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Abstract

The paper studies the approximation error in stochastic particle methods for spatially

inhomogeneous population balance equations. The model includes advection, coagulation

and inception. Sufficient conditions for second order approximation with respect to the

spatial discretization parameter (cell size) are provided. Examples are given, where only

first order approximation is observed.
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1 Introduction

We consider the population balance equation

∂

∂t
c(t, x, y) +

∂

∂x

(

u(x) c(t, x, y)
)

= (1.1)

1

2

∫ y

0

dy1K(y − y1, y1) c(t, x, y − y1) c(t, x, y1)−

c(t, x, y)

∫ ∞

0

dy1K(y, y1) c(t, x, y1) + I(x, y) ,

where u is the advection velocity, K is the coagulation kernel and I is the inception rate. The

solution c(t, x, y) represents the number density of particles with type y that are located at

position x at time t . Equation (1.1) is a spatially inhomogeneous extension of Smoluchowski’s

coagulation equation [vS16]. Such equations are used in various branches of physics and chem-

ical engineering. We refer to the extended introductions in [PWK11, PW12] concerning details

about applications and further references.

Stochastic particle methods are common tools for the numerical treatment of population

balance equations. These methods are based on the simulation of finite systems of particles that

approximate the solution of (1.1). In the case of “direct simulation” methods the evolution of the

particle system imitates the basic physical processes. Particles move independently according

to the velocity field, new particles are added to the system according to the inception rate, and

pairs of particles stick together according to a rate determined by the coagulation kernel. Since

the system is finite, the interaction cannot be strictly local so that some spatial smoothing has

to be introduced. For example, the position space can be divided into small cells and particles

are allowed to coagulated, while they belong to the same cell. Moreover, the nonlinear part

of the evolution is usually decoupled from the transport part in order to simplify the numerical

implementation. Particles move independently during some time step, then their positions are

fixed and coagulation is generated for particles belonging to the same cell. Thus, in addition to

the finite number of particles, stochastic particle methods contain both spatial (cell size) and

temporal (splitting time step) discretization parameters.

Stochastic particle methods have been studied in connection with various nonlinear ki-

netic equations. A classical example is the Boltzmann equation from rarefied gas dynamics (cf.

[RW05] and references therein). We refer to [EW03] and [Kol10] concerning the infinite-particle-

number limit for stochastic particle systems with rather general interactions. The convergence

order with respect to the number of particles was studied, in the case of the Boltzmann equa-

tion, in [NT89, GM97], [CPW98] (steady state) and, in the case of the Smoluchowski equation,

in [CF11]. The approximation error with respect to the splitting time step was studied for the

Boltzmann equation in [Ohw98, BO99, Had00, GW00, RGTW06, RW07], for population balance

equations from chemical engineering in [CPKW07], and for semiconductor transport equations

in [MW05, MWDS10]. The cell size error was studied in connection with the Boltzmann equation

in [BI89, AGA98, Had00, RGTW06].

In this paper we consider stochastic particle methods for the numerical treatment of equation

(1.1) and study the approximation error with respect to cell size. Sufficient conditions for second

order approximation are provided. In addition, examples are given, where only first order approx-

2



imation is observed. The structure of the paper is as follows. In Section 2 we introduce a class

of direct simulation algorithms and the corresponding infinite-particle-number limit equations.

Then we formulate and prove the main result of the paper. Examples illustrating the limitations

of the result are given in Section 3. Comments are provided in Section 4.

2 Main result

In this section we describe a class of direct simulation algorithms and provide the corresponding

infinite-particle-number limit equations. The main result concerns the asymptotic behaviour of

the solutions of these equations with respect to cell size.

2.1 Direct simulation algorithms

Direct simulation algorithms for equation (1.1) are based on stochastic particle systems of the

form

(

xi(t), yi(t)
)

, i = 1, . . . , N(t) , t ≥ 0 , (2.1)

where t denotes time, N is the total number of particles and each particle is characterized by its

position xi ∈ X = [0, 1] and its type yi ∈ Y = (0,∞) . The algorithm consists in generating

trajectories of the system and calculating averages. The time evolution of the system (2.1) is as

follows.

� The initial state of the system is chosen such that the corresponding empirical measure

approximates the initial condition of equation (1.1),

lim
n→∞

1

n

N(0)
∑

i=1

δxi(0),yi(0)(dx, dy) = c(0, x, y) dx dy . (2.2)

� Particles move in the velocity field u .

� New particles (x, y) are added to the system, according to the inception rate I .

� The position space is divided into a finite number of disjoint cells,

X = ∪L
l=1Xl , Xl = [xl−1, xl) , xl = l∆x , l = 0, 1, . . . , L . (2.3)

Particles belonging to the same cell stick together, according to the coagulation rate K .
They form a new particle

(xi, yi) , (xj , yj) ⇒ (x̃, yi + yj) , (2.4)

where the position x̃ is either xi , with probability p(yi, yj) , or xj , otherwise.
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The parameter n in (2.2) is also used for scaling the intensities of inception and coagulation.

It is related to the number of physical particles represented by one numerical particle. In order

to increase numerical efficiency, time splitting of transport and coagulation is used. During the

transport step, particles are not allowed to interact. During the coagulation step, particles do not

move.

Convergence of the system (2.1) holds in the sense that

lim
n→∞

1

n

N(t)
∑

i=1

ϕ(xi(t), yi(t)) =

∫

X×Y

ϕ(x, y) ĉ(t, x, y) dx dy ,

for appropriate functions ϕ . The function ĉ solves the “infinite-particle-number limit equation”

∂

∂t
ĉ(t, x, y) +

∂

∂x

(

u(x) ĉ(t, x, y)
)

= (2.5)

∫ y

0

dy1K(y − y1, y1)
p(y − y1, y1) + 1− p(y1, y − y1)

2
×

ĉ(t, x, y − y1)

[
∫

X

dx1 h(x, x1) ĉ(t, x1, y1)

]

−

ĉ(t, x, y)

∫ ∞

0

dy1K(y, y1)

[
∫

X

dx1 h(x, x1) ĉ(t, x1, y1)

]

+ I(x, y) ,

where

h(x, x1) =
1

∆x

L
∑

l=1

1Xl
(x) 1Xl

(x1) (2.6)

is determined by the cell structure (2.3). The function p represents the probability for choosing

the position of the new particle in a coagulation event (cf. (2.4)). The choices

p(y1, y2) = α , where α ∈ [0, 1] , (2.7)

and

p(y1, y2) =
y1

y1 + y2
, y1, y2 ∈ Y , (2.8)

correspond to the direct simulation algorithms DSA1 and DSA2 in [PW12].

2.2 Cell size error

Equation (2.5) takes the form (1.1), when h is replaced by Dirac’s delta-function δ . The function

h delocalizes the spatial interaction between particles in the stochastic algorithm. The purpose

of the paper is to provide a rigorous result concerning the transition h → δ . More precisely, we

study the order of the approximation error with respect to the cell size ∆x (cf. (2.3)). Sufficient

conditions for second order convergence are given. We consider the norm

‖f‖ = sup
x∈X

∫

Y

|f(x, y)| dy (2.9)

on the space of measurable functions on X × Y = [0, 1]× (0,∞) , which are bounded with

respect to x and integrable with respect to y .
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Theorem 2.1 Let c∞ and ĉ∞ be steady state solutions of equations (1.1) and (2.5), respec-

tively, with finite norms (2.9) and such that

c∞(0, y) = ĉ∞(0, y) ∀ y ∈ Y . (2.10)

Assume

� the advection velocity u satisfies

inf
x∈X

u(x) > 0 (2.11)

and is twice differentiable so that

sup
x∈X

|u′(x)| < ∞ and sup
x∈X

|u′′(x)| < ∞ ; (2.12)

� the inception rate I is non-negative and twice differentiable with respect to x so that

‖I‖ < ∞ , ‖I ′‖ < ∞ and ‖I ′′‖ < ∞ ; (2.13)

� the coagulation kernel K is non-negative, symmetric and satisfies

K(y, y1) ≤ CK ∀ y, y1 ∈ Y , (2.14)

for some CK ∈ (0,∞) .

Then

lim sup
∆x→0

‖c∞ − ĉ∞‖
∆x2

< ∞ . (2.15)

2.3 Proof of Theorem 2.1

Let f, g be functions on X × Y with finite norms (2.9). Denote

B(f, g) = B1(f, g)−B2(f, g) , (2.16)

where

B1(f, g)(x, y) =

∫ y

0

dy1 K̂(y − y1, y1) f(x, y − y1) g(x, y1) , (2.17)

with

K̂(y, y1) = K(y, y1)
p(y, y1) + 1− p(y1, y)

2
, (2.18)

and

B2(f, g)(x, y) = f(x, y)

∫ ∞

0

dy1K(y, y1) g(x, y1) . (2.19)
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Using symmetry of K, one obtains

1

2

∫ y

0

dy1K(y − y1, y1) f(x, y − y1) f(x, y1) = (2.20)

∫ y

0

dy1K(y − y1, y1)×

p(y − y1, y1) + 1− p(y1, y − y1)

2
f(x, y − y1) f(x, y1) .

According to (2.20), equation (1.1) can be written as

∂

∂t
c(t, x, y) +

∂

∂x

(

u(x) c(t, x, y)
)

= I(x, y) +B(c(t), c(t))(x, y) . (2.21)

Equation (2.5) takes the form

∂

∂t
ĉ(t, x, y) +

∂

∂x

(

u(x) ĉ(t, x, y)
)

= I(x, y) +B(ĉ(t), Hĉ(t))(x, y) , (2.22)

where (cf. (2.6))

(Hf)(x, y) =

∫

X

h(x, x1) f(x1, y) dx1 . (2.23)

First we derive some auxiliary estimates. Assumption (2.14) implies

‖B1(f, g)(x, .)‖1 ≤ CK ‖f(x, .)‖1 ‖g(x, .)‖1 , (2.24)

‖B2(f, g)(x, .)‖1 ≤ CK ‖f(x, .)‖1 ‖g(x, .)‖1

and

‖B(f, g)(x, .)− B(f1, g1)(x, .)‖1 ≤
‖B(f, g)(x, .)− B(f, g1)(x, .)‖1 + ‖B(f, g1)(x, .)− B(f1, g1)(x, .)‖1 (2.25)

≤ 2CK

(

‖g(x, .)− g1(x, .)‖1 ‖f(x, .)‖1 + ‖f(x, .)− f1(x, .)‖1 ‖g1(x, .)‖1
)

,

where ‖.‖1 denotes the L1-norm of integrable functions on Y . It follows from (2.24) and (2.25)

that (cf. (2.9))

‖B(f, g)‖ ≤ CK ‖f‖ ‖g‖ (2.26)

and

‖B(f, g)− B(f1, g1)‖ ≤ 2CK

(

‖g − g1‖ ‖f‖+ ‖f − f1‖ ‖g1‖
)

. (2.27)

Moreover, one obtains (cf. (2.23))

‖Hf‖ ≤ ‖f‖ . (2.28)
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In the following, we will write c, ĉ instead of c∞, ĉ∞ . We use the notation O(∆xk) for any

expression F (∆x) such that (cf. (2.9))

lim sup
∆x→0

‖F (∆x)‖
∆xk

< ∞ .

Step 1. The steady state form of equation (2.21) is

∂

∂x

(

u(x) c(x, y)
)

= I(x, y) +B(c, c)(x, y) . (2.29)

One obtains

∂2

∂x2

(

u(x) c(x, y)
)

= I ′(x, y) +B(c′, c)(x, y) +B(c, c′)(x, y) (2.30)

and

∂3

∂x3

(

u(x) c(x, y)
)

= (2.31)

I ′′(x, y) +B(c′′, c)(x, y) + 2B(c′, c′)(x, y) +B(c, c′′)(x, y) .

It follows from the smoothness assumptions (2.12), (2.13) and property (2.26) that the norm of

the expressions (2.29)-(2.31) is finite. Thus, one obtains

u(x) c(x, y) = (uc)(xl−1, y)+

(uc)′(xl−1, y) (x− xl−1) + (uc)′′(xl−1, y)
(x− xl−1)

2

2
+O(∆x3)

= O(∆x3) + (uc)(xl−1, y) +
[

I(xl−1, y) +B(c, c)(xl−1, y)
]

(x− xl−1) +

[

I ′(xl−1, y) +B(c′, c)(xl−1, y) +B(c, c′)(xl−1, y)
](x− xl−1)

2

2
, (2.32)

for any x ∈ [xl−1, xl] .

Step 2. The steady state form of equation (2.22) is

∂

∂x

(

u(x) ĉ(x, y)
)

= I(x, y) +B(ĉ, Hĉ)(x, y) . (2.33)

Note that h is constant in the cell Xl (cf. (2.6)). Thus, one obtains

∂2

∂x2

(

u(x) ĉ(x, y)
)

= I ′(x, y) +B(ĉ′, Hĉ)(x, y) (2.34)

and

∂3

∂x3

(

u(x) ĉ(x, y)
)

= I ′′(x, y) +B(ĉ′′, Hĉ)(x, y) . (2.35)

It follows from the smoothness assumptions (2.12), (2.13) and properties (2.26), (2.28) that the

norm of the expressions (2.33)-(2.35) is finite. Moreover, the norm of the functions ĉ′ and ĉ′′ is

finite (cf. (2.11)). Note that

(Hĉ)(x, y) =
1

∆x

∫ xl

xl−1

ĉ(x̃, y) dx̃ (2.36)

= ĉ(xl−1, y) + ĉ′(xl−1, y)
∆x

2
+O(∆x2) ,
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for any x ∈ [xl−1, xl] . Thus, one obtains

u(x) ĉ(x, y) = (uĉ)(xl−1, y) +
[

I(xl−1, y) +B(ĉ, Hĉ)(xl−1, y)
]

(x− xl−1) +

[

I ′(xl−1, y) +B(ĉ′, Hĉ)(xl−1, y)
](x− xl−1)

2

2
+O(∆x3)

= (uĉ)(xl−1, y) +
[

I(xl−1, y) +B(ĉ, ĉ)(xl−1, y)
]

(x− xl−1) +

B(ĉ, ĉ′)(xl−1, y)
(x− xl−1)∆x

2
+ (2.37)

[

I ′(xl−1, y) +B(ĉ′, ĉ)(xl−1, y)
](x− xl−1)

2

2
+O(∆x3) .

Step 3. Let x ∈ [xl−1, xl] . It follows from (2.32) and (2.37) that

(uc)(x, y)− (uĉ)(x, y) = (uc)(xl−1, y)− (uĉ)(xl−1, y) +O(∆x3)+
[

B(c, c)(xl−1, y)− B(ĉ, ĉ)(xl−1, y)
]

(x− xl−1) +

[

B(c′, c)(xl−1, y)− B(ĉ′, ĉ)(xl−1, y)
](x− xl−1)

2

2
+

B(c, c′)(xl−1, y)
(x− xl−1)

2

2
−B(ĉ, ĉ′)(xl−1, y)

(x− xl−1)∆x

2
= (uc)(xl−1, y)− (uĉ)(xl−1, y) +O(∆x3) +

1

u(xl−1)2

[

B(uc, uc)(xl−1, y)− B(uĉ, uĉ)(xl−1, y)
]

(x− xl−1) +

1

u(xl−1)2

[

B(uc′, uc)(xl−1, y)−B(uĉ′, uĉ)(xl−1, y) +

B(uc, uc′)(xl−1, y)− B(uĉ, uĉ′)(xl−1, y)
](x− xl−1)

2

2
+

B(ĉ, ĉ′)(xl−1, y)
(x− xl−1) (x− xl)

2
. (2.38)

Using (2.25) one obtains from (2.38) that

‖(uc)(x)− (uĉ)(x)‖1 ≤ R(x,∆x) + ‖(uc)(xl−1)− (uĉ)(xl−1)‖1+ (2.39)

2CK

u(xl−1)2
‖(uc)(xl−1)− (uĉ)(xl−1)‖1 ×

(

‖(uc)(xl−1)‖1 + ‖(uĉ)(xl−1)‖1
)

∆x+
2CK

u(xl−1)2
×

{

‖(uc′)(xl−1)− (uĉ′)(xl−1)‖1
(

‖(uc)(xl−1)‖1 + ‖(uĉ)(xl−1)‖1
)

+

‖(uc)(xl−1)− (uĉ)(xl−1)‖1
(

‖(uc′)(xl−1)‖1 + ‖(uĉ′)(xl−1)‖1
)} ∆x2

2
,

where

R(x,∆x) =

{

O(∆x2) , if x < xl ,
O(∆x3) , if x = xl .

(2.40)
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Step 4. Since (cf. (2.29))

u(x)
∂

∂x
c(x, y) = −u′(x) c(x, y) + I(x, y) +B(c, c)(x, y)

and (cf. (2.33))

u(x)
∂

∂x
ĉ(x, y) = −u′(x) ĉ(x, y) + I(x, y) +B(ĉ, Hĉ)(x, y) ,

it follows that (cf. (2.24), (2.28))

‖(uc′)(xl−1)‖1 + ‖(uĉ′)(xl−1)‖1 ≤ (2.41)

|u′(xl−1)| (‖c(xl−1)‖1 + ‖ĉ(xl−1)‖1) +
2 ‖I(xl−1)‖1 + 2CK

(

‖c(xl−1)‖21 + ‖ĉ(xl−1)‖21
)

.

Moreover, one obtains

u(xl−1) c
′(xl−1, y) = −u′(xl−1) c(xl−1, y) + I(xl−1, y) +B(c, c)(xl−1, y)

and (cf. (2.36))

u(xl−1) ĉ
′(xl−1, y) =

−u′(xl−1) ĉ(xl−1, y) + I(xl−1, y) +B(ĉ, ĉ)(xl−1, y) +O(∆x)

so that

(uc′)(xl−1, y)− (uĉ′)(xl−1, y) = −u′(xl−1)

u(xl−1)

[

(uc)(xl−1, y)− (uĉ)(xl−1, y)
]

+

1

u(xl−1)2

[

B(uc, uc)(xl−1, y)− B(uĉ, uĉ)(xl−1, y)
]

+O(∆x)

and (cf. (2.24))

‖(uc′)(xl−1)− (uĉ′)(xl−1)‖1 ≤ (2.42)

O(∆x) +

∣

∣

∣

∣

u′(xl−1)

u(xl−1)

∣

∣

∣

∣

‖(uc)(xl−1)− (uĉ)(xl−1)‖1 +
2CK

u(xl−1)2
×

‖(uc)(xl−1)− (uĉ)(xl−1)‖1
(

‖(uc)(xl−1)‖1 + ‖(uĉ)(xl−1)‖1
)

= ‖(uc)(xl−1)− (uĉ)(xl−1)‖1 ×
(
∣

∣

∣

∣

u′(xl−1)

u(xl−1)

∣

∣

∣

∣

+
2CK

|u(xl−1)|
(

‖c(xl−1)‖1 + ‖ĉ(xl−1)‖1
)

)

+O(∆x) .

Step 5. It follows from (2.39), (2.41) and (2.42) that

‖(uc)(x)− (uĉ)(x)‖1 ≤ ‖(uc)(xl−1)− (uĉ)(xl−1)‖1+

‖(uc)(xl−1)− (uĉ)(xl−1)‖1
2CK

|u(xl−1)|
(

‖c(xl−1)‖1 + ‖(ĉ(xl−1)‖1
)

∆x+
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‖(uc)(xl−1)− (uĉ)(xl−1)‖1
2CK

u(xl−1)2
×

{[

|u′(xl−1)|+ 2CK

(

‖c(xl−1)‖1 + ‖ĉ(xl−1)‖1
)](

‖c(xl−1)‖1 + ‖ĉ(xl−1)‖1
)

+

|u′(xl−1)|
(

‖c(xl−1)‖1 + ‖ĉ(xl−1)‖1
)

+ 2 ‖I(xl−1)‖1 +

2CK

(

‖c(xl−1)‖21 + ‖ĉ(xl−1)‖21
)} ∆x2

2
+R(x,∆x)

and

‖(uc)(x)− (uĉ)(x)‖1 ≤ (2.43)

‖(uc)(xl−1)− (uĉ)(xl−1)‖1 (1 + C∆x) +R(x,∆x) ,

for any x ∈ [xl−1, xl] , where

C =
2CK

infx∈X u(x)

(

‖c‖+ ‖ĉ‖
)

+

CK

(infx∈X u(x))2

{[

‖u′‖∞ + 2CK

(

‖c‖+ ‖ĉ‖
)](

‖c‖+ ‖ĉ‖
)

+

‖u′‖∞
(

‖c‖+ ‖ĉ‖
)

+ 2 ‖I‖+ 2CK

(

‖c‖2 + ‖ĉ‖2
)}

and ‖.‖∞ denotes the sup-norm of bounded functions on X .

Step 6. According to (2.40), (2.43) and assumption (2.10), one obtains (cf. (2.3))

‖(uc)(xl)− (uĉ)(xl)‖1 ≤ (1 + C∆x)l ‖(uc)(x0)− (uĉ)(x0)‖1+
[

1 + (1 + C∆x) + . . .+ (1 + C∆x)l−1
]

O(∆x3)

=
(1 + C∆x)l − 1

(1 + C∆x)− 1
O(∆x3) ≤ (1 + C∆x)L

C
O(∆x2) = O(∆x2)

and

‖(uc)(x)− (uĉ)(x)‖1 = O(∆x2) . (2.44)

Finally, (2.15) is a consequence of (2.9), (2.11) and (2.44).

3 Examples

In this section we provide examples, where the second order convergence (2.15) of Theorem 2.1

does not hold. More precisely, the following properties are obtained.

� In Example 3.4 (Section 3.1) there is u = 0 and

lim inf
∆x→0

‖c∞ − ĉ∞‖
∆x

> 0 . (3.1)

Thus, assumption (2.11) of Theorem 2.1 is essential.

10



� In Example 3.5 (Section 3.2) there is ∆t > 0 and u = 1 , but

lim inf
∆x→0

‖c∆t
∞ − ĉ∆t

∞ ‖
∆x

> 0 , (3.2)

where c∆t
∞ and ĉ∆t

∞ are steady state solutions of splitted versions of equations (1.1) and

(2.5), respectively. This is consistent with the observation for u = 0 , since the splitting

step with coagulation has no transport.

� If ∆t > 0 and u is not constant, then even a weaker distance defined by cell averages

(cf. (2.23), (2.28)) does not provide second order convergence, i.e.,

‖Hc∆t
∞ −Hĉ∆t

∞ ‖ ∼ ∆x . (3.3)

This will be illustrated by a numerical experiment in Section 3.3.

We consider a constant coagulation kernel K and the functionals

m0(t, x) =

∫

Y

c(t, x, y) dy , m̂0(t, x) =

∫

Y

ĉ(t, x, y) dy , (3.4)

which represent the number density. Equation (1.1) implies

∂

∂t
m0(t, x) +

∂

∂x
(u(x)m0(t, x)) = I0(x)−

K

2
m0(t, x)

2 . (3.5)

We also consider a constant function p (cf. (2.7)). In this case, equation (2.5) implies

∂

∂t
m̂0(t, x) +

∂

∂x
(u(x) m̂0(t, x)) = I0(x)−

K

2
m̂0(t, x) (Hm̂0)(t, x) , (3.6)

where

I0(x) =

∫

Y

I(x, y) dy (3.7)

and H is defined in (2.23). The following remarks will be used later in the construction of the

examples mentioned above.

Remark 3.1 Assume that u and I0 do not depend on x . If u > 0 and K > 0 , then the

stationary version of equation (3.5),

u
d

dx
m0,∞(x) = I0 −

K

2
m0(x)

2 ,

has the solution

m0,∞(x) =

√

2I0
K

tanh

(

√

K I0
2

x

u

)

, (3.8)

11



with boundary conditionm0,∞(0) = 0 .Note tanh x = (ex−e−x)/(ex+e−x) ∼ x as x → 0 .
If K → 0 , then the steady state (3.8) takes the form

m0,∞(x) = I0
x

u
, (3.9)

with the same boundary condition. If u → 0 , then one obtains

m0,∞(x) =

√

2I0
K

. (3.10)

Remark 3.2 The equation

d

dt
g(t) = a(t) g(t) + b(t) , g(0) = g0 ,

has the solution

g(t) = exp

(
∫ t

0

a(s) ds

)[
∫ t

0

exp

(

−
∫ s

0

a(z) dz

)

b(s) ds+ g0

]

.

Remark 3.3 Consider a Markov process ξx(t) with the semigroup

P (t)f(x) = Ef(ξx(t)) ,

for any bounded measurable function f . Let A be the corresponding generator. The adjoint

operators are denoted by P (t)∗ and A∗ , respectively. Then the equation

d

dt
g(t) = Ag(t) + γ(t) , g(0) = g0 ,

has the solution

g(t) = P (t)g0 +

∫ t

0

P (t− s) γ(s) ds , (3.11)

while the equation

d

dt
g(t) = A∗g(t) + γ(t) , g(0) = g0 ,

has the solution

g(t) = P (t)∗g0 +

∫ t

0

P (t− s)∗ γ(s) ds .

Note that d
dt
P (t)∗ = A∗P (t)∗ and d

dt
P (t) = AP (t) are abstract forms of Kolmogorov’s

forward and backward equation.
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3.1 Zero velocity

In preparation for Example 3.4 we consider the general case u = 0 . Equation (3.5) takes the

form

∂

∂t
m0(t, x) = I0(x)−

K

2
m0(t, x)

2
(3.12)

and has the explicit solution (cf. (3.8))

m0(t, x) =

√

2I0(x)

K
tanh

(
√

K I0(x)

2
t

)

, (3.13)

with initial condition m0(0, x) = 0 . The boundary value m0(t, 0) depends on I0 . Since

lim
t→0

m0(t, 0) =

√

2I0(0)

K
,

there is a discontinuity at t = 0 and x = 0 , when I0(0) > 0 . The stationary solution of

equation (3.12) is

m0,∞(x) =

√

2I0(x)

K
, (3.14)

which generalizes (3.10).

Equation (3.6) takes the form

∂

∂t
m̂0(t, x) = I0(x)−

K

2
m̂0(t, x) (Hm̂0)(t, x) , (3.15)

which implies (cf. (2.6), (2.23))

∂

∂t
(Hm̂0)(t, x) = (HI0)(x)−

K

2
[(Hm̂0)(t, x)]

2

so that (cf. (3.13))

(Hm̂0)(t, x) =

√

2 (HI0)(x)

K
tanh

(
√

K (HI0)(x)

2
t

)

,

with initial condition (Hm̂0)(0, x) = 0 . According to Remark 3.2, one obtains the solution of

(3.15) in the form

m̂0(t, x) = I0(x)

∫ t

0

exp

(

−K

2

∫ t

s

(Hm̂0)(z, x) dz

)

ds .

It follows from

∫

tanh(α s) ds =
1

α
log cosh(α s) + C

13



that

∫ t

s

(Hm̂0)(z, x) dz =

2

K

[

log cosh

(
√

K (HI0)(x)

2
t

)

− log cosh

(
√

K (HI0)(x)

2
s

)]

and

m̂0(t, x) =

I0(x) cosh

(
√

K (HI0)(x)

2
t

)−1
∫ t

0

cosh

(
√

K (HI0)(x)

2
s

)

ds

= I0(x)

√

2

K (HI0)(x)
tanh

(
√

K (HI0)(x)

2
t

)

, (3.16)

with initial condition m̂0(0, x) = 0 . The value at the x = 0 boundary satisfies

lim
t→0

m̂0(t, 0) = I0(0)

√

2

K (HI0)(0)
.

The stationary solution of equation (3.15) is

m̂0,∞(x) =

√

2

K

I0(x)
√

(HI0)(x)
. (3.17)

Example 3.4 Let K = 2 and

I0(x) = 1 + 2b x , x ∈ [0, 1] , b ≥ 0 .

Then (cf. (3.13))

m0(t,∆x) =
√
1 + 2b∆x tanh

(√
1 + 2b∆x t

)

(3.18)

and (cf. (2.6), (2.23))

(HI0)(x) = 1 + b∆x , x ∈ [0,∆x] ,

so that (cf. (3.16))

m̂0(t,∆x) =
1 + 2b∆x√
1 + b∆x

tanh
(√

1 + b∆x t
)

. (3.19)

Since (tanh x)′ = 1− (tanh x)2 , one obtains

∂

∂x
tanh

(√
1 + 2b x t

)

=

[

1−
(

tanh
(√

1 + 2b x t
))2

]

b t√
1 + 2b x

14



so that

tanh
(√

1 + 2b∆x t
)

= tanh t +
[

1− (tanh t)2
]

b t∆x+O(∆x2) . (3.20)

It follows from (3.18), (3.20) and

√
1 + 2b∆x = 1 + b∆x+O(∆x2)

that

m0(t,∆x) = tanh t+
([

1− (tanh t)2
]

b t+ b tanh t
)

∆x+O(∆x2) . (3.21)

It follows from (3.19), (3.20) (with 2b replaced by b) and

1√
1 + b∆x

= 1− b

2
∆x+O(∆x2)

that

m̂0(t,∆x) = tanh t+ (3.22)
(

2b tanh t− b

2
tanh t +

[

1− (tanh t)2
] b t

2

)

∆x+O(∆x2) .

According to (3.21) and (3.22), one obtains

m0(t,∆x)− m̂0(t,∆x) =
(

− tanh t+
[

1− (tanh t)2
]

t
) b

2
∆x+O(∆x2)

so that

lim inf
∆x→0

‖m0(t)− m̂0(t)‖∞
∆x

≥ lim inf
∆x→0

|m0(t,∆x)− m̂0(t,∆x)|
∆x

> 0 , (3.23)

for all b > 0 and t > 0 . Recall that ‖.‖∞ denotes the sup-norm. Since (cf. (2.9))

‖m0(t)− m̂0(t)‖∞ ≤ ‖c(t)− ĉ(t)‖ , (3.24)

(3.23) implies

lim inf
∆x→0

‖c(t)− ĉ(t)‖
∆x

> 0 .

Analogous estimates hold for the steady states (3.14) and (3.17) so that (3.1) follows.

3.2 Time splitting

Time splitting schemes are based on a separation of transport and coagulation. Let TI(t) denote

the solution operator of equation (1.1) with K = 0 . Let K(t, .) and K̂(t, .) denote the solution

operators of equations (1.1) and (2.5), with u = 0 and I = 0 . In analogy, we introduce the

operators T (t) , KI(t, .) and K̂I(t, .) , when inception is attached to coagulation. Let

tj = j∆t , j = 0, 1, . . . .

15



Godunov splitting schemes are of the form

c∆t(tj) = K(∆t, TI(∆t) c(tj−1)) , ĉ∆t(tj) = K̂(∆t, TI(∆t) ĉ(tj−1)) , (3.25)

while Strang splitting schemes are of the form

c∆t(tj) = TI(∆t/2)K(∆t, TI(∆t/2) c∆t(tj−1)) (3.26)

ĉ∆t(tj) = TI(∆t/2) K̂(∆t, TI(∆t/2) ĉ∆t(tj−1)) ,

where j ≥ 1 and

c∆t(0) = ĉ∆t(0) = c(0) . (3.27)

Since K and p are assumed to be constant, the functionals (3.4) of the solutions c∆t and ĉ∆t

of the splitted equations (1.1) and (2.5) are obtained as solutions of the splitted equations (3.5)

and (3.6). We denote the corresponding solution operators also by K, K̂ and TI . We now derive

simple representations for these operators.

Solution operator for coagulation

Consider the pure coagulation step, i.e., u = 0 and I = 0 . Equation (3.5) takes the form

∂

∂t
m0(t, x) = −K

2
m0(t, x)

2

and has the solution

m0(t, x) =
m0(0, x)

1 + K
2
m0(0, x) t

.

Thus, the solution operator for the coagulation step is

K(t, f)(x) =
f(x)

1 + K
2
f(x) t

(3.28)

Equation (3.6) takes the form

∂

∂t
m̂0(t, x) = −K

2
m̂0(t, x) (Hm̂0)(t, x) , (3.29)

which implies

∂

∂t
(Hm̂0)(t, x) = −K

2
[(Hm̂0)(t, x)]

2

so that

(Hm̂0)(t, x) =
(Hm̂0)(0, x)

1 + K
2
(Hm̂0)(0, x) t

.
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According to Remark 3.2, one obtains the solution of (3.29) in the form

m̂0(t, x) = m̂0(0, x) exp

(

−K

2

∫ t

0

(Hm̂0)(s, x) ds

)

= m̂0(0, x) exp

(

−K

2

∫ t

0

(Hm̂0)(0, x)

1 + K
2
(Hm̂0)(0, x) s

ds

)

= m̂0(0, x) exp

(

− log

(

1 +
K

2
(Hm̂0)(0, x) t

))

=
m̂0(0, x)

1 + K
2
(Hm̂0)(0, x) t

.

Thus, the solution operator for the coagulation step is

K̂(t, f)(x) =
f(x)

1 + K
2
(Hf)(x) t

. (3.30)

Solution operator for transport

Consider the transport step with inception, i.e., K = 0 . The first part of the derivation is

performed for a multi-dimensional position space. Equation (3.5) takes the form

∂

∂t
m0(t, x) = A∗

xm0(t, x) + I0(x) , (3.31)

where

(Af)(x) = (u(x),∇x)f(x) (3.32)

is the generator of the independent particle evolution and

(A∗ϕ)(x) = −(∇x, u(x)ϕ(x))

is the adjoint operator. The corresponding semigroup is

P (t) f(x) = f(Xt(x)) , (3.33)

where

d

dt
Xt(x) = u(Xt(x)) , X0(x) = x . (3.34)

Assuming that Xt is invertible, one obtains

∫

ϕ(x) (P (t)f(x)) dx =

∫

ϕ(x) f(Xt(x)) dx

=

∫

ϕ(X−1
t (y)) f(y) | det (X−1

t )′(y)| dy

so that

P (t)∗ϕ(x) = ϕ(X−1
t (x)) | det (X−1

t )′(x)| . (3.35)
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According to Remark 3.3, it follows from (3.31) and (3.35) that

TI(t)f(x) = (3.36)

f(X−1
t (x)) | det (X−1

t )′(x)|+
∫ t

0

I0(X
−1
s (x)) | det (X−1

s )′(x)| ds .

If

u(x) = αx+ β (3.37)

then (3.34) takes the form

d

dt
Xt(x) = αXt(x) + β .

According to Remark 3.2, one obtains

Xt(x) = exp(α t)

[

β

∫ t

0

exp(−α s) ds+ x

]

=

exp(α t)

[

β

α

[

1− exp(−α t)
]

+ x

]

=
β

α

[

exp(α t)− 1
]

+ x exp(α t)

so that

X−1
t (x) = x exp(−α t)− β

α

[

1− exp(−α t)
]

(3.38)

and

(X−1
t )′(x) = exp(−α t) .

Note that

X−1
t (x) > 0 ⇔ x > x∗(t) ⇔ t∗(x) > t , (3.39)

where

x∗(t) =
β

α

[

exp(α t)− 1
]

and

t∗(x) =
1

α
log

[

α

β
x+ 1

]

. (3.40)

Thus, (3.36) implies

TI(t)f(x) = (3.41)

f(X−1
t (x)) exp(−α t) +

∫ min(t,t∗(x))

0

I0(X
−1
s (x)) exp(−α s) ds .

If α = 0 , then one obtains X−1
t (x) = x − β t and t∗(x) = x

β
(cf. (3.38), (3.40)) so that

(3.41) takes the form

TI(t)f(x) = f(x− β t) +

∫ min(t, xβ )

0

I0(x− β s) ds . (3.42)
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Example 3.5 Consider the case u = 1 (cf. (3.37)). Let K = 2 and I0 = 1 . Then (3.42) takes

the form

TI(t)f(x) = f(x− t) + min(t, x) .

Strang splitting (3.26) gives

m∆t
0 (tj, x) = f1(x−∆t/2) + min(∆t/2, x) (3.43)

m̂∆t
0 (tj, x) = f̂1(x−∆t/2) + min(∆t/2, x) ,

where (cf. (3.28), (3.30))

f1(x) =
f0(x)

1 + f0(x)∆t
, f̂1(x) =

f̂0(x)

1 + (Hf̂0)(x)∆t
,

f0(x) = m∆t
0 (tj−1, x−∆t/2) + min(∆t/2, x) ,

f̂0(x) = m̂∆t
0 (tj−1, x−∆t/2) + min(∆t/2, x) . (3.44)

Note that all functions are taken to vanish for x < 0 . For x ∈ [0,∆t/2) , one obtains from

(3.43)

m∆t
0 (tj, x) = m̂∆t

0 (tj , x) = x (3.45)

and from (3.44)

f0(x) = f̂0(x) = x . (3.46)

For x ∈ [∆t/2,∆t) , one obtains from (3.43) and (3.44)

m∆t
0 (tj , x) =

f0(x−∆t/2)

1 + f0(x−∆t/2)∆t
+

∆t

2
(3.47)

and

m̂∆t
0 (tj , x) =

f̂0(x−∆t/2)

1 + (Hf̂0)(x−∆t/2)∆t
+

∆t

2
. (3.48)

If (cf. (2.3))

x−∆t/2 ∈ [xl−1, xl) ⊂ [0,∆t/2) , for some l = 1, . . . , L , (3.49)

then is follows from (3.46) that (cf. (2.6), (2.23))

(Hf̂0)(x−∆t/2) =
xl−1 + xl

2
. (3.50)

Consider x = xl−1 + ∆t/2 such that (3.49) is satisfied and xl−1 > ∆t/4 . This choice is

possible for sufficiently small ∆x . Then (3.46)–(3.48) and (3.50) imply

m∆t
0 (tj , x)− m̂∆t

0 (tj , x) =

∆t f0(x−∆t/2)
[

(Hf̂0)(x−∆t/2)− f0(x−∆t/2)
]

[

1 + f0(x−∆t/2)∆t
][

1 + (Hf̂0)(x−∆t/2)∆t
]

=
∆t xl−1

[

xl−1+xl

2
− xl−1

]

[

1 + xl−1∆t
][

1 + (xl−1 + xl)∆t/2
] ≥ ∆t2/4 ∆x/2

(

1 + ∆t2/2
)2
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so that

‖m∆t
0 (tj)− m̂∆t

0 (tj)‖∞ ≥ C(∆t)∆x . (3.51)

According to (3.45), (3.47) and (3.48), the steady state in the region x ∈ [0,∆t − ∆x] is

reached after one time step. Thus, (3.51) implies

lim inf
∆x→0

‖m∆t
0,∞ − m̂∆t

0,∞‖∞
∆x

> 0

so that (3.2) follows (cf. (3.24)).

3.3 Cell averages

Here we consider the case ∆t > 0 . According to Example 3.5, the second order convergence

(2.15) of Theorem 2.1 does not hold in general. However, the norm (2.9) is rather strong with

respect to x . It is of interest to understand if second order convergence holds, when a weaker

distance is used. Such a distance is obtained by using cell averages, since (cf. (2.23), (2.28))

‖Hc∆t
∞ −Hĉ∆t

∞ ‖ ≤ ‖c∆t
∞ − ĉ∆t

∞ ‖ . (3.52)

Let K = 2 and I0 = 1 . Numerical estimates of the quantities

‖Hm∆t
0,∞ −Hm̂∆t

0,∞‖∞ (3.53)

are provided in Figure 1. These results indicate that there is indeed second order convergence,

if u is constant (as in Example 3.5), but in general there is only first order convergence. This

implies (3.3), since (cf. (2.9))

‖Hm∆t
0,∞ −Hm̂∆t

0,∞‖∞ ≤ ‖Hc∆t
∞ −Hĉ∆t

∞ ‖ .
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∆x

101

102

103

104

105

10−4 10−3 10−2

u(x)=1+10x
u(x)=1+3x

u(x)=1+x
u(x)=1

Figure 1: Error (3.53) for the cell averages of the zeroth moments (3.4). Dashed lines indicate

first and second order.
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4 Comments

Theorem 2.1 provides second order convergence with respect to cell size. The assumption

of non-vanishing advection cannot be skipped, as Example 3.4 shows. The assumption of a

bounded coagulation rate is essential for the present proof technique. The result might remain

true at least for sublinear (non-gelling) coagulation kernels. The second order convergence

is quite surprising, when taking into account that the spatial smoothing function (2.6) is not

even continuous and the norm (2.9) is rather strong with respect to the position. Originally, we

expected to get second order only with respect to a weaker distance measuring the difference of

cell averages (cf. (3.52)). The result holds for the limiting equations with no time splitting error.

For practical purposes, the time step should be sufficiently small in order to observe second

order convergence with respect to cell size. This assumption is quite reasonable, since splitting

should not allow particles to travel too far without having a chance to coagulate.

The main purpose of this paper was to understand the approximation error with respect to

cell size. In order to make the derivations more transparent, we considered a relatively sim-

ple model. Some generalizations are straightforward. In particular, the result of Theorem 2.1

holds for more general type spaces, e.g., Y = (0,∞)k , or Y = {1, 2, . . .}k , or combina-

tions of discrete and continuous components. This is important to cover various applications (cf.

[PW12]), since the main motivation for developing stochastic particle methods is their ability to

treat high dimensional type spaces efficiently. Moreover, the result holds when the right-hand

side of equation (1.1) is extended by linear terms, e.g., those representing surface growth in

certain soot models (cf. [PWK11]). It also holds for the stochastic weighted algorithm introduced

in [PW12], since that algorithm has the same limiting equation as one of the direct simulation

algorithms considered here (cf. (2.8)). The proof of Theorem 2.1 works for non-equidistant grids,

when ∆x is defined as the maximum grid size. Finally, Theorem 2.1 is expected to hold in the

transient case as well, but the present proof technique is restricted to the steady state equations.

Other generalizations of the model are more challenging. In particular, it would be of consid-

erable interest to cover a multi-dimensional position space and to include more general transport

mechanisms. A problem, which we hope to address in the near future, is to understand the joint

behaviour of cell size and time step error. This would allow us to give quantitative recommenda-

tions about the choice of these parameters.
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