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Abstract

Probabilistic constraints represent a major model of stochastic optimization. A possible approach for solv-
ing probabilistically constrained optimization problems consists in applying nonlinear programming methods. In
order to do so, one has to provide sufficiently precise approximations for values and gradients of probability
functions. For linear probabilistic constraints under Gaussian distribution this can be successfully done by an-
alytically reducing these values and gradients to values of Gaussian distribution functions and computing the
latter, for instance, by Genz’ code. For nonlinear models one may fall back on the spherical-radial decomposi-
tion of Gaussian random vectors and apply, for instance, Deák’s sampling scheme for the uniform distribution on
the sphere in order to compute values of corresponding probability functions. The present paper demonstrates
how the same sampling scheme can be used in order to simultaneously compute gradients of these probability
functions. More precisely, we prove a formula representing these gradients in the Gaussian case as a certain
integral over the sphere again. Later, the result is extended to alternative distributions with an emphasis on the
multivariate Student (or T-) distribution.

1 Introduction

A probabilistic constraint is an inequality of the type

P (g(x, ξ) ≤ 0) ≥ p, (1)

where g is a mapping defining a (random) inequality system and ξ is an s- dimensional random vector defined on
some probability space (Ω,A,P). The constraint (1) expresses the requirement that a decision vector x is feasible
if and only if the random inequality system g(x, ξ) ≤ 0 is satisfied at least with probability p ∈ [0, 1]. Probabilistic
constraints are important for engineering problems involving uncertain data. Applications can be found in water
management, telecommunications, electricity network expansion, mineral blending, chemical engineering etc. For
a comprehensive overview on the theory, numerics and applications of probabilistic constraints, we refer to, e.g.,
[27], [28], [30].

Initiated by Charnes and Cooper [8] and pioneered by Prékopa (e.g., by his celebrated log-concavity-Theorem [29])
the analysis of probabilistic constraints has attracted much attention in recent years with a focus on algorithmic
approaches. Without providing an exhaustive list, we refer here to models like robust optimization [5], penalty
approach [13], p- efficient points [11, 12], scenario approximation [7], sample average approximation [25] or convex
approximation [23].

The present paper is motivated by the traditional nonlinear programming approach to the solution of probabilistically
constrained optimization problems: from a formal viewpoint, (1) is a conventional inequality constraint α(x) ≥ p
with α(x) := P (g(x, ξ) ≤ 0). On the other hand, a major difficulty arises from the fact that typically no analytical
expression is available for α. All one can hope for, in general, are tools for numerically approximating α. Beyond
crude Monte Carlo estimation of the probability defining α, there exist a lot of more efficient approaches based,
for instance, on graph-theoretical arguments [6], variance reduction [32], Quasi-Monte-Carlo (QMC) techniques or
sparse grid numerical integration [15]. It seems, however, that such approaches are most successful when exploiting
the special model structure (i.e., the mapping g and the distribution of ξ). For instance, in the special case of
separable constraints g(x, ξ) = ξ − x and of ξ having a regular Gaussian distribution (such that α reduces to
a multivariate Gaussian distribution function), Genz [16, 17] developed a numerical integration scheme combining
separation and reordering of variables with randomized QMC. Using this method, one may compute values of the
Gaussian distribution function at fairly good precision in reasonable time even for a few hundred random variables.
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A similar technique has been proposed for the multivariate Student (or T-) distribution [17]. The numerical evaluation
of other multivariate distribution functions such as Gamma or exponential distribution has been discussed, e.g., in
[31, 24].

For an efficient solution of probabilistically constrained problems via numerical nonlinear optimization it is evidently
not sufficient to calculate just functional values of α, one also has to have access to gradients of α. The need to
calculate gradients of probability functions has been recognized a long time ago and has given rise to many papers
on representing such gradients (e.g., [21], [33], [20], [26], [14]). In the separable case with Gaussian distribution
mentioned above, it is well-known [27, p. 203], that partial derivatives of α can be reduced analytically to function
values α̃ of a Gaussian distribution with different parameters. This fact has three important consequences: first it
allows one to employ the same efficient method by Genz available for values of Gaussian distribution functions in
order to compute gradients simultaneously; second, doing so, the error in calculating∇a can be controlled by that
in calculating α [18]; third, the mentioned analytic relation can be applied inductively, in order to get similar analytic
relations between function values and higher-order derivatives. Fortunately, this very special circumstance can be
extended to more general models: it has been demonstrated in [1, 2, 19] how for general linear probabilistic con-
straints α(x) := P (T (x)ξ ≤ a(x)) ≥ p under Gaussian distribution and with possibly nonregular, nonquadratic
matrix T (x) not only the computation of α (which is evident) but also of ∇a can be analytically reduced to the
computation of Gaussian distribution functions. Combining appropriately these ideas with Genz’ code and an SQP
solver, it is possible to solve corresponding optimization problems for Gaussian random vectors in dimension of up
to a few hundred (where the dimension of the decision vector x is less influential). Applications to various problems
of power management can be found, e.g., in [1, 2, 3, 4, 19]. It seems that the same approach can be elaborated also
for the multivariate Student distribution, whereas it would work for the Log-normal distribution only in the special
case of α(x) = P (b(x) ≤ ξ ≤ a(x)).

When considering models which are nonlinear in ξ, a reduction to distribution functions seems not to be possible
any more. In that case, another approach, the so-called spherical-radial decomposition of Gaussian random vectors
(see, e.g., [17]) seems to be promising both for calculating function values and gradients of α. More precisely, let
ξ be an m-dimensional random vector normally distributed according to ξ ∼ N (0, R) for some correlation matrix
R. Then, ξ = ηLζ , whereR = LLT is the Cholesky decomposition ofR, η has a chi-distribution withm degrees
of freedom and ζ has a uniform distribution over the Euclidean unit sphere

Sm−1 :=

{
z ∈ Rm

∣∣∣∣∣
m∑
i=1

z2
i = 1

}
of Rm. As a consequence, for any Lebesgue measurable set M ⊆ Rm its probability may be represented as

P (ξ ∈M) =
∫

v∈Sm−1

µη ({r ≥ 0 : rLv ∩M 6= ∅}) dµζ , (2)

where µη and µζ are the laws of η and ζ , respectively. This probability can be numerically computed by employing
an efficient sampling scheme on Sm−1 proposed by Deák [9, 10]. More generally, one may approximate the integral∫

v∈Sm−1

h(v)dµζ (3)

for any Lebesgue measurable function h : Sm−1 → R. In particular, for

h(v) := µη ({r ≥ 0 : rLv ∩M 6= ∅}) ,

we obtain the probability (2). In this paper, we will show how - with different functions h(v) - the same efficient
sampling scheme can be employed in order to simultaneously compute derivatives of this probability with respect to
an exterior parameter. The results may serve as a basis for a numerical treatment of nonlinear convex probabilistic
constraints with Gaussian and alternative distributions via nonlinear optimization. In Section 2, a rigorous justifica-
tion for differentiating under the integral sign will be given. Doig so, we arrive at sufficient conditions for continuous
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differentiability of probability functions in the convex and Gaussian case as well as at an explicit integrand in (3).
In Section 3, the obtained results are applied to various examples involving Gaussian and alternative distributions.
Particular attention is paid to the multivariate Student distribution.

2 A gradient formula for parameter-dependent Gaussian probabilities in the con-
vex case

In the following, we assume that g : Rn × Rm → R is a continuously differentiable function which is convex with
respect to the second argument. We define

ϕ (x) := P (g(x, ξ) ≤ 0) , (4)

where ξ ∼ N (0, R).

Remark 2.1 We recall that convex sets are Lebesgue measurable so that the probabilities in (4) are well-defined
by virtue of ξ having a density.

Remark 2.2 If ξ has a general nondegenerate Gaussian distribution, i.e., ξ ∼ N (µ,Σ) for some mean vector
µ ∈ Rm and some positive definite covariance matrix Σ of order (m,m), then one may define ξ̃ := D (ξ − µ),

where D is the diagonal matrix with elements Σ−1/2
ii . Then, clearly, ξ̃ ∼ N (0, R), where R is the correlation

matrix associated with Σ. Defining g̃ : Rn × Rm → R as

g̃ (x, z) := g
(
x,D−1z + µ

)
,

(4) can be rewritten as

ϕ (x) = P
(
g̃(x, ξ̃) ≤ 0

)
,

where g̃ has the same properties as g (it is continuously differentiable and convex with respect to the second
argument). Therefore, in (4), we may indeed assume without loss of generality, that ξ ∼ N (0, R).

By (2) and (4), we have, for all x ∈ Rn, that

ϕ (x) =
∫

v∈Sm−1

µη ({r ≥ 0 : g(x, rLv) ≤ 0}) dµζ =
∫

v∈Sm−1

e(x, v)dµζ (5)

for
e(x, v) := µη ({r ≥ 0 : g(x, rLv) ≤ 0}) ∀x ∈ Rn ∀v ∈ Sm−1. (6)

According to the possibility of evaluating (3) for instance by Deàk’s method, we can obtain a value ϕ (x) for each
fixed x. We now address the computation of ∇ϕ. It is convenient to introduce the following two mappings F, I :
Rn ⇒ Sm−1 of directions with finite and infinite intersection length:

F (x) :=
{
v ∈ Sm−1|∃r > 0 : g (x, rLv) = 0

}
I(x) :=

{
v ∈ Sm−1|∀r > 0 : g (x, rLv) 6= 0

}
.

The following Lemma collects some elementary properties needed later:

Lemma 2.1 Let x ∈ Rn be such that g(x, 0) < 0. Then,

1 v ∈ I(x) if and only if g (x, rLv) < 0 for all r > 0.
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2 F (x) ∪ I(x) = Sm−1.

3 For v ∈ F (x) let r > 0 be such that g (x, rLv) = 0. Then,

〈∇zg (x, rLv) , Lv〉 ≥ −g (x, 0)
r

.

4 If v ∈ I(x) then e(x, v) = 1, where e is defined in (6).

Proof. 1. follows from the continuity of g and 2. is evident from the definitions. The convexity of g with respect to
the second argument yields

−1
2
r 〈∇zg (x, rLv) , Lv〉 =

〈
∇zg (x, rLv) ,

1
2
rLv − rLv

〉
≤ g

(
x,

1
2
rLv

)
− g (x, rLv)

= g

(
x,

1
2
rLv

)
≤ 1

2
g (x, 0) +

1
2
g (x, rLv) =

1
2
g (x, 0) .

This proves 3. If v ∈ I(x) then e(x, v) = µη (R+) = 1 because R+ is the support of the chi-distribution.
Therefore, 4. holds true.

�

Next, we provide a local representation of the factor r as a function of x and v:

Lemma 2.2 Let (x, v) be such that g(x, 0) < 0 and v ∈ F (x). Then, there exist neighbourhoods U of x and V
of v as well as a continuously differentiable function ρx,v : U × V → R+ with the following properties:

1 For all (x′, v′, r′) ∈ U × V × R+ the equivalence g(x′, r′Lv′) = 0⇔ r′ = ρx,v(x′, v′) holds true.

2 For all (x′, v′) ∈ U × V one has the gradient formula

∇xρx,v
(
x′, v′

)
= − 1
〈∇zg(x′, ρx,v(x′, v′)Lv′), Lv′〉

∇xg(x′, ρx,v(x′, v′)Lv′).

Proof. By definition of F (x) we have that g (x, rLv) = 0 for some r > 0. According to 3. in Lemma 2.1, we have
that

〈∇zg (x, rLv) , Lv〉 ≥ −g (x, 0)
r

> 0.

This allows to apply the Implicit Function Theorem to the equation g (x, rLv) = 0 and to derive the existence of
neighbourhoods U of x, V of v and W of r along with a continuously differentiable function ρx,v : U × V →W ,
such that the equivalence

g(x′, r′Lv′) = 0,
(
x′, v′, r′

)
∈ U × V ×W ⇔ r′ = ρx,v(x′, v′),

(
x′, v′

)
∈ U × V (7)

holds true. By continuity of ρx,v , we may shrink the neighbourhoods U and V such that ρx,v maps into R+ and
we may further shrink U such that g(x′, 0) < 0 for all x′ ∈ U . Now, assume that g(x′, r∗Lv′) = 0 holds true for
some (x′, v′, r∗) ∈ U×V ×(R+\W ). Then, by ’⇐’ in (7), g(x′, ρx,v(x′, v′)Lv′) = 0, where ρx,v(x′, v′) ∈W .
Consequently, r∗ 6= ρx,v(x′, v′). On the other hand, r∗, ρx,v(x′, v′) ∈ R+. This contradicts the convexity of g
with respect to the second argument and the fact that g(x′, 0) < 0. It follows that in (7) W may be replaced by
R+ which proves 1. In particular, we have that g(x′, ρx,v(x′, v′)Lv′) = 0 for all (x′, v′) ∈ U × V , which after
differentiation gives the formula in 2.

�

The preceding Lemma allows us to observe the following:
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Lemma 2.3 Let x ∈ Rn be such that g(x, 0) < 0. Then,

1 If v ∈ F (x) then there exist neighbourhoods U of x and V of v such that e(x′, v′) = Fη(ρx,v (x′, v′)) for
all (x′, v′) ∈ U×V , where e is defined in (6), Fη is the cumulative distribution function of the chi-distribution
with m degrees of freedom and ρx,v refers to the resolving function introduced in Lemma 2.2.

2 If v ∈ I(x) then ρxk,vk (xk, vk)→∞ for any sequence (xk, vk)→ (x, v) with vk ∈ F (xk).

Proof. By 1. in Lemma 2.2, we have for all (x′, v′) that g(x′, ρx,v(x′, v′)Lv′) = 0 and g(x′, r′Lv′) 6= 0 for all
r′ ∈ R+ with r′ 6= ρx,v(x′, v′). Now, (6) implies that

e(x′, v′) = µη
([

0, ρx,v
(
x′, v′

)])
= Fη(ρx,v

(
x′, v′

)
)− Fη(0) ∀

(
x′, v′

)
∈ U × V.

Now, 1. follows upon observing that the chi-density is zero for negative arguments, whence Fη(0) = 0. Next, let
v ∈ I(x) and (xk, vk) → (x, v) with vk ∈ F (xk). If not ρxk,vk (xk, vk) → ∞, then there exists a converging
subsequence ρxkl ,vkl (xkl , vkl) → r for some r ≥ 0. Since g(x, 0) < 0, we have that g (xkl , 0) < 0 for l
sufficiently large. This allows us to apply Lemma 2.2 to the points (xkl , vkl), and so we infer from 1. in this Lemma
that g (xkl , ρ

xkl ,vkl (xkl , vkl)Lvkl) = 0 for all l sufficiently large. By continuity of g we derive the contradiction
g (x, rLv) = 0 with our assumption v ∈ I(x). This proves 2.

�

Corollary 2.1 The function e : Rn × Sm−1 → R defined in (6) is continuous at any (x, v) ∈ Rn × Sm−1 such
that g(x, 0) < 0.

Proof. Let (x, v) ∈ Rn × Sm−1 with g(x, 0) < 0 be arbitrarily given. Referring to the sets F (x) and I(x)
characterized in Lemma 2.1, there are two possibilities: if v ∈ F (x), then the function ρx,v is defined on a neigh-
bourhood of (x, v) and is continuous there by Lemma 2.2. Moreover, in this case, e has the representation given
in 1. of Lemma 2.3. But with the cumulative distribution function Fη of the chi-distribution being continuous, e is
continuous too at (x, v) as a composition of continuous mappings. If, in contrast, v /∈ F (x), then v ∈ I(x)
by 2. of Lemma 2.1. From 4. of the same Lemma we know that e(x, v) = 1. Consider an arbitrary sequence
(xk, vk) → (x, v) with vk ∈ Sm−1. Since g(x, 0) < 0, we have that g(xk, 0) < 0 for k sufficiently large.
Assume that not e (xk, vk)→ 1. Then, there is a subsequence (xkl , vkl) and some ε > 0 such that for all l

|e (xkl , vkl)− 1| ≥ ε. (8)

By 4. in Lemma 2.1, vkl /∈ I(xkl), whence vkl ∈ F (xkl) for all l due to vkl ∈ Sm−1 and 2. in Lemma 2.1. Then,
ρxkl ,vkl (xkl , vkl)→∞ by 2. of Lemma 2.3. Since Fη is the distribution function of a random variable, it satisfies
the relation limt→∞ Fη(t) = 1. Consequently, we may invoke 1. of Lemma 2.3 in order to verify that

lim
l→∞

e (xkl , vkl) = lim
l→∞

Fη(ρxkl ,vkl (xkl , vkl)) = 1.

This contradicts (8) and, hence, again by 4. in Lemma 2.1,

lim
k→∞

e (xk, vk) = 1 = e(x, v).

This proves continuity of e at (x, v).

�

Corollary 2.2 For any x ∈ Rn with g(x, 0) < 0 and v ∈ F (x) the partial derivative w.r.t x of the function
e : Rn × Sm−1 → R defined in (6) exists and is given by

∇xe(x, v) = − χ (ρx,v (x, v))
〈∇zg (x, ρx,v (x, v)Lv) , Lv〉

∇xg (x, ρx,v (x, v)Lv)

where χ is the density of the chi-distribution with m degrees of freedom and ρx,v refers to the function introduced
in Lemma 2.2.
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Proof. By 1. in Lemma 2.3 we have that e(x′, v′) = Fη(ρx,v (x′, v′)) for all x′ in a neighbourhood of x and v′ in
a neighbourhood of v. Differentiation with respect to x yields

∇xe(x′, v′) = χ
(
ρx,v

(
x′, v′

))
∇xρx,v

(
x′, v′

)
(9)

due to F ′η(τ) = χ(τ) for τ > 0. In particular, ∇xe(x, v) = χ (ρx,v (x, v))∇xρx,v (x, v). Now, the assertion
follows from 2. in Lemma 2.2.

�

Next, we prove a relation which is the key to some desired continuity properties.

Definition 2.1 Let g : Rn×Rm → R be a differentiable function. We say that g satisfies the polynomial growth
condition at x if there exist constants C,κ > 0 and a neighbourhood U(x) such that∥∥∇xg (x′, z)∥∥ ≤ ‖z‖κ ∀x′ ∈ U(x) ∀z : ‖z‖ ≥ C.

Lemma 2.4 Let x be such that g (x, 0) < 0 and that g satisfies the polynomial growth condition at x. Consider
any sequence (xk, vk)→ (x, v) for some v ∈ I(x) such that vk ∈ F (xk). Then,

lim
k→∞

∇xe(xk, vk) = 0.

Proof. First observe that ρxk,vk (xk, vk) → ∞ by 2. in Lemma 2.3. Referring to the neighbourhood U(x) from
Definition 2.1, we verify that for k sufficiently large

‖∇xg (xk, ρxk,vk (xk, vk)Lvk)‖ ≤ [ρxk,vk (xk, vk)]
κ ‖Lvk‖κ ≤ ‖L‖κ [ρxk,vk (xk, vk)]

κ (10)

(recall that ‖vk‖ = 1 due to vk ∈ F (xk)). Moreover, by continuity of g, there exists some δ1 > 0 such that
g (xk, 0) ≤ −δ1 < 0 for k sufficiently large. Since g (xk, ρxk,vk (xk, vk)Lvk) = 0 (see 1. in Lemma 2.2), 3. in
Lemma 2.1 provides that

〈∇zg (xk, ρxk,vk (xk, vk)Lvk) , Lvk〉 ≥ −
g (xk, 0)

ρxk,vk (xk, vk)
.

Therefore,
〈∇zg (xk, ρxk,vk (xk, vk)Lvk) , Lvk〉 ≥ δ1 [ρxk,vk (xk, vk)]

−1 > 0. (11)

Using the definition χ (y) = δ2y
m−1e−y

2/2 of the density of the chi-distribution with m degrees of freedom (where
δ2 > 0 is an appropriate factor), we may combine Corollary 2.2 with (10) and (11) in order to derive that

‖∇xe(xk, vk)‖ =
∥∥∥∥ χ (ρxk,vk (xk, vk))
〈∇zg (xk, ρxk,vk (xk, vk)Lvk) , Lvk〉

∇xg (xk, ρxk,vk (xk, vk)Lvk)
∥∥∥∥ ≤

δ−1
1 ρxk,vk (xk, vk) · δ2 [ρxk,vk (xk, vk)]

m−1 e−[ρxk,vk (xk,vk)]2/2 · ‖L‖κ [ρxk,vk (xk, vk)]
κ = (12)

δ−1
1 δ2 ‖L‖κ [ρxk,vk (xk, vk)]

κ+m e−[ρxk,vk (xk,vk)]2/2 →k 0,

where the last limit follows from ρxk,vk (xk, vk)→∞ and the fact that yαe−y
2/2 → 0 for y →∞, where α > 0

is an arbitrary constant. This proves our assertion.

�

Remark 2.3 One may observe from the proof of Lemma 2.4 that a weaker growth condition than that in Definition
2.1 (involving an exponential term) would suffice for proving the same result. One could for instance use the following
exponential growth condition:
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Let g : Rn × Rm → R be a differentiable function. We say that g satisfies the exponential growth condition at
x if there exist constants δ0, C > 0 and a neighbourhood U(x) such that∥∥∇xg (x′, z)∥∥ ≤ δ0 exp(‖z‖) ∀x′ ∈ U(x) ∀z : ‖z‖ ≥ C.

and observe that the key estimate (12) of Lemma 2.4 becomes

‖∇xe(xk, vk)‖ ≤ δ0δ
−1
1 δ2 [ρxk,vk (xk, vk)]

m e−[ρxk,vk (xk,vk)]2/2e‖L‖ρ
xk,vk (xk,vk).

The same conclusion then easily follows.

In this paper, we do not put the emphasis on the weakest possible form of the growth condition but rather on its
simplicity. It should be noted however that each of the following results requiring the polynomial growth condition
hold upon requiring the above exponential growth condition instead.

Corollary 2.3 Let x be such that g (x, 0) < 0 and that g satisfies the polynomial growth condition at x. Then, for
any v ∈ Sm−1 the partial derivative w.r.t x of the function e exists at (x, v) and is given by

∇xe(x, v) =

{
− χ(ρx,v(x,v))
〈∇zg(x,ρx,v(x,v)Lv),Lv〉∇xg (x, ρx,v (x, v)Lv) if v ∈ F (x)

0 else

where χ is the density of the chi-distribution with m degrees of freedom and ρx,v refers to the function introduced
in Lemma 2.2.

Proof. Thanks to Corollary 2.2 and to 2. in Lemma 2.1 it is sufficient to show that ∇xe(x, v) = 0 for v ∈ I(x).
We shall show that, for any i ∈ {1, . . . ,m}

lim
t↑0

e(x+ tui, v)− e(x, v)
t

= 0, (13)

where ui is the i-th canonical unit vector in Rn. In exactly the same way one can show that the corresponding limit
for t ↓ 0 equals zero. Altogether, this will prove that∇xe(x, v) = 0. Assume that (13) is wrong. Since e(x, v) = 1
(by 4. in Lemma 2.1) and e(x + tui, v) ≤ 1 for all t (by definition of e as a probability in (6)), it follows that the
quotient in (13) is always non-positive and, thus, negation of (13) implies the existence of some ε > 0 and of a
sequence tk ↑ 0 such that

e(x+ tkui, v)− e(x, v)
tk

≥ ε. (14)

In particular, v ∈ F (x + tkui) for all k because otherwise v ∈ I(x + tkui) and so e(x + tkui, v) = 1 (again
by 4. in Lemma 2.1), thus contradicting (14). We may also assume that g(x + tkui, 0) < 0 for all k. Now, fix an
arbitrary k and define (recall that tk < 0)

α := inf {τ ∈ [tk, 0] |e(x+ τui, v) = 1} .

Due to e(x, v) = 1 we have that α ≤ 0. On the other hand, e(x + tkui, v) < 1 and the continuity of e (see
Corollary 2.1) provide that α > tk. We infer that e(x+ τui, v) < 1 for all τ ∈ [tk, α) and, hence,

v ∈ F (x+ τui) ∀τ ∈ [tk, α) (15)

(once more by 2. and 4. in Lemma 2.1). But then, the function

β(τ) := e(x+ τui, v)

is differentiable for all τ ∈ (tk, α) by virtue of Corollary 2.2 and its derivative is given by

β′(τ) = 〈∇xe(x+ τui, v), ui〉 .
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Therefore, the mean value theorem guarantees the existence of some τ∗k ∈ (tk, α) such that

β′(τ∗k ) =
β(α)− β(tk)

α− tk
or equivalently

〈∇xe(x+ τ∗kui, v), ui〉 =
e(x+ αui, v)− e(x+ tkui, v)

α− tk
.

By continuity of e and by definition of α, we have that e(x+ αui, v) = 1 = e(x, v), whence, by tk < α ≤ 0,

〈∇xe(x+ τ∗kui, v), ui〉 =
e(x, v)− e(x+ tkui, v)

α− tk
≥ e(x, v)− e(x+ tkui, v)

−tk
≥ ε,

where the last relation follows from (14). Now, since k was arbitrarily fixed, we have constructed a sequence τ∗k
such that tk < τ∗k ≤ 0 such that

〈∇xe(x+ τ∗kui, v), ui〉 ≥ ε ∀k. (16)

Since tk ↑ 0, we also have that τ∗k ↑ 0. Moreover, v ∈ F (x+τ∗kui) by (15). Due to our assumption that g satisfies
the polynomial growth condition at x and due to v ∈ I(x), Lemma 2.4 yields that limk→∞∇xe(xk, v) = 0 which
contradicts (16). This proves our Corollary.

�

Corollary 2.4 Let x be such that g (x, 0) < 0 and that g satisfies the polynomial growth condition at x. Then, for
any v ∈ Sm−1 the partial derivative∇xe is continuous at (x, v).

Proof. Let x ∈ Rn with g(x, 0) < 0 and v ∈ Sm−1 be arbitrarily given. Let also (xk, vk)→ (x, v) be an arbitrary
sequence with vk ∈ Sm−1. If v ∈ F (x), then relation (9) holds true locally around (x, v). In particular, for k large
enough,

∇xe(xk, vk) = χ (ρx,v (xk, vk))∇xρx,v (xk, vk)→ χ (ρx,v (x, v))∇xρx,v (x, v) = ∇xe(x, v),

where the convergence follows from the continuity of the chi-density and of ∇xρx,v as a result of Lemma 2.2.
Hence, in case of v ∈ F (x), ∇xe is continuous at (x, v). Now, assume in contrast that v ∈ I(x). Then,
∇xe(x, v) = 0 by Corollary 2.3. Now, assume that ∇xe(xk, vk) does not converge to zero. Then,
‖∇xe(xkl , vkl)‖ ≥ ε for some subsequence and some ε > 0. Then, vkl ∈ F (xkl) for all l because other-
wise vkl ∈ I(xkl) and, thus, ∇xe(xkl , vkl) = 0 due to Corollary 2.3 (applied to xkl rather than x; observe that
the condition g (x, 0) < 0 and the polynomial growth condition at x are open conditions, hence continue to hold
true for the xkl ). Now, Lemma 2.4 yields the contradiction

lim
l→∞
∇xe(xkl , vkl) = 0

with ‖∇xe(xkl , vkl)‖ ≥ ε. This proves our Corollary.

�

Now we are in a position to state our main result:

Theorem 2.2 Let g : Rn × Rm → R be a continuously differentiable function which is convex with respect to the
second argument. Consider the probability function ϕ defined in (4), where ξ ∼ N (0, R) has a standard Gaussian
distribution with correlation matrix R. Let the following assumptions be satisfied at some x̄:

1 g (x̄, 0) < 0.
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2 g satisfies the polynomial growth condition at x̄ (Def. 2.1).

Then, ϕ is continuously differentiable on a neighbourhood U of x̄ and it holds that

∇ϕ (x) = −
∫

v∈F (x)

χ (ρx,v (x, v))
〈∇zg (x, ρx,v (x, v)Lv) , Lv〉

∇xg (x, ρx,v (x, v)Lv) dµζ(v) ∀x ∈ U. (17)

Here, µζ is the law of the uniform distribution over Sm−1, χ is the density of the chi-distribution with m degrees of
freedom, L is a factor of the Cholesky decomposition R = LLT and ρx,v is as introduced in Lemma 2.2.

Proof. Since ξ ∼ N (0, R), the probability function ϕ gets the representation (5). With g (x̄, 0) < 0, let U be a
sufficiently small neighbourhood of x̄ such that for all x ∈ U we still have that g(x, 0) < 0 and that the polynomial
growth condition is satisfied at x. Then, the partial derivative∇xe of the function e defined in (6) exists onU×Sm−1

by Corollary 2.3 and is continuous there by Corollary 2.4. By compactness of Sm−1, there exists some K > 0
such that

‖∇xe(x̄, v)‖ ≤ K ∀v ∈ Sm−1.

Again, continuity of∇xe on U ×Sm−1 and compactness of Sm−1 guarantee that the function α : U → R defined
by

α(x) := max
v∈Sm−1

‖∇xe(x, v)‖

is continuous. Since α(x̄) ≤ K , we may assume, after possibly shrinking U , that α(x) ≤ 2K for all x ∈ U ,
whence

‖∇xe(x, v)‖ ≤ 2K ∀x ∈ U ∀v ∈ Sm−1. (18)

From µζ(Sm−1) = 1 for the law µζ of the uniform distribution on Sm−1 we infer that the constant 2K is an inte-
grable function on Sm−1 uniformly dominating ‖∇xe(x, v)‖ on Sm−1 for all x ∈ U . Now, Lebesgue’s dominated
convergence theorem allows us to differentiate (5) under the integral sign:

∇ϕ (x̄) =
∫

v∈Sm−1

∇xe(x̄, v)dµζ .

As stated in the beginning of this proof, the assumptions 1. and 2. imposed in the Theorem for the fixed point x̄
keep to hold for all x in the neighbourhood U . Therefore, we may derive that

∇ϕ (x) =
∫

v∈Sm−1

∇xe(x, v)dµζ ∀x ∈ U. (19)

Exploiting once more the dominance argument from (18), the continuity of∇xe onU×Sm−1 and the compactness
of Sm−1 ensure by virtue of Lebesgue’s dominated convergence Theorem that ∇ϕ is continuous. Finally, formula
(17) follows directly from Corollary 2.3.

�

Remark 2.4 Evidently, formula (17) is explicit and can be used inside Deák’s method in order to calculate ∇ϕ in
parallel with ϕ by efficient sampling on Sm−1. For each sampled point v ∈ Sm−1 one first has to check whether
the equation g(x, rLv) = 0 has a solution r ≥ 0 at all. If not so (v ∈ I(x)), then such v does not contribute to
the (approximated) integral in (17). Otherwise (v ∈ F (x)), one has to evaluate the integrand in (17) which amounts
to finding the unique solution r ≥ 0 of the equation g(x, rLv) = 0. In general, a few Newton-Raphson iterations
should do the job.

We now want to focus our attention on the assumptions of Theorem 2.2. First, recall that assuming a standard
Gaussian distribution ξ ∼ N (0, R) does not mean any loss of generality by virtue of Remark 2.2. Also assumption
1. of the Theorem is not restrictive. This will come as a consequence of the following proposition:
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Proposition 2.1 With g and ϕ as in Theorem 2.2, let the following assumptions be satisfied at some x̄:

1 There exists some z̄ such that g(x̄, z̄) < 0.

2 ϕ(x̄) > 1/2.

Then, g(x̄, 0) < 0.

Proof. As in the proof of Theorem 2.2 we may assume that ξ ∼ N (0, R) so that ϕ gets the representation (5).
Define the set M := {z ∈ Rm|g(x̄, z) ≤ 0}. Clearly, M is convex and nonempty by our assumption 1. This
same assumption (Slater point) guarantees that

intM = {z ∈ Rm|g(x̄, z) < 0} .

Assume that g(x̄, 0) ≥ 0. Then 0 /∈ intM and, hence, one could separate 0 from M , which would mean that
there exists some c ∈ Rm\{0} such that

M ⊆
{
z ∈ Rm|cT z ≤ 0

}
=: M̃.

With ξ having a centered Gaussian distribution, the one-dimensional random variable cT ξ has a centered Gaussian
distribution too and, hence, we arrive with our assumption 3. at the contradiction

1/2 = P
(
cT ξ ≤ 0

)
= P

(
ξ ∈ M̃

)
≥ P (ξ ∈M) = ϕ (x̄) > 1/2.

�

The proposition means that violation of the first assumption in Theorem 2.2 implies that g(x̄, z) ≥ 0 for all z or that
ϕ(x̄) ≤ 1/2. A typical application of Theorem 2.2 is probabilistic programming where one is imposing the chance
constraint ϕ(x) ≥ p with some probability level p close to one. Since gradients of ϕ are usually calculated at or
close to feasible points (e.g. by cutting planes), the case ϕ(x̄) ≤ 1/2 is very unlikely to occur. On the other hand,
g(x̄, z) ≥ 0 for all z is a degenerate situation meaning that there exists no Slater point for the convex function
g(x̄, ·). In such situation it typically happens that the set {z|g(x, z) ≤ 0} becomes empty for x arbitrarily close to
x̄ which would entail a discontinuity of ϕ at x̄. Then, of course, there is no hope to calculate a gradient at all.

Finally, turning to condition 2. of Theorem 2.2 (growth condition) it may require some technical effort to check it in
concrete applications (see, e.g., the examples discussed in the following section). On the other hand, we shall see
in a moment that we may do without this condition in case that the set {z|g(x̄, z) ≤ 0} is bounded. To formulate a
corresponding statement we need the following two auxiliary results:

Lemma 2.5 Let g : Rn × Rm → R be continuous. Moreover, let g be convex in the second argument. Then, for
any x ∈ Rn with g (x, 0) < 0 one has that I(x) = ∅ if and only if M(x) := {z ∈ Rm|g(x, z) ≤ 0} is bounded.

Proof. Let x be arbitrary such that g (x, 0) < 0. Obviously boundedness of M(x) implies that I(x) = ∅, so let
us assume that I(x) = ∅ and that M(x) is unbounded. Then, there is a sequence zn with g (x, zn) ≤ 0 and
‖zn‖ → ∞. Without loss of generality, we may assume that ‖zn‖−1 zn → z for some z ∈ Rm\{0}. Let t ≥ 0
be arbitrary. Then, ‖zn‖−1 t ≤ 1 for n sufficiently large. From convexity of g(x, ·), g (x, 0) < 0 and g (x, zn) ≤ 0
we infer that g

(
x, ‖zn‖−1 tzn

)
≤ 0 for n sufficiently large. Passing to the limit, we get that g (x, tz) ≤ 0. Thus,

as t ≥ 0 was arbitrary,
g (x, tz) ≤ 0 ∀t ≥ 0. (20)

Assume that there was some τ ≥ 0 with g (x, τz) = 0. Then, again by convexity of g(x, ·) and by g (x, 0) < 0,
one would arrive at the following contradiction with (20):

g (x, tz) > g (x, τz) = 0 ∀t > τ.
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Hence, actually g (x, tz) < 0 for all t ≥ 0. Putting v := L−1z/
∥∥L−1z

∥∥ - where L is the (invertible) matrix
appearing in the definition of I(x) - and observing that this definition is correct due to z 6= 0, we derive that
g
(
x, t
∥∥L−1z

∥∥Lv) < 0 for all t ≥ 0. Since
∥∥L−1z

∥∥ > 0, this implies that g (x, rLv) < 0 for all r ≥ 0. Hence
the contradiction v ∈ I(x) with our assumption I(x) = ∅. It follows that M(x) is bounded as was to be shown.

�

Proposition 2.2 Let g be as in Lemma 2.5 and x̄ ∈ Rn with g (x̄, 0) < 0. If M(x̄) is bounded, then there is a
neighbourhood U of x̄ such that M(x) remains bounded for all x ∈ U .

Proof. By continuity of g, we may choose U small enough that g (x, 0) < 0 for all x ∈ U . If the assertion was not
true, then by virtue of Lemma 2.5 there exists a sequence xn → x̄ such that I (xn) 6= ∅ for all n ∈ N. By 1. in
Lemma 2.1 this implies the existence of another sequence vn ∈ Sm−1 such that

g (xn, rLvn) < 0 ∀r ≥ 0 ∀n ∈ N.

Without loss of generality, we may assume that vn → v̄ for some v̄ ∈ Sm−1. For each r ≥ 0 we may pass to the
limit in the relation above, in order to derive that g (x̄, rLv̄) ≤ 0 for all r ≥ 0. With the same reasoning as below
(20) we may conclude that indeed g (x̄, rLv̄) < 0 for all r ≥ 0. This means that v̄ ∈ I (x̄), whence M (x̄) is
unbounded by Lemma 2.5. This is a contradiction with our assumption.

�

Now we are in a position to state an alternative variant of Theorem 2.2 which does not require the verification of the
growth condition:

Theorem 2.3 Theorem 2.2 remains true if the second condition (growth condition) is replaced by the condition that
the set {z|g(x̄, z) ≤ 0} is bounded. Then, (17) becomes

∇ϕ (x) = −
∫

v∈Sm−1

χ (ρx,v (x, v))
〈∇zg (x, ρx,v (x, v)Lv) , Lv〉

∇xg (x, ρx,v (x, v)Lv) dµζ(v) ∀x ∈ U. (21)

Proof. As in the proof of Theorem 2.2, the function e is continuous on U × Sm−1 by Corollary 2.1 because this
result does not require the growth condition to hold. Moreover, ∇xe exists on U × Sm−1. Indeed, our bounded-
ness assumption ensures via Proposition 2.2 that - after possibly shrinking the neighbourhood U of x̄ - the set
{z|g(x, z) ≤ 0} remains bounded for all x ∈ U . Lemma 2.5 implies that I(x) = ∅ or, equivalently according to
2. in Lemma 2.1 - that F (x) = Sm−1 for all x ∈ U . Then, Corollary 2.2 yields that∇xe exists on U × Sm−1 and
is given by

∇xe(x, v) = − χ (ρx,v (x, v))
〈∇zg (x, ρx,v (x, v)Lv) , Lv〉

∇xg (x, ρx,v (x, v)Lv) .

Since all occurring functions are continuous, the same holds true for∇xe. Now the same argument as in the proof
of Theorem 2.2 allows us to derive (19) which along with the formula for∇xe above yields (21).

�

3 Selected Examples

In this section we are going to discuss some instances of the probabilistic constraint (1) to which our gradient
formulae obtained in Theorems 2.2 and 2.3 apply and thus could be used in the numerical solution of corresponding
optimization problems.
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3.1 Gaussian distributions

We assume first, as before, that the random vector has a Gaussian distribution. We shall focus on the particular
model

P[〈f(ξ), h1(x)〉 ≤ h2(x)] ≥ p (22)

with nonlinear mappings f : Rm → Rl and h1 : Rn → Rl and h2 : Rn → R involving a coupling of random and
decision vector.

Proposition 3.1 In the probabilistic constraint (22), let f, h1, h2 be continuously differentiable, let the components
fi of f be convex and the components h1,i of h1 be nonnegative. Furthermore, let ξ ∼ N (0, R) have a standard
Gaussian distribution with correlation matrix R and associated Cholesky decomposition R = LLT . Consider any
x̄ with 〈f(0), h1(x̄)〉 < h2(x̄). Finally, let f satisfy the following polynomial growth condition:

‖f(z)‖ ≤ ‖z‖κ ∀z : ‖z‖ ≥ C

for certain κ, C > 0. Then the probability function ϕ (x) := P [〈f(ξ), h1(x)〉 ≤ h2(x)] defining the constraint
(22) is continuously differentiable on a neighbourhood U of x̄ and its gradient is given by

∇ϕ (x) =
∫

v∈F (x)

χ (ρx,v (x, v))〈
hT1 (x)∇f (ρx,v (x, v)Lv) , Lv

〉 (∇h2(x)− [f(ρx,v (x, v)Lv)]T ∇h1(x)
)
dµζ(v) ∀x ∈ U.

(23)

Proof. In our setting the general function g in (4) becomes g (x, z) = 〈f(z), h1(x)〉 − h2(x). The continuous
differentiability and convexity with respect to the second argument of g are evident from our assumptions. Moreover,
g (x̄, 0) < 0. As for the growth condition, let U be a neighbourhood of x̄ on which max{‖∇h1‖ , ‖∇h2‖} ≤ K
for some K > 0. Then, taking without loss of generality, the maximum norm, we have that

‖∇xg(x, z)‖ =
∥∥∥∇h2(x)− [f(z)]T ∇h1(x)

∥∥∥ ≤ K(‖f(z)‖+ 1)

≤ ‖z‖2+κ ∀x ∈ U, z : ‖z‖ ≥ max{C,K, 2}.

Consequently, we may apply Theorem 2.2. (23) follows immediately from (17) for the given form of the function g.

�

3.2 Gaussian-like distributions

We are now going to apply Theorem 2.2 to probabilistic constraints with random vectors having non-Gaussian
distributions. In a first case, we consider a linear probabilistic constraint

P[〈η, x〉 ≤ b] ≥ p (24)

with a random vector η whose components ηi (i = 1, . . . , l) are independent and have a χ2-distribution with ni
degrees of freedom. By definition, ηi =

∑ni
k=1 ξ

2
i,k, where the ξi,k ∼ N (0, 1) are independent for k = 1, . . . , ni.

We are interested in the gradient of the probability function ϕ(x) := P[〈η, x〉 ≤ b]. Define a Gaussian random
vector with independent components

ξ := (ξ1,1, . . . , ξ1,n1 , . . . , ξl,1, . . . , ξl,nl) ∼ N (0, I) .

Clearly, η ∼ f(ξ), where fi(z) :=
∑ni

k=1 z
2
i,k for i = 1, . . . , l and z is partitioned in the same way as ξ above.

Then, the probability function defining (24) becomes

ϕ(x) = P[〈η, x〉 ≤ b] = P[〈f(ξ), x〉 ≤ b].

We derive the following gradient formula which does not need the verification of a polynomial growth condition and
which is even fully explicit with respect to the resolving function ρx,v :
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Proposition 3.2 In (24), let b > 0. Consider any feasible point x̄ of (24) satisfying x̄i > 0 for i = 1, . . . , n. Then
the probability function ϕ is continuously differentiable on a neighbourhood U of x̄ and its gradient is given by

∇ϕ (x) = −
√
b

2

∫
v∈Sm−1

χ
(√

b/ 〈f(v), x〉
)

〈f(v), x〉3/2
[f(v)]T dµζ(v) ∀x ∈ U. (25)

Proof. In our setting the general function g in (4) becomes g (x, z) = 〈f(z), x〉 − b which is continuously dif-
ferentiable. Since the components fi are convex, g (x, ·) is convex whenever x ≥ 0, which by our assumption
holds true in a neighbourhood of x̄. Evidently, the result of Theorems 2.2 and 2.3 are of local nature (differentiability
around x̄) so they actually do not need convexity of g (x, ·) for all x ∈ Rn but only for x in a neighbourhood of x̄
which is satisfied here. Next observe that g (x̄, 0) = −b < 0. Finally, recalling that x̄i > 0 for i = 1, . . . , n, we
obtain the estimate

{z|g(x̄, z) ≤ 0} = {z| 〈f(z), x̄〉 ≤ b} ⊆
{
z|
(

min
i=1,...,n

x̄i

)∑n

i=1
fi(z) ≤ b

}
=

{
z| ‖z‖2 ≤ b

(
min

i=1,...,n
x̄i

)−1
}
,

whence the set on the left-hand side is bounded. Altogether, this allows us to invoke Theorem 2.3 and to derive the
validity of formula (21). We now specify this formula in our setting. First observe that given ξ ∼ N (0, I), we have
that R = I , hence we have L = I for the Cholesky decomposition R = LLT . Next we calculate explicitly the
function ρx,v (x, v) which is the unique solution in r ≥ 0 of the equation 〈f(rLv), x〉 = b. Now, by definition of f ,

〈f(rLv), x〉 = r2 〈f(v), x〉 = b,

whence
r =

√
b/ 〈f(v), x〉. (26)

Next, we calculate

∇xg (x, ρx,v (x, v)Lv) = [f (ρx,v (x, v) v)]T = [ρx,v (x, v)]2 [f(v)]T = (b/ 〈f(v), x〉) [f(v)]T

〈∇zg (x, ρx,v (x, v)Lv) , Lv〉 = 〈∇zg (x, ρx,v (x, v) v) , v〉 =
〈∑n

i=1
xi∇fi (ρx,v (x, v) v) , v

〉
=

∑n

i=1
xi 〈∇fi (ρx,v (x, v) v) , v〉 = 2ρx,v (x, v)

∑n

i=1
xi
∑ni

k=1
v2
i,k

= 2ρx,v (x, v) 〈f(v), x〉 = 2
√
b 〈f(v), x〉.

Combination of these last relations with (26) provides formula (25).

�

As a second instance for a non-Gaussian but Gaussian-like distribution, we consider the multivariate log-normal
distribution. Recall, that a random vector η follows a multivariate lognormal distribution if the vector ξ := log η
(componentwise logarithm) has a Gaussian distribution. We consider now a probabilistic constraint of type

P[〈η, x〉 ≤ h(x)] ≥ p (27)

where η is an m-dimensional random vector with lognormal distribution and h : Rm → R is some function. We
are interested in the gradient of the associated probability function ϕ(x) := P[〈η, x〉 ≤ h(x)]. We denote by
ξ := log η the Gaussian random vector associated with η. Without loss of generality (see Remark 2.2) we may
assume that ξ ∼ N (0, R) for some correlation matrix R. We denote by L the associated factor in the Cholesky
decomposition R = LLT .
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Proposition 3.3 In the setting above, assume that x̄ satisfies x̄i > 0 for i = 1, . . . ,m. Assume moreover that h
is continuously differentiable and that h(x̄) >

∑m
i=1 x̄i. Then,

∇ϕ (x) = −
∫

{v∈Sm−1|∃i:Liv>0}

χ (ρx,v (x, v))∑m
i=1 xie

ρx,v(x,v)Liv
i Liv

[
eρ
x,v(x,v)Lv −∇h(x)

]
dµζ(v) ∀x ∈ U.

Here, Li refers to the ith row of L and the expression ez has to be understood componentwise.

Proof. In our setting the general function g in (4) becomes g (x, z) = 〈ez, x〉 − h(x). Clearly, g is continuously
differentiable and convex with respect to z for all x close to x̄ (as mentioned in the proof of Proposition (24) this
weakened condition is enough in the context of Theorem 2.2). Moreover, g (x̄, 0) =

∑m
i=1 x̄i − h(x̄) < 0. In

order to apply Theorem 2.2, it is sufficient to verify the exponential growth condition of Remark 2.3 (note that the
originally imposed polynomial growth condition would not hold true here). To this aim, let U be a neighbourhood of
x̄ on which ‖∇h‖ ≤ K for some K > 0. Then, with respect to the maximum norm, we get that∥∥∇xg (x′, z)∥∥ ≤ ‖ez‖+

∥∥∇h(x′)
∥∥ ≤ e‖z‖ +K ≤ 2e‖z‖ ∀x′ ∈ U(x) ∀z : ‖z‖ ≥ logK.

Hence, the exponential growth condition of Remark 2.3 is satisfied. This allows us to apply Theorem 2.2. Inserting
the corresponding derivative formulae for g, we derive that ϕ is continuously differentiable on a neighbourhood U
of x̄ and its gradient is given by

∇ϕ (x) = −
∫

v∈F (x)

χ (ρx,v (x, v))∑m
i=1 xie

ρx,v(x,v)〈Li,v〉 〈Li, v〉

[
eρ
x,v(x,v)Lv −∇h(x)

]
dµζ(v) ∀x ∈ U. (28)

Here, Li denotes the ith row of the Cholesky factor L. To complete the proof, we have to verify the representation
of the integration domain F (x) asserted in the statement of this proposition. Without loss of generality, we assume
the neighbourhood U of x̄ in the formula above to be small enough that g (x, 0) < 0 and xi > 0 for i = 1, . . . ,m
and for all x ∈ U (recall that g (x̄, 0) < 0 and x̄i > 0 for i = 1, . . . ,m). We claim that for all x ∈ U the set I(x)
introduced below (6) can be written as

I(x) =
{
v ∈ Sm−1|Lv ≤ 0

}
. (29)

Indeed, let x ∈ U and v ∈ Sm−1 with Lv ≤ 0 be arbitrary. Then, for all r > 0,

g(x, rLv) =
〈
erLv, x

〉
− h(x) ≤

〈
e0, x

〉
− h(x) = g (x, 0) < 0,

whence v ∈ I(x) by 1. of Lemma 2.1. Conversely, let x ∈ U and v ∈ I(x) be arbitrary. Then,
〈
erLv, x

〉
< h(x)

for all r > 0. Define J := {i|Liv > 0}. It follows from xi > 0 for i = 1, . . . ,m that

h(x) >
∑
i∈J

xie
r〈Li,v〉.

If J 6= ∅, then the sum on the right-hand side tends to∞ for r → ∞ which is a contradiction to this sum being
bounded from above by h(x) for all r > 0. Consequently, J = ∅, proving Lv ≤ 0 and, thus, the reverse inclusion
of (29). Since, by definition, F (x) = Sm−1\I(x), we may plug the information from (29) into (28) in order to derive
our asserted formula.

�

3.3 Student (or T- ) distribution

As a last application, we are going to consider probabilistic constraints of type (1), where the random vector ξ
follows a so-called multivariate Student or T- distribution. This is an important type of distribution in particular due to
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its application in the context of copulas. We recall that ξ ∼ T (µ,Σ, ν) - i.e., ξ obeys a multivariate T-distribution
with parameters µ,Σ, ν - if ξ = µ + ϑ

√
ν
u , where ϑ ∼ N (0,Σ) has a multivariate Gaussian distribution with

mean µ and covariance matrix Σ, u ∼ χ2 (ν) has a chi-squared distribution with ν degrees of freedom and ϑ and
u are independent [22]. We are interested in the probability function (4) but this time for a T-variable rather than for
a Gaussian one.

Remark 3.1 Using the definition of a T- distribution, we may copy the arguments of Remark 2.2 in order to convince
ourselves that in the consideration of (4) we may assume without loss of generality that ξ ∼ T (0, R, ν), where
R is a correlation matrix. In particular, this can be arranged without disturbing the assumption of g in (4) being
continuously differentiable and convex with respect to the second argument.

In a first step, we provide an expression for the probability function (4) in case of a T-distribution:

Theorem 3.1 Let g : Rn × Rm → R be a continuously differentiable function which is convex with respect
to the second argument. Moreover, let ξ ∼ T (0, R, ν) for some correlation matrix R. Consider a point x̄ such
that g(x̄, 0) < 0. Then, there exists a neighbourhood U of x̄ such that the probability function (4) admits the
representation

ϕ (x) =
∫

v∈Sm−1

ẽ (x, v) dµζ ∀x ∈ U,

where for all x ∈ U and v ∈ Sm−1

ẽ (x, v) :=
{
Fm,ν(m−1 [ρx,v (x, v)]2) v ∈ F (x)
1 v ∈ I(x)

and Fm,ν refers to the distribution function of the Fisher-Snedecor distribution with m and ν degrees of freedom.
Moreover, ρx,v is as introduced in Lemma 2.2 and F (x) and I(x) are defined in Lemma 2.1.

The proof of this Theorem is left for the Appendix. Now, we may copy the proof of Corollary 2.1 but with the function
e there replaced by the function ẽ introduced above and with the expression Fη(ρx,v (x′, v′)) in statement 1. of

Lemma 2.3 replaced by the expression Fm,ν(m−1 [ρx,v (x′, v′)]2) in order to derive the continuity of ẽ at any
x ∈ U , where U is defined in the Theorem above. Next, we may copy the proof of Corollary 2.2 (again with the
appropriate replacements) and get the following:

Corollary 3.1 For any x ∈ Rn with g(x, 0) < 0 and v ∈ F (x) the partial derivative w.r.t x of the function
ẽ : Rn × Sm−1 → R defined in Theorem 3.1 exists and is given by

∇xẽ(x, v) = −2ρx,v (x, v)
fm,ν

(
m−1 [ρx,v (x, v)]2

)
m 〈∇zg (x, ρx,v (x, v)Lv) , Lv〉

∇xg (x, ρx,v (x, v)Lv) (30)

where

fm,ν(t) =

{
Γ(m/2+ν/2)

Γ(m/2)Γ(ν/2)m
m/2νν/2tm/2−1 (mt+ ν)−(m+ν)/2 t ≥ 0

0 t < 0
(31)

is the density of the Fisher-Snedecor distribution with m and ν degrees of freedom, ρx,v refers to the function
introduced in Lemma 2.2 and L is a factor of the Cholesky decomposition R = LLT .

It is the equivalent of Lemma 2.4 that requires some additional conditions and work:
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Lemma 3.1 Let x be such that g (x, 0) < 0 and that g satisfies the polynomial growth condition at x with coeffi-
cient κ < ν (Def. 2.1). Consider any sequence (xk, vk) → (x, v) for some v ∈ I(x) such that vk ∈ F (xk).
Then,

lim
k→∞

∇xẽ(xk, vk) = 0.

Proof. First observe that ρxk,vk (xk, vk) → ∞ by 2. in Lemma 2.3. The arguments of Lemma 2.4 allow us to
deduce that for k sufficiently large the estimates (10) and (11) still hold. Using (31), we may combine Corollary 3.1
with (10) and (11) in order to derive that

‖∇xẽ(xk, vk)‖ =

∥∥∥∥∥2ρxk,vk(xk, vk)fm,ν(m−1 [ρx,v (x, v)]2)
m 〈∇zg (xk, ρxk,vk (xk, vk)Lvk) , Lvk〉

∇xg (xk, ρxk,vk (xk, vk)Lvk)

∥∥∥∥∥
≤ 2νν/2

Γ (m/2 + ν/2)
Γ (m/2)Γ(ν/2)

‖L‖κ δ−1
1 ρxk,vk(xk, vk)m+κ(1 +

ρxk,vk(xk, vk)2

ν
)−

m+ν
2 →k 0,

where the last limit follows from ρxk,vk (xk, vk)→∞ and κ < ν.

�

Upon having established Lemma 3.1 the same arguments of Corollary 2.3 can be used to show that ẽ is differ-
entiable with respect to x and to derive a similar formula. This can be done since the proof of Corollary 2.3 uses
only the properties of e and we have established the same properties for ẽ. Accordingly, ∇xẽ(x, v) is given by
formula (30) if v ∈ F (x) and∇xẽ(x, v) = 0 if v ∈ I(x). In the same way as in Corollary 2.4 one establishes the
continuity of ∇xẽ upon noting that fm,ν(t) defined in (31) is also continuous. We thus arrive at the following key
result, of which the proof is a verbatim copy of that of Theorem 2.2 (Again e and ẽ have the same properties).

Theorem 3.2 Let g : Rn × Rm → R be a continuously differentiable function which is convex with respect to
the second argument. Consider the probability function ϕ defined in (4), where ξ ∼ T (0, R, ν). Let the following
assumptions be satisfied at some x̄:

1 g (x̄, 0) < 0.

2 g satisfies the polynomial growth condition at x̄ (Def. 2.1) with coefficient κ < ν.

Then, ϕ is continuously differentiable on a neighbourhood U of x̄ and it holds that

∇ϕ (x) =
∫

v∈F (x)

−2ρx,v(x, v)fm,ν(m−1 [ρx,v (x, v)]2)
m 〈∇zg (x, ρx,v (x, v)Lv) , Lv〉

∇xg (x, ρx,v (x, v)Lv) dµζ(v) ∀x ∈ U. (32)

Here, µζ is the law of the uniform distribution over Sm−1, fm,ν is the density of the Fisher-Snedecor-distribution
with m and ν degrees of freedom and ρx,v is as introduced in Lemma 2.2.

4 Concluding Remarks

We have provided in this paper representations of the gradients to convex probability functions as integrals with
respect to uniform distribution over the unit sphere. This was possible in the case of Gaussian or alternative
distributions (like Log-normal or Student). Having such representation, one may hope for solving corresponding
probabilistically constrained optimization problems by applying nonlinear programming methods and exploit Deák’s
sampling scheme of the sphere in order to simultaneously approximate values and gradients of the given probability
functions. To prove the usefulness of this approach for numerical purposes will be the object of future research. A
generalization from single random inequalities towards random inequality systems seems to be possible with an
appropriate adaptation of the ideas developed here.
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5 Appendix

Proof of Theorem 3.1. Let U be a neighbourhood of x̄ small enough such that g(x, 0) < 0 for all x ∈ U . Fix an
arbitrary x ∈ U . According to the definition of ξ, there exist ϑ ∼ N (0, R) and u ∼ χ2 (ν) such that ϑ and u are
independent and

ϕ (x) = P
(
g(x, ϑ

√
ν

u
) ≤ 0

)
=

∫
{(y,t)|t>0,g(x,y

√
ν
t
)≤0}

fϑ,u (y, t) dydt,

where fϑ,u denotes the joint density of the vector (ϑ, u). By independence, fϑ,u (y, t) = fϑ (y) fu (t) where fϑ
and fu are the densities of ϑ and u, respectively. In particular, with Γ referring to the Gamma function, it holds that

fu (t) =

{
1

2ν/2Γ(ν/2)
tν/2−1e−t/2 t ≥ 0

0 t < 0
(33)

Therefore,

ϕ (x) =

∞∫
0

 ∫
{y|g(x,y

√
ν
t
)≤0}

fϑ (y) dy

 fu (t) dt =
1

2ν/2Γ (ν/2)

∞∫
0

P
(
g(x, ϑ

√
ν

t
) ≤ 0

)
tν/2−1e−t/2dt.

(34)
With M := {z ∈ Rm|g(x, z) ≤ 0} one has that, for t > 0,

P
(
g(x, ϑ

√
ν

t
) ≤ 0

)
= P

(
ϑ ∈ t√

ν
M

)
.

Since ϑ ∼ N (0, R), (2) yields that for all t > 0

P
(
g(x, ϑ

√
ν

t
) ≤ 0

)
=

∫
v∈Sm−1

µη

(
{r ≥ 0|

√
ν

t
rLv ∈M}

)
dµζ

=
∫

v∈Sm−1

µη

(
{r ≥ 0|g(x,

√
ν

t
rLv) ≤ 0}

)
dµζ ,

where η has a χ-distribution with m degrees of freedom and ζ has a uniform distribution over Sm−1. Moreover,
L is a factor of the Cholesky decomposition R = LLT . Let t > 0 be arbitrary. Assume first that v ∈ F (x).
With g(x, 0) < 0, let ρx,v : Ũ × Ṽ → R+ be the function defined on certain neighbourhoods Ũ , Ṽ of x and v,
respectively. It follows from 1. in Lemma 2.2 that

{r ≥ 0|g(x,
√
ν

t
rLv) ≤ 0} =

[
0,

t√
ν
ρx,v (x, v)

]
.

If in contrast v ∈ I(x) then g(x, rLv) < 0 for all r ≥ 0, whence

{r ≥ 0|g(x,
√
ν

t
rLv) ≤ 0} = R+.

17



Combining this with (34), we conclude that

ϕ (x) =
1

2ν/2Γ (ν/2)

∞∫
0

 ∫
v∈F (x)

µη

([
0,

t√
ν
ρx,v (x, v)

])
dµζ +

∫
v∈I(x)

µη (R+) dµζ

 tν/2−1e−t/2dt

=
1

2ν/2Γ (ν/2)

∞∫
0

 ∫
v∈F (x)

Fη

(
t√
ν
ρx,v (x, v)

)
dµζ + µζ (I(x))

 tν/2−1e−t/2dt

= µζ (I(x)) +
1

2ν/2Γ (ν/2)

∞∫
0

tν/2−1e−t/2
∫

v∈F (x)

Fη

(
t√
ν
ρx,v (x, v)

)
dµζdt, (35)

where Fη denotes the distribution function of η and we exploited that Fη(0) = 0, µη (R+) = 1 and

1
2ν/2Γ (ν/2)

∞∫
0

tν/2−1e−t/2dt =
∫
R

fu(t)dt = 1.

Now, let r ≥ 0 be arbitrary and let ζ have a Fisher-Snedecor (F-) distribution with m and ν degrees of freedom.
Then, ζ = (νUm) / (mUν), where Um and Uν are independent and follow χ- squared distributions with m and ν
degrees of freedom, respectively. Denoting by Fm,ν the distribution function of ζ , we derive that

Fm,ν(m−1r2) = P
(
U−1
ν Um ≤ ν−1r2

)
=

∫
{(τ,t)|ντ≤tr2}

fUm,Uν (τ, t) dτdt,

where fUm,Uν denotes the joint density of the vector (Um, Uν). By independence, fUm,Uν (τ, t) = fUm (τ) fUν (t)
where the single χ2-densities are defined with appropriate degrees of freedom in (33). It follows that

Fm,ν(m−1r2) =

∞∫
0

tr2/ν∫
0

fUν (t) fUm (τ) dτdt

=
1

2ν/2Γ (ν/2)

∞∫
0

tν/2−1e−t/2
1

2m/2Γ (m/2)

tr2/ν∫
0

τm/2−1e−τ/2dτdt

=
1

2ν/2Γ (ν/2)

∞∫
0

tν/2−1e−t/2
1

2m/2−1Γ (m/2)

r
√
t/ν∫

0

sm−1e−s
2/2dsdt

=
1

2ν/2Γ (ν/2)

∞∫
0

tν/2−1e−t/2

r
√
t/ν∫

0

fη(s)dsdt.

Here, we used that the variable η introduced above has a χ-distribution with m degrees of freedom and so its
density is given by

fη(s) =

{
1

2m/2−1Γ(m/2)
sm−1e−s

2/2 s ≥ 0
0 s < 0

.

Consequently,with Fη denoting the distribution function of η,

Fm,ν(m−1r2) =
1

2ν/2Γ (ν/2)

∞∫
0

tν/2−1e−t/2Fη

(
r
√
t/ν
)
dt

=
1

2ν/2−1Γ (ν/2)

∞∫
0

sν−1e−s
2/2Fη

(
sr/
√
ν
)
ds. (36)
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Consequently, exploiting the definition ẽ in the statement of Theorem 3.1, putting r := ρx,v (x, v) in (36) and
applying Fubini’s theorem, we end up via (35) at ∫

v∈Sm−1

ẽ (x, v) dµζ =

µζ (I(x)) +
∫

v∈F (x)

Fm,ν(m−1 [ρx,v (x, v)]2)dµζ =

µζ (I(x)) +
1

2ν/2−1Γ (ν/2)

∞∫
0

∫
v∈F (x)

sν−1e−s
2/2Fη

(
sρx,v (x, v) /

√
ν
)
dµζds = ϕ (x) .

�
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