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Abstract

In this paper we propose a time discretization of a system of two parabolic equations de-
scribing diffusion-driven atom rearrangement in crystalline matter. The equations express
the balances of microforces and microenergy; the two phase fields are the order parame-
ter and the chemical potential. The initial and boundary-value problem for the evolutionary
system is known to be well posed. Convergence of the discrete scheme to the solution of
the continuous problem is proved by a careful development of uniform estimates, by weak
compactness and a suitable treatment of nonlinearities. Moreover, for the difference of dis-
crete and continuous solutions we prove an error estimate of order one with respect to the
time step.

1 Introduction

This paper deals with a time discretization of a PDE system arising from a mechanical model
for phase segregation by atom rearrangement on a lattice. The model was proposed by one of
us in [29]; the resulting system has been analyzed in a recent and intensive research work by
four of the present authors (see, in particular, [16] and [17], both for well-posedness results and
for a detailed presentation of the model).

The initial and boundary value problem we consider consists in looking for two fields, the chem-
ical potential µ > 0 and the order parameter ρ ∈ (0, 1), solving

(1 + 2g(ρ))∂tµ+ µ ∂tg(ρ)−∆µ = 0 in Ω× (0, T ), (1.1)

∂tρ−∆ρ+ f ′(ρ) = µg′(ρ) in Ω× (0, T ), (1.2)

∂νµ = ∂νρ = 0 on Γ× (0, T ), (1.3)

µ|t=0 = µ0 and ρ|t=0 = ρ0 in Ω; (1.4)

here Ω denotes a bounded domain of R3 with conveniently smooth boundary Γ, T > 0 stands
for some final time, and ∂ν denotes differentiation in the direction of the outward normal ν.

Problem (1.1)–(1.4) is parameterized by two nonlinear scalar-valued functions, g and f , which
enter into the definition of the system’s free energy :

ψ = ψ̂(ρ,∇ρ, µ) = −
(

1

2
+ g(ρ)

)
µ+ f(ρ) +

1

2
|∇ρ|2. (1.5)

We point out that in (1.1)–(1.5) all physical constants have been set equal to 1. We also note that
the last two terms in (1.5) favor phase segregation, the former because it introduces local energy
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minima, the latter because it penalizes spatial changes of the order parameter. For g, one can
take any smooth function, provided it is nonnegative in the physically admissible domain:

g(ρ) ≥ 0 for all ρ ∈ (0, 1); (1.6)

accordingly, the coefficient 1/2 of µ in (1.5) should be regarded as a prescribed material bound.
As to the possibly multi-well potential f , we take it to be the sum of two functions:

f(ρ) = f1(ρ) + f2(ρ);

the one, f1, is convex over (0, 1), and such that its derivative f ′1 (and possibly also f1) is
singular at the endpoints 0 and 1 (cf. (2.3)); the other is required to be smooth over the entire
interval [0, 1], but not to have any convexity property, so that in equation (1.2) f ′2 may serve as
a non-monotone perturbation of the increasing function f ′1.

As to the parameter functions, in [16] the choice made for g was:

g(ρ) = ρ, (1.7)

while the assumptions on f were compatible with choosing a double-well potential:

f(ρ) = α1 {ρ ln(ρ) + (1− ρ) ln(1− ρ)}+ α2 ρ (1− ρ) + α3ρ, (1.8)

for some non-negative constants α1, α2, α3. Note that, if α3 is taken null, then, according to
whether or not 2α1 ≥ α2, f turns out to be convex in the whole of [0, 1] or it exhibits two wells,
with a local maximum at ρ = 1/2; moreover, for α3 > 0, the combined function:

−g(ρ)µ+ f(ρ) (a part of ψ)

shows one global minimum in all cases, and it depends on the sign of (α3−µ) which minimum
actually occurs. On the other hand, the framework of paper [17] allows for much more general
choices of g and f , as well as for nonlinear diffusion of µ. Existence and uniqueness results
were proved in both [16] and [17], with different approaches. Here, we take inspiration from
arguments developed either in the one or in the other of those papers.

We introduce a time discretization of system (1.1)–(1.4) which is implicit with respect to the
principal terms and tries to handle very carefully the nonlinearities. Namely, we address the
recursive sequence of the elliptic problems:

(1 + 2γn) δhµn + µn+1 δhγn −∆µn+1 = 0 in Ω, (1.9)

δhρn −∆ρn+1 + f ′(ρn+1) = µng
′(ρn) in Ω, (1.10)

∂νµn+1 = ∂νρn+1 = 0 on Γ, (1.11)

for n = 0, 1, . . . , N , where h = T/N is the time step, γn := g(ρn) and, for any (N+1)-tuple
z0, z1, . . . , zN , we let

δhzn := (zn+1 − zn)/h for n = 0, . . . , N − 1.

After showing the existence of a discrete solution at any step, we carry out a number of uniform
estimates on the time-discrete solution which allow us to prove convergence to the unique so-
lution (µ, ρ) of the continuous problem (1.1)–(1.4), as h tends to 0 (or, equivalently, N goes to
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+∞). Then, we estimate certain norms of the difference between the piecewise-linear-in-time
interpolants of the discrete solutions and the continuous solution: more precisely, the first error
estimate we prove is of order h1/2; the second, which holds under stronger regularity assump-
tions on the initial data, is of order h.

We regard our results as a cornerstone in the construction of a time-and-space discretization
of problem (1.1)–(1.4). With reference to such a complete discretization of Cahn-Hilliard and
viscous Cahn-Hilliard systems, we quote papers [1, 2, 3, 4, 5, 6, 7, 8, 22, 21, 23]. Some recent
efforts can be found in the literature with the aim of analyzing other classes of phase transition
problems, either to show existence via time discretization [9, 14, 15, 19, 20, 27, 30, 35, 36] or to
prove numerical results such as special convergence properties, stability or error estimates [11,
12, 13, 18, 25, 28, 31, 33, 34] (cf. also [26] for a recent review on phase-field models). We dare
say that our contribution goes deeply into the structure of the mathematical problem, because,
as is not the case for many other similar investigations, we succeed in showing a linear order of
convergence.

Our paper is organized as follows. In the next section, we list and discuss our assumptions,
formulate the continuous and discrete problems precisely, and state our main results. Section 3
is devoted to proving that there is a discrete solution. The convergence result is proved in the
long and articulate Section 4. Finally, the last two Sections 5 and 6 contain detailed proofs of
the two error estimates.

2 Main results

In this section, we describe the mathematical problem under investigation, introduce the time
discretization scheme, make our assumptions precise, and state our results.

First of all, we assume Ω to be a bounded connected open set in R3 with smooth boundary Γ.
For convenience, we set

V := H1(Ω), H := L2(Ω), and W := {v ∈ H2(Ω) : ∂νv = 0, on Γ}, (2.1)

and we endow these spaces with their standard norms, for which we use a self-explanatory
notation like ‖ · ‖V . The notation ‖ · ‖p (1 ≤ p ≤ +∞) stands for the standard Lp-norm
in Lp(Ω); for short, we sometimes do not distinguish between a space (or its norm) and a
power thereof.

As to the parameter functions f and g, we assume that

f = f1 + f2, where (2.2)

f1 : (0, 1)→ [0,+∞) is a convex C2 function satisfying

lim
r↘0

f ′1(r) = −∞ , and lim
r↗1

f ′1(r) = +∞, (2.3)

f2 : [0, 1]→ R is of class C2; (2.4)

g : [0, 1]→ R is of class C2 and nonnegative. (2.5)

3



For the initial data, we require that

µ0 ∈ V ∩ L∞(Ω) and µ0 ≥ 0 a.e. in Ω; (2.6)

ρ0 ∈ W ⊂ C0(Ω) and inf ρ0 > 0, sup ρ0 < 1. (2.7)

We stress that conditions (2.7) actually imply that ρ0 is 1/2-Hölder continuous: indeed, as Ω is a
three-dimensional domain, W is continuosly embedded in C0,1/2(Ω). As a consequence, also
f(ρ0) and f ′(ρ0) are 1/2-Hölder continuous, since f and f ′ are smooth in (0, 1). On the other
hand, we point out that in the sequel we will mostly exploit the compactness of the embedding
W ⊂ C0(Ω); Hölder continuity will play no role.

As recalled in the Introduction, in papers [16] and [17] two versions of problem (1.1)–(1.4) were
solved over an arbitrary time interval [0, T ] in a rather strong sense, because the solution pairs
(µ, ρ) were required to satisfy

µ ∈ H1(0, T ;H) ∩ L2(0, T ;W ), (2.8)

ρ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (2.9)

µ ≥ 0 a.e. in Q, (2.10)

0 < ρ < 1 a.e. in Q and f ′(ρ) ∈ L∞(0, T ;H). (2.11)

Note that the boundary conditions (1.3) follow from (2.8)–(2.9), due to the definition of W
in (2.1). Accordingly, the solutions to the problems of type (1.1)–(1.4) studied in [16] and [17]
were pairs (µ, ρ) satisfying, in addition to (2.8)–(2.11), the system(

1 + 2g(ρ)
)
∂tµ+ µ ∂tg(ρ)−∆µ = 0 a.e. in Q, (2.12)

∂tρ−∆ρ+ f ′(ρ) = µg′(ρ) a.e. in Q, (2.13)

µ(0) = µ0 and ρ(0) = ρ0 a.e. in Ω. (2.14)

Some of the results proved in the quoted papers are summarized in the following theorem.

Theorem 2.1. Let assumptions (2.2)–(2.7) hold. Then, there exists a unique pair (µ, ρ) satis-
fying (2.8)–(2.11) and solving problem (2.12)–(2.14). Moreover, µ ∈ L∞(Q), and there exist
ρ∗, ρ

∗ ∈ (0, 1) such that ρ∗ ≤ ρ ≤ ρ∗ a.e. in Q.

The main aim of the present paper is to show that, given the time-discretization scheme intro-
duced here below, the discrete solution converges to the solution (µ, ρ) as the time step h tends
to zero.

Notation 2.2. Assume that N is a positive integer, and let Z be any normed space. We define
δh : ZN+1 → ZN as follows:

for z = (z0, z1, . . . , zN) ∈ ZN+1 and w = (w0, . . . , wN−1) ∈ ZN ,

δhzn = w means that wn=
zn+1 − zn

h
for n = 0, . . . , N − 1. (2.15)

We can also iterate the discretization procedure, and define, e.g.,

δ2
hzn :=

δhzn+1 − δhzn
h

=
zn+2 − 2zn+1 + zn

h2
for n = 0, . . . , N − 2. (2.16)

4



Next, by setting h := T/N (without stressing the dependence of h on N ) and In :=
((n − 1)h, nh) for n = 1, . . . , N , we introduce the interpolation maps from ZN+1 into ei-
ther L∞(0, T ;Z) or W 1,∞(0, T ;Z) as follows: for z = (z0, z1, . . . , zN) ∈ ZN+1, we set

zh, zh ∈ L∞(0, T ;Z) and ẑh ∈ W 1,∞(0, T ;Z) , (2.17)

zh(t) = zn and zh(t) = zn−1 for a.a. t ∈ In, n = 1, . . . , N, (2.18)

ẑh(0) = z0 and ∂tẑh(t) = δhzn−1 for a.a. t ∈ In, n = 1, . . . , N. (2.19)

These maps yield the backward/forward piecewise-constant and piecewise-linear interpolants
of the discrete vectors. We obviously have:

‖zh‖L∞(0,T ;Z) = max
n=1,...,N

‖zn‖Z , ‖zh‖L∞(0,T ;Z) = max
n=0,...,N−1

‖zn‖Z , (2.20)

‖zh‖2
L2(0,T ;Z) = h

N∑
n=1

‖zn‖2
Z , ‖zh‖2

L2(0,T ;Z) = h
N−1∑
n=0

‖zn‖2
Z . (2.21)

Moreover, as ẑh(t) is a convex combination of zn−1 and zn for t ∈ In, we also have

‖ẑh‖L∞(0,T ;Z) = max
n=1,...,N

max{‖zn−1‖Z , ‖zn‖Z} = max{‖z0‖Z , ‖zh‖L∞(0,T ;Z)}, (2.22)

‖ẑh‖2
L2(0,T ;Z) ≤ h

N∑
n=1

(
‖zn−1‖2

Z + ‖zn‖2
Z

)
≤ h‖z0‖2

Z + 2‖zh‖2
L2(0,T ;Z) . (2.23)

Finally, by a direct computation, it is straightforward to prove that

‖zh − ẑh‖L∞(0,T ;Z) = max
n=0,...,N−1

‖zn+1 − zn‖Z = h ‖∂tẑh‖L∞(0,T ;Z), (2.24)

‖zh − ẑh‖2
L2(0,T ;Z) =

h

3

N−1∑
n=0

‖zn+1 − zn‖2
Z =

h2

3
‖∂tẑh‖2

L2(0,T ;Z), (2.25)

and that the same identities hold for the difference zh − ẑh.

At this point, we can write the discrete scheme presented in the Introduction in a precise form.
For any positive integerN , we look for two vectors (µn)Nn=0 and (ρn)Nn=0 satisfying the following
conditions:

i) the first components µ0 and ρ0 coincide with the initial data;

ii) for n = 0, . . . , N − 1, we have that

µn+1 , ρn+1 ∈ W, µn+1 ≥ 0 and 0 < ρn+1 < 1 in Ω, f ′(ρn+1) ∈ H; (2.26)

iii) if (γn)Nn=0 is the vector whose components are γn := g(ρn), there hold

(1 + 2γn) δhµn + µn+1 δhγn −∆µn+1 = 0, (2.27)

δhρn −∆ρn+1 + f ′(ρn+1) = µng
′(ρn), (2.28)

for n = 0, . . . , N − 1.
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Also in this case, the homogenous Neumann boundary conditions are implicit in the regularity
requirements (see (2.26) and (2.1)).

Clearly, the “true” problem consists in finding (µn+1, ρn+1) once (ρn, µn) is given. Here is our
result in this direction.

Theorem 2.3. Assume (2.2)–(2.7). Then, there exists h0 > 0 such that, for h < h0 and
n = 0, . . . , N − 1, problem (2.27)–(2.28) has a unique solution (µn+1, ρn+1) satisfing (2.26).

Our next results concern firstly convergence of interpolants for vectors (ρn) and (µn) to the
solution (µ, ρ) to problem (2.12)–(2.14), then error estimates. We point out that, for simplicity,
the convergence theorem here below is not stated in a precise form: the topological setting will
be specified later, by means of relations (4.34)-(4.38).

Theorem 2.4. Assume (2.2)–(2.7). Then, in accord with Notation 2.2, the sequences of inter-
polants for the discrete solutions given by Theorem 2.3 converge to the solution (µ, ρ) given by
Theorem 2.1 as h tends to 0, in a suitable topology.

Theorem 2.5. In addition to (2.2)–(2.7), assume that

ρ0 ∈ H3(Ω). (2.29)

Then, for sufficiently small h > 0, the following error estimate holds:

‖ρ̂h − ρ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖µ̂h − µ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c h1/2, (2.30)

where c depends only on the structural assumptions and the data.

Theorem 2.6. In addition to (2.2)–(2.7), assume (2.29) and

µ0 ∈ W. (2.31)

Then, for sufficiently small h > 0, the following error estimate holds:

‖ρ̂h − ρ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖µ̂h − µ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c h, (2.32)

where c depends only on the structural assumptions and the data.

Remark 2.7. It is easy to see that our assumptions (2.2)–(2.7) ensure that both f ′(ρ0) and
µ0g

′(ρ0) belong to V . It follows that (2.29) is equivalent to

−∆ρ0 + f ′(ρ0)− µ0g
′(ρ0) ∈ V. (2.33)

We also notice that the assumptions (2.29) and (2.31) ensure further regularity for the solution
(µ, ρ) to the continuous problem (see the forthcoming Remark 6.1).

We prove Theorem 2.3 in Section 3 and Theorem 2.4 in Section 4; the last two sections are
devoted to proving, respectively, Theorems 2.5 and 2.6.
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Throughout the paper, we account for the well-known embeddings V ⊂ Lq(Ω) (1 ≤ q ≤ 6)
and W ⊂ C0(Ω), and for the related Sobolev inequalities:

‖v‖q ≤ C‖v‖V and ‖v‖∞ ≤ C‖v‖W , (2.34)

for v ∈ V and v ∈ W , respectively, where C depends on Ω only, since sharpness is not
needed. We remark that these embeddings are compact. In particular, the following compact-
ness inequality holds:

‖v‖4 ≤ σ‖∇v‖H + Cσ‖v‖H , for every v ∈ V and σ > 0; (2.35)

in (2.35), Cσ is a constant that depends only on Ω and σ. Furthermore, we make repeated use
of Hölder’s inequality, of the following elementary identity:

(a− b)a =
1

2
a2 − 1

2
b2 +

1

2
(a− b)2, for every a, b ∈ R, (2.36)

and of Young’s inequality

ab ≤ σa2 +
1

4σ
b2, for every a, b ≥ 0 and σ > 0. (2.37)

Moreover, we use the discrete Gronwall lemma in the following form (see, e.g., [24, Prop. 2.2.1]):
if (a0, . . . , aN) ∈ [0,+∞)N+1 and (b1, . . . , bN) ∈ [0,+∞)N satisfy

am ≤ a0 +
m−1∑
n=1

bnan for m = 1, . . . , N, then

am ≤ a0 exp
(m−1∑
n=1

bn

)
for m = 1, . . . , N. (2.38)

Finally, throughout the paper we use a small-case italic c for a number of different constants
that may only depend on Ω, the final time T , the shape of f , the properties of the data involved
in the statements at hand; those constants we need to refer to are always denoted by capital
letters, just like C in (2.34). Moreover, a notation like cσ signals a constant that depends also on
the parameter σ. The reader should keep in mind that the meaning of c and cσ might change
from line to line and even in the same chain of inequalities and that their values never depend
on the time step h.

3 Existence

In this section, we prove Theorem 2.3. We argue inductively with respect to n, i.e., by assuming
that a pair (µn, ρn) satisfying (2.26) with n in place of n + 1 is given, we prove that problem
(2.27)–(2.28) has a unique solution (µn+1, ρn+1) satisfying (2.26). More precisely, as is going
to be clear from the proof, we need less regularity for µn, e.g., µn ∈ V . In particular, our
assumptions on µ0 are sufficient to start. We rewrite (2.27)–(2.28) in the form(

1 + γn + γn+1

)
µn+1 − h∆µn+1 =

(
1 + 2γn

)
µn, (3.1)

ρn+1 − h∆ρn+1 + hf ′(ρn+1) = ρn + hµng
′(ρn), (3.2)
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and solve (3.2) first for ρn+1 (so that γn+1 is also known), then (3.1). In order to solve both
problems, it is expedient to replace each equation by a minimum problem, at least for h small
enough. We consider the functionals:

J1 : V → R and J2 : V → (−∞,+∞], defined by, respectively,

J1(v) :=
h

2

∫
Ω

|∇v|2 +
1

2

∫
Ω

(
1 + γn + γn+1

)
v2 −

∫
Ω

(
1 + 2γn

)
µn v and (3.3)

J2(v) :=
h

2

∫
Ω

|∇v|2 +
1

2

∫
Ω

v2 + h

∫
Ω

f̃(v)−
∫

Ω

(
ρn + hµng

′(ρn)
)
v. (3.4)

In (3.4), we have f̃ = f̃1 + f̃2, where f̃2 is any smooth extension of f2 to the whole of R and
f̃1 is the unique convex and lower semicontinuous extension of f1 that satisfies f̃(r) = +∞
if r 6∈ [0, 1]. By the way, it is understood that the corresponding integral that appears in (3.4)
is infinite if f̃(v) does not belong to L1(Ω). Therefore, both functionals are well-defined and
proper whenever µn ∈ V and ρn ∈ W (and this implies boundedness of g(ρn) and g′(ρn)).
Moreover, in view of the above remarks, J1 is continuous, and J2 lower semicontinuous, on V .

Now, we observe that equations (3.1) and (3.2), when complemented by the regularity require-
ments in (2.26) (which yield the homogeneous Neumann boundary conditions), are the strong
forms of the Euler-Lagrange variational equations for the stationary points of J1 and J2, respec-
tively. More precisely, the strong form (3.1) follows from the variational formulation thanks to the
regularity theory of elliptic equations. As far as (3.2) is concerned, the function f ′ should be
replaced – in principle, at least – by the sum ∂f̃1 + f̃ ′2, where ∂f̃1 is the subdifferential of f̃1.
However, once an L2(Ω)-estimate is obtained for the subdifferential (and standard arguments
of the theory of maximal monotone operators (see, e.g., [10]), easily yield such an estimate),
the variational Euler-Lagrange equation can be written exactly in the form (3.2), because ∂f̃1 is
single-valued due to our assumptions on f1 (see (2.3), in particular). Consequently, existence
and uniqueness of the solution (µn, ρn) follow if the functionals (3.3) and (3.4) are convex, so
that each of the correponding minimum problems has a unique solution. This is granted for the
first problem: indeed, J1 is strictly convex and coercive, because g is nonnegative. The same
holds for J2, provided that the second derivative of function r 7→ r2/2 + hf2(r) is strictly
positive on [0, 1], which is the case if h sup |f ′′2 | < 1.

It remains to prove that µn+1 ≥ 0. To this end, we multiply (3.1) by −µ−n+1, where v− =
max{−v, 0} denotes the negative part of v, and integrate over Ω. We obtain:∫

Ω

(
1 + g(ρn) + g(ρn+1)

)
|µ−n+1|2 + h

∫
Ω

|∇µ−n+1|2 = −
∫

Ω

(
1 + 2g(ρn)

)
µnµ

−
n+1 ≤ 0,

because both g and µn are nonnegative. This implies that µ−n+1 = 0, and hence that µn+1 ≥ 0.

4 Convergence

In this section, we prove Theorem 2.4. For convenience, we introduce one more vector, (ξn)Nn=0,
and recall the definition of (γn)Nn=0:

ξn := f ′1(ρn) and γn := g(ρn) for n = 0, . . . , N. (4.1)
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Later on, we also use the interpolants of these vectors according to Notation 2.2. Our argument
uses compactness and monotonicity methods.

First a priori estimate. We multiply (3.1) by µn+1 and integrate over Ω. By accounting for the
elementary identity (2.36), we obtain

1

2

∫
Ω

µ2
n+1 −

1

2

∫
Ω

µ2
n +

1

2

∫
Ω

|µn+1 − µn|2 + h

∫
Ω

|∇µn+1|2

+

∫
Ω

(
γnµ

2
n+1 + γn+1µ

2
n+1 − 2γnµnµn+1

)
= 0.

As γnµ2
n+1 + γn+1µ

2
n+1 − 2γnµnµn+1 = γn+1µ

2
n+1 − γnµ2

n + γn(µn+1 − µn)2, we derive
that ∫

Ω

(1

2
+ γn+1

)
µ2
n+1 −

∫
Ω

(1

2
+ γn

)
µ2
n +

∫
Ω

(1

2
+ γn

)
|µn+1 − µn|2

+ h

∫
Ω

|∇µn+1|2 = 0.

On summing over n = 0, . . . ,m− 1 with 1 ≤ m ≤ N , we conclude that∫
Ω

(1

2
+ γm

)
µ2
m + h2

m−1∑
n=0

∫
Ω

(1

2
+ γn

)
|δhµn|2 + h

m−1∑
n=0

∫
Ω

|∇µn+1|2

=

∫
Ω

(1

2
+ γ0

)
µ2

0 for m = 1, . . . , N.

As g is nonnegative and hence γi ≥ 0, this implies that ‖µm‖H ≤ c form = 1, . . . , N . Thus,
the above estimate also yields

max
m=1,...,N

‖µm‖2
H + h2

N−1∑
n=0

‖δhµn‖2
H + h

N∑
n=1

‖µn‖2
V ≤ c. (4.2)

In terms of the interpolants introduced in Notation 2.2, with the help of µ0 ∈ V , (2.20)–(2.21),
and (2.24)–(2.25) we have that

‖µh‖2
L∞(0,T ;H)∩L2(0,T ;V ) + ‖µ

h
‖2
L∞(0,T ;H)∩L2(0,T ;V )

+ ‖µ̂h‖2
L∞(0,T ;H)∩L2(0,T ;V ) + h‖∂tµ̂h‖2

L2(0,T ;H) ≤ c. (4.3)

Second a priori estimate. In (3.2), we move ρn to the left-hand side. Then, we multiply by
ρn+1 − ρn and integrate over Ω. We obtain∫

Ω

|ρn+1 − ρn|2 +
h

2

∫
Ω

|∇ρn+1|2 −
h

2

∫
Ω

|∇ρn|2 +
h

2

∫
Ω

|∇ρn+1 −∇ρn|2

+ h

∫
Ω

f ′(ρn+1)(ρn+1 − ρn) = h

∫
Ω

µng
′(ρn)(ρn+1 − ρn). (4.4)
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Now, we consider the last integral on the left-hand side of (4.4). We split f ′ = f ′1 + f ′2 and use
the convexity assumption of f1 and boundedness for f ′2. We get∫

Ω

f ′(ρn+1)(ρn+1 − ρn) ≥
∫

Ω

(
f1(ρn+1)− f1(ρn)

)
− c

∫
Ω

|ρn+1 − ρn|.

Since also g′ is bounded, we infer from (4.4) that∫
Ω

|ρn+1 − ρn|2 +
h

2

∫
Ω

|∇ρn+1|2 −
h

2

∫
Ω

|∇ρn|2 +
h

2

∫
Ω

|∇ρn+1 −∇ρn|2

+ h

∫
Ω

(
f1(ρn+1)− f1(ρn)

)
≤ c h

∫
Ω

(1 + µn)|ρn+1 − ρn|

≤ 1

2

∫
Ω

|ρn+1 − ρn|2 + c h2

∫
Ω

(1 + µ2
n) ≤ 1

2

∫
Ω

|ρn+1 − ρn|2 + c h2,

the last inequality being due to (4.3). By dividing by h, summing over n = 0, . . . ,m − 1, and
owing to the obvious inequality mh ≤ c, we conclude that

h
m−1∑
n=0

∫
Ω

|δhρn|2 +
1

2

∫
Ω

|∇ρm+1|2 + h2

m−1∑
n=0

∫
Ω

|δh(∇ρn)|2 +

∫
Ω

f1(ρm+1) ≤ c (4.5)

for m = 0, . . . , N − 1. As the term involving the difference quotient δhρN−1 is missing in the
first sum since m ≤ N − 1, we estimate it directly. We multiply (2.28), written for n = N − 1,
by hδhρN−1 and integrate over Ω. We have

h

∫
Ω

|δhρN−1|2 +

∫
Ω

(∇ρN −∇ρN−1) · ∇ρN +

∫
Ω

f ′1(ρN)(ρN − ρN−1) = h

∫
Ω

φ δhρN−1,

where we have set φ := µN−1 g
′(ρN−1)− f ′2(ρN−1). Owing to the elementary identity (2.36)

and to the convexity of f1 as before, we have

h‖δhρN−1‖2
H +

1

2
‖∇ρN‖2

H +
1

2
‖∇ρN −∇ρN−1‖2

H +

∫
Ω

f1(ρN)

≤ 1

2
‖∇ρN−1‖2

H +

∫
Ω

f1(ρN−1) + h‖φ‖H ‖δhρN−1‖H

≤ 1

2
‖∇ρN−1‖2

H +

∫
Ω

f1(ρN−1) +
h

2
‖φ‖2

H +
h

2
‖δhρN−1‖H .

Now, we observe that the first two terms of the last line are bounded by (4.5) written with m =
N − 2 and that φ is estimated in H thanks to (4.2) and our assumptions of g and f2. Moreover,
the last term of the first line can be ignored since f1 is nonnegative. Hence, we get the desired
bound for the first term. At this point, we can easily derive an estimate for ‖ρm‖H for m =
1, . . . , N . By using the obvious identity ρm = ρ0 + h

∑m−1
n=0 δhρn and the euclidean Schwarz

and Young inequalities, we see that

‖ρm‖H ≤ ‖ρ0‖H + h
m−1∑
n=0

‖δhρn‖H ≤ c+
h

2

(
m+

m−1∑
n=0

‖δhρn‖2
H

)
≤ c.
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Hence, by recalling (4.5) and our last estimates, we conclude that

h
N−1∑
n=0

‖δhρn‖2
H + max

m=1,...,N
‖ρm‖2

V + h2

N−2∑
n=0

‖δh(∇ρn)‖2
H ≤ c. (4.6)

In terms of the interpolants, (4.6) reads (thanks also to ρ0 ∈ V and to (2.20)–(2.21) and (2.24))

‖∂tρ̂h‖2
L2(0,T ;H) + ‖ρh‖2

L∞(0,T ;V ) + ‖ρ
h
‖2
L∞(0,T ;V )

+‖ρ̂h‖2
L∞(0,T ;V ) + h‖∂t∇ρ̂h‖2

L2(0,T−h;H) ≤ c. (4.7)

Third a priori estimate. We come back to (2.28) and rewrite it as (recall (4.1))

−∆ρn+1 + ξn+1 = −δhρn + µng
′(ρn)− f ′2(ρn+1).

Hence, a standard argument (multiplying by −∆ρn+1 and by ξn+1) shows that the following
estimate holds true

‖∆ρn+1‖H + ‖ξn+1‖H ≤ c‖−δhρn + µng
′(ρn)− f ′2(ρn+1)‖H .

Thus, we infer that

‖∆ρn+1‖2
H + ‖ξn+1‖2

H ≤ c
(
‖δhρn‖2

H + ‖µn‖2
H + 1

)
for n = 0, . . . , N − 1. (4.8)

Moreover, by using the regularity theory of elliptic equations, we deduce that

‖ρn+1‖2
W + ‖ξn+1‖2

H ≤ c
(
‖ρn+1‖2

V + ‖δhρn‖2
H + ‖µn‖2

H + 1
)
. (4.9)

Now, we multiply (4.8) by h and sum over n = 0, . . . ,m− 1. By accounting for (4.2) and (4.6),
we conclude that

h
N−1∑
n=0

‖ρn+1‖2
W + h

N−1∑
n=0

‖ξn+1‖2
H ≤ c. (4.10)

In terms of the interpolants, (4.10) yields (by accounting for ρ0 ∈ W )

‖ρh‖2
L2(0,T ;W ) + ‖ρ

h
‖2
L2(0,T ;W ) + ‖ρ̂h‖2

L2(0,T ;W ) ≤ c (4.11)

besides an estimate for, e.g., ‖ξh‖ in L2(0, T ;H).

Fourth a priori estimate. We write (2.28) with n + 1 in place of n and take the difference
between the obtained equality and (2.28) itself. Then we multiply this difference by δhρn+1 and
integrate over Ω. We have∫

Ω

(δhρn+1 − δhρn)δhρn+1 +

∫
Ω

(∇ρn+2 −∇ρn+1) · δh∇ρn+1

+

∫
Ω

(
f ′(ρn+2)− f ′(ρn+1)

)
δhρn+1 =

∫
Ω

(
µn+1g

′(ρn+1)− µng′(ρn)
)
δhρn+1. (4.12)
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By accounting for the elementary identity (2.36), we get∫
Ω

(δhρn+1 − δhρn)δhρn+1 =
1

2

∫
Ω

|δhρn+1|2 −
1

2

∫
Ω

|δhρn|2 +
1

2

∫
Ω

|δhρn+1 − δhρn|2.

Moreover, the second integral on the left-hand side of (4.12) can be written in terms of δhρn+1

in an obvious way. Finally, by splitting f ′ into f ′1 + f ′2, observing that the contribution due to
the terms involving f ′1 is nonnegative since f ′1 is monotone and moving the other ones to the
right-hand side, we see that (4.12) yields the inequality

1

2

∫
Ω

|δhρn+1|2 −
1

2

∫
Ω

|δhρn|2 +
1

2

∫
Ω

|δhρn+1 − δhρn|2 + h

∫
Ω

|δh∇ρn+1|2

≤ −
∫

Ω

(
f ′2(ρn+2)− f ′2(ρn+1)

)
δhρn+1 +

∫
Ω

(
µn+1g

′(ρn+1)− µng′(ρn)
)
δhρn+1. (4.13)

The first term on the right-hand side of (4.13) is easily treated in the following way:

−
∫

Ω

(
f ′2(ρn+2)− f ′2(ρn+1)

)
δhρn+1 ≤ c h

∫
Ω

|δhρn+1|2. (4.14)

On the other hand, we have∫
Ω

(
µn+1g

′(ρn+1)− µng′(ρn)
)
δhρn+1

=

∫
Ω

µn+1

(
g′(ρn+1)− g′(ρn)

)
δhρn+1 +

∫
Ω

(
µn+1 − µn

)
g′(ρn)δhρn+1

≤ c h

∫
Ω

µn+1|δhρn| |δhρn+1|+
∫

Ω

(
µn+1 − µn

)
g′(ρn)δhρn+1 .

Next, we deal with the last integral by using equation (2.27). Owing to our assumptions on g, we
obtain ∫

Ω

(
µn+1 − µn

)
g′(ρn)δhρn+1 = −h

∫
Ω

g′(ρn)

1 + 2γn

(
µn+1 δhγn −∆µn+1

)
δhρn+1

≤ c h

∫
Ω

µn+1 |δhρn| |δhρn+1| − h
∫

Ω

∇µn+1 · ∇
( g′(ρn)

1 + 2γn
δhρn+1

)
≤ c h

∫
Ω

µn+1 |δhρn| |δhρn+1|

− h
∫

Ω

g′(ρn)

1 + 2γn
∇µn+1 · ∇δhρn+1 − h

∫
Ω

δhρn+1∇µn+1 · ∇
g′(ρn)

1 + 2γn
.

We treat the last three terms separately. Thanks to the Hölder, Sobolev, and Young inequalities,
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and our assumption on g, we have for every σ > 0

h

∫
Ω

µn+1 |δhρn| |δhρn+1| ≤ c h ‖µn+1‖4 ‖δhρn‖H ‖δhρn+1‖4

≤ σh‖δhρn+1‖2
V +

c h

σ
‖µn+1‖2

V ‖δhρn‖2
H (4.15)

−h
∫

Ω

g′(ρn)

1 + 2γn
∇µn+1 · ∇δhρn+1 ≤ c h

∫
Ω

|∇µn+1| |∇δhρn+1|

≤ σ h‖∇δhρn+1‖2
H +

c h

σ
‖∇µn+1‖2

H (4.16)

−h
∫

Ω

δhρn+1∇µn+1 · ∇
g′(ρn)

1 + 2γn
≤ c h

∫
Ω

|δhρn+1| |∇µn+1| |∇ρn|

≤ c h‖δhρn+1‖4 ‖∇µn+1‖H ‖∇ρn‖4

≤ σh‖δhρn+1‖2
V +

c h

σ
‖∇µn+1‖2

H

(
‖ρn‖2

H + ‖∆ρn‖2
H

)
. (4.17)

Now, we rewrite (4.8) as

‖∆ρn‖2
H + ‖ξn‖2

H ≤ c
(
‖δhρn−1‖2

H + ‖µn−1‖2
H + 1

)
for n = 1, . . . , N,

and note that we can allow the choice n = 0 provided that we define

ρ−1 := ρ0 and, e.g., µ−1 := 0.

Hence, we can improve (4.17). By using (4.3) and (4.7) as well, we have

−h
∫

Ω

δhρn+1∇µn+1 · ∇
g′(ρn)

1 + 2γn

≤ σh‖δhρn+1‖2
V +

c h

σ
‖∇µn+1‖2

H

(
‖ρn‖2

H + ‖δhρn−1‖2
H + ‖µn−1‖2

H + 1
)

≤ σh‖δhρn+1‖2
V +

c h

σ
‖∇µn+1‖2

H

(
‖δhρn−1‖2

H + 1
)
. (4.18)

By recalling all these estimates, we see that (4.13) yields

1

2

∫
Ω

|δhρn+1|2 −
1

2

∫
Ω

|δhρn|2 +
1

2

∫
Ω

|δhρn+1 − δhρn|2 + h

∫
Ω

|δh∇ρn+1|2

≤ c h

∫
Ω

|δhρn+1|2 + 3σh‖δhρn+1‖2
V +

c h

σ
‖µn+1‖2

V ‖δhρn‖2
H

+
c h

σ
‖∇µn+1‖2

H

(
‖δhρn−1‖2

H + 1
)
.

Now, just by changing the value of the constant c in front of the first integral on the right-hand
side, we can replace the last integral on the left-hand side by ‖δhρn+1‖2

V . Then, we choose
σ = 1/4 and rearrange. We obtain

1

2

∫
Ω

|δhρn+1|2 −
1

2

∫
Ω

|δhρn|2 +
1

2

∫
Ω

|δhρn+1 − δhρn|2 +
h

4
‖δhρn+1‖2

V

≤ c h

∫
Ω

|δhρn+1|2 + c h ‖µn+1‖2
V ‖δhρn‖2

H + c h ‖∇µn+1‖2
H

(
‖δhρn−1‖2

H + 1
)
.

13



At this point, by assuming m ≤ N − 1, we sum over n = 0, . . . ,m− 1 and have

1

2

∫
Ω

|δhρm|2 +
1

2

m−1∑
n=0

∫
Ω

|δhρn+1 − δhρn|2 +
h

4

m−1∑
n=0

‖δhρn+1‖2
V

≤ 1

2

∫
Ω

|δhρ0|2 + c h

m−1∑
n=0

∫
Ω

|δhρn+1|2 + c h
m−1∑
n=0

‖µn+1‖2
V ‖δhρn‖2

H

+ c h

m−1∑
n=0

‖∇µn+1‖2
H ‖δhρn−1‖2

H + c h
m−1∑
n=0

‖∇µn+1‖2
H . (4.19)

The second and the last terms on the right-hand side of (4.19) have been already estimated by
(4.6) and (4.2), respectively. To treat the first term, we write (2.28) with n = 0 and add ∆ρ0

to both sides. Then, we multiply the resulting equality by δhρ0 and integrate over Ω. After a
rearrangement, owing to (2.4) and the assumptions on the initial data (see (2.7), in particular),
we obtain: ∫

Ω

|δhρ0|2 + h

∫
Ω

|∇δhρ0|2 +

∫
Ω

(
f ′1(ρ1)− f ′1(ρ0)

)
δhρ0

=

∫
Ω

(
∆ρ0 + µ0g

′(ρ0)− f ′1(ρ0)− f ′2(ρ1)
)
δhρ0 ≤ c‖δhρ0‖H .

As
(
f ′1(ρ1)− f ′1(ρ0)

)
δhρ0 ≥ 0 due to the monotonicity of f ′1, we immediately deduce that

‖δhρ0‖2
H + h‖∇δhρ0‖2

H ≤ c. (4.20)

In particular, the desired estimate for ‖δhρ0‖H is achieved. Therefore, on recalling that δhρ−1 =
0 because ρ−1 = ρ0, we see that (4.19) yields:

‖δhρm‖2
H +

m−1∑
n=0

‖δhρn+1 − δhρn‖2
H + h

m−1∑
n=0

‖δhρn+1‖2
V

≤ c+ c h
m−1∑
n=0

‖µn+1‖2
V ‖δhρn‖2

H + c h
m−1∑
n=1

‖∇µn+1‖2
H ‖δhρn−1‖2

H

≤ c+ c h

m−1∑
n=0

‖µn+1‖2
V ‖δhρn‖2

H + c h

m−2∑
n=0

‖∇µn+2‖2
H ‖δhρn‖2

H

≤ C1 + C2 h
m−1∑
n=0

(
‖µn+1‖2

V + ‖µn+2‖2
V

)
‖δhρn‖2

H

for m = 0, . . . , N − 1. Hence, we can apply the discrete Gronwall lemma (see (2.38), where
N is to be replaced here by N − 1) and deduce that

‖δhρm‖2
H +

m−1∑
n=0

‖δhρn+1 − δhρn‖2
H + h

m−1∑
n=0

‖δhρn+1‖2
V

≤ C1 exp
(
C2h

m−1∑
n=0

(
‖µn+1‖2

V + ‖µn+2‖2
V

))
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for m = 0, . . . , N − 1. Owing to (4.2), we infer that

‖δhρm‖2
H +

m−1∑
n=0

‖δhρn+1 − δhρn‖2
H + h

m−1∑
n=0

‖δhρn+1‖2
V ≤ c for m = 0, . . . , N − 1;

moreover, on using the estimates of δhρ0 and∇δhρ0 given by (4.20), we conclude that

max
m=0,...,N−1

‖δhρm‖2
H +

N−1∑
n=0

‖δhρn − δhρn−1‖2
H + h

N−1∑
n=0

‖δhρn‖2
V ≤ c. (4.21)

In particular, (4.21) yields:
‖∂tρ̂h‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (4.22)

Fifth a priori estimate. We improve (4.10)–(4.11). Owing to (4.9), on using (4.21) in addition
to previous estimates, we immediately obtain (cf. also (2.7)) that

‖ρm‖W + ‖ξm‖H ≤ c for m = 0, . . . , N , (4.23)

‖ρh‖2
L∞(0,T ;W ) + ‖ρ

h
‖2
L∞(0,T ;W ) + ‖ρ̂h‖2

L∞(0,T ;W ) ≤ c , (4.24)

as well as an estimate for, e.g., ξh in L∞(0, T ;H).

Sixth a priori estimate. We rewrite (2.27) in the form(
1 + γn + γn+1

)
δhµn −∆µn+1 = −µn δhγn .

We test this equality by (µn+1 − µn), and integrate over Ω. We obtain

h

∫
Ω

(
1 + γn + γn+1

)
|δhµn|2 +

∫
Ω

(∇µn+1 −∇µn) · ∇µn+1 = −h
∫

Ω

µn δhγn δhµn.

As g is nonnegative and Lipschitz continuous, we infer that

h

∫
Ω

|δhµn|2 +
1

2

∫
Ω

|∇µn+1|2 −
1

2

∫
Ω

|∇µn|2 +
1

2

∫
Ω

|∇(µn+1 − µn)|2

≤ c h

∫
Ω

µn |δhρn| |δhµn| ≤ c h ‖µn‖4 ‖δhρn‖4 ‖δhµn‖2

≤ h

2
‖δhµn‖2

H + c h‖δhρn‖2
V

(
‖∇µn‖2

H + ‖µn‖2
H

)
≤ h

2
‖δhµn‖2

H + c h‖δhρn‖2
V ‖∇µn‖2

H + c h‖δhρn‖2
V ,

the last inequality being due to (4.2). By rearranging and summing over n = 0, . . . ,m− 1 with
1 ≤ m ≤ N , we get:

h

2

m−1∑
n=0

‖δhµn‖2
H +

1

2
‖∇µm‖2

H +
h2

2

m−1∑
n=0

‖∇δhµn‖2
H

≤ 1

2
‖∇µ0‖2

H + c h
m−1∑
n=0

‖δhρn‖2
V ‖∇µn‖2

H + c h
m−1∑
n=0

‖δhρn‖2
V

≤ c+ c h

m−1∑
n=0

‖δhρn‖2
V ‖∇µn‖2

H ,
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where we have used (4.21). Now, we first apply the discrete Gronwall lemma (2.38) and then
account for (4.21) once more. We obtain, for m = 1, . . . , N ,

h

m−1∑
n=0

‖δhµn‖2
H + ‖∇µm‖2

H + h2

m−1∑
n=0

‖∇δhµn‖2
H ≤ c. (4.25)

Next, by (2.27), the Hölder and Sobolev inequalities and the Lipschitz continuity of g, we in-
fer that

‖∆µn+1‖H ≤ c
(
‖δhµn‖H + ‖µn+1δhγn‖H

)
≤ c
(
‖δhµn‖H + ‖µn+1‖4 ‖δhγn‖4

)
≤ c
(
‖δhµn‖H + ‖µn+1‖4 ‖δhρn‖4

)
≤ c
(
‖δhµn‖H + ‖µn+1‖V ‖δhρn‖V

)
;

note that in the last product we can ignore the factor ‖µn+1‖V , due to (4.3) and (4.25), provided
we update the last value of c. By squaring, summing up, and multiplying by h, we thus obtain
for m = 1, . . . , N the estimate

h
m−1∑
n=0

‖∆µn+1‖2
H ≤ c h

m−1∑
n=0

‖δhµn‖2
H + c h

m−1∑
n=0

‖δhρn‖2
V ,

and we can replace the H-norm of ∆µn+1 by the W -norm of µn+1 thanks to (4.2). We collect
this and (4.25) and account for (4.21) and µ0 ∈ V . We have:

h

N−1∑
n=0

‖δhµn‖2
H + max

n=0,...,N
‖∇µn‖2

H + h
N−1∑
n=0

‖µn+1‖2
W ≤ c , (4.26)

so that

‖∂tµ̂h‖L2(0,T ;H) + ‖µh‖L∞(0,T ;V )∩L2(0,T ;W ) + ‖µ
h
‖L∞(0,T ;V ) + ‖µ̂h‖L∞(0,T ;V ) ≤ c. (4.27)

We note that (4.25) also gives the non-sharp estimate

h‖∇∂tµ̂h‖2
L2(0,T ;H) ≤ c. (4.28)

Limit and conclusion. By standard weak compactness results, we find some convergent
subsequence for the interpolants. Therefore, in principle, it is understood that the convergence
that we refer to holds for a subsequence. However, once we prove that the limit we find is the
solution (µ, ρ) to problem (2.12)–(2.14), then the whole family of interpolants is convergent, due
to uniqueness. For the reader’s convenience, we select some estimates among those we have
proved in the previous steps. These are:

‖µh‖L∞(0,T ;V )∩L2(0,T ;W ) + ‖µ
h
‖L∞(0,T ;V ) + ‖µ̂h‖L∞(0,T ;V ) ≤ c (4.29)

‖ρh‖L∞(0,T ;W ) + ‖ρ
h
‖L∞(0,T ;W ) + ‖ρ̂h‖L∞(0,T ;W ) ≤ c (4.30)

‖∂tµ̂h‖L2(0,T ;H) + ‖∂tρ̂h‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (4.31)

Now, we observe that (4.31) and (2.25) imply that

‖µh − µ̂h‖L2(0,T ;H) + ‖µ
h
− µ̂h‖L2(0,T ;H) ≤ c h (4.32)

‖ρh − ρ̂h‖L2(0,T ;V ) + ‖ρ
h
− ρ̂h‖L2(0,T ;V ) ≤ c h. (4.33)
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This yields, in particular, that the weak limits we find for µh, µ
h
, and µ̂h, by using (4.29) and

weak compactness results coincide and that the same happens for ρh, ρ
h
, and ρ̂h. Therefore,

we can conclude that some functions µ and ρ exist such that

µh, µh, µ̂h → µ weakly star in L∞(0, T ;V ), (4.34)

µh → µ weakly in L2(0, T ;W ), (4.35)

ρh, ρh, ρ̂h → ρ weakly star in L∞(0, T ;W ), (4.36)

∂tµ̂h → ∂tµ weakly in L2(0, T ;H), (4.37)

∂tρ̂h → ∂tρ weakly star in L∞(0, T ;H) ∩ L2(0, T ;V ) . (4.38)

Now we prove that (µ, ρ) satisfies (2.8)–(2.11) and solves problem (2.12)–(2.14).

We remark that the topology alluded to in the statement of Theorem 2.4 is precisely the topology
associated with the convergences specified in (4.34)–(4.38). Clearly, (2.8)–(2.10) are fulfilled.
Moreover, the Cauchy conditions (2.14) are satisfied, because (µ̂h, ρ̂h) converges to (µ, ρ) at
least weakly in C0([0, T ];H). Therefore, it remains to check that (2.11) holds and that equa-
tions (2.12)–(2.13) are satisfied. To do that, we read the discrete problem (2.27)–(2.28) in terms
of the interpolants. We have: (

1 + 2γ
h

)
∂tµ̂h + µh∂tγ̂h −∆µh = 0, (4.39)

∂tρ̂h −∆ρh + f ′(ρh) = µ
h
g′(ρ

h
). (4.40)

Hence, the main problem consists in identifying correctly the limits of the nonlinear terms and
those of the products. To this end, we recover some strong convergence (without looking for
sharpness, since it is not necessary). We first recall that the embeddings V ⊂ H and W ⊂
C0(Ω) are compact, so that we can apply [32, Sect. 8, Cor. 4] and deduce that

µ̂h → µ strongly in C0([0, T ];H) and a.e. in Q, (4.41)

ρ̂h → ρ strongly in C0([0, T ];C0(Ω)) = C0(Q). (4.42)

By combining this with (4.32) and (4.33), we infer that

µh, µh → µ and ρh, ρh → ρ strongly in L2(0, T ;H) and a.e. in Q. (4.43)

We point out that a.e.-convergence actually holds for a subsequence. Take now ρ• ∈ (0, ρ∗)
and ρ• ∈ (ρ∗, 1), where ρ∗, ρ∗ ∈ (0, 1) are given by Theorem 2.1. Then, (4.42) implies that

ρ• ≤ ρ̂h ≤ ρ• in Q, provided that h is small enough. (4.44)

This means that the same bounds hold for ρn, n = 0, . . . , N (where (ρn)Nn=0 is the vector
associated with ρ̂h), and hence also for ρh and ρ

h
. As f ′, g, and g′ are Lipschitz continuous

on [ρ•, ρ
•], we deduce a bound for ‖f ′(ρh)‖∞ and for the L∞ norm of the other functions we

are interested in. By combining this with the a.e.-convergence implied by (4.43), we deduce that

φ(ρh), φ(ρ
h
)→ φ(ρ) strongly in Lp(Q) for p ∈ [1,+∞) and φ = f ′, g, g′. (4.45)

In particular, (2.11) holds. On the other hand, we also have

|∂tγ̂h| = |δhγn| = |δhg(ρn)| ≤ c|δhρn| = c|∂tρ̂h| a.e. in In+1, for n = 0, . . . , N − 1 ,
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so that (4.31) yields an estimate of ∂tγ̂h in L∞(0, T ;H). Hence, thanks to (2.24), we have

‖γ̂h − γh‖L∞(0,T ;H) ≤ c h‖∂tγ̂h‖L∞(0,T ;H) ≤ c h ,

whence even γ̂h converges to g(ρ), e.g., strongly in L2(Q). Therefore, we infer that

∂tγ̂h → ∂tg(ρ) weakly star in L∞(0, T ;H). (4.46)

Finally, as to the limits of the products in (4.39)–(4.40), we can infer that

γ
h
∂tµ̂h → g(ρ)∂tµ, µh∂tγ̂h → µ∂tg(ρ), µhg

′(ρ
h
)→ µg′(ρ), weakly in L1(Q).

Therefore, (2.12)–(2.13) follow from (4.39)–(4.40), and the proof is complete.

5 Proof of Theorem 2.5

In this section, we prove Theorem 2.5. It is understood that h is as small as needed; oftentimes,
we do not pause and quantify such smallness precisely. First of all, we remind the reader that
the interpolants ρ̂h, ρ

h
, and ρh are uniformly far for 0 and 1 (see (4.44) and the subsequent

lines). Therefore, without loss of generality, we can assume that the derivative function f ′ is
Lipschitz continuous. We need additional a priori estimates.

Auxiliary a priori estimates. We prepare an estimate for ‖∇δhρ0‖H . To this end, we notice
that (2.28) with n = 0 can be written as

δhρ0 − h∆δhρ0 = f ′(ρ0)− f ′(ρ1)− ψ0 , (5.1)

where ψ0 := −∆ρ0 + f ′(ρ0)− µ0g
′(ρ0). As ψ0 ∈ V by (2.33), we can test (5.1) by−∆δhρ0

and integrate by parts. In view of the Lipschitz continuity of f ′, we find out that

‖∇δhρ0‖2
H + h‖∆δhρ0‖2

H ≤ c h‖δhρ0‖H ‖∆δhρ0‖H + ‖∇ψ0‖H ‖∇δhρ0‖H

≤ h

2
‖∆δhρ0‖2

H + c h‖δhρ0‖2
H +

1

2
‖∇δhρ0‖2

H + c.

By accounting for (4.20), we obtain the desired estimate

‖∇δhρ0‖H ≤ c. (5.2)

Let us come now to the basic estimate we need. We write (2.28) with (n + 1) in place of n,
and take the difference between the so-obtained equality and (2.28) itself. Then, we multiply this
difference by −∆δhρn+1 and integrate over Ω. We easily have, for n = 0, . . . , N − 2, that∫

Ω

(∇δhρn+1 −∇δhρn) · ∇δhρn+1 +

∫
Ω

(∆ρn+2 −∆ρn+1) ∆δhρn+1

= −
∫

Ω

(
f ′(ρn+2)− f ′(ρn+1)

)
(−∆δhρn+1)

+

∫
Ω

(
µn+1g

′(ρn+1)− µng′(ρn)
)
(−∆δhρn+1). (5.3)
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By the elementary identity (2.36), the first integral is equal to

1

2

∫
Ω

|∇δhρn+1|2 −
1

2

∫
Ω

|∇δhρn|2 +
1

2

∫
Ω

|∇δhρn+1 −∇δhρn|2.

On the other hand, we obviously have that∫
Ω

(∆ρn+2 −∆ρn+1) ∆δhρn+1 = h

∫
Ω

|∆δhρn+1|2.

Now, we deal with the right-hand side of (5.3). By Lipschitz continuity, we deduce that

−
∫

Ω

(
f ′(ρn+2)− f ′(ρn+1)

)
(−∆δhρn+1) ≤ c

∫
Ω

|ρn+2 − ρn+1| |∆δhρn+1|

= c h

∫
Ω

|δhρn+1| |∆δhρn+1| ≤
h

4

∫
Ω

|∆δhρn+1|2 + c h

∫
Ω

|δhρn+1|2.

As far as the last term of (5.3) is concerned, we combine the above elementary argument with
the Hölder and Young inequalities and the Sobolev embedding V ⊂ L4(Ω). We find:∫

Ω

(
µn+1g

′(ρn+1)− µng′(ρn)
)
(−∆δhρn+1)

≤ c

∫
Ω

(
µn+1|ρn+1 − ρn|+ |µn+1 − µn|

)
|∆δhρn+1|

≤ c h
(
‖µn+1‖4‖δhρn‖4 + ‖δhµn‖H

)
‖∆δhρn+1‖H

≤ h

4

∫
Ω

|∆δhρn+1|2 + ch‖µn+1‖2
V ‖δhρn‖2

V + ch‖δhµn‖2
H .

By collecting the inequalities we have obtained, we see that (5.3) yields:

1

2

∫
Ω

|∇δhρn+1|2 −
1

2

∫
Ω

|∇δhρn|2 +
1

2

∫
Ω

|∇δhρn+1 −∇δhρn|2 +
h

2

∫
Ω

|∆δhρn+1|2

≤ c h

∫
Ω

|δhρn+1|2 + ch‖µn+1‖2
V ‖δhρn‖2

V + ch‖δhµn‖2
H .

At this point, we sum over n = 0, . . . ,m− 1, with 1 ≤ m ≤ N − 1, and deduce that

1

2

∫
Ω

|∇δhρm|2 +
1

2

m−1∑
n=0

∫
Ω

|∇δhρn+1 −∇δhρn|2 +
h

2

m−1∑
n=0

∫
Ω

|∆δhρn+1|2

≤ 1

2

∫
Ω

|∇δhρ0|2 + c h
N−2∑
n=0

‖δhρn+1‖2
H

+ c max
n=0,...,N−1

‖µn+1‖2
V h

N−1∑
n=0

‖δhρn‖2
V + c h

N−1∑
n=0

‖δhµn‖2
H . (5.4)

The first term on the right-hand side of (5.4) is estimated by (5.2); all other terms on the right-
hand side have been estimated already (cf. (4.22) and (4.27)). Therefore, by recalling also
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(4.21), we conclude that

max
m=0,...,N−1

‖δhρm‖2
V + h

N−2∑
n=0

‖∆δhρn+1‖2
H ≤ c, (5.5)

‖∂tρ̂h‖L∞(0,T ;V ) + ‖∆∂tρ̂h‖L2(0,T ;H) ≤ c. (5.6)

Consequence. In view of the regularity theory for elliptic equations and the continuous em-
bedding W ⊂ L∞(Ω), we derive from (5.6) that

‖∂tρ̂h‖L2(0,T ;W ) ≤ c and ‖∂tρ̂h‖L2(0,T ;L∞(Ω)) ≤ c. (5.7)

Moreover, as the second (5.7) means an estimate of the difference quotients associated to
the vector (ρn)Nn=0, and as g is Lipschitz continuous, a similar estimate holds for the vec-
tor (g(ρn))Nn=0 (see (4.1)), and we infer that

‖∂tγ̂h‖L2(0,T ;L∞(Ω)) ≤ c. (5.8)

Furthermore, by applying (2.25), we see that (5.6) also implies that

‖∆(ρh − ρ̂h)‖L2(0,T ;H) ≤ c h. (5.9)

Proof of Theorem 2.5. A possible strategy could be the following: to multiply the difference
between (4.39) and (2.12) by (µ̂h−µ), and the difference between (4.40) and (2.13) by ∂t(ρ̂h−
ρ); then, to sum up and start estimating. However, in order to split calculations and give more
transparence to the proof, we prefer to proceed with those pairs of equation separately, and
collect the inequalities we obtain later on. So, we first consider just one couple, for instance,
(4.40) and (2.13). We multiply their difference by ∂t(ρ̂h−ρ), integrate overQt, where t ∈ (0, T )
is arbitrary, and add the same integral to both sides for convenience. We obtain:∫ t

0

∫
Ω

|∂t(ρ̂h − ρ)|2 +
1

2
‖(ρ̂h − ρ)(t)‖2

V

=

∫ t

0

∫
Ω

{
−∆(ρ̂h − ρh)−

(
f ′(ρh)− f ′(ρ)

)
+ g′(ρ

h
)(µ

h
− µ) + µ

(
g′(ρ

h
)− g′(ρ)

)
+ (ρ̂h − ρ)

}
∂t(ρ̂h − ρ)

≤ 1

2

∫ t

0

∫
Ω

|∂t(ρ̂h − ρ)|2

+ c

∫ t

0

∫
Ω

{
|∆(ρ̂h − ρh)|2 + |ρh − ρ|2 + |µ

h
− µ|2 + |ρ

h
− ρ|2 + |ρ̂h − ρ|2

}
. (5.10)

In the above inequality, we have used the Lipschitz continuity of f ′ and g′, and the boundedness
of µ. Now, we estimate the last integral of (5.10). Thanks to (5.9), we have that∫ t

0

∫
Ω

|∆(ρ̂h − ρh)|2 ≤ c h2.
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On the other hand, owing to (4.33), we obtain:∫ t

0

∫
Ω

(
|ρh − ρ|2 + |ρ

h
− ρ|2 + |ρ̂h − ρ|2

)
≤ c

∫ t

0

∫
Ω

(
|ρh − ρ̂h|2 + |ρ

h
− ρ̂h|2 + |ρ̂h − ρ|2

)
≤ c h2 + c

∫ t

0

∫
Ω

|ρ̂h − ρ|2.

Similarly, we have, by (4.32), that∫ t

0

∫
Ω

|µ
h
− µ|2 ≤ c

∫ t

0

∫
Ω

(
|µ
h
− µ̂h|2 + |µ̂h − µ|2

)
≤ c h2 + c

∫ t

0

∫
Ω

|µ̂h − µ|2.

By collecting the above inequalities, we see that (5.10) and the Gronwall lemma yield:∫ t

0

∫
Ω

|∂t(ρ̂h− ρ)|2 + ‖(ρ̂h− ρ)(t)‖2
V ≤ c

{
h2 +

∫ t

0

∫
Ω

|ρ̂h− ρ|2 +

∫ t

0

∫
Ω

|µ̂h−µ|2
}

(5.11)

for every t ∈ [0, T ]. Now, we deal with equations (4.39) and (2.12). For the reader’s conve-
nience, by recalling that γh = g(ρh) and γ

h
= g(ρ

h
) (see (4.1)), we rewrite the former in a

different way, namely, (
1 + 2g(ρ

h
)
)
∂tµ̂h + µh∂tγ̂h −∆µh = 0. (5.12)

Next, we take the difference between (5.12) and (2.12) and write it as(
1 + 2g(ρ̂h)

)
∂t(µ̂h − µ)−∆(µ̂h − µ) + (µ̂h − µ)

= −2∂tµ
(
g(ρ̂h)− g(ρ)

)
− ∂tγ̂h (µh − µ)− µ ∂t

(
γ̂h − g(ρ)

)
+ 2
(
g(ρ̂h)− g(ρ

h
)
)
∂tµ̂h −∆(µ̂h − µh) + (µ̂h − µ) .

Finally, we multiply this equality by (µ̂h − µ) and obtain the following identity:

∂t
{(

1
2

+ g(ρ̂h)
)
(µ̂h − µ)2

}
−∆(µ̂h − µ) (µ̂h − µ) + (µ̂h − µ)2

= ∂tg(ρ̂h) (µ̂h − µ)2 − 2∂tµ
(
g(ρ̂h)− g(ρ)

)
(µ̂h − µ)

− ∂tγ̂h (µh − µ)(µ̂h − µ)− µ ∂t
(
γ̂h − g(ρ)

)
(µ̂h − µ)

+ 2
(
g(ρ̂h)− g(ρ

h
)
)
∂tµ̂h (µ̂h − µ)−∆(µ̂h − µh) (µ̂h − µ) + (µ̂h − µ)2. (5.13)

At this point, we integrate over Qt. As g is nonnegative, we get:

1

2

∫
Ω

|(µ̂h − µ)(t)|2 +

∫ t

0

‖(µ̂h − µ)(s)‖2
V ds ≤

7∑
j=1

Ij(t) , (5.14)

with an obvious meaning of Ij(t), j = 1, . . . , 7. Now, we estimate these integrals, but the last
one. By combining Hölder’s, Young’s, and Sobolev’s inequalities, and in view of (5.6), we have
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that

I1(t) ≤ c

∫ t

0

‖∂tρ̂h(s)‖4‖(µ̂h − µ)(s)‖H‖(µ̂h − µ)(s)‖4 ds

≤ c

∫ t

0

‖∂tρ̂h(s)‖V ‖(µ̂h − µ)(s)‖H‖(µ̂h − µ)(s)‖V ds

≤ σ

∫ t

0

‖(µ̂h − µ)(s)‖2
V ds+ cσ

∫ t

0

‖(µ̂h − µ)(s)‖2
H ds ,

where σ > 0 is arbitrary. Similarly, we infer that

I2(t) ≤ 2

∫ t

0

‖∂tµ(s)‖H‖(ρ̂h − ρ)(s)‖4‖(µ̂h − µ)(s)‖4 ds

≤ σ

∫ t

0

‖(µ̂h − µ)(s)‖2
V ds+ cσ

∫ t

0

‖∂tµ(s)‖2
H‖(ρ̂h − ρ)(s)‖2

V ds.

Notice that, by means of the Gronwall lemma, we shall be able to control the last integral in terms
of the L1(0, T )-norm of the function s 7→ ‖∂tµ(s)‖2

H (cf. (2.8)). We use a similar procedure for
the next integral and notice that the same remark holds, due to (5.8). Indeed, we have that

I3(t) ≤
∫ t

0

‖∂tγ̂h(s)‖∞‖(µ̂h − µ)(s)‖H‖(µh − µ)(s)‖H ds

≤
∫ t

0

‖∂tγ̂h(s)‖∞‖(µ̂h − µ)(s)‖H
(
‖(µ̂h − µ)(s)‖H + ‖(µh − µ̂h)(s)‖H

)
ds

≤
∫ t

0

‖∂tγ̂h(s)‖2
∞‖(µ̂h − µ)(s)‖2

H ds+ c

∫ t

0

(
‖(µ̂h − µ)(s)‖2

H + ‖(µh − µ̂h)(s)‖2
H

)
ds

≤ c

∫ t

0

(
‖∂tγ̂h(s)‖2

∞ + 1
)
‖(µ̂h − µ)(s)‖2

H ds+ ch2 ,

where the last inequality is due to (4.32). In order to treat I4(t), we prove a preliminary estimate,
namely, that

|∂t
(
γ̂h − g(ρ)

)
| ≤ c

{
|ρh − ρ̂h|+ |ρh − ρ̂h|+ |ρ̂h − ρ|

}
|∂tρ̂h|+ c|∂t(ρ̂h − ρ)| (5.15)

a.e. in Q. As we argue pointwise, we fix (x, t) a.e. in Q and choose n such that t belongs to
the interval (nh, (n+ 1)h]; in order to simplify the notation, we omit writing at what point (x, t)
we work. By the mean value theorem, we find r between ρn and ρn+1 such that

∂t
(
γ̂h − g(ρ)

)
=
g(ρn+1)− g(ρn)

h
− g′(ρ)∂tρ = g′(r)

ρn+1 − ρn
h

− g′(ρ)∂tρ

= g′(r)∂tρ̂h − g′(ρ)∂tρ =
(
g′(r)− g′(ρ)

)
∂tρ̂h + g′(ρ)

(
∂tρ̂h − ∂tρ

)
.

As g′ is bounded and Lipschitz continuous, we infer that

|∂t
(
γ̂h − g(ρ)

)
| ≤ c|r − ρ| |∂tρ̂h|+ c|∂tρ̂h − ∂tρ|.
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On the other hand, we have

|r − ρ| ≤ |r − ρn|+ |ρn − ρ| ≤ |ρn+1 − ρn|+ |ρn − ρ|
= |ρh − ρh|+ |ρh − ρ| ≤ |ρh − ρ̂h|+ 2|ρ

h
− ρ̂h|+ |ρ̂h − ρ|.

Hence, (5.15) follows, and we can use it to estimate I4(t). We also account for the boundedness
of µ and for identity (2.24) and the analogue identity concerning zh. We have:

I4(t) ≤ c

∫ t

0

∫
Ω

{
|ρh − ρ̂h|+ |ρh − ρ̂h|+ |ρ̂h − ρ|

}
|∂tρ̂h| |µ̂h − µ|

+ c

∫ t

0

∫
Ω

|∂t(ρ̂h − ρ)| |µ̂h − µ|

≤ c

∫ t

0

{
‖ρh(s)− ρ̂h(s)‖2

H + ‖ρ
h
(s)− ρ̂h(s)‖2

H + ‖ρ̂h(s)− ρ(s)‖2
H

}
‖∂tρ̂h(s)‖2

∞ ds

+
1

2

∫ t

0

‖∂t(ρ̂h − ρ)(s)‖2
H ds+ c

∫ t

0

‖(µ̂h − µ)(s)‖2
H ds

≤ c h2‖∂tρ̂h‖2
L∞(0,T ;H) ‖∂tρ̂h‖2

L2(0,T ;L∞(Ω)) + c

∫ t

0

‖∂tρ̂h(s)‖2
∞ ‖ρ̂h(s)− ρ(s)‖2

H ds

+
1

2

∫ t

0

‖∂t(ρ̂h − ρ)(s)‖2
H ds+ c

∫ t

0

‖(µ̂h − µ)(s)‖2
H ds ;

furthermore, estimates (4.31) and (5.7) allow us to infer that

I4(t) ≤ c h2 + c

∫ t

0

‖∂tρ̂h(s)‖2
∞ ‖ρ̂h(s)− ρ(s)‖2

V ds+
1

2

∫ t

0

‖∂t(ρ̂h − ρ)(s)‖2
H ds

+ c

∫ t

0

(
1 + ‖∂tρ̂h(s)‖2

∞
)
‖(µ̂h − µ)(s)‖2

H ds.

Next, we deal with I5(t). By accounting for (2.25) and (5.7), we deduce that

I5(t) ≤ c

∫ t

0

‖(ρ̂h − ρh)(s)‖∞‖∂tµ̂h(s)‖H‖(µ̂h − µ)(s)‖H ds

≤ c h2‖∂tρ̂h‖2
L2(0,T ;L∞(Ω)) + c

∫ t

0

‖∂tµ̂h(s)‖2
H‖(µ̂h − µ)(s)‖2

H ds

≤ c h2 + c

∫ t

0

‖∂tµ̂h(s)‖2
H‖(µ̂h − µ)(s)‖2

H ds.

We note at once that we shall be able to control even the last terms of the last two estimates
with the help of the Gronwall lemma, in view of (5.7) and (4.31), respectively. Finally, thanks
to (2.25) once more, we have:

I6(t) =

∫ t

0

∫
Ω

∇(µ̂h − µh) · ∇(µ̂h − µ)

≤ σ

∫ t

0

∫
Ω

|∇(µ̂h − µ)|2 + cσ

∫ t

0

∫
Ω

|∇(µ̂h − µh)|2
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≤ σ

∫ t

0

∫
Ω

|∇(µ̂h − µ)|2 + cσ h
2‖∇∂tµ̂h‖2

L2(0,T ;H)

≤ σ

∫ t

0

∫
Ω

|∇(µ̂h − µ)|2 + cσ h , (5.16)

where the last inequality is a consequence of the non-sharp estimate (4.28). We stress that
I6 is the only term of order h instead of h2. At this point, we collect all the estimates of the
integrals Ij we have obtained, and come back to (5.13)–(5.14). If we choose σ small enough,
we conclude that

1

2
‖(µ̂h − µ)(t)‖2

H +
1

2

∫ t

0

‖(µ̂h − µ)(s)‖2
V ds

≤ c
{
h+

∫ t

0

(
1 + ‖∂tγ̂h(s)‖2

∞ + ‖∂tµ̂h(s)‖2
H

)
‖(µ̂h − µ)(s)‖2

H ds

+

∫ t

0

(
‖∂tµ(s)‖2

H + ‖∂tρ̂h(s)‖2
∞
)
‖ρ̂h(s)− ρ(s)‖2

V ds

+

∫ t

0

∫
Ω

|∂t(ρ̂h − ρ)|2
}

+
1

2

∫ t

0

‖∂t(ρ̂h − ρ)(s)‖2
H ds (5.17)

for every t ∈ [0, T ]. Now, we revert to (5.11) and add it to (5.17). After rearranging, we apply
the Gronwall lemma and obtain (2.30). This concludes the proof.

6 Proof of Theorem 2.6

As is clear from the proof of Theorem 2.5, to obtain estimate (2.32) there is just one step to mod-
ify, namely, the estimate of I6 (see (5.16)), which was based on the non-sharp inequality (4.28).
Thus, we only have to prove that our further assumption (2.31) implies that I6 must be of order
h2, not h. Moreover, it is clear that this is true whenever we improve (4.28) and replace it by

‖∇∂tµ̂h‖2
L2(0,T ;H) ≤ c, i.e., h

N−1∑
n=0

‖∇δhµn‖2
H ≤ c. (6.1)

Hence, it suffices to prove (6.1). In order to make our argument transparent, we prove some
additional estimates, the first of which holds under assumption (2.31).

Further a priori estimates. We prepare an estimate of ‖δhµ0‖H . In view of (2.31), we write
equation (2.27), with n = 0, in the form:

(1 + 2γ0)δhµ0 − h∆δhµ0 = ∆µ0 − µ1 δhγ0,

and test it by δhµ0. As γ0 is nonnegative, we immediately arrive at∫
Ω

|δhµ0|2 + h

∫
Ω

|∇δhµ0|2 ≤
(
‖∆µ0‖H + ‖µ1‖4 ‖δhρ0‖4

)
‖δhµ0‖H .
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Thanks to (2.31), the Sobolev inequality, (4.26), and (5.5), we deduce that

‖δhµ0‖H + h

∫
Ω

|∇δhµ0|2 ≤ c. (6.2)

Let us come to the basic estimate we need. We improve (4.21) and obtain a bound for the
second-difference quotients δ2

hρn (see (2.16)). We write (2.28), with (n + 1) in place of n, and
test the difference between the resulting relation and (2.28) itself by (δhρn+1 − δhρn). We find:∫

Ω

|δhρn+1 − δhρn|2 + h

∫
Ω

∇δhρn+1 · ∇(δhρn+1 − δhρn)

= −
∫

Ω

(
f ′(ρn+2)− f ′(ρn+1)

)
(δhρn+1 − δhρn)

+ h

∫
Ω

(
g′(ρn+1)δhµn + µnδh(g

′(ρn))
)
(δhρn+1 − δhρn)

≤ C h

∫
Ω

(
|δhρn+1|+ |δhµn|+ |µn| |δhρn|

)
|δhρn+1 − δhρn| . (6.3)

By the elementary identity (2.36), we have:

∇δhρn+1 · ∇(δhρn+1 − δhρn) =
1

2
|∇δhρn+1|2 −

1

2
|∇δhρn|2 +

1

2
|∇δhρn+1 −∇δhρn|2.

On the other hand, by the Sobolev inequality, (4.26), and (5.5), we infer that

C h

∫
Ω

(
|δhρn+1|+ |δhµn|+ |µn| |δhρn|

)
|δhρn+1 − δhρn|

≤ 1

2

∫
Ω

|δhρn+1 − δhρn|2 + c h2
(
‖δhρn+1‖2

H + ‖δhµn‖2
H + ‖µn‖2

4 ‖δhρn‖2
4

)
≤ 1

2

∫
Ω

|δhρn+1 − δhρn|2 + c h2
(
‖δhρn+1‖2

H + ‖δhµn‖2
H + ‖µn‖2

V ‖δhρn‖2
V

)
≤ 1

2

∫
Ω

|δhρn+1 − δhρn|2 + c h2
(
‖δhρn+1‖2

H + ‖δhµn‖2
H + 1

)
.

Now, we combine this estimate, the identity just above, and (6.3). Then, we divide by h and sum
over n = 0, . . . ,m− 1, where 1 ≤ m ≤ N − 1. We obtain:

h

2

m−1∑
n=0

‖δ2
hρn‖2

H +
1

2
‖∇δhρm‖2

H +
1

2

m−1∑
n=0

‖∇δhρn+1 −∇δhρn‖2
H

≤ 1

2
‖∇δhρ0‖2

H + c h
m−1∑
n=0

‖δhρn+1‖2
H + c h

m−1∑
n=0

‖δhµn‖2
H + c.

At this point, by (5.5), (4.6), and (4.26), we conclude that

h
N−2∑
n=0

‖δ2
hρn‖2

H ≤ c. (6.4)

25



Consequence. With a view toward deriving an estimate for δ2
hγn, we begin by arguing point-

wise. So, for a.a. (x, t) ∈ Q (once again we omit writing at what point of Q we work) and
for suitable r1 between ρn+2 and ρn+1, and r2 between ρn and ρn+1, we have by the Taylor
formula:

|δ2
hγn| = h−2 |g(ρn+2)− g(ρn+1) + g(ρn)− g(ρn+1)|

= h−2 |g′(ρn+1)(ρn+2 − ρn+1) + 1
2
g′′(r1)(ρn+2 − ρn+1)2

+ g′(ρn+1)(ρn − ρn+1) + 1
2
g′′(r2)(ρn − ρn+1)2|

≤ c |δ2
hρn|+ c

(
|δhρn+1|2 + |δhρn|2

)
.

Now, we square this pointwise estimate, integrate over Ω, sum over n, and deduce that

h
N−2∑
n=0

‖δ2
hγn‖2

H ≤ c h
N−2∑
n=0

‖δ2
hρn‖2

H + c h
N−1∑
n=0

‖δhρn‖4
4 .

Then, (6.4), the Sobolev inequality, and (5.5) yield:

h
N−2∑
n=0

‖δ2
hγn‖2

H ≤ c. (6.5)

Proof of Theorem 2.6. As said before, it suffices to prove (6.1). We reason that, in order to
obtain the analogous estimate for the solution to the continuous problem, one first differentiates
(2.12) with respect to time and then tests the resulting equality by ∂tµ; this yields the desired

term

∫ t

0

∫
Ω

|∇∂tµ|2 on the left-hand side. The idea is to perform the corresponding procedure

on the discrete equation (2.27). However, it turns out that the calculation in the discrete case
becomes simpler if one tests by the analogue of the product (1 + 2g(ρ))∂tµ. To simplify the
notation, we introduce the vector π defined by

πn := (1 + 2γn)δhµn for n = 0, . . . , N − 1. (6.6)

We write (2.27) with (n+1) in place of n, and take the difference between the resulting equality
and (2.27) itself. Then, we test this difference by πn+1 and integrate over Ω. By taking the
elementary identity (2.36) into account, we obtain for n = 0, . . . , N − 2 that

1

2

∫
Ω

|πn+1|2 −
1

2

∫
Ω

|πn|2 +
1

2

∫
Ω

|πn+1 − πn|2 + h

∫
Ω

∇δhµn+1 · ∇πn+1

= −
∫

Ω

(
µn+2 δhγn+1 − µn+1 δhγn

)
πn+1 .

By computing the fourth term on the left-hand side with the help of (6.6), recalling that g is
nonnegative, and rearranging, we deduce that∫

Ω

|πn+1|2 −
∫

Ω

|πn|2 +

∫
Ω

|πn+1 − πn|2 + 2h

∫
Ω

|∇δhµn+1|2
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≤ −2

∫
Ω

(
µn+2 δhγn+1 − µn+1 δhγn

)
πn+1 − 4h

∫
Ω

δhµn+1∇δhµn+1 · ∇γn+1

= −2

∫
Ω

πn+1(µn+2 − µn+1) δhγn+1 − 2

∫
Ω

πn+1 µn+1

(
δhγn+1 − δhγn

)
− 4h

∫
Ω

δhµn+1∇δhµn+1 · ∇γn+1

= −2h

∫
Ω

πn+1 δhµn+1 δhγn+1 − 2h

∫
Ω

πn+1 µn+1 δ
2
hγn

− 4h

∫
Ω

δhµn+1∇δhµn+1 · ∇γn+1 . (6.7)

Now, we estimate each term of the right-hand side separately, before summing over n, in order
to simplify the notation. For the first one, we use Hölder and Sobolev inequalities, and esti-
mates (5.5) and (6.4). We have:

−2h

∫
Ω

πn+1 δhµn+1 δhγn+1

≤ 2h‖πn+1‖4 ‖δhµn+1‖H ‖δhγn+1‖4 ≤ c h‖δhµn+1‖V ‖δhµn+1‖H ‖δhρn+1‖V

≤ h

4

(
‖∇δhµn+1‖2

H + ‖δhµn+1‖2
H

)
+ c h‖δhµn+1‖2

H

≤ h

4
‖∇δhµn+1‖2

H + c h ‖πn+1‖2
H

≤ h

4
‖∇δhµn+1‖2

H + c h ‖πn‖2
H + C h ‖πn+1 − πn‖2

H .

For h small enough, namely, for h ≤ 1/(3C), we conclude that

−2h

∫
Ω

πn+1 δhµn+1 δhγn+1 ≤
h

4
‖∇δhµn+1‖2

H + c h ‖πn‖2
H +

1

3
‖πn+1 − πn‖2

H .

Next, by (4.26), we similarly have:

−2h

∫
Ω

πn+1 µn+1 δ
2
hγn ≤ c h‖δhµn+1‖4 ‖µn+1‖4 ‖δ2

hγn‖H

≤ h

4

(
‖∇δhµn+1‖2

H + ‖δhµn+1‖2
H

)
+ c h ‖µn+1‖2

V ‖δ2
hγn‖2

H

≤ h

4
‖∇δhµn+1‖2

H + h ‖πn‖2
H +

1

3
‖πn+1 − πn‖2

H + c h ‖δ2
hγn‖2

H ,

for sufficiently small h. Finally, by accounting for (4.23), Sobolev inequality, and the compactness
inequality (2.35), we have that, for h small enough,

−4h

∫
Ω

δhµn+1∇δhµn+1 · ∇γn+1 ≤ c h‖δhµn+1‖4 ‖∇δhµn+1‖H ‖∇ρn+1‖4

≤ h

4
‖∇δhµn+1‖2

H + c h‖δhµn+1‖2
4 ‖∇ρn+1‖2

V ≤
h

4
‖∇δhµn+1‖2

H + c h‖δhµn+1‖2
4

≤ h

4
‖∇δhµn+1‖2

H + h
(

1
4
‖∇δhµn+1‖2

H + c‖δhµn+1‖2
H

)
≤ h

2
‖∇δhµn+1‖2

H + c h‖πn+1‖2
H ≤

h

2
‖∇δhµn+1‖2

H + c h‖πn‖2
H +

1

3
‖πn+1 − πn‖2

H .

27



At this point, we combine the inequalities just obtained with (6.7) and note that the terms involv-
ing πn+1 − πn cancel out. Then, we sum over n = 0, . . . , (m− 1), with 1 ≤ m ≤ (N − 1).
We obtain:

‖πm‖2
H + h

m−1∑
n=0

‖∇δhµn+1‖2
H ≤ ‖π0‖2

H + h

m−1∑
n=0

‖πn‖2
H + h

m−1∑
n=0

‖δ2
hγn‖2

H

and the discrete Gronwall lemma allows us to deduce that

‖πm‖2
H + h

m−1∑
n=0

‖∇δhµn+1‖2
H ≤ c

(
‖π0‖2

H + c h

N−2∑
n=0

‖δ2
hγn‖2

H

)
for 1 ≤ m ≤ (N − 1). From (6.2) and (6.5), we infer that

h
N−2∑
n=0

‖∇δhµn+1‖2
H ≤ c.

This and (6.2) yield (6.1), and the proof is complete.

Remark 6.1. As a consequence of estimates (6.1) and (6.4), the solution to the continuous
problem enjoys the following additional regularity properties:

∇∂tµ ∈ L2(Q) and ∂2
t ρ ∈ L2(Q) .

This can give even more: for instance, equation (2.13) can be differentiated with respect to time,
to show that ∆∂tρ belongs to L2(Q) as well, so as to conclude that

ρ ∈ H2(0, T ;H) ∩H1(0, T ;W ).

However, this regularity result could be proved formally and directly for the continuous problem.
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