is the volume of the ball in R? with radius » = 1. In order to quantify the deviation of a finite-
perimeter set A from being a ball, so-called quantitative isoperimetric inequalities have been studied in
e.g. [Fugk9, FMP10, FMP08, CN10]:

dw)/ LAY/ 4 A(A)) < P(A),

where the function A\ measures how far A is from being a ball; in particular A(A) = 0 iff A C R? is a ball.
Analogously, in [FMPO07], a quantitative (Poincaré-)Sobolev inequality has been derived which expresses
how far a BV(R?)-function is from being the characteristic function of a ball.

The above mentioned works, however, are concerned with estimates in R? and it is not obvious at
all whether and how the constants obtained in R? relate to the constants of the respective inequalities
on bounded domains, i.e. relative to a bounded domain 2. In the latter context, it is elaborated in
[GGO01, GGO03, Gaj0l] that the optimal relative isoperimetric constant is given by the first non-trivial



eigenvalue of the 1-Laplacian equation in © C R subject to homogeneous Neumann boundary condi-
tions. Furthermore, the relation of this optimal constant to the optimal constant of the Poincaré-Sobolev
inequality for convex 2 C R? is described in [EFK*12] and it is proved that the respective optimal
constants for Q are always bounded from above by the ones for a ball of volume £4(Q). In the present
work, however, we are rather interested in the uniform applicability of such constants for a collection of
domains. Hence, to obtain (1.1) we rather rely on the “classical* methods to derive embedding inequali-
ties on bounded domains, like they are elaborated in e.g. [Agm65, Ada75, Maz11, Zie89]. In particular,
for the derivation of uniform estimates we will confine the analysis to bounded domains Q C R? with
diameter diam 2 < b, which satisfy the uniform cone property. Hereby, we will use the definition of the
uniform cone property given by Chenais in [Che75, Che77], see Definition 1.2 here below, and in order
to distinguish it from other definitions, see Definition 2.2, we will from now on refer to it as Chenais’
uniform cone property. Let us mention that in subsequent works related to shape optimization, this type
of cone property is also called e-cone property, see e.g. [Pir87, LS04, BC07]. The advantage of Chenais’
uniform cone property is that this definition is tuned according to the relevant parameters that enter into
the constants in inequalities on such type of bounded domains. Therefore it is possible to gather domains
satisfying Chenais’ uniform cone property with the same parameters into a class, see Definition 1.3 and
to thus conclude uniform constants within this class.

Definition 1.1 (Convex cone K(£,0,h)) Let h >0, 0 € (0,7/2) and ¢ € R? with |¢| = 1. The set
K(&,0,h) :={z € R% x-& > |z|cosb, |z| < h} (1.2)
is the cone of angle 0, height h and axis &.

The restriction 6 € (0,7/2) is for the reason of convexity of the cone and because of cos7/2 = 0. Since
x - & = |z||¢| cosa(x, &) with a(z,§), the intersection angle between the lines tz and &, t € R, and since
cos(+) is monotonously decreasing on (0,7/2), the cone K (&, 60, h) indeed consists of the vectors z € R?
with |z| < h and «a(z,€) < 6.

Definition 1.2 (Chenais’ uniform cone property [Che77]) Let h > 0, 0 € (0,7/2) and r > 0 with
2r < h fived. A set Q C R is said to salisfy the uniform cone property iff for all x € O there exists a
cone K, = K(&;,0,h) of angle 0, height h and azis &, with vertex in x such that

for all y e B.(x) NQ it holds y + K, C Q. (1.3)

All the sets Q C R? with diameter diam Q) < b, which satisfy the cone property from Definition 1.2 with
cones congruent to the same cone K (&, 0,h) with fixed parameters 6, h,r are now gathered in the class
I1(0, h,r,b). In particular, note that I1(01, hy,r1,b) C I1(02, ha,72,b) for all O3 < 61, ho < hy and ro < 7q.

Definition 1.3 (I1(0, h,r,b)) Let b > 0 fized. The class IL(0, h,r,b) is the set of all the domains Q C R?
with diameter diam ) < b, satisfying the cone property of Definition 1.2 with the parameters 0, h,r.

Since Chenais’ uniform cone property looks quite restrictive compared to other definitions of cone
properties, we give an overview on geometrical properties of domains and discuss their relations in Section
2.1. Moreover, in Section 2.2, we state and explain existing results developed in [Che75, Che77, BC07] on
the class I1(6, h, 7, b), such as a uniform extension theorem and Poincaré inequalities as well as compactness
results with respect to different types of convergence of sets. By refining the arguments of [Ada75, L. 5.10,
p. 103] we will derive a uniform Sobolev inequality in Section 3.1. Combined with the uniform Poincaré
inequality this results in a uniform Poincaré-Sobolev inequality and in a uniform relative isoperimetric
inequality for domains Q € II(0, h,r,b). This will finally allow us in Section 3.2 to deduce the uniform
relative isoperimetric inequality (1.1) for convex domains.

2 Qualities of I1(¢,r, h,b) & comparison of geometrical properties

2.1 Comparison of geometrical properties of domains

In the following we give an (incomplete) list of geometrical properties of domains. Moreover, we compare
Chenais’ uniform cone property with other definitions of the uniform cone property. We will observe



that all of them coincide for bounded domains, while, for unbounded domaing there is a hierarchy with
Chenais’ uniform cone property as the most restrictive one.

Definition 2.1 (Cone property [Ada75, 4.3, p. 66]) A domain Q C R? has the cone property iff
there exists a finite cone K such that each point x € Q is the vertex of a finite cone K, C Q congruent
to K.

Following the lines of [Ada75, p. 66] a countable collection O of open subsets of R? is said to be a locally
finite open cover of a set S C R? iff any compact set C' C R intersects at most finitely many elements
of O. Involving this notion of covering more restrictive cone properties can be formulated.

Definition 2.2 (Uniform/restricted cone property) A domain Q C R? has the

1) (Adams’) uniform cone property, [Ada75, 4.4, p. 66|, iff there exists a locally finite open cover {U;}
of O and a corresponding sequence {K;} of finite cones, each congruent to a fived finite cone K,
such that:

(i) For some finite M € R fized, every U; has diameter less than M.
(i1) For some 0 > 0, it is Qs C U2, U;, where Qs := {z € Q, dist(x,0Q) < d}.
(iii) For every j there holds Q; := Uzcanu, (z + K;) C Q.
(iv) For some finite R € N, every collection of R+ 1 of the sets QQ; has empty intersection.

2) (Agmon’s) restricted cone property, [Agm65, Def. 2.1, p. 11], iff there exists a locally finite open
cover {O;} of 9Q and a corresponding sequence {K;} of finite cones, each congruent to a fized finite
cone K, such that:

forallx e O;,NQY: x4+ K; CQ. (2.1)

On the first glance, Chenais’ uniform cone property introduced in [Che77] seems to be more restrictive
than the uniform cone property stated in [Ada75] or the restrictive cone property used in [Agm65]. Indeed,
in Proposition 2.3 we will verify the hierarchy that Chenais’ uniform cone property implies Adams’ uniform
cone property, which, in turn implies Agmon’s restricted cone property, while the converse implications
are in general false in the case of unbounded domains, as can be seen from Examples 2.5 and 2.6. For
bounded domains, however, we will observe in Proposition 2.4 that the three properties are equivalent.
For this, we first verify the following

Proposition 2.3 Let Q C R? be a domain.
1.) Assume that Q satisfies Chenais’ uniform cone property (Def. 1.2). Then the collection of open
balls {B,(z), x € 0Q} contains a locally finite subcover {B,(x;), j € N} with the properties:

o For every x; and any of its nearest neighbours x;, the distance is less than r, (2.2a)

® Q.5 C Ujen By (5), (2.2b)

e for every j there holds Q; := Uyconp, (2,) (T + Kz;) C Q. (2.2¢)

o For some finite R € N, every collection of R+ 1 of the sets Q; has empty intersection, (2.2d)
i.e. the domain Q) satisfies Adams’ uniform cone property (Def. 2.2)

2.) Assume that Q has Adams’ uniform cone property. Then Q also satisfies Agmon’s restricted cone

property.

Proof: Ad 1.): Let Q C R? satisfy Chenais’ uniform cone property. Firstly, we fill R? with the
countable collection of closed cubes {C;};en of uniform diagonal length diag C; < r/2 and int C;Nint C; =
(0 for all i # j. We consider all the cubes C; that have nonempty intersection with 9Q and in each of
the C; we pick one point 2; € dQ N C;. In particular, both {B, /5(x;), i € N} and {B,(z;), i € N} are
locally finite open covers of 02. Moreover, as diag C; < r/2, we have that dist(z;,z;) < r for z; z; in
neighboring cubes C;, Cj. This implies that Q, /5 C Ujen B (2;).

By Chenais’ cone property, for any y € B,(z;) N we have that y + K, C Byyx(z;) N Q. Moreover,
for any z € Byip(x;) there is a cube C; such that z € C;. Clearly, B,15(y) intersects with at most R
cubes and R is a finite number R € N, depending on d, 7, and h, only. Hence, z is an element of at most
R of the sets Q;.



Ad 2.): Clearly, an locally finite open cover corresponding to Adam’s uniform cone property also
serves as a suitable open cover for Agmon’s restricted cone property. [

As a direct consequence of of Proposition 2.3 we deduce the equivalence of the three uniform cone
properties in the case of bounded domains.

Proposition 2.4 Let Q C R? be a bounded domain. Then, the uniform cone properties of Chenais (Def.
1.2), Adams (Def. 2.2, 1.)), and Agmon (Def. 2.2, 2.)) are equivalent.

Proof: In view of Proposition 2.3 it remains to verify that Agmon’s restricted cone property implies
Chenais’ uniform cone property for a bounded domain Q C R Thus, let O = {O;,i € N} be a locally
finite open cover serving for Agmon’s restricted cone property. As  is bounded, we have that 9Q = Q\Q
is compact. By Heine-Borel’s covering theorem there exists a f{inite subcover {O;,i =1,... N} C 0. We
first show that there is § > 0 such that Qs C UY., O, as claimed in (i) of Adams’ uniform cone property.
In other words, this ensures that U,cgnB,-(z) N Q C Q for every r < §, which is needed for Chenais’
uniform cone property.

For every x € 0 we introduce d, :=sup{p > 0: B,(x) C U;enO;}. As U;enO; is open we have that
0 > 0 for all x € 9. Proceeding by contradiction we assume that there exists a sequence (2, )nen C OS2
and a sequence of radii (9, )nen with 6, = 0., such that J,, — 0 as n — oco. But by compactness there is
a subsequence x,, — x € 0Q2. Hence §, > 0 in contradiction to the assumption ¢, — 0 and we conclude
that indeed ¢ := min{d,,z € 02} > 0.

Let now r := 6/8. Then B,(x)NQ C Qs for all z € Q. Moreover, consider IN(, the cone from Agmon’s
cone property of, say, opening angle 6 and height h. We shorten K to the cone K of opening angle 0
and height h = §/2. Then, with this choice of » and h we have ensured that 2r < h and in particular
that y + K, C s C 2 for every y € B,.(z) and every x € 012, independently of the vertex orientation ,.
Thus, the bounded domain 2 has Chenais’ uniform cone property. [

In the following we give two examples confirming that the three cone properties are not necessarily
equivalent in the case of unbounded domains. We start with an example of a domain with Adams’ uniform
cone property but lacking Chenais’ uniform cone property.

Example 2.5 (Adams’ uniform cone property # Chenais’ uniform cone property) Asin Fig.
2.1 we consider a semi-infinite strip Q0 C R? perforated by a sequence of holes of degenerating width. For
a clearer presentation of the arguments we fix Q := [0, 00) x [=5, 5]\ Upen Hy,, where H,, = [bn—1/n,5n+
1/n] x [-1,1]UB1((5n,1)) U B1 ((5n,—1)) is the hole centered in (5n,0). Clearly, the collection of open
sets O = {Uy,Us, Us, Uy, U, ,Us Uy, Us. . Us, ., n € NU{0}} where

n?

Uy = (—1,1) x (=5,5), Us:=(—1,1) % (4,6), Us:=(—1,1)x (=6, —4),
U = (n—1/3,n+1/3) x (4,6), Us, := (n—1/3,n+1/3) x (—6, —4),

Us, :=0bBn—1,n+1/n+1/(3n) x (—2,2), Uy, :=0Bn+1/n—1/(3n),5n+1) x (=2,2),
Us, :=0GBn-—1,6n+1)x (1,1+1/n), Us, :=(Bn—1,5n+1)x (=1—1/n,-1),

provides an open cover of 092 with the properties (i)—(iv) of Adams’ cone property. More precisely, the
open cover is chosen in correspondence to the cones sketched in Fig. 2.1 and, in particular (i) holds true
for all M > 2, (i) for all § € (0,1) and at most 3 of the open sets have nonempty intersection, i.e. R =3
in (iv). However, as n — oo, the width of the holes H,, tends to 0 and hence there is no uniform radius
r > 0 such that the cone K, can be used in the ball B, (z) for x € U,enOH,. Hence, 2 does not satisfy
Chenais’ uniform cone property.

Now we state an example for an unbounded domain enjoying Agmon’s uniform cone property but lacking
Adams’ uniform cone property.

Example 2.6 (Agmon’s uniform cone property # Adams’ uniform cone property) Asindica-
ted in Fig. 2.2 we consider a semi-infinite strip Q C R? perforated by a sequence of non-convex holes
of degenerating width and distance such that condition (7#) of Adams’ uniform cone property is vio-
lated. To simplify our arguments we fix ¥ := ((0,00) x (—5,5)) the semi-infinite strip and the domain



xE

Figure 2.1: Unbounded domain with holes of degenerating width and cones corresponding to O.

Q := S\U; nen HY, where HY are the holes constructed and positioned as follows: For every n € N we put
arectangle (5n—1/(4n),5n+1/(4n)) x (—1,1). Inside of these rectangles we cut out squares of edge length
1/(2n) and distance 1/(2n), , i.e. at each horizontal position 5n the semi-infinite strip S is perforated by n
squares S¢, i € {1,...,n}. Now we fix a cone K of opening angle § € (0,7/2) and height h < 3. For each
n € N fixed, for all i € {1,...,n} we choose a point z, € S} with coordinate component in horizontal
direction larger than 5n. In addition, for all i € {1,...,n} we choose an orientation £/ with positive
horizontal component such that xi + K(0,h,£.) € X and such that & # &) for all i,5 € {1,...,n}.
For all n € N, i € {1,...,n} the hole H{ is then defined by H! := S\ (z¢, + K(0,h,&')), i.e. optically,
each square S! has a cone-shaped notch N! formed by z! + K(0,h,&.). For every H! there exists a
finite open cover of OH! and corresponding cones congruent to K such that for  Agmon’s restricted
cone property (2.1) holds true. In particular, we note that we can find elements U’ of the open cover
such that S}, N («f, + K(0,h,¢))) C Ul and such that Qf, := Uycp: (y + K(0,h,&))) € Q. But since the
distance between the holes H! and their edge length is 1/(2n) we conclude that the number of sets Q,
with nonempty intersection tends to co as n — oco.

Figure 2.2: Unbounded domain with non-convex holes of degenerating size and distance and cones cor-
responding to O.

In the following we state several types of Lipschitz properties and compare them with Chenais’ uniform
cone property.

Definition 2.7 (Lipschitz properties of bounded domains) Let (X,d) and ()?,El) be two metric
spaces. A mapping F : X — X s called Lipschitzian if there exists a constant L > 0 such that for all
x,y € X we have a(F(L), F(y)) < Ld(z,y). If F~1 is injective and also Lipschitzian, the mapping F is
called bi-Lipschitzian, see [Reh12].

1. Domain with strong local Lipschitz property [Ada75, 4.5, p. 67] (= Domains of the class C%!
[Maz11, Def. 2, p. 15, Rem. 2, p. 16]): A bounded domain Q C R? belongs to the class C%' if
each point x € 0N) has a neighborhood U, such that the set U, N is represented by the inequalily
g < Fy(x1,...,24-1) in some Cartesian coordinate system and the function F, is Lipschitzian. In
other words, [AdaT5, p. 67],  is a domain with (locally) Lipschitz boundary.

2. Lipschitz domain [Mazll, Def. 3, p. 16]: A bounded domain 2 is a Lipschitz domain (Lipschitzian)
iff each point of its boundary has a neighborhood U, C R? such that a quasi-isometric transformation
maps U, NQ onto a cube.



Clearly, ) being of class C%! implies that Q being a Lipschitz domain.

Compared to the strong local Lipschitz property in Definition 2.7 above [Che75, Def. IIL.1, p. 201] gives
a refined definition, which allows it to gather all the bounded domains Q with neighborhoods U, being
balls Bs(x) and Lipschitz constants of F, of the same size L > 0 in the class Lip(L, d). For this, we will
make use of the following notation: Let 6,6’ > 0 and v = (&,74)" € R with & = (z1,...,04-1)" € RI7L,
We introduce the sets

Pssi(x) = {yeR? |yi—a| <dfori=1,...,d—1and |y —zq| < '},
Ps(z) = {geR¥™ |z, —yi|<dfori=1,...,d—1}.

Definition 2.8 (Chenais’ strong Lipschitz property) Let L > 0 and § > 0 be given and 0’ :=
Lé(d —1)Y2. We denote by Lip(L,d) the set of all open sets Q C R% with diam Q < b such that for all
x € 000 there ezists a local coordinate system and a function @, : P(&) — R, which is Lipschitzian with
Lipschitz constant L such that

Yy e Pss: (x),

Yd > (I)au(g) . (23)

yEP(;(;/(x)ﬂQ & {

We first convince ourselves that Chenais’ strong Lipschitz property is equivalent to the one stated in
Definition 2.7, item 1..

Lemma 2.9 A bounded domain Q of class C%' with diameter diam Q) < b satisfies Chenais’ strong
Lipschitz property and vice versa.

Proof: Consider an open set Q C R? with diameter diamQ < b of class C%'. For all z € 99 there
exists an open neighborhood U, with « € U,. Hence, each U, contains an open ball B, _(x) with center
in z. Assume that there is a sequence of points (z;); C 09 such that r,, — 0 for the respective radii.
Since Q is bounded there exists a subsequence (z;/); C (z;); such that ;; — 2 and by compactness of
09 we have that x € 0Q2 with r, = 0. This states a contradiction to the fact that U, is open. Thus there
is a lower bound 6 > 0 such that r, > § for all z € 9Q. We fix § > 0 such that Bs(z) C U, for all € 9Q.

With the same arguments we can conclude that the Lipschitz constants L, of the Lipschitz mappings
F, are uniformly bounded for all z € 912, both from below and from above. Hence, there exists a Lipschitz
constant L such that |F,(2) — F,(9)| < L|& — g| for all y € B;(x), uniformly for all z € 0Q.

Moreover, by Def. 2.7, Ttem 1., we find that, for all z € 9, the set Bs(x) N is represented by the rela-
tion yq < F(9). Since F is Lipschitz continuous on U, O Bj(z) we conclude that max,ep.(2) [Fz(9)| =:
M, is attained. Additionally, we have that m, < yq < m, for all y € Bj(x). Therefore, ®, :=
F, — M, + m, is Lipschitzian with Lipschitz constant L and satisfies yq > ®.(7) for all y € Bjz(x).

It remains to determine ¢ in a suitable relation to & such that (2.3) holds true. For this, consider
y € Pss (x). We have to ensure that |y — z|? < (d — 1)(L? + 1)§2 =: 62, because then y € Pss (z) implies
that y € B;(x) and thus, (2.3) is guaranteed.

In order to verify that a domain 2 € Lip(L, ) is of class C%!, just observe that Pss () is a particular
choice of neighbourhood U,. With analogous calculations as above one can turn the Lipschitzian ®, into
a Lipschitzian F, satisfying F,(g) > yq for all y € U, N Q. ]

Chenais’ refined definition of the strong local Lipschitz property allows it to establish the equivalence
between the classes Lip(L,0) and TI(6, h,r, b), see [Che75, Prop. ITI.1, p. 203 and Prop. T11.2, p. 204].

Proposition 2.10 (Chenais’ uniform cone property < strong Lipschitz property) Forall6, h,r
as in Def. 1.3 there exist L,6 > 0 as in Def. 2.8 such that II(6, h,r,b) C Lip(L, ) and, vice versa, for all
L,6 >0 as in Def. 2.8 there exist 0, h,r as in Def. 1.3 such that Lip(L,d) C II(0, h,r,b).

A weaker property of domains is the segment property, which will be exploited later in Section 3.1
for the proof of the uniform Sobolev inequality.

Definition 2.11 (Segment property [Ada75, 4.2, p.66]) An open domain Q2 C R? has the segment
property if there exists a locally finite open cover {U;} of 00 and a corresponding sequence {y;} of nonzero
vectors such that if x € QN U; for some j, then x +ty; € Q for all t € (0,1).



Clearly, the segment property is implied by the uniform cone property, since, by compactness of 0f) there
is a finite open cover with balls B, (z;), x; € 092 and the direction y; is given by the axis &,, of the cone
K,,. The existence of line segments inside (2 is crucial for the proof of embedding theorems in Sobolev
spaces and we will exploit this in the proof of the Sobolev inequality. Nevertheless, the existence of
segments in 2 is already guaranteed by the cone property, see Definition 1.2, since, due to a theorem by
Gagliardo, see [Ada75, Thm. 4.8, p. 68], a bounded domain 2 with the cone property can be composed
by a finite collection of C%!-domains, which means that each of them has the uniform cone property by
Proposition 2.10.

Remark 2.12 (Further properties of domains) In [AF77] it was established that for many of the
embedding and interpolation theorems in Sobolev spaces the so-called weak cone condition of a domain
is sufficient: A domain Q C R? satisfies the weak cone condition iff there exists § > 0 such that

LUTD(z))>6 forallzeq. (2.4)

Here, T'(x) := {y € R(x), ly — x| < 1} and, given x € Q, the set R(x) consists of all points y € Q such
that the line segment joining x to y lies entirely in Q; thus R(x) is a union of rays and line segments
emanating from x (see [AF77, p. 714] or [AF03, 4.7, p. 82]).

When treating elliptic or parabolic PDEs with mixed boundary conditions, it is necessary that the
underlying domain 2 is of better regularity. A geometrical property which has been established exactly
for this setting is the notion of regular domains in the sense of Griger. This geometrical condition
enhances the notion of Lipschitz domains, see Def. 2.7, Ttem 2., with the refinement that the Dirichlet
and Neumann parts of the boundary are mapped suitably by the bi-Lipschitz functions, i.e. the Dirichlet
and the Neumann parts of the boundary OS2 are separated by a Lipschitzian hypersurface of the boundary.
See [Gro89, Def. 2, p. 680 and Rem. 1, p. 681] for the definition and e.g. [GGKR02, GRO1] for further
applications.

2.2 Properties of 11(0, h,r,b)

In this section we give an overview over the uniform properties of the class I1(0, h, r, b), which were mainly
established in [Che75, Che77, BCOT7]. Since these results will be relevant in Section 3, we will explain
their relations and outline the methods used for the proofs.

The following way to define a uniform covering for sets Q € II(0, h, r,b) is a slight modification of the
one given in [Che75, Prop. 1.2, p. 198].

Proposition 2.13 (Uniform covering & partition of unity for Q € T1(0, h,r,b)) Let 0 € (0,7/2),
h >0, r >0 with 2r < h fivzed. There exists an integer N(r,b,d) and a constant M (r,b) > 0 such that for
each Q2 CTI(0, h,r,b), the closure Q) has an open covering Oq = Oé U Og with the following properties:

o O8 .= {B! = B(x;(r/2), x; € 0Q,i=1,...,v5(Q)},

o OL :={B!:= B(z;(r/2), z; € Q, i = vp(Q)+1,...,v(Q)},

e v(Q) < N(r,b,d),

o By =UY) o BlCQ
Moreover, there exist vp(Q) + 1 functions (; € C°(R?), i =0,1,...,v(Q) such that:

e supp(; C Bl ¢i(z) € 0,1] for all z € RY and Z;’Sg) Gi(z) =1 for all x € Q,

o D, e VG (@) < M(r, )

Proof: The second part of the proposition is proved in detail in [Che75, Prop. I11.2; p. 198]. Here, we
clarify the existence of a uniform upper bound N (r, b, d) on the number of open sets. Let Q € II(0, h, r,b)
arbitrarily but fixed. Since diam {2 < b, the set  is contained in a closed cube Q; of edge length
b:= ([2b/r] + 1)r. Here [-] denotes the Gauk bracket, i.e. [a] =n € N for a = n 4+ A with X € [0,1).

The cube @Q; can be covered with open balls B, /, of radius r/2 as follows: Starting in each corner we
put a ball B, /, with center in the corner. We cover the edges of @; with balls B, /o with their centers on
the edges and with the distance r/2 of their centers. We fill the faces of the cube by translating the balls
from the edges, normal to the edges such that the center of every ball to its neighbor has distance r/2.



We fill the interior of the cube in a similar way. We observe that every edge is covered with 2([2b/7] 4+ 1)
balls, which implies that Q; is covered by N(r,b,d) = 2%([2b/r] + 1)¢ balls B, 5.

In what follows, the collection of balls B, /o constructed above is denoted by O and the corresponding
collection of their center points by Cg; .

The open covering Oq C O for 2 C @; can now be picked as follows: Those balls in O which do
not intersect with  do not contribute to the cover Oq. Furthermore, we introduce the set of center
points Cj := {.137 S Rd, Br/2($i) C Q, BT/Q(in) S O} and we find B(l) = UmiECIBr/2(-ri)- For balls
B, 2(yi) € O with B, j5(y;) Q2 # 0 but B, 5(ys) ¢ Q we choose a point z; € 9 such that B, 5(y;) NQ C
B, j2(x;). The collection of these center points is denoted by Cp. Hence, the collection of open balls
Oq = {B,/2(x;), i € Cr UCR} is an open cover of Q. It consists of v(£2) balls with v(Q2) < N(r,b,d)
by construction. ™

The uniform partition of unity is the crucial tool to construct linear, continuous extension operators Eq, :
Whr(Q) — WEP(RY), p € [1,00) with their operator norms uniformly bounded for all Q € TI(6, h, 7, b).

Theorem 2.1 (Uniform extension) Let 0 € (0,7/2), 0 < 2r < h and p € [1,00). Then there ezists
a constant K(0,h,r,b,d,p) > 0 and for every Q € I1(0,h,r,b) there is a linear, continuous extension
operator Eq : WHP(Q) — WIP(RY) such that:

HEQH < K(G;hvrvb;d;p)- (25)

The above statement was proved in [Che75, Thm. I1.1, p. 199] for p = 2 using Calderon-Zygmund kernels
for the construction of the extension operators; see also [Agm65, Chap. 11] for more details related to
extensions via Calderon-Zygmund kernels. This method, however, cannot be applied for p = 1. This case
is covered by [Che77, Thm. II.1, p. 213] using reflection techniques to construct the extension operators.
In that work the uniform statements are developed for the class Lip(L, ¢). Nevertheless, Proposition 2.10
directly translates this result into the I1(6, h, r, b)-setting.

Definition 2.14 (Different notions of set convergence) Consider a sequence sets (Ay), C RZ.

1. Convergence in the sense of characteristic functions:  For all k € N assume that Ay is L9-

measurable. The sequence (Ay)y is said to converge to an L%-measurable set A, i.e. Ay < A, iff

the sequence of their characteristic functions (Xa, )r converge strongly in L'(R?), d.e. X4, — Xa
in L*(R9).

2. Convergence of compact sets in Hausdorff-sense: For two compact sets K1 and Ko the Hausdorff
distance can be defined by, see [Hau62, p. 167, or e.g. [RWO8, p. 117],

dH(Kl,KQ) = 1nf{77 S [O, OO), K, C Ky + B,I(O) and Ko C K1 + BU(O)} . (26)

For all k € N, assume that Ay, are compact. We say that (Ay)r converges in Hausdorff-sense to a
compact set A C R?, i.e.

Ay B A i du(Ar A) —0. (2.7)
3. Convergence of open sets in Hausdorff-complement-sense: Let D C R? be open. For all k € N,

assume that Ay is open and Ay, C D. We say that (Ag)r converges in Hausdorff-complemeni-sense
to an open set A C D, i.e.

A S A iff du(D\Ay, D\A) — 0. (2.8)

Remark 2.15 (Translations of sets €2 € TI(0, h, 7, b)) Since diamQ < b for any set Q € II(0, h, 7, b),
there are points zo € 2 such that Q C Q;(zq), where Q;(zq) is the cube with center zo € R? and
edge length b := ([2b/r] + 1)r with edges parallel to the planes spanned by the coordinate axes. Here, [/]
denotes the Gauk bracket, i.e. [a] =n € N for a = n+ A with A € [0,1). The collection of sets II(6, h,r,b)
therefore can be composed by translating I1(6, h,r, Q;(0)) := {Q C Q;(0) and Q € II(0, h,7,b)}, ie.

(0, h,r,b) = ) 2 +11(0, h,r,Q3(0)) . (2.9)
x€Rd

In addition, for all u € WP (Q) we have that |[u|[w1.r(q) = [[uoTqg lwis(ra), Where 74, : Q(zq) — Q;(0)
is the translation that centers the cube Q;(zq) in the origin.



For the collection of sets II(6, h, 7, Q;(0)) introduced in Remark 2.15 the results in [LS04, Lemma 3.3, p.
4] state compactness with respect to the above convergences.

Lemma 2.16 (Compactness of I1(6, h,r,Q;(0))) Let (Q)r C II(0,h,7,Q;(0)). Then, there exists a
subsequence (S )i C (Qu)r and a set Q € T1(0, h,r, Q;(0)) such that

With the aid of Remark 2.15 one can therefrom conclude the closedness of the class II(6, h,r,b) with
respect to the above convergences.

Theorem 2.2 (Closedness of I1(6, h,r,b)) The set 11(0, h,r,b) is closed with respect to both the con-
vergence in the sense of characteristic functions and the convergence in Hausdor[f-complement-sense.

The compactness result in combination with the uniform extension is used in [BC07, Thm. 1, p. 1442] to
derive a uniform Poincaré inequality; in the following,

[ulg = L%(Q)/ udz (2.11)
Q

denotes the mean value of v in Q.

Theorem 2.3 (Uniform Poincaré inequality for Q € II(0, h,7,b)) Let p € [1,00). There ezists a
constant Cp = Cp (0, h,r,d,p) such that for every Q € 1L(0, h,r,b) and for all u € WHP(Q) it is

|u— [WlallLr) < CplDull L) - (2.12)

The way to prove the above uniform result is indirect, by contradiction. It reveals its dependence on
the quantities 0, h,r,d,b and p but it does not render the constant Cp in detail. For convex domains in
arbitrary space dimension, however, optimal constants in Poincaré inequalities for functions with zero-
mean value could be derived in [PW60] for p = 2 and in [ADO03] for p = 1. In these cases it turns out
that the optimal constant solely depends on the diameter of the domain. In particular, for p = 1, [AD03,
Thm. 1, p. 199] states that

Cp =0b/2 for every convex domain 2 C R? with diameter b. (2.13)

3 Uniform inequalities for I1(0, h,r,b)

In this section we derive uniform Poincaré-Sobolev inequalities and a relative isoperimetric inequality
for the class II(0, h,r,b) as well as the uniform relative isoperimetric inequality for convex domains 2 €
I1(6, h,r,b) intersected with balls. Similar to the works [Che75, Che77, BC07], where uniform extension
operators and Poincaré inequalities are deduced, we will obtain that the constant in the Poincaré-Sobolev
inequality for Q € II(0, h,r,b) solely depends on the the exponent p, space dimension d, the bound on
the diameter b and on the parameters 6, h and r of the cone that defines the cone property for the
class TI(0, h,r,b). This uniform dependence carries over both to the relative isoperimetric inequality
in II(A, h,r,b) in Section 3.1 and to the uniform relative isoperimetric inequality for convex domains
Q € I1(0, h,r,b) intersected with balls in Section 3.2.

3.1 Uniform Poincaré-Sobolev and isoperimetric inequalities for I1(0, h,r,b)

It was elaborated in [AF77, Thm. 1, p. 715 and pp. 726] that the Sobolev embedding W!1(Q) —
LA@=1)(Q), i.e. the respective Sobolev inequality, holds also for domains with the weak cone property,
only, see Remark 2.12. It is even pointed out there, that the respective embedding constants exhibit the
dependence on the previously mentioned parameters, also for Q having the weak cone property, only.
However, the deduction of the Sobolev-Poincaré inequality from this Sobolev inequality requires the use
of the uniform Poincaré inequality from Theorem 2.3, which in turn is proven via Theorem 2.1 on the



existence of a uniform extension operator. Thus, to have these uniform results at hand, we will confine
ourselves to the strengthened assumption that €2 even has the strong local Lipschitz property and prove
the Sobolev inequality for domains 2 € II(0, h, r,b), only.

The sole dependence of the Sobolev constant on the previously mentioned parameters for domains
with strong local Lipschitz property, is also pointed out in [Ada75, L. 5.10, p. 103], but the proof therein
does not reveal how exactly these parameters enter the constant. Therefore, we will here give a modified
proof of [Ada75, L. 5.10, p. 103] where the influence of the parameters in the constant is displayed more
clearly. In the proof, we will apply the uniform, finite covering given in Proposition 2.13. In each of
the subdomains we will derive the uniform Sobolev inequality by exploiting the segment property of the
domain, as suggested in the proof of [Ada75, L. 5.10, p. 103]. The uniform boundedness of the number
of elements in the covering will then allow it to find a global inequality for Q € I1(0, h, r, b).

Theorem 3.1 (Sobolev inequality in Q € T1(0,h,r, b)) Letp < d. There is a constant Cs = Cs(0,h,r,d, p)
such that for all Q € TI(0, h,r,b) and for all u € W1P(Q) it holds

_1
[ull v/ a-nr iy < CsN(r,b,d) ™7 lulwirgq) - (3.1)

Proof: Let Q € II(0,h,r,b). Recall that Q satisfies Chenais’ uniform cone property and that the
sets B € Oq from Proposition 2.13 have the radius r/2. Hence, for all z € B, N Q we have that a
cone K; = K(0,h,&) with opening angle 6, height h and vertex orientation & is contained in Q. In
particular, 2r < h. Therefore, K; contains a parallelepiped P; with opening angle 6 and edge length [ =
h/(2cos(0/2)). The parallelepiped can be transformed into a cube Q;/9i of edge length [ = h/(2cos(6/2))
by a suitable transformation 7'.

In a first step we assume that the parallel epiped indeed is the cube Qf/Q and we derive a local Sobolev
estimate for }. This can be done in analogy to the proof of [Ada75, L. 5.10, p. 103], where we exploit
that the domain ; := (QNBY) +Q§/2 can be regarded as the parallel translate of the cube Q}ﬂ. Secondly
we treat the general case of a parallel epiped P; # Q’f /2 by applying the above mentioned transformation
T that allows it to lead this case back to the setting of the cube Q;"/Q. Here, for Q, := (QN B.) + P,
the transformed domain TC); is then again given as the parallel translate of the cube Q;" /2> SO that the
results of Step 1 apply. With the aid of [Ada75, Thm. 3.35, p. 63] the Sobolev estimate obtained for the
transformed domain can be carried over to ;.

In a third step, the Poincaré-Sobolev estimate for €2 is obtained by summing up the local contributions.

Step 1 (Estimate for P, = Q] /2): We choose a local coordinate system with axes in parallel to
the faces of the cube Q?/z- We introduce the set Q; := (QN B}) + Qf/z, which is the parallel translate
of the cube Qf/Q. For « € ; let w;(z) denote the intersection of ; with the straight line through « in
parallel to the z;-axis. Hence, w;(z) contains the line segment {x +te;,0 <t < 1}. Here, e, is a vector
in parallel to the x;-axis with |e;| = I which points either in the positive or in the negative z;-direction
in dependence of the position of = € ;.

Let v = (dp — p)/(d — p) and consider u € C°°(£2;). Then, integration by parts yields

/ u(z + (1 = t)e;|” dt = fu(@)|” =~ / tlu(e + (1= t)e; "~  Oelu(z + (1 = t)ey)ldt,  (3.2)
0 JO

where |u(z + (1 —t)e; |1 Ou(z + (1 —t)e;)| is well-defined for every u € C>(£;) although the absolute
value function is non-differentiable in 0. To see this, assume that u(xg) = 0, but u(y) # 0 for all y in a
neighborhood B(zg) of xy. Otherwise, if w = 0 in B(zg), the part of the line segment intersecting with
B(z¢) can be neglected on the left-hand side of (3.2). Then limp,_o(|u(zo £ he;)|[7~ 10y, [u(xo £ hej)|) =
limp o (Ju(xo & he;) |7t sign(u(zo + he;))0,, u(zo £ hej)) = 0. In particular, this observation implies the
following estimate, which will be used later:

For all z € ; : [u(2)["710,, lu(2)] < |u(z)]" 102, u(z)]. (3.3)

Rearranging the terms in (3.2) leads to

lu(Z)|” = /0 [u(@+ (1 —t)e;)|” dt + 7/0 tlu(@ + (1 —t)e;)|" Olu(z + (1 — t)e;)|dt, (3.4)
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which holds true for every € w;(z) with e; pointing either in the positive or in the negative z;-direction.
Let &; = (x1,...,%j—1,%j41,...,%q) and set

Fi(i;) = sup |u(@)P/@P), (3.5)

Zew;(x)

Agsume that Z, realizes the supremum in (3.5). Since v = p(d — 1)/(d — p) we deduce from (3.4) with
T = T, that

1 1
IF(87) ) = Ju(@)] = / fu(Ee + (1 — t)e)[? dt + / Hu(a + (1 — 8)es[" Byful@ + (1 — t)e;)|dt
0 0
< / (@) Az + / (@) Dyu(®)] di
wj () wj ()

where the second integral is estimated with the aid of (3.3).

Until now we have just integrated in x;-direction. Integration with respect to the remaining coordi-
nates can be done by integration over O;, the projection of €; onto the plane with x; =0. This leads
to

[ imetds < [ u@lu@p ety [t Dju)] ds. (36)
j Qj Qi
If p > 1, then v > 1 and we apply Holder’s inequality with exponent p to the right-hand side. Hence,
p'(y—=1) =dp/(d — p) = q and we obtain

1
HF ||Ld. 10;) = <7 (/Q (|u| + |VU|)pdx> (/ |u ’Y 1)p’ d(E> < 9(p—1) /p,y|
| (3 7)

Now, [Ada75, L. 5.9, p. 101] guarantees that F/(&) = II{_, F;(2;) € L'(Q;) and || F|| L1,y < T, [|Fjll 13 0;)
with A =d — 1. Hence,

[ulla, = [ 1P o < [ LF @) de < B0,

q/p’ )d/(d—l) )

< (2(1)—1)/1),”

Since ¢(d —1)/d — q/p’ =1 we find
ull Laga,) < 2= D /Py ||| i () (3.8)

i.e. we have first taken the root (d—1)/d and then divided by ||u||%/fzQ > 0. For ||u| Lq(Q ) the inequality
clearly holds. We put 2(P—1/P~ = K.

Step 2 (General case P, # Q! /2): Recall that Q satisfies Chenais’ uniform cone property and that
the sets B] € Oq have the radius r/2. Hence, for all 2 € B, NQ we have that a cone K; = K(6, h,§;) with
opening angle 0, height h and vertex orientation ; is contained in €. In particular, 2r < h. Therefore,
K; contains a parallelepiped P; with opening angle 6 and edge length I = h/(2cos(6/2)). We introduce
the set Q; := (2N B}) + P;. The parallel epiped P; can be obtained by a suitable transformation of a
cube with edge length [, having one face in common with P;, by the angle 7/2 — . We denote this cube
by Qf /2 In particular, we can choose the shear transformation T : P, — Qf /2 uniformly for all the sets

B! € Oq. For all Tz € T(2; N B]) we have that Tz + Q§/2 C TQ;. In other words, the domain T'Q); is

the parallel translate of the cube Qf/z, as in Step 1. For u € C>®(Q;) we set @ :=uo T~ € WLP(TQ,).
By [Ada75, Thm. 3.35, p. 63] there exists constants c(T), C(T), c!(T) and C*(T) such that

(D)lull ey < iz < CODulle) » (3.9)

(D) lullwroisy < lallwrera) < CHD)ullwog,) - (3.10)

Since the parallelepiped for T'€); is a cube, we can treat the domain T'Q); as described in Step 1. From
this we obtain that ||| .v(rq,) < K|il|wirra,). Applying the estimates (3.9) and (3.10) results in

lullzo(0) < D)l oy < (1) Kllallwera, < (1) CHDE [ullwrr) -
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Step 3 (Sobolev estimate for Q): Let u € C°°(f2). Recall that the covering Oq consists of v(Q)
sets with v(Q2) < N(r,b,d). Hence we conclude that

v(2) v(2)
lullzri) < D lullzaey < (CO)TTCHTNE Y llullwisa,
i=1 i=1

< ((T)'CHT)) KN (r,b, d) 7 [ wrr (g -

We set Cs = (°(T)~tCY(T))K.
By density of C>°(Q2) in W1?(2) we carry the estimate over to functions f € W1?(Q). |
As a direct consequence of Theorem 3.1 we obtain the Poincaré-Sobolev inequality, which involves

the mean value of f, see (2.11). It can be deduced by setting u = f — [f]q in (3.1) and by applying the
uniform Poincaré inequality (2.12).

Corollary 3.1 (Poincaré-Sobolev inequality in Q € I1(0, h,r,b)) Let p < d. There is a constant
Cps = Cps (0, h,r,d, p) such that for all Q € TL(0, h,r,b) and for all f € WHP(Q) it holds

. 1
I1f = [flall pars@-n 0y < CpsN(r,b,d)' " #IDf]|Lo(q) - (3.11)

Proof: By Theorem 3.1 it follows that there is a constant Cs such that for all Q € TI(6, h,r,b) and all
u € WHP(Q) the uniform Sobolev inequality holds true. Consider u = f — [f]q with f € WHP(Q). Then,
the uniform Poincaré inequality (2.12) can be applied and we find

_1 _1
[l Lass -y < CsN(r,b,d)' 7 |ullyrioi) < CsN(r,b,d)' "7 (Cp + 1)V7 ||Vl Loy ,

Setting Cps = Cs(Cp + 1)1/7 yields (3.11). m

Exploiting that characteristic functions X4 € BV(Q) of sets A of finite perimeter in ) can be approx-
imated by a sequence of mollifiers (fi)x C C°°(2) such that fr — X4 in L'(Q) and their total variations
IV felloi) = [Dfel(Q) — [DXA|(Q2) = P(A,Q) the Poincaré-Sobolev inequality (3.11) can be carried
over to sets of finite perimeter. By carrying out the classical steps of the proof of the relative isoperimetric
inequality in balls, see e.g. [Zie89, Thm. 5.4.3, p. 230] or [EG92, Thm. 2, p. 190], one obtains the uniform
isoperimetric inequality relative to Q € T1(0, h, 7, b).

Corollary 3.2 (Uniform relative isoperimetric inequality for Q € 11(0, h, 7, b)) LetQ € T1(0, h,7,b).
There exists a constant C; = 2Cpg(0,h,r,b,d) such that for all sets A C Q with finite perimeter in €,
i.e. P(A,Q) < o0, it holds

min {£9(ANQ), LI QNA)} T < C1P(A,Q). (3.12)

Proof: See Steps 2 and 3 in the proof of Theorem 3.2 for details. [

Let us mention the works [MV05, MV08|, where optimal Poincaré-Sobolev inequalities with trace
terms and related inequalities are deduced using transportation techniques. This includes the isoperi-
metric inequality in R?. Clearly, since our proof of the uniform Sobolev inequality involves the uniform
covering from Proposition 2.13, which does not use the minimal number of sets needed to cover a set
Q € I1(0, h,r,b), the uniform constants obtained with our method are not the optimal ones.

3.2 Uniform isoperimetric inequality in convex domains intersected with balls

It is well known for balls, see e.g. [Zie89, Thm. 5.4.3, p. 230] or [EG92, Thm. 2, p. 190], that the relative
isoperimetric inequality in balls is scaling invariant, i.e. that the isoperimetric constant does not depend
on the radius of the ball. An analogous result holds when replacing the ball by an arbitrary Lipschitz
domain, see [Pfe0l, Thm. 1.8.7, p. 36]. In this section we aim at a slightly different situation, which
cannot be concluded solely from scaling arguments: We deduce a relative isoperimetric inequality for a
fixed convex domain Q intersected with a ball B,(y) of radius p > 0 and center y € . We obtain that
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the isoperimetric constant is independent of both the radius p > 0 and the choice of the center y € Q.
In particular the constant will solely depend on space dimension d, the bound b on the diameter of €2
and on the angle 0, the height h and the radius r, i.e. the three parameters governing the uniform cone
property of 2.

By [Gri85, Cor. 1.2.2.3] it is ensured that every convex domain is of class C%!. Hence it has Chenais’
unform cone property. Furthermore, clearly, the intersection of two convex domains results in a convex
domain, and hence, again in a C%'-domain with Chenais’ uniform cone property. This is why the result is
established for convex domains €2, since, on the one hand the assumption of convexity yields the uniform
cone property, and on the other hand it ensures that Q2N B,(y) is connected for every choice of p > 0
and y € Q. The latter property is crucial to apply the Poincaré-Sobolev inequality with the mean value
(3.11) and it must not hold if Q is non-convex. A further crucial reason to rule out non-convex domains
Q is the fact that the intersection angle of a ball with 02 may degenerate to 0 as the center of the ball is
moved along 012, see Fig. 3.1. More precisely, in the proof of the uniform relative isoperimetric inequality
it is exploited that every domain QN B,(y) for y € () satisfies the cone property with a cone of the same
opening angle as the one of Q. This is due to the fact that the intersection angle a(y) of the boundary
00 and a ball B,(y) with center y € Q is at least 90° for a convex domain (2. Hence, the cone defining
the cone property for QN B,(y) may have a smaller height than the one for 2, but the opening angles
of the cones are the same. In this case the cones can be scaled to the same size by a suitable scaling
of QN B,(y). In contrast, for a non-convex domain (2, the intersection angle o(y) can degenerate to
zero as the center y moves along the boundary 99 away from a re-entrant corner, indicated in Fig. 3.1.
Therefore, the opening angle of the cone differs for every domain QN B,(y) in dependence of the location
of y € Q. Thus, in the non-convex case, the cones of Q and QN B, (y) cannot be transformed into each
other simply by scaling.

Figure 3.1: The intersection angle a(y) — 0 as y moves from the re-entrant corner to the right.

In the following we consider a convex domain Q C TI(0, hy, ., b) for 0., h., 7. fixed. Then also
Q C II(0+, 2ax, ax, b) with a, = min{h./2,r.}. As Q is convex we observe that its intersection QN B,(y)
with any ball B,(y) with center y € Q and arbitrary radius p > 0 is again a convex domain. In particular
we conclude that the opening angle of the cone, which constitutes the cone property for Q N B,(y), is
again 0., the opening angle of the cone for 2. This is due to the fact that the boundary 0f) intersects
with 0B,(y) in an angle larger or equal than 7/2, because the center y € Q. Moreover, there are
ho,7o > 0, which depend on y € Q and p > 0, such that QN B,(y) € (0, ho,70,b). Again, we set
ao :=min{h,/2,7.} and find that QN B,(y) € I1(0s, 2a., ao, b).

Assume that a, # a.. Then we may rescale domain QN B, (y) to the size such that the corresponding
cone has the height 2a, and the balls of radius a.. More precisely, the rescaled domain is given by

Z_Z(Qme(y)) = a*QmBa*p/ao (a*y/ao) (313)

and satisfies Z—Z(QﬁBp(y)) € I1(0., 2ax, a.,b). By Corollary 3.1 there is a constant Cps = Cps(0, 2a., a.,d, p)
such that the uniform Poincaré-Sobolev inequality (3.11) for p = 1 holds in £=(Q2 N B,(y)) for all
fe0=(5=(2N By(y))) independently of the upper bound N (r,b,d) on the order of the covering:

If = [fle=@n, @) | Lar@- (2 (@nB, ) < CpslDfllLiz= @B, @) - (3.14)
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By a change of variables it can be proved that (3.14) holds true independently of the fraction a./ao,
i.e. that Cpg is independent of the radius p and the center y of the ball B,(y) that was used for the
intersection with Q. Then, by density arguments, (3.14) can be carried over to BV and the [ollowing
isoperimetric inequality relative to Q N B,(y) can be proved with a constant Co = Cps(6, 2a4, a., d),
uniformly for all y € Q and all p > 0.

Theorem 3.2 (Uniform relative isoperimetric inequality for convex ) intersected with balls)
Let Q € 11(0, 2ax, a., b) be a convex domain and B,(y) the open ball with radius p > 0 and center y € Q.
There exists a constant Co = 2Cps(0, 2a., a., d) such that for all y € Q, all p > 0 and every set A C Q
of finite perimeter in §, i.e. P(A,Q) < oo, it holds

min {L4(AN QN B,(1)), £1(Q N Byy)\A)} T < CaP(4,90 B,(y)). (3.15)

Proof: As a first step we perform a change of variables in (3.14). This will reveal that rescaling
the domain ¢=(2N B,(y)) to QN By(y) does not change the constants in (3.14). As a second step we
carry (3.14) over to BV-functions via density arguments. Finally, in a third step, we deduce the relative
isoperimetric inequality by applying (3.14) to the characteristic function of AN(2NB,(y)) for an arbitrary
but fixed set A with finite perimeter.

Step 1 (Change of variables in (3.14)): Let f € C°°(2=(2N B, (y))). For o € QN B,(y) we set
r=%20€ =(QNBy(y)). Then o = L2z and dz = (Z—:)dda. Thus, it is

[f]g—:(Qme(y)) = (Z_Z)_dﬁd(Qme(y))_d/ f(z)dz = flaso/as)do = [fslans, ) (3.16)

a (NB(y) QN B, (y)
where we introduced the notation f,(0) = f(a.o/a.). With the same ideas we can transform the full
norm on the left-hand side of (3.14), i.e. we find

1 = e @n, @yl o 2= @ns,wn = ((Z—*)d/ fo = [folans,w) da) o
! ° JanB, () ‘

= (Z: )d 1Hf0 [fO] (QNB (y))”Ld/(d D(QNB,(y) ) < OPS(H’2a*7a*’d)”DfHLl(Z—Z(QmBP(y)))' (3.17)

It remains to transform HDf||L1 o n (3.17) to the domain Q N B,(y). Using that D, f(z) =

S (@nB, (y)))
D, f(g=0) = 22D, f(520) = 52D, "7, we find

HDf“Ll(Z—Z(Qme(y))) - [l

2= (QNB, (1)

( D] () e

T (QNB,(y)

oo [, b

_ (ge)i-t /Q o [Pl 7 = (2 D el o
(3.18)

d—1

Comparing (3.17) and (3.18) we see that the transformation factor (£) cancels out and hence we

have for all fo € C>(QN B,(y))

Ifo = [fol@nB, @)l Lar@-v(@nB, ) < CrslDfollzr@nB, ) (3.19)

with the constant Cps = Cpg(6, a«, d) depending solely on the parameters of the cone ensuring the cone
property for 2 but being independent of B,(y).

Step 2 ((3.19) for characterstic functions by density): Let A C QN B,(y) be a set of finite
perimeter in QN B,(y). For f = X4 we consider a sequence of mollifiers (fx)r C C*(2NDB,(y)) such that
fi — £ in LYQOB,(y)) and IDfl(20By(9)) = ID el anm, ) — DFIQNB,() = P(A, Q0 B,(y)).
Since fr — fin L'(Q2N B,(y)) there is a subsequence converging pointwise a.e.. Hence, we can conclude
by lower semicontinuity of | - |

1,4/(d=1)(Q2NBy (1)) that

1f = [flans, @) lLa/@-n@nB, @) < hkﬂii(gf 1 fr = [felons, ) | Lar@—1 @B, y))

. (3.20)
< Cps khi{.lo IDfellr@nB, () = Crs P(A, 2N By(y)) -
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Step 3 (Deduction of the relative isoperimetric inequality from (3.20)): This step is the
same as the proof of the relative isoperimetric inequality in balls, see e.g. [Zie89, Thm. 5.4.3, p. 230] or
[EG92, Thm. 2, p. 190]. Consider f = Xan(ans, (y)) as the characteristic function of the set AN(QNB,(y))
with A C Q and P(A,Q) < co. Immediate calculation yields

IL.f = [flens,wllLaa—@nB, @)

LA(QNB,(y))\A g,d — Li(QnB, nA N [— !
= ( L(< (SﬁlﬂBp(ﬂJ()?J))\) )) d((Q n Bp(y)) N A)(d b/ ( Jg(d(SZOB(f()y))) )) d((Q N Bp(y))\A)(d D/d
(3.21)

Assume that L4((QN B,(y))\A) > L4((2N B,(y)) N A). Then LY((Q2N B,(y))\A)/L4QNB,(y)) > 1/2
and hence £ — [flanz, o l|zoen@ns, oy > SN0 B,(y) N A). Similarly, if L2(Q N B,(y)) N A4) >
Ld((Q N B/,(y))\A), we find Hf — [f]QﬁBp(y)||Ld,/(d,—1)(Qme(y)) > %Ld((Q N Bp(y))\A) Putting the two
cases together results in the desired relative isoperimetric inequality. [
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