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Abstract

This paper is concerned with the variational approach in weighted Sobolev spaces to time-

harmonic elastic scattering by two-dimensional unbounded rough surfaces. The rough surface is

supposed to be the graph of a bounded and uniformly Lipschitz continuous function, on which the to-

tal elastic displacement satisfies either the Dirichlet or impedance boundary condition. We establish

uniqueness and existence results for both elastic plane and point source (spherical) wave incidence,

following the recently developed variational approach in [SIAM J. Math. Anal., 42: 6 (2010), pp. 2554–

2580] for the Helmholtz equation. This paper extends our previous solvability results [SIAM J. Math.

Anal., 44: 6 (2012), pp. 4101-4127] in the standard Sobolev space to the weighted Sobolev spaces.

1 Introduction

Rough surface scattering problems for acoustic, electromagnetic and elastic waves have been of interest

to physicists, engineers and applied mathematicians for many years due to their wide range of applications

in optics, acoustics, radio-wave propagation, seismology and radar techniques (see, e.g., [1, 16, 19, 32,

37, 38]). This paper is concerned with uniqueness and existence results in weighted Sobolev spaces

for time-harmonic scattering of incident elastic plane and point source waves from unbounded rough

surfaces. We suppose the scattering surface is given by the graph of a bounded and uniformly Lipschitz

continuous function, on which the total elastic displacement satisfies either the Dirichlet or impedance

boundary condition.

There is already a vast literature on the mathematical analysis of acoustic and electromagnetic scattering

by rough surfaces modeled by the Helmholtz equation. We refer the reader to [11, 12, 7] and [35, Chapter

5] for the integral equation method applied to the Dirichlet boundary value problem with smooth (C1,α)
surfaces in R

n (n = 2, 3) and to [39, 13, 30] for the scattering by penetrable interfaces and inhomoge-

neous layers. The variational approach proposed in [9] by Chandler-Wilde and Monk gives rises to exis-

tence and uniqueness results in non-weighted Sobolev spaces, allowing to treat the scattering problem

due to an inhomogeneous source term whose support lies within a finite distance above rather general

sound-soft surfaces in R
n (n = 2, 3). Moreover, this approach leads to explicit bounds on solutions in

terms of the data and applies to acoustic scattering by impedance surfaces as well as by inhomogeneous

rough layers; see, e.g. [10, 29, 35].

Diffraction phenomena for elastic waves propagating through unbounded interfaces have many applica-

tions, particularly in geophysics and seismology. For instance, the problem of elastic pulse transmission

and reflection through the earth is fundamental to the investigation of earthquakes and the utility of con-

trolled explosions in search for oil and ore bodies; see, e.g., [1, 25, 26, 34] and the references therein.

A rigorous analysis on the two-dimensional elastic scattering of plane waves is given by Arens in [4, 5]

for smooth (C1,α) rigid surfaces, where the solution is sought in C2(D) ∩ C(D) (the region D denotes

the unbounded domain above the scattering surface) via integral equation methods. This generalizes the

1



solvability results in [12, 39, 13] from the Helmholtz equation to the Navier equation. Moreover, an up-

ward propagating radiation condition (UPRC) is proposed in [4] based on the elastic Green’s tensor of the

Dirichlet boundary value problem in a half-plane. The UPRC is proved to be equivalent to the so-called

angular spectrum representation for solutions of the Navier equation established in [20]. The latter has

been used to prove well-posedness of the Dirichlet boundary value problem in non-weighted Sobolev

spaces via a variational approach and perturbation arguments for semi-Fredholm operators (see [20]).

A different radiation condition is used in the work of Duran, Muga and Nedelec [18], with an emphasis

placed on treating surface waves arising from local normal stress excitations on the free boundary of a

half-plane. This new radiation condition is inspired by the asymptotic behavior of the half-space elastic

Green’s tensor with the Neumann boundary condition. It leads to well-posedness of the Neumann bound-

ary value problem in suitable weighted Sobolev spaces, but the weights there (see also [17] in the case

of the Helmholtz equation) are different from ours presented in this paper.

We investigate the variational approach in appropriate weighted Sobolev spaces for both the Dirichlet and

impedance boundary value problems. Our methods are closest to the recently developed variational ap-

proach of Chandler-Wilde and Elschner [6], where an equivalent variational formulation for the Helmholtz

equation is proposed in a scale of weighted spaces. In [6] the well-posedness is established by using the

results of [9] and a perturbation argument. In particular, this new approach applies to two-dimensional

plane wave incidence for the same sound-soft rough surfaces as considered in [9]. Moreover, the incident

spherical and cylindrical waves in 3D can also be treated.

The paper is organized as follows. In Section 2, we rigorously formulate the Dirichlet and impedance

boundary value problems in weighted Sobolev spaces and propose their equivalent variational formula-

tions. As in [6], the radiation condition is to be understood as a bounded linear functional on a weighted

Sobolev space. We adopt the idea of [6, Remark 5.4] to formulate the boundary value problems as equiv-

alent variational equations in a straightforward way. The right hand sides of these equations are given

explicitly in terms of the incident elastic plane waves, and they actually take a form analogously to that

arising from diffraction grating problems; cf. Section 2.4 and [21, 22].

In Section 3, we prove existence and uniqueness of solutions to the equivalent variational problems fol-

lowing the perturbation argument of [6] that relies on commutator estimates for the Dirichlet-to-Neumann

map. The solvability of the impedance boundary value problem in the non-weighted setting is estab-

lished using the well-posedness of the Dirichlet problem. This idea comes from [23, 20] where the a

priori estimates for solutions of the Helmholtz equation in unbounded periodic and non-periodic struc-

tures have been established via Rellich-type identities. It also provides a shorter and simpler proof of the

well-posedness of acoustic scattering from impedance rough surfaces in standard Sobolev spaces (see

[35, Chapter 3.4]) at arbitrary wavenumber.

Section 4 concerns applications of our solvability results to the elastic scattering from periodic structures

(diffraction gratings) as well as to the scattering of elastic point source (spherical) waves. The grating

diffraction problem can be viewed as a special case of scattering by a rough surface. Existing solvability

results for diffraction gratings in the literature all rest on the essential assumption of quasiperiodicity

of solutions. Such an assumption leads to an outgoing Rayleigh expansion of the scattered field and

has considerably simplified the mathematical analysis of periodic scattering problems. We refer to [3] for

uniqueness and existence proofs via integral equation methods and to [21, 22] for the variational approach

applied to boundary value problems of the first, second, third or fourth kind as well as to transmission

problems with non-smooth interfaces in R
n (n = 2, 3). As a consequence of the solvability in weighted

spaces, we provide a theoretical justification of the quasiperiodicity of solutions for elastic diffraction
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grating problems, whenever the incident wave is quasiperiodic; see Section 4.1. Section 4.2 is concerned

with the case of a point source wave generated by the free space elastic Green’s tensor.

Section 5 is devoted to the proof of the crucial commutator estimates of Section 3, extending those

in [6] to the case of elastic scattering. These estimates play an essential rule not only in verifying the

main Theorems 2.2 and 3.1, but also in establishing equivalent variational formulations in the weighted

spaces (see Lemma 2.5). The commutator estimates can be extended to three-dimensional elastic rough

surface scattering problems. Consequently, the Dirichlet and impedance problems for incident spherical

and cylindrical elastic waves in 3D can be treated analogously.

We end up this section by introducing some notation to be used later. Denote by (·)> the transpose of

a vector or a matrix. For a ∈ C, let |a| denote its modulus, and for a ∈ C
2, let |a| denote its Euclidean

norm. For a matrixM = (mij) ∈ C
2×2, ||M || denotes the norm defined by ||M || := maxi,j |mij|. The

symbol a · b stands for the inner product a1b1 + a2b2 of a = (a1, a2)
>, b = (b1, b2)

> ∈ C
2. Standard

L2-based scalar Sobolev spaces defined in a domain Ω or on a surface Γ are denoted by Hs(Ω) or

Hs(Γ) for s ∈ R. Throughout the paper the branch cut of a complex square root is always chosen such

that its imaginary part is non-negative. Unless otherwise stated, we always use c, C to denote generic

positive constants which may vary from line to line.

2 Boundary value problems and equivalent variational formulations

2.1 The basic model

We precisely formulate the scattering problems as follows. Let D ⊂ R
2 be an unbounded connected

open set such that for some constants f− < f+ it holds that

Uf+
⊂ D ⊂ Uf− , Uf+

:= {x = (x1, x2) : x2 > f+}. (2.1)

As in our previous paper [20], the boundary Γ := ∂D of D is supposed to be the graph of a uniformly

Lipschitz continuous function f , i.e.,

Γ = {x ∈ R
2 : x2 = f(x1), x1 ∈ R}, (2.2)

and there is a constant L > 0 such that

|f(x1) − f(x2)| ≤ L |x1 − x2|, for all x1, x2 ∈ R. (2.3)

Such a geometric assumption on Γ is weaker than the condition used in [4, 5] but stronger than that

in [6, 9]. Our a priori estimates of solutions derived in Section 3 always depend on the global Lipschitz

constant L. Assume the region D is filled with an isotropic homogeneous elastic medium characterized

by the Lamé constants λ, µ satisfying µ > 0, λ + µ > 0. Let uin be a time harmonic elastic plane

wave (with time variation of the form exp(−iωt), ω > 0) incident on the rough surface Γ from above.

The incident wave is assumed to be a linear combination of plane pressure and shear waves having the

same incident angle θ ∈ (−π/2, π/2), i.e.,

uin = c1u
in
p + c2u

in
s , cj ∈ C, j = 1, 2, (2.4)
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Figure 1: Geometrical setting of the scattering problem.

where

uin
p := θ̂ exp(ikpθ̂ · x), θ̂ := (sin θ,− cos θ), kp := ω/

√

2µ+ λ,

uin
s := θ̂⊥ exp(iksθ̂ · x), θ̂⊥ := (cos θ, sin θ), ks := ω/

√
µ.

Note that kp and ks are called the compressional and shear wave numbers, respectively. The case of

incident elastic point source (spherical) waves will be treated in Section 4.2, following the approach for

plane wave incidence.

We look for the total elastic displacement u = (u1, u2)
> such that the Navier equation

(∆∗ + ω2)u = 0 in D , ∆∗ := µ∆ + (λ+ µ) grad div , (2.5)

together with one of the following boundary conditions on Γ:

Dirichlet boundary condition: u = 0, (2.6)

Impedance boundary condition: Tu− iηu = 0, η > 0, (2.7)

holds in a distributional sense, and that the scattered field usc := u − uin satisfies an appropriate

radiation condition as x2 → +∞. Note that in (2.5) we have assumed for simplicity that the mass density

of the elastic medium in D is equal to one. The operator T in (2.7) stands for the stress vector or traction

having the form

Tu = 2µ ∂nu+ λ n div u+ µ

(

n2 (∂1u2 − ∂2u1)
n1 (∂2u1 − ∂1u2)

)

on Γ (2.8)

where n = (n1, n2)
> denotes the unit normal pointing into the exterior of D.

2.2 Weighted Sobolev spaces

For h > f+ := maxx1∈R{f(x1)}, let Γh := {x = (x1, x2) : x2 = h} and Sh := D\Uh. Our

variational formulation will be posed on the infinite strip Sh; see Figure 1. Let Fv denote the Fourier

transform of v defined by

Fv(ξ) = (2π)−1/2

∫

R

exp(−it ξ)v(t) dt , ξ ∈ R ,

with the inverse transform given by

F−1w(t) = (2π)−1/2

∫

R

exp(it ξ)w(ξ) dξ , t ∈ R .
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We first introduce weighted Sobolev spaces. For % ∈ R, l ∈ N and a domain G ⊂ R, define the Hilbert

spaces

L2
%(G) := (1 + x2

1)
−%/2L2(G) , H l

%(G) := (1 + x2
1)

−%/2H l(G) ,

equipped with the corresponding canonical norm and scalar product. The space Vh,% is then defined as

the closure of {u|Sh
: u ∈ C∞

0 (D)} in the norm

‖u‖Vh,%
= ‖u‖H1

%(Sh) =

(
∫

Sh

(

∣

∣(1 + x2
1)

%/2u
∣

∣

2
+
∣

∣∇(1 + x2
1)

%/2u|2
)

dx

)1/2

. (2.9)

From time to time we employ the following equivalent norm to || · ||Vh,%
:

||u||′ :=

(
∫

Sh

(1 + x2
1)

%

(

∣

∣u
∣

∣

2
+
∣

∣∇u|2
)

dx

)1/2

, u ∈ Vh,%. (2.10)

Moreover, we introduce

Hs
%(Γh) := (1 + x2

1)
−%/2Hs(Γh) , , % ∈ R ,

where Hs(Γh) is identified with the Sobolev space Hs(R) with norm

‖v‖Hs(R) =

(
∫

R

(1 + ξ2)s|Fv|2dξ
)1/2

.

The weighted space Hs
%(R) will be endowed with the norm

||v||Hs
%(R) := ||(1 + x2

1)
%/2v(x1)||Hs(R). (2.11)

Obviously, the restriction of the incident plane wave uin given in (2.4) to Sh (h > f+) belongs to the

space H1
%(Sh)

2 for all % < −1/2. Below we collect some properties of Hs
%(G), which will be used for

our subsequent analysis.

Proposition 2.1 ([33], [36]). (i) F is an isometry of L2(R) onto itself and also an isometry of L2
%(R)

onto H%(R). More generally, F is an isomorphism of Hs
%(R) onto H%

s (R) for all s, % ∈ R.

(ii) The trace operators

γ− : H1
%(Sh) → H1/2

% (Γh) , γ+ : H1
%(Uh\ŪH) → H1/2

% (Γh) , H > h ,

are continuous.

(iii) The dual space of Hs
%(R) with respect to the L2 scalar product is H−s

−%(R), that is, Hs
%(R)∗ =

H−s
−%(R) for all s, % ∈ R.
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2.3 Radiation condition and boundary value problems

To formulate the Dirichlet and impedance boundary value problems, we need an appropriate radiation

condition for the scattered field in D as x2 → ∞. Assuming that usc only consists of outgoing plane

waves in D, we shall represent the scattered field in Uh in terms of the trace usc
h := usc|Γh

. Using

Fourier transform, it was derived in [20] that

usc(x) =
1√
2π

∫

R

(

eiγp(ξ) (x2−h)Mp(ξ) + eiγs(ξ) (x2−h)Ms(ξ)
)

ûsc
h (ξ) eix1ξ dξ (2.12)

for x2 > h, where Mp and Ms are two matrices given by

Mp(ξ) =
1

ξ2 + γpγs

(

ξ2 ξγs

ξγp γpγs

)

, Ms(ξ) =
1

ξ2 + γpγs

(

γpγs −ξγs

−ξγp ξ2

)

, (2.13)

respectively, with γp(ξ) :=
√

k2
p − ξ2, γs(ξ) :=

√

k2
s − ξ2. Obviously, Mp(ξ) + Ms(ξ) = I for any

ξ ∈ R, where I denotes the 2×2 unit matrix. The right hand side of (2.12) can be interpreted as a super-

position of upward propagating homogeneous compressional resp. shear plane waves corresponding to

|ξ| ≤ kp resp. |ξ| ≤ ks and some evanescent surface waves corresponding to |ξ| > kp resp. |ξ| > ks.

Hence expression (2.12) is always referred to as the angular spectral representation for solutions of the

Navier equation in the literature (see e.g., [14]). Moreover, such a radiation condition can be written in an

alternative form that is identical with the Upward Propagating Radiation Condition (UPRC) proposed by

Arens [4] (see [20, Remark 1])

usc(x) = −i
∫

Γh

Ty [Πh(x, y)]u
sc(y) ds(y) for x2 > h. (2.14)

Here, Πh(x, y) denotes the Green’s tensor for the Navier equation in the half space x2 > h with the

homogeneous Dirichlet boundary condition on Γh, and Ty [Πh(x, y)] is understood as the application of

T to each column of Πh(x, y) with respect to the argument y. The explicit expression of Πh(x, y) and

its inverse Fourier transform on Γh with respect to y1 can be found in [4].

Since each element ofMp exp(iγp(x2−h) andMs exp(iγs(x2−h) is uniformly bounded in ξ ∈ R, the

integral (2.12) exists in the Lebesgue sense for all x ∈ Uh when usc
h ∈ L2(Γh)

2 so that ûsc
h ∈ L2(R)2.

In the weighted case of usc
h ∈ H

1/2
% (R)2 with % > −1, we can interpret equation (2.12) as a bounded

linear functional over H
1/2
% (R)2. To see this, arguing analogously to the Helmholtz case we only need to

show that the function lx(ξ), defined by

lx(ξ) :=
1√
2π

(

eiγp(ξ) (x2−h)Mp(ξ) + eiγs(ξ) (x2−h)Ms(ξ)
)

eix1ξ,

belongs to the dual space H−%
−1/2(R)2 of H%

1/2(R)2 for % > −1; note that by Proposition 2.1 (i) we have

Fusc
h ∈ H%

1/2(R)2. Indeed, using (2.11) there holds

|| lx(ξ)||2H−%
−1/2

(R)2
= || (1 + ξ2)−1/4 lx(ξ) ||2H−%(R)2

=

∫

R

(1 + ξ2)−% | Ft→ξ[(1 + t2)−1/4 lx(t)](ξ)| 2 dξ

=

∫

R

(1 + ξ2)−% | b1/2(ξ) ∗ l̂x(ξ)|2 dξ, (2.15)
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where b%(ξ) := Ft→ξ(1 + t2)−%/2 ∈ L1(R) for % > 0 (see e.g. [6, Lemma 6.4]), with ∗ denoting

convolution. Moreover, elementary calculations show that (cf. (2.12) and (2.14))

l̂x(y1) = Fξ→y1
[lx(ξ)] = −i [Ty Πh(x, y)]| y∈Γh

, y = (y1, y2) ∈ R
2,

and that (see [4, Theorem 2.2])

||Πh(x, y)|| ≤
H(x2 − h, y2 − h)

|x1 − y1|3/2
, |x1 − y1| ≥ ε > 0, x, y ∈ Uh,

for some function H ∈ C(R2). Together with the interior estimate for solutions to the Navier equation

(see e.g., Arens [4, Appendix] ), the previous estimate implies that, for a fixed x ∈ Uh, the inequality

||Ty Πh(x, y) || ≤ C (1 + |x1 − y1|)−3/2

holds uniformly in all y ∈ Γh, with the positive constant C depending only on x2 and h. Therefore, it

follows from (2.15) that

|| lx(ξ)||2H−%
−1/2

(R)2
≤ C ||b1/2(ξ)||2L1(R)

∫

R

(1 + ξ2)−(%+3/2)dξ,

which is bounded provided % > −1. This explains why we can understand (2.12) by extending the

mapping usc(x)|Γh
→ usc(x), given by (2.12), to a bounded linear functional overH

1/2
% (R)2 for % > −1.

Now we formulate the Dirichlet and impedance boundary value problems (DBVP) and (IBVP) as follows.

(DBVP): Given the incoming plane wave uin, find the total field u = uin + usc ∈ H1
loc(D)2 such that

u|Sh
∈

⋂

−1<%<−1/2

V 2
h,%, ∀ h > f+,

u satisfies the Navier equation (2.5) in a distributional sense and that the radiation condition (2.12)

holds for all h > f+.

(IBVP): Given the incoming plane wave uin, find the total field u ∈ H1
loc(D)2 such that

u|Sh
∈

⋂

−1<%<−1/2

H1
%(Sh)

2, ∀ h > f+,

u satisfies the Navier equation (2.5) in a distributional sense and the impedance boundary condition

(2.7), and that the radiation condition (2.12) holds for all h > f+.

We set V% as the energy space for our variational problems, i.e., V% = V 2
h,% in the Dirichlet case and

V% = H1
%(Sh)

2 in the impedance case.

2.4 Dirichlet-to-Neumann map and variational formulations

The purpose of this subsection is to propose equivalent variational formulations of (DBVP) and (IBVP) in

the weighted Sobolev spaces Hs
%(Sh)

2 for every % ∈ (−1,−1/2) and h > f+. Note that we require
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−1 < % < −1/2, because the radiation condition (2.12) is well-defined for any % > −1 and the elastic

plane wave (2.4) belongs to the space H1
%(Sh) for any % < −1/2.

Recall the first Betti formula

−
∫

Sh

(∆∗ + ω2)w · v dx =

∫

Sh

(

Eµ̃,λ̃(w, v) − ω2w · v
)

dx−
∫

∂Sh

v · Tµ̃,λ̃w ds (2.16)

for w, v ∈ H2(Sh)
2, where the bar indicates the complex conjugate, µ̃ and λ̃ are real numbers satisfying

µ̃+ λ̃ = µ+ λ, and

Eµ̃,λ̃(w, v) := (λ+ 2µ) (∂1w1 ∂1v1 + ∂2w2 ∂2v2) + µ (∂2w1 ∂2v1 + ∂1w2 ∂1v2)

+λ̃ (∂1w1 ∂2v2 + ∂2w2 ∂1v1) + µ̃ (∂2w1 ∂1v2 + ∂1w2 ∂2v1), (2.17)

Tµ̃,λ̃w := (µ+ µ̃) ∂nw + λ̃ n div w + µ̃

(

n2 (∂1w2 − ∂2w1)
n1 (∂2w1 − ∂1w2)

)

.

In the Dirichlet case, we have a freedom of selecting the parameters µ̃ and λ̃. In our previous paper

[20], the parameters µ̃, λ̃ were taken as µ̃ = 0, λ̃ = λ + µ, leading to a minimal loss of coercivity for

the corresponding Dirichlet-to-Neumann map on Γh; see [20, Remark 4]. Throughout this paper we set

µ̃ = µ, λ̃ = λ so that the operator Tµ̃,λ̃ = Tµ,λ coincides with the stress operator defined in (2.8).

Moreover, with this choice the bilinear form E(·, ·) = Eµ,λ(·, ·) can be written as

E(w,w) = λ |div w|2 + 2µ
2
∑

i,j=1

|εi,j(w)|2, εi,j(w) := (∂jwi + ∂iwj)/2.

Under our assumptions on the Lamé constants, µ > 0, λ+ µ > 0, we have the estimate (see e.g., [27,

Chap. 5.4])

∫

Sh

E(w,w) dx ≥ C

2
∑

i,j=1

||εi,j(w)||2L2(Sh), ∀w ∈ H1(Sh)
2. (2.18)

and the classical Korn’s inequality,

∫

Sh

(

2
∑

i,j=1

|εi,j(w)|2 + |w|2
)

dx ≥ C ||w||2H1(Sh)2 , ∀w ∈ H1(Sh)
2, (2.19)

where C = C(Sh) > 0 is independent of w. Korn’s inequality for a half-space above a Lipschitz graph

was proved e.g. by Nitsche in [31] via constructing appropriate extension operators. This approach can

be easily adapted to proving (2.19) over the strip Sh of finite height, and we also refer to [15, Section 2.2].

In the following we introduce the Dirichlet-to-Neumann map T on the artificial boundary Γh, allowing us

to treat the scattering problems in the truncated strip Sh in place of the domain D. Define v as the right

hand side of (2.12) with usc
h ∈ C∞

0 (R). Then, elementary calculations show

Tv|Γh
= T (usc

h ),

where the Dirichlet-to-Neumann (DtN) map T = T µ,λ is given by the pseudodifferential operator

T w := F−1M(ξ)F w, w ∈ H1/2
% (R)2, (2.20)
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with

M = Mµ, λ =
i

ξ2 + γpγs

(

ω2γp −ξω2 + 2ξµ(ξ2 + γpγs)
ξω2 − 2ξµ(ξ2 + γpγs) ω2γs

)

. (2.21)

The following commutator estimate for the DtN map is crucial for establishing the main solvability results

in weighted spaces. Its proof will be carried out later in Section 5, based on the commutator estimate of

[6, Theorem 3.1] concerning non-smooth scalar symbols with a square root singularity.

Theorem 2.2. Consider the commutator

C := T − (a2 + x2
1)

%/2T (a2 + x2
1)

−%/2· (2.22)

with the parameter a > 1. Then, for |%| < 1 and a > max{1, 1/ks}, there exists a positive constant

C = C(%, ω, λ, µ) such that the norm of C on L2(R)2 is bounded by a−1/2C .

The following lemma describes the continuity properties of T .

Lemma 2.3. (i) For any s ∈ R, the operator T = T (ω) : Hs(R)2 → Hs−1(R)2 is bounded, and it is

also continuous with respect to ω in the operator norm.

(ii) For |%| < 1, 0 ≤ s ≤ 1, T : Hs
%(R)2 → Hs−1

% (R)2 is bounded.

Proof. (i) The boundedness of T is a direct consequence of the estimates γp(ξ), γs(ξ) ∼ i|ξ| as |ξ| →
∞ and |M(ξ)z|2 ≤ c (1 + ξ2) |z|2 for some constant c > 0 uniformly in z ∈ R

2, ξ ∈ R. The continuity

of T with respect to ω follows from the uniform convergence

||M(ξ;ω1) −M(ξ;ω2)||/(1 + ξ2) → 0, as ω1 → ω2,

in ξ ∈ R. The proof of the second assertion for % 6= 0 can be carried out in the same way as that for the

Helmholtz equation (see [6, Lemma 3.3 (ii)]) by applying the commutator estimate of Theorem 2.2. 2

Introduce the scalar product

(u, v) :=

∫

Sh

u · v dx,

and define the continuous sesquilinear forms Bj : V% × V−% → C (j = 1, 2) by

B1(u, v) :=

∫

Sh

(

E(u, v) − ω2u · v
)

dx−
∫

Γh

γ−v · T γ−u ds , (2.23)

B2(u, v) := B1(u, v) − iη (u, v) .

Now, the variational formulation of (DBVP) resp. (IBVP) can be stated as follows: find u ∈ V% with some

−1 < % < −1/2 such that

B1(u, v) (resp. B2(u, v)) =

∫

Γh

g · v ds, g := Tuin|Γh
− T (uin|Γh

) ∈ H−1/2
% (R). (2.24)

for all v ∈ V−%. To determine the function g on the right hand side of (2.24), we introduce the notation

αp := kp sin θ, βp := kp cos θ, tp :=
√

k2
s − α2

p, ρp := α2
p + βp tp ,

αs := ks sin θ, βs :=
√

k2
p − α2

s, ts := ks cos θ, ρs := α2
s + βs ts .
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By the definitions of γp(ξ) and γs(ξ), we have

γp(αp) = βp, γs(αp) = tp, γs(αs) = ts, γp(αs) = βs.

Using the relation F exp(iαx1) =
√

2πδ(ξ−α) (the δ-function concentrated at ξ1 = α) and elementary

calculations, we find

T (uin
p |Γh

) =
i

kp ρp

(

2ω2αp βp − 2µαp βp ρp

−2µα2
p ρp + ω2(α2

p − βp tp)

)

exp(iαpx1 − βph),

T (uin
s |Γh

) =
i

ks ρs

(

2µα2
s ρs − ω2(α2

s − βs ts)
2ω2αs ts − 2µαs βs ρs

)

exp(iαsx1 − tsh).

(2.25)

On the other hand, by the definition of T given in (2.8), we get

Tuin
p |Γh

=
i

kp

(

−2µαp βp

ω2 − 2µα2
p

)

exp(iαpx1 − βph),

Tuin
s |Γh

=
i

ks

(

2µα2
s − ω2

−2µαs ts

)

exp(iαsx1 − tsh).

(2.26)

Combining (2.25) and (2.26) yields

Tuin
p − T uin

p =
i2ω2βp

kp ρp

(−αp , tp)
> exp(iαpx1 − iβph) =: gp(x1),

Tuin
s − T uin

s =
i2ω2ts
ks ρs

(−βs ,−αs)
> exp(iαsx1 − itsh) =: gs(x1),

on Γh.

One may check that gp and gs take the same forms as those arising from diffraction grating problems for

incident plane pressure and shear waves (see [21, 22]). We now conclude that the function g on the right

hand side of (2.24) can be represented as g = c1gp + c2gs, where the coefficients cj are the weights

attached to the incident plane pressure and shear waves; see (2.4).

Remark 2.4. (i) The right hand side of (2.24) for the Dirichlet boundary value problem does not depend

on the choice of the parameters µ̃, λ̃. In the general case of µ̃ + λ̃ = µ + λ, the symbol matrix

M µ̃,λ̃ involved in the Dirichlet-to-Neumann map T µ̃,λ̃ can be written as (cf. (2.21))

M µ̃,λ̃ :=
i

ξ2 + γpγs

(

ω2γp −ξω2 + ξ(a+ µ)(ξ2 + γpγs)
ξω2 − ξ(λ+ 2µ− b)(ξ2 + γpγs) ω2γs

)

.

To get the corresponding variational formulation in the general case, one may only replace E and

T on the left hand side of (2.24) by Eµ̃,λ̃ and T µ̃,λ̃, respectively. It can be readily checked that

(T µ̃,λ̃ − T µ̃,λ̃)uin = (T µ, λ − T µ, λ)uin on Γh for all µ̃, λ̃ ∈ R such that µ̃+ λ̃ = µ+ λ.

(ii) Suppose u1 ∈ V%1
, u2 ∈ V%2

are the unique solutions to (2.24) corresponding to distinct numbers

%1, %2 such that −1 < %2 < %1 < −1/2. Then, we have u1 ≡ u2, because V−%2
⊂ V−%1

and thus u1 also satisfies (2.22) with % = %2. This suggests that the solution to (2.24) belongs to

the space ∩−1<%<−1/2V%, provided the variational formulation (2.24) is uniquely solvable for each

% ∈ (−1,−1/2).

The equivalence of (DBVP) resp. (IBVP) and the variational formulations in (2.24) can be established

using the following lemma, which extends the results of [20, Lemma 1] for % = 0 to the weighted case.
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Lemma 2.5. Let |%| < 1.

(i) If (2.24) holds with usc
h ∈ H

1/2
% (Γh)

2, then usc ∈ H1
%(Uh\ŪH)2 for every H > h.

(ii) Furthermore, we have (∆∗ + ω2)usc = 0 in Uh, γ+u
sc = usc

h , and

∫

Γh

v̄ · T γ+u
sc dx+ ω2

∫

Uh

u · v dx −
∫

Uh

E(u, v) dx = 0, ∀v ∈ C∞
0 (D)2 .

As in the case of the Helmholtz equation [9] for % = 0, assertion (ii) is a consequence of (i). We will

prove Lemma 2.5 (i) in Section 5 applying our commutator estimates. Using the arguments from [9, 20],

we deduce from Lemma 2.5, Remark 2.4 (ii) and the well-posedness of (2.24) (see Theorem 3.1 below)

the following lemma.

Lemma 2.6. If u is a solution of (DBVP) (resp. (IBVP)), then u|Sh
satisfies the variational problem (2.24)

for each % ∈ (−1,−1/2). Conversely, let w be the unique solution of (2.24) for some % ∈ (−1,−1/2).

If we set u = w in Sh and define u = uin + usc in Uh, where usc is given by right-hand side of (2.12)

with usc
h = γ−(w − uin), then u is the unique solution of (DBVP) (resp. (IBVP)).

3 Existence and uniqueness results in weighted spaces

From Lemma 2.3 (ii) it is seen that the sesquilinear forms Bj (j = 1, 2) are well-defined and continuous

on V% × V−% for each % ∈ (−1,−1/2). Denote by B(j)
% : V% → V ∗

−% the continuous linear operator

generated by Bj , where V ∗
−% is the dual of V−% with respect to the scalar product (·, ·) in L2(Sh)

2. This

enables us to rewrite the variational formulations (2.24) as the operator equations

B(j)
% (u) = G in V ∗

−%, j = 1, 2, G(v) :=

∫

Γh

g · v ds, ∀ v ∈ V−%. (3.1)

In this section we investigate the unique solvability of problems (3.1) and thus of the boundary value

problems (IBVP) and (DBVP) for % ∈ (−1,−1/2). We shall follow the approach of Chandler-Wilde and

Elschner in [6] by using the results in the non-weighted case (% = 0) and a perturbation argument based

on commutator estimates. The main theorem of this paper is stated as follows.

Theorem 3.1. Under the assumptions (2.2) and (2.3), the operators B(j)
% : V% → V ∗

−%, j = 1, 2, are

invertible for each % ∈ (−1,−1/2). In particular, the boundary value problems (DBVP) and (IBVP) both

admit a unique solution.

The proof of Theorem 3.1 will be carried out below in Sections 3.1 and 3.2.

3.1 Proof for the Dirichlet boundary value problem

We first recall the invertibility of B(1)
% in the non-weighted case when % = 0. It was proved in [20] that B(1)

0

is invertible for any frequency of the incident wave, and for some constant c0 = c0(ω, λ, µ, h, L) > 0,

there holds

||(B(1)
0 )−1||V0→V ∗

0
≤ c0. (3.2)
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This generalizes the results of Chandler-Wilde and Monk [9] to the case of elastic scattering. The proof

of (3.2) is based on Rellich-type identities for both the Helmholtz and Navier equations and a perturba-

tion argument for semi-Fredholm operators. However, in contrast to the Helmholtz case, the Dirichlet-to-

Neumann map for the Navier equation does not have a definite real part, leading to essential difficulties

in establishing explicit bounds on solutions as in [9].

To investigate the case when % 6= 0, we introduce equivalent norms

‖u‖L2
%(Sh)2 = ‖(a2 + x2)%/2u‖L2(Sh)2

with parameter a > 0 sufficiently large and modify the norm (2.9) in V% correspondingly. As in [6], we

reformulate the variational form (2.23)-(2.24) as a perturbation of the problem in the non-weighted case.

For u ∈ V%, v ∈ V−%, set

ϕ = (a2 + x2
1)

%/2u ∈ V0 , ψ = (a2 + x2
1)

−%/2v ∈ V0 .

Then from (2.23) we obtain

B1(u, v) = B1(ϕ, ψ) +K(ϕ, ψ) , (3.3)

where K = K1 +K2 with

K1(ϕ, ψ) :=

∫

Sh

[

E((a2 + x2
1)

−%/2ϕ, (a2 + x2
1)

%/2ψ) − E(ϕ, ψ)
]

dx,

K2(ϕ, ψ) :=

∫

Γh

[

ψ · T ϕ− (a2 + x2
1)

%/2ψ · T (a2 + x2
1)

−%/2ϕ
]

ds

=

∫

Γh

ψ · Cϕds.

Recall that the operator C is the commutator defined in (2.22). By the definition of E(·, ·) (see (2.17)), the

sesquilinear form K1 can be evaluated as

|K1(ϕ, ψ)| ≤ c(λ, µ)
{

||ϕ||L2 ||ψ||L2 |E(
∑

j=1,2(a
2 + x2

1)
−%/2ej,

∑

j=1,2(a
2 + x2

1)
%/2ej)|

+||ϕ||L2 (a2 + x2
1)

%/2 |E(
∑

j=1,2(a
2 + x2

1)
−%/2ej, ψ)|

+||ψ||L2 (a2 + x2
1)

−%/2 |E(ϕ,
∑

j=1,2(a
2 + x2

1)
%/2ej)|

}

.

Here, e1 = (1, 0)>, e2 = (1, 0)> denote the unit vectors in R
2 and the norm || · ||L2(Sh)2 is written as

|| · ||L2 for simplicity. Moreover, using the estimates

sup
Sh

∣

∣∇(a2 + x2
1)

%/2
∣

∣ (a2 + x2
1)

−%/2 ≤ |%|/2a ,

sup
Sh

∣

∣∇(a2 + x2
1)

%/2 · ∇(a2 + x2
1)

%/2
∣

∣ ≤ (|%|/2a)2,

we obtain

|K1(ϕ, ψ)| ≤ c(λ, µ)

{

( |%|
2a

)2

‖ϕ‖L2‖ψ‖L2 +

( |%|
2a

)

(‖∇ϕ‖L2‖ψ‖L2 + ‖ϕ‖L2‖∇ψ‖L2)

}

≤ c(λ, µ)

{ |%|
2a

max

(

1,
|%|
2a

)

‖ϕ‖V0
‖ψ‖V0

}

. (3.4)
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Applying Theorem 2.2 to K2, we get

|K2(ϕ, ψ)| ≤ c(ω, λ, µ, %) a−1/2 ‖ϕ‖L2(Γh)2 ‖ψ‖L2(Γh)2 . (3.5)

The estimates (3.4) and (3.5) then imply that the norm of the operator K0 : V0 → V ∗
0 generated by the

form K tends to zero as a→ ∞. By (3.3) we have

B(1)
% = (a2 + x2

1)
−%/2(B(1)

0 + K0)(a
2 + x2

1)
%/2 · .

Now it can be concluded that B(1)
% : V% → V ∗

−% is invertible provided a is sufficiently large, with the

norm of its inverse bounded by some positive constant c = c(ω, λ, µ, %, L, h). Hence, the variational

formulation (2.24) always admits a unique solution for each % ∈ (−1,−1/2); note that uin|Sh
∈ V% for

such %. By Remark 2.4 (ii) and Lemma 2.6 , the solution to (2.24) is indeed the unique solution to (DBVP).

2

3.2 Proof for the impedance boundary value problem

The mathematical analysis in Section 3.1 applies to the impedance boundary value problem, provided

the invertibility of B(2)
0 holds in the non-weighted space. The following lemma shows that the operator

(B(2)
0 )−1 exists and is bounded if we can establish an a priori bound for the solution w ∈ V0 of the

equation

B(2)
0 w = g̃, g̃ ∈ V0. (3.6)

Lemma 3.2. Assume there exists some constant c = c(ω, λ, µ, η, h, L) > 0 such that

||w||H1(Sh)2 ≤ c ||g̃||H1(Sh)2 (3.7)

for all w, g̃ ∈ H1(Sh)
2 satisfying the equation (3.6). Then the operator B(2)

0 : H1(Sh)
2 → (H1(Sh)

2)∗

is invertible, with the norm of its inverse bounded by some constant depending on ω, λ, µ, η, h and L.

We sketch the proof of Lemma 3.2 based on the argument of [20] for elastic scattering from rigid rough

surfaces due to an inhomogeneous source term. The proof extends the result of [9] in acoustic scattering

to the case of the Navier equation under the impedance boundary condition.

Proof of Lemma 3.2. Using Korn’s inequality (2.19), from (3.7) one can derive the a priori estimate

||w||H1(Sh)2 ≤ c ||B(2)
0 w||(H1(Sh)2)∗ for all w ∈ H1(Sh)

2, (3.8)

at arbitrary frequency ω ∈ R
+. Indeed, (3.8) can be verified by arguing analogously to [20, Lemma 4]

where the same a priori estimate for B(1)
0 was justified. The estimate (3.8) implies that B(2)

0 : H1(Sh)
2 →

(H1(Sh)
2)∗ is a semi-Fredholm operator. Such an estimate combined with the invertibility of B(2)

0 :

H1(Sh)
2 → (H1(Sh)

2)∗ for small frequencies leads to the existence and boundedness of (B(2)
0 )−1 at

any frequency; we refer the reader to [20, Sections 4 and 5] for the details using perturbation arguments

for semi-Fredholm operators. Note that, under the assumption η > 0 for the impedance coefficient, the

invertibility of B(2)
0 for small frequencies can be established in the same way as in [20, Section 4]. 2

Now we turn to establishing the crucial a priori estimate (3.7) in the case % = 0. Due to the positive

impedance coefficient η on Γ, the mathematical argument below appears simpler compared to the Dirich-

let case. It also provides a shorter proof of the well-posedness of acoustic scattering from impedance
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rough surfaces in the non-weighted Sobolev space (see [35, Chapter 3.4]) at arbitrary wavenumber. Our

approach rests heavily on the well-posedness of the Dirichlet boundary value problem in the case % = 0.

To prove (3.7) we need the following lemma describing the positivity of the matrix ReM := (M+M∗)/2
for large |ξ|.

Lemma 3.3. Let the matrix M be given as in (2.21). There exists a sufficiently large number Λ > 0 such

that the matrix ReM is positive definite for all |ξ| > Λ.

In the case of µ̃ = 0 and λ̃ = λ + µ, Lemma 3.3 was proved in [20, Section 4] by choosing Λ = ks.

Since the approach there applies to our present case of µ̃ = µ, λ̃ = λ, we omit the proof for the sake of

brevity. A corresponding result for diffraction gratings can be found in [21, Lemma 2].

Assume w ∈ H1(Sh)
2 is a solution to (3.6). In order to evaluate the non-definite part occurring in the

DtN map, we follow [20] and extend w to SH via (2.12) for some H > h. Without loss of generality

we assume H = h + 1. Note that this extension is a solution of the inhomogeneous Navier equation

(∆∗ + ω2)w = g̃ in SH , with g̃ ≡ 0 in SH\Sh, and it also satisfies the impedance boundary condition

on Γ and the UPRC in UH . Hence, for all v ∈ H1(SH)2,

∫

SH

(

E(w, v) − ω2w · v
)

dx− iη

∫

Γ

w · v ds−
∫

ΓH

γ−v · T γ−w ds =

∫

SH

g̃ · v dx. (3.9)

Taking the imaginary part of (3.9) with v = w and making use of the identity (see e.g., [20])

Im

∫

ΓH

γ−w · T γ−w ds = 2ω2

(

∫

|ξ|<kp

γ2
p(ξ) |P (ξ)|2 dξ +

∫

|ξ|<ks

γ2
s (ξ) |S(ξ)|2 dξ

)

> 0 (3.10)

with P (ξ) := (−i/k2
p)F(div u|ΓH

), S(ξ) := (i/k2
s)F(curl u|ΓH

), we find

||w||2L2(Γ)2 ≤ c(ω) η−1 ||g̃||L2(SH)2 ||w||L2(SH)2 . (3.11)

To estimate the L2 norm of w on the strip SH , we study the auxiliary boundary value problem of finding

u ∈ V0 such that

(∆∗ + ω2)u = w in SH , u = 0 on Γ, Tu = T (γ−u) on ΓH . (3.12)

The consideration of the above problem is motivated by [23, 20] where the a priori estimate for solutions

of the Helmholtz equation is verified in unbounded periodic and non-periodic structures. It follows from

[20, Lemma 8] that problem (3.12) is well-posed, with the unique solution u satisfying the bound

||u||H1(SH)2 ≤ c ||w||H1(SH)2 , c = c(ω, λ, µ,H, L) > 0. (3.13)

Moreover, using (3.13), the L2-norms of div u and curl u on the scattering surface can be estimated by

||div u||L2(Γ)2 + ||curl u||L2(Γ)2 ≤ c ||w||1/2

L2(SH)2 ||∂2u||1/2

L2(SH)2 ≤ c ||w||1/2

L2(SH)2 ||w||
1/2

H1(SH)2 ,(3.14)

where the first inequality follows from [20, Lemma 6] through Rellich identities for the Helmholtz equation

under the assumption (2.3).Since u = 0 on Γ, it is easy to check that

n2 |∂nu|2 = n2 |∇u|2 = n2(|curl u|2 + |div u|2) on Γ.
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Therefore, by (3.14), the L2-norm of ∂nu on Γ and thus that of Tu can be also bounded by the left hand

side of (3.14), i.e.,

||Tu||L2(Γ)2 ≤ c ||w||1/2

L2(SH)2 ||w||
1/2

H1(SH)2 . (3.15)

Using integration by parts and again the fact that u = 0 on Γ, we obtain

‖w‖2
L2(SH)2 =

∫

SH

w · w dx =

∫

SH

w · (∆∗u+ ω2u) dx

=

∫

SH

(∆∗w + ω2w) · u dx+

∫

SH

(∆∗u · w − ∆∗w · u) dx

=

∫

SH

g̃ · u dx+

∫

Γ∪ΓH

(Tu · w − Tw · u) ds

=

∫

SH

g̃ · u dx+

∫

Γ

Tu · w ds+

∫

ΓH

(T u · w − T w · u) ds.

It follows from the symmetry M(−ξ) = M(ξ)> and the Plancherel identity that

∫

ΓH

T u · w ds =

∫

R

M(ξ) ûH(ξ) · ŵH(−ξ) dξ =

∫

R

ûH(−ξ) ·M(ξ) ŵH(ξ) dξ =

∫

ΓH

T w · u ds,

where wH = w|ΓH
. Hence, using (3.11), (3.13) and (3.15),

‖w‖2
L2(SH)2 =

∫

SH

g̃ · u dx+

∫

Γ

Tu · w ds

≤ c (||g̃||L2(SH)2 ||u||L2(SH)2 + ||Tu||L2(Γ)2 ||w||L2(Γ)2)

≤ c (||g̃||L2(SH)2 ||w||H1(SH)2 + ||w||L2(SH)2 ||g̃||1/2

L2(SH)2 ||w||
1/2

H1(SH)2),

for some constant c = c(ω,H,L, η, µ) > 0. Together with Young’s inequality and the relation g̃ = 0 in

SH\Sh, this leads to the following estimate of the L2-norm of w on SH ,

‖w‖2
L2(SH)2 ≤ c ||g̃||L2(Sh)2 ||w||H1(SH)2 . (3.16)

Taking the real part of (3.9) with v = w and using (2.20), we get

∫

SH

E(w,w)dx− Re

∫

|ξ|>Λ

M(ξ) ŵH(ξ) · ŵH(ξ) dξ

= −Re

∫

SH

g̃ · w dx+ Re

∫

|ξ|≤Λ

M(ξ) ŵH(ξ) · ŵH(ξ) dξ + ω2

∫

SH

|w|2dx , (3.17)

where Λ > 0 is taken as in Lemma 3.3 so that the second term on the left hand side of (3.17) is

positive. The second integral on the right hand side of (3.17), which is neither positive nor negative, can

be estimated by (see e.g., [20, formula (5.40)])

Re

∫

|ξ|≤Λ

M(ξ)ŵH(ξ) · ŵH(ξ) dξ ≤ c ||g̃||H1(Sh)2 (||g̃||H1(Sh)2 + ||∂2w||L2(SH)2) , (3.18)
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for some constant c = c(ω, λ, µ, h, L,Λ) > 0. Adding up (3.17) and (3.16) and using the inequalities

(2.18), (2.19) and (3.18), we arrive at

||w||2H1(Sh)2 ≤ c (||g̃||2H1(Sh)2 + ||g̃||H1(Sh)2 ||w||H1(Sh)2 + ||w||2L2(SH)2)

≤ c (||g̃||2H1(Sh)2 + ||g̃||H1(Sh)2 ||w||H1(Sh)2) (3.19)

where the last step follows again from (3.16). Finally, recalling that H = h + 1 and applying Young’s

inequality, we obtain

||w||H1(Sh)2 ≤ ||w||H1(SH)2 ≤ c ||g̃||H1(Sh)2 , c = c(ω, λ, µ, h, L, η) > 0.

This proves the estimate (3.7).

Having established the a priori estimate for solutions to (3.6), we can verify Theorem 3.1 for the impedance

boundary value problem in the same way as that for (DBVP). We omit the details. The proof of Theorem

3.1 is thus complete. 2

Remark 3.4. In proving Theorem 3.1 we have used the identity (3.10) and the inequality (3.18), which

were justified in [20] for the Dirichlet problem when the parameters µ̃, λ̃ are taken as µ̃ = 0, λ̃ = λ+ µ.

However, (3.10) and (3.18) remain valid in the general case of µ̃, λ̃ ∈ R such that µ̃+ λ̃ = µ+ λ.

4 Applications

4.1 Elastic scattering by diffraction gratings

As an application of Theorem 3.1, we prove the quasiperiodicity of solutions to (DBVP) and (IBVP) for

diffraction gratings (periodic structures) whenever the incident wave is quasiperiodic. For simplicity we

assume the scattering surface Γ is 2π-periodic in x1, that is, the Lipschitz function f given in (2.2)

satisfies f(x1 + 2π) = f(x1) for all x1 ∈ R. Recall that u is called quasiperiodic in D with phase shift

α (or α-quasiperiodic) if the function u(x) exp(iαx1) is 2π-periodic in x1, or equivalently

u(x1 + 2π, x2) = exp(i2πα)u(x1, x2), x ∈ D.

Obviously, the incident pressure and shear waves uin
p , uin

s are α-quasiperiodic with α = kp sin θ, α =
ks sin θ, respectively.

Corollary 4.1. Suppose the grating profile function f is 2π-periodic in x1 and the incident wave ũin is

α-quasiperiodic in D. Then, the unique solution to (DBVP) or (IBVP) is also α-quasiperiodic. Moreover,

the scattered field usc = u− ũin satisfies the following outgoing Rayleigh expansion

usc(x) =
∑

n∈Z

{

Ap,n

(

αn

βn

)

eiαnx1+iβnx2 + As,n

(

γn

−αn

)

eiαnx1+iγnx2

}

(4.1)

for x2 > f+, where Ap,n, As,n ∈ C are the Rayleigh coefficients, αn := α+ n and

βn :=

{ √

k2
p − α2

n if |αn| ≤ kp ,
i
√

α2
n − k2

p if |αn| > kp,
γn =

{
√

k2
s − α2

n if |αn| ≤ ks ,

i
√

α2
n − k2

s if |αn| > ks.
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Proof. Assume u is the unique solution to (DBVP) or (IBVP). Then, one can check that the function

w(x) = exp(−i2πα)u(x1+2π, x2) is also a solution, using the periodicity of Γ and the quasiperiodicity

of the incident wave. By the uniqueness shown in Theorem 3.1, this implies the identity

exp(−i2πα)u(x1 + 2π, x2) = u(x) in D,

that is, u is quasiperiodic with the same phase shift as the incident wave. The equivalence of the UPRC

(2.14) for quasiperiodic solutions to the Rayleigh expansion (4.1) can be found in [20, Remark 1]. 2

Corollary 4.1 shows that a solution of the form u = ũin + usc satisfying the Dirichlet or Impedance

boundary condition on Γ, where usc is α-quasiperiodic and admits the Rayleigh expansion (4.1), is the

unique solution to (DBVP) or (IBVP) for diffraction gratings.

Remark 4.2. In the case of general elastic plane waves of the form (2.4), the unique solution of (DBVP)

or (IBVP) for diffraction gratings belongs to the sum of a kp sin θ- and a ks sin θ-quasiperiodic Sobolev

space by linear superposition. The diffraction of other non-quasiperiodic incident waves, e.g., a point

source wave generated by the free space (non-quasiperiodic) Green’s tensor to the Navier equation, can

be treated as a special case of the scattering by rough surfaces (see Corollary 4.3 below).

4.2 Scattering of elastic point source waves

As an immediate consequence of the solvability results in weighted Sobolev spaces, we obtain well-

posedness of the scattering of elastic point source waves (spherical waves) from rough surfaces. For

y = (y1, y2) ∈ R
2 with y2 > f+ and some polarization vector a ∈ C

2, the incident elastic point source

wave Gin
a (x, y) is defined as Gin

a (x, y) = G(x, y)a, x 6= y, where G(x, y) is the free-space elastic

Green’s tensor given by (see e.g., [28])

G(x, y) =
i

4µ
H

(1)
0 (ks|x− y|) I +

i

4ω2
grad x grad >

x

[

H
(1)
0 (ks|x− y|) −H

(1)
0 (kp|x− y|)

]

.

Here H
(1)
0 (t) denotes the first kind Hankel function of order zero. Each column of G(x, y) satisfies the

Kupradze radiation condition as |x| → ∞. The asymptotic behavior of the Hankel function for large

arguments implies that

Gin
a (x, y), ∇xG

in
a (x, y) ∼ O(|x|−1/2) as |x| → ∞ .

Therefore, the incident wave satisfies Gin
a (x, y) ∈ H1

%(Sh)
2 for every % < 0 and f+ < h < y2. Note

that Gin
a (x, y) /∈ H1

%(Sh)
2 for h > y2, since it has a logarithmic singularity at the point source x = y.

By Lemma 2.6 and the proof of Theorem 3.1 we have

Corollary 4.3. Given an incident elastic point source wave Gin
a

(x, y) with y2 > f+, there exists a

unique solution u = Gin
a

(·, y) + usc to the boundary value problem (DBVP) or (IBVP), where usc lies in

the intersection of weighted Sobolev spaces
⋂

−1<%<0 V%(Sh) for any h > f+.

5 Commutator estimates

This section is devoted to the proof of Theorem 2.2 and Lemma 2.5 (i). Introduce the parameter a > 0
and consider the pseudodifferential operator Ta on R, with symbol Ma(ξ):

Ta v(t) = F−1Ma(ξ)Fv (ξ), Ma(ξ) := M(ξ/a),
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where the matrix M = Mµ,λ is given in (2.21). Set ρ(a)(|ξ|) = |ξ|2 + γ
(a)
p (|ξ|) γ(a)

s (|ξ|), with

γ(a)
p (|ξ|) := aγp(ξ/a) =

√

k2
pa

2 − |ξ|2, γ(a)
s (|ξ|) := aγs(ξ/a) =

√

k2
sa

2 − |ξ|2.

Then the matrix Ma(ξ) can be rewritten as

Ma(ξ) = ia

(

ω2γ
(a)
p (ξ)/ρ(a)(ξ) −ω2ξ/ρ(a)(ξ) + 2ξµ/a2

ω2ξ/ρ(a)(ξ) − 2ξµ/a2 ω2γ
(a)
s (ξ)/ρ(a)(ξ)

)

.

Consider the commutator

Ca := Ta − (1 + x2
1)

%/2 Ta (1 + x2
1)

−%/2 · , a > 0. (5.1)

We can reduce the norm estimate of Theorem 2.2 for the commutator C to a corresponding estimate for

Ca.

Lemma 5.1. For a > 0, the norm of the commutator C on L2(R2)2 is bounded by Ca−1/2 if and only if

this is true for the commutator Ca.

The above lemma can be proved analogously to [6, Theorem 6.1] using a scaling argument. To estimate

the norm of Ca on L2(R2)2, we need to study the commutator corresponding to each entry of Ma on

L2(R). Introduce the symbols

m(0)
a = ξµ/a, m(1)

a = a γ(a)
p (ξ)/ρ(a)(ξ), m(2)

a = a γ(a)
s (ξ)/ρ(a)(ξ), m(3)

a = a ξ/ρ(a)(ξ), (5.2)

and define analogous commutators C(j)
a (j = 0, 1, 2, 3) of Ca with Ma replaced by m

(j)
a . Obviously,

the symbol of the pseudodifferential operator C(0)
a is smooth, whereas those of C(j)

a (j = 1, 2, 3) are

only continuous functions. In the following two lemmas, we collect some commutator estimates for pseu-

dodifferential operators with smooth and non-smooth scalar symbols established by Chandler-Wilde and

Elschner in [6].

Lemma 5.2. Consider the scalar symbol ma(ξ) ∈ C1(R) with parameter a > 0 and define the commu-

tators

C̃a := Ma − (1 + x2
1)

%/2Ma(1 + x2
1)

−%/2·, Ma := F−1ma F (5.3)

for |%| ≤ 1.

(i) Assume there exist positive constants C0 and C1 such that

|ma(ξ)| ≤ C0 (1 + ξ2)1/2, |m′
a(ξ)| ≤ C1 a

−1/2
on R . (5.4)

Then C̃a : L2(R) → L2(R) are bounded operators with norm less than a−1/2C(%) for some

constant C > 0 depending only on %.

(ii) Assume there exist positive constants C0 and C1 such that for a = 1,

|m1(ξ)| ≤ C0 , |m′
1(ξ)| ≤ C1 (1 + ξ2)−1/2

on R . (5.5)

Then, the pseudodifferential operator M1 : L2
%(R) → L2

%(R) and the commutator C̃1 : L2(R) →
H1(R) both can be bounded by some constant C(%) > 0.
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The results of Lemma 5.2, which are shown in [6, Remark 6.6 (ii),(iii)], can be verified by using standard

estimates for pseudodifferential operators; see also the proof of [6, Theorem 6.2 (i)]. More general results

on pseudodifferential operators with smooth symbols in weighted Sobolev spaces can be found in [33]

and [36]. We also refer the reader to the monograph [24] by Eskin concerning the theory of smooth

pseudodifferential operators, including their applications to boundary value problems for elliptic equations

in a half space. The following lemma from [6, Section 6] presents norm estimates for pseudodifferential

operators with non-smooth (continuous) symbols.

Lemma 5.3. Assume ka > 1 and |%| < 1.

(i) The commutator C̃a defined in (5.3) with ma(ξ) = a−1
√

k2a2 − ξ2 has norm less than C(%)
√

k/a
on L2(R) .

(ii) Suppose a = 1 and m1(ξ) = exp(i (x2 − h)
√

k2 − ξ2), where x2 ∈ (h,H) for some H > h.

Then the operators M1 : L2
%(R) → L2

%(R) and C̃1 : L2(R) → H1(R) are bounded by some

constant C(%, ω, λ, µ,H − h) > 0 uniformly in x2 ∈ (h,H).

The main idea in the proof of Lemma 5.3 (i) in [6] is the use of cut-off functions vanishing in a neighborhood

of the singularities ξ = ±ka, splitting the square-root symbol into a sum of a compactly supported

non-smooth symbol and a C∞-smooth symbol. We do believe that such an approach applies to our

commutator estimates in the elastic case as well, with only an additional complexity arising from the four

singularities ξ = ±kpa,±ksa of the symbol matrix Ma. However in the following, we prefer to verify

Theorem 2.2 (via Lemma 5.1) and Lemma 2.5 (i) in an alternative way by reducing the proofs to the

estimates of Lemmas 5.2 and 5.3 using an appropriate decomposition of the symbols in (5.2).

5.1 Proof of Theorem 2.2

Applying Lemma 5.2 (i) to the commutator C(0)
a , it follows that ||C(0)

a ||L2(R)→L2(R) ≤ a−1/2C(%) for

a > 1. To verify the same estimate for C(j)
a , j = 1, 2, 3, we introduce the auxiliary symbols

m̃(j)
a (ξ) := a−1

√

k2
pa

2 − ξ2C(j)
p + a−1

√

k2
sa

2 − ξ2C(j)
s

= a−1C(j)
p γ(a)

p (ξ) + a−1C(j)
s γ(a)

s (ξ),

with C
(j)
p , C

(j)
s ∈ R (j = 1, 2, 3) to be determined later. Obviously,

(m̃(j)
a )′(ξ) = a−1C(j)

p (γ(a)
p )′(ξ) + a−1C(j)

s (γ(a)
s )′(ξ), j = 1, 2, 3. (5.6)

where (γ
(a)
p )′(ξ) = −ξ/

√

k2
pa

2 − ξ2 is singular at ξ = ±kp a, while (γ
(a)
s )′(ξ) = −ξ/

√

k2
sa

2 − ξ2 is

singular at ξ = ±ks a. These singular points coincide with those for m
(j)
a .

For j = 1, 2, we select C
(j)
p , C

(j)
s such that m

(j)
a (ξ) − m̃

(j)
a (ξ) are continuously differentiable functions

in ξ ∈ R. In the case j = 1, a simple calculation shows

(m(1)
a )′(ξ) = a(γ(a)

p )′(ξ)/ρ(a)(ξ) − aγ(a)
p (ρ(a))′(ξ)/[ρ(a)(ξ)]2 (5.7)

= (γ(a)
p )′(ξ)

a

ρ(a)(ξ)

[

1 − γ
(a)
p (ξ)γ

(a)
s (ξ)

ρ(a)(ξ)

]

− (γ(a)
s )′(ξ)

a[γ
(a)
p (ξ)]2

[ρ(a)(ξ)]2

−2aξ γ(a)
p (ξ)/[ρ(a)(ξ)]2.
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This suggests that m
(1)
a (ξ) − m̃

(1)
a (ξ) ∈ C1(R) if we take (cf. (5.6) and (5.7))

C(1)
p = lim

|ξ|→kpa

a2

ρ(a)(ξ)

[

1 − γ
(a)
p (ξ)γ

(a)
s (ξ)

ρ(a)(ξ)

]

=
1

k2
p

,

C(1)
s = − lim

|ξ|→ksa

a2[γ
(a)
p (ξ)]2

[ρ(a)(ξ)]2
=
k2

s − k2
p

k4
s

.

Moreover, with such a choice the estimates in (5.4) apply to the difference

ma(ξ) := m(1)
a (ξ) − m̃(1)

a (ξ) = a−1γ(a)
p (ξ)[a2/ρ(a)(ξ) − 1/k2

p] − a−1γ(a)
s (ξ)(k2

s − k2
p)/k

4
s

= γp(ζ)[1/ρ(ζ) − 1/k2
p] − γs(ζ)(k

2
s − k2

p)/k
4
s

=: m(ζ),

where ζ = ξ/a, ρ(ζ) := ζ2 + γp(ζ)γs(ζ) and m(ζ) ∈ C1(R). In fact, the first estimate in (5.4) simply

follows from the uniform boundedness

ma(ξ) = m(ζ) ≤ C0 (1 + ζ2)1/2 ≤ C0 (1 + ξ2)1/2, ∀ ξ ∈ R.

To prove the second inequality in (5.4), we observe that, for |ζ| 6= kp, ks,

m′(ζ) = γ′p(ζ)[1/ρ(ζ) − 1/k2
p] − γ′s(ζ)(k

2
s − k2

p)/k
4
s + γp(ζ)ρ

′(ζ)/ρ2(ζ).

By virtue of the asymptotic behavior

ρ′(ζ) ∼ − (k2
p − k2

s)
2 |ζ|3

(|ζ|2 − k2
p)

3/2(|ζ|2 − k2
s)

3/2
as |ζ| → ∞, (5.8)

and the uniform boundedness

k2
p ≤ |ρ(ζ)| ≤ k2

s , ∀ ζ ∈ R,

we get

m′
a(ξ) = m′(ζ)/a ≤ C1/a ≤ C1a

−1/2, a > 1.

By Lemma 5.2 (i), the commutator (5.3) corresponding to the symbol ma := m
(1)
a (ξ) − m̃

(1)
a (ξ) has

norm less than C(%)a−1/2 over L2(R). On the other hand, applying Lemma 5.3 (i) we arrive at the same

bound for the commutator associated with the symbol m̃
(1)
a (ξ) when ksa > 1; note that the constants

C
(1)
p and C

(1)
s are independent of a. Therefore,

||C(1)
a ||L2(R)→L2(R) ≤ C(%)a−1/2, for all a > max{1, 1/ks}.

Analogously, taking C
(2)
p = (k2

p − k2
s)/k

4
p and C

(2)
s = 1/k2

s yields the same bound for C(2)
a .

In the case j = 3, we have m
(3)
a (ξ) = ζ/ρ(ζ), ζ = ξ/a, and for |ξ| 6= kpa, ksa,

(m(3)
a )′(ξ) = a[1/ρ(a)(ξ) − ξ(ρ(a))′(ξ)/[ρ(a)(ξ)]2] = [1/ρ(ζ) − ζρ′(ζ)/ρ2(ζ)]/a

= −(γ(a)
p )′(ξ)

a ξ γ
(a)
s (ξ)

[ρ(a)(ξ)]2
− (γ(a)

s )′(ξ)
a ξ γ

(a)
p (ξ)

[ρ(a)(ξ)]2
+

a

ρ(a)(ξ)

[

1 − 2ξ2

ρ(a)(ξ)

]

.
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Define a function χ(ξ) ∈ C1(R) such that χ(ξ) = 1 for ξ > 1, χ(ξ) = −1 for ξ < −1. Consider

the symbol m
(3)
a (ξ) − m̃

(3)
a (ξ)χ(ξ), where the coefficients of m̃

(3)
a (ξ) in (5.6) are taken as C

(3)
p =

−
√

k2
s − k2

p/kp and C
(3)
s = −

√

k2
p − k2

s/ks, so that this symbol is continuously differentiable for all

ξ ∈ R. Again using (5.8), it follows that the symbol can be also estimated as in (5.4). Employing the same

argument as for C(1)
a implies that the norm of C(3)

a : L2(R) → L2(R) is bounded by C(%)a−1/2 for all

a > {1, 1/ks}.

Now, it can be concluded that the commutator Ca : L2(R2)2 → L2(R2)2 given by (5.1) can be bounded

by C(%)a−1/2 for all a > {1, 1/ks}, since this is true for the commutators C(j)
a (j = 0, 1, 2, 3) that

correspond to the entries of Ma. Recalling Lemma 5.1 we finish the proof of Theorem 2.2. 2

5.2 Proof of Lemma 2.5 (i)

Set v = usc in D and vh = v|Γh
. It follows from (2.12) that

v(x) = F−1
ξ→x1

N0(ξ, x2)Fx1→ξ vh =: N0 vh, (x1, x2) ∈ Uh,

N0(ξ, x2) := exp(iγp(ξ)(x2 − h))Mp(ξ) + exp(iγs(ξ)(x2 − h))Ms(ξ) ,

with the matrixes Mp(ξ),Ms(ξ) ∈ C
2×2 given in (2.13). Introduce the differential operator

T̃ v :=

(

µ∂2 µ∂1

λ∂1 (λ+ 2µ)∂2

)(

v1

v2

)

,

which coincides with the stress operator T = T µ,λ on Γb for any b > h. Then, for some constant

C(ω, λ, µ) > 1, there holds the inequality

C(|∂1v|2 + |T̃ v|2) ≥ C |∂1v|2 + |T̃ v|2 ≥ 1

2

(

|∂1v|2 + |∂2v|2
)

(5.9)

on D. The differential operators ∂1 and T̃ acting on v can be expressed as

∂1v(x1, x2) = F−1[iξ N0(ξ, x2)]F vh =: N1vh,

T̃ v(x1, x2) = F−1[M(ξ)N0(ξ, x2)]F vh =: N2vh.
(5.10)

Now assume that vh ∈ C∞
0 (Γh). We have to prove the estimate

||v||H1
%(Uh\UH)2 ≤ C(%,H, h) ||vh||H1/2

% (Γh)2
, |%| < 1, H > h.

Employing the equivalent norm (2.10) and recalling (5.9), we only need to verify that

∫ H

h

∫

R

(1 + x2
1)

%
(

|N0vh|2 + |N1vh|2 + |N2vh|2
)

dx1dx2 ≤ C ||(1 + x2
1)

%/2 vh||2H1/2(Γh)2 . (5.11)

In the following lemma, we will first prove (5.11) in the case % = 0 and then reduce the proof in the

weighted case to norm estimates only for the operator N0.

Lemma 5.4. (i) If vh ∈ H1/2(Γh)
2, then v ∈ H1(Uh\UH)2 for every H > h.
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(ii) In the general case |%| < 1, the assertion of Lemma 2.5 (i) holds if the following operators

N0 : L2
%(R

2)2 → L2
%(R

2)2, N0 − (1 + x2
1)

%/2N0(1 + x2
1)

−%/2· : L2(R2)2 → H1(R2)2
(5.12)

are uniformly bounded in x2 ∈ (h,H).

Proof. (i) By the Plancherel identity we get

∫ H

h

∫

R

(

|N0vh|2 + |N1vh|2 + |N2vh|2
)

dx1dx2

≤
∫ H

h

∫

R

(

||N0(ξ, x2)||2 + ||iξN0(ξ, x2)||2 + ||M(ξ)N0(ξ, x2)||2
)

|v̂h(ξ)|2dξdx2

≤ C

∫

R

(1 + ξ2)|v̂h(ξ)|2
∫ H

h

||N0(ξ, x2)||2dx2dξ. (5.13)

Below we shall prove that

∫ H

h

||N0(ξ, x2)||2dx2 ≤ C(1 + ξ2)−1/2, ∀ ξ ∈ R. (5.14)

The relation Mp +Ms = I allows us to rewrite N0 as

N0(ξ, x2) =
(

exp(iγp(ξ)(x2 − h)) − exp(iγs(ξ)(x2 − h))
)

Mp(ξ) + exp(iγs(ξ)(x2 − h))I.(5.15)

Applying the mean value theorem to the function t→ exp(t(x2 − h)) yields the identity

eiγp(ξ)(x2−h) − eiγs(ξ)(x2−h) = et(ξ)(x2−h)(x2 − h) |γp(ξ) − γs(ξ)|,

where the values of t(ξ) lie between iγp(ξ) and iγs(ξ) for large |ξ|. Hence, by (5.15) and the definition

of Mp,

∫ H

h

||N0(ξ, x2)||2dx2 ≤ C

(

|γp(ξ) − γs(ξ)|2 ξ2

∫ H−h

0

|et(ξ)x2x2|2dx2 +

∫ H−h

0

|eiγs(ξ)x2|2dx2

)

Making use of the asymptotic behavior

|γp(ξ)|, |γs(ξ)| ∼ (1 + ξ2)1/2, |γp(ξ) − γs(ξ)| ∼ 1/|ξ|, as |ξ| → ∞, (5.16)

we obtain after some elementary calculations (see e.g., [9, Lemma 2.2])

|γp(ξ) − γs(ξ)|2 ξ2

∫ H−h

0

|et(ξ)x2x2|2dx2 ≤ C

∫ H−h

0

|et(ξ)x2x2|2dx2 ≤ C(1 + ξ2)−1/2,

∫ H−h

0

|eiγs(ξ)x2|2dx2 ≤ C(1 + ξ2)−1/2,

from which the inequality (5.14) follows. Insertion of (5.14) into (5.13) yields (5.11) for % = 0. This proves

the first assertion.

(ii) We shall prove the second assertion following the lines in the proof of Lemma 3.4 (i) and Lemma 3.3

(ii) of [6]. Denote by A one of the operators ∂1 and T̃ . Then, there holds the identity

AN0 − (1 + x2
1)

%/2AN0(1 + x2
1)

−%/2· = A
(

N0 − (1 + x2
1)

%/2N0(1 + x2
1)

−%/2 ·
)

+
(

A− (1 + x2
1)

%/2A(1 + x2
1)

−%/2 ·
)

(1 + x2
1)

%/2N0(1 + x2
1)

−%/2 · .
(5.17)
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Since the two operators in (5.12) are uniformly bounded and the operators

A : H1(R)2 → L2(R)2, A− (1 + x2
1)

%/2A(1 + x2
1)

−%/2· : L2(R)2 → L2(R)2

are also bounded, we derive from (5.17) and (5.10) that the commutators

Nj − (1 + x2
1)

%/2Nj(1 + x2
1)

−%/2· , j = 0, 1, 2 ,

are uniformly bounded on L2(R)2 with respect to x2 ∈ (h,H). Further, this implies that

Cj = Cj(x2) := (1 + x2
1)

−%/2Nj −Nj(1 + x2
1)

−%/2· : L2(R)2 → L2
%(R)2, j = 0, 1, 2 , (5.18)

are uniformly bounded in x2. By the continuous imbedding of H1/2(R)2 into L2(R)2, we see the bound-

edness of Cj : H1/2(R)2 → L2
%(Uh\UH)2. On the other hand, the operators

(1 + x2
1)

−%/2Nj : H1/2(R)2 → L2
%(Uh\UH)2, j = 0, 1, 2, (5.19)

are also bounded, because by assertion (i) the operators Nj : H1/2(R)2 → L2(Uh\UH)2 are bounded.

Now combining (5.18) and (5.19) we can conclude the boundedness of

Nj(1 + x2
1)

−%/2 : H1/2(R)2 → L2
%(Uh\UH)2, j = 0, 1, 2,

which implies the estimate (5.11). 2

Remark 5.5. In [6] the uniform boundedness of the operators in (5.12) with

N0 = F−1 exp(i
√

k2 − ξ2(x2 − h))F

(see Lemma (5.3) (ii)) plays an essential role in proving Lemma 2.5 (i) for the Helmholtz equation.

We proceed with the proof of Lemma 2.5 (i). By Lemma 5.4 (ii), it suffices to estimate the norm of the

operators in (5.12). For this purpose we shall adopt the same approach as in the proof of Theorem 2.2 by

using the second assertion of Lemma 5.2 and the result of Lemma 5.3 (ii) for non-smooth symbols.

Motivated by the proof of Theorem 2.2, we introduce the auxiliary symbol

W (ξ, x2) = [exp(iγp(ξ)(x2 − h)) Π+
p + exp(iγs(ξ)(x2 − h)) Π+

s ]χ(ξ)

+[exp(iγp(ξ)(x2 − h)) Π−
p + exp(iγs(ξ)(x2 − h)) Π−

s ] (1 − χ(ξ)),

where χ(ξ) ∈ C∞(R) satisfies χ = 1 for ξ > kp/3 and χ = 0 for ξ < −kp/3. We shall select the

entries of Π±
p ,Π

±
s ∈ C

2×2 so that Q := N0 −W is a continuously differentiable matrix in ξ ∈ R.

Elementary calculations show

∂W

∂ξ
= i(x2 − h)[exp(iγp(ξ)(x2 − h))Π±

p γ
′
p(ξ) + exp(iγs(ξ)(x2 − h))Π±

s γ
′
s(ξ)] := J1(ξ) (5.20)

for ξ ≷ ±kp/3, and ∂N0/∂ξ = J0(ξ) + J2(ξ) where

J0(ξ) := i(x2 − h)[exp(iγp(ξ)(x2 − h))Mp(ξ)γ
′
p(ξ) + exp(iγs(ξ)(x2 − h))Ms(ξ)γ

′
s(ξ)],

J2(ξ) := exp(iγp(ξ)(x2 − h))M ′
p(ξ) + exp(iγs(ξ)(x2 − h))M ′

s(ξ).
(5.21)
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Comparing (5.20) and (5.21) and using elementary calculations, we obtain the desired expressions for

Π±
p ,Π

±
s depending on x2, kp and ks:

Π±
p (x2) =

(

1 ±k−1
p

√

k2
s − k2

p

0 0

)

+
1 − ei

√
k2

s−k2
p(x2−h)

i(x2 − h) k2
p

(

−
√

k2
s − k2

p ∓k−1
p (k2

s − k2
p)

±kp

√

k2
s − k2

p

)

,

Π±
s (x2) =

(

0 0
∓k−1

s

√

k2
p − k2

s 1

)

+
1 − ei

√
k2

p−k2
s(x2−h)

i(x2 − h) k2
s

( √

k2
p − k2

s ∓ks

±k−1
s (k2

p − k2
s) −

√

k2
p − k2

s

)

.

Since the matrices Π±
p (x2),Π

±
s (x2) are uniformly bounded in x2 ∈ [h,H], applying Lemma 5.3 (ii) to

W yields the uniform boundedness of the operators

W := F−1W F : L2
%(R

2)2 → L2
%(R

2)2 ,

W − (1 + x2
1)

%/2W(1 + x2
1)

−%/2· : L2(R2)2 → H1(R2)2 .

Now it is sufficient to prove the uniform boundedness of the operators in (5.12) with theC1-smooth matrix

Q in place ofN0. In the following we shall apply Lemma 5.2 (iii) and check the validity of the inequalities in

(5.5) withm1 replaced by each entry ofQ for large |ξ|. SinceQ = N0−W and ∂Q/∂ξ = J0 +J1 +J2,

it is enough to show that there exist a positive number K > 0 and some constant C(%,N,H − h) > 0
such that

||N0|| + ||W || ≤ C, ||Jn|| ≤ C(1 + ξ2)1/2, |ξ| > K, j = 0, 1, n = 0, 1, 2. (5.22)

We first prove (5.22) for J0. Observing that γ′p(ξ) = ξ/γp(ξ), γ
′
s(ξ) = ξ/γs(ξ) andMp(ξ)+Ms(ξ) = I ,

we represent J0 as J0 = J
(1)
0 + J

(2)
0 with

J
(1)
0 (ξ) := i(x2 − h) ξ

{

ei(x2−h)γp(ξ)/γp(ξ) − ei(x2−h)γs(ξ)/γs(ξ)
}

Mp(ξ),

J
(2)
0 (ξ) := i(x2 − h)

(

ξ/γs(ξ)
)

ei(x2−h)γs(ξ) I.

The matrix function J
(2)
0 can be bounded as

||J (2)
0 || ≤ ||i(x2 − h)γs(ξ)e

i(x2−h)γs(ξ)|| |ξ/γ2
s (ξ)| ≤ C (1 + ξ2)−1/2, (5.23)

where C > 0 is independent of x2 ∈ (h,H). Applying the mean value theorem to the function t →
exp((x2 − h)t)/t gives the relation

ei(x2−h)γp(ξ)/γp(ξ) − ei(x2−h)γs(ξ)/γs(ξ)

=
1

(x2 − h)
e(x2−h)t(ξ) [−(x2 − h)t(ξ) + ((x2 − h)t(ξ))2]

|γp(ξ) − γs(ξ)|
t3(ξ)

, (5.24)

where again the values of t(ξ) lie between iγp(ξ) and iγs(ξ) for large ξ. Inserting (5.24) into the ex-

pression for J
(1)
0 and applying the asymptotic behavior (5.16) we obtain ||J (1)

0 || ≤ C(1 + ξ2)−1/2. This

together with (5.23) proves the inequality in (5.22) for J0.

The other estimates in (5.22) for Jn (n = 1, 2) can be obtained in the same manner as for J0. The

boundedness ofW in (5.22) follows straightforwardly from the uniform boundedness of Π±
p (x2),Π

±
s (x2),

exp(iγp(ξ)(x2 − h)) and exp(iγs(ξ)(x2 − h)) in x2 ∈ (h,H), whereas the estimate for N0 can be

verified by first using the relation Mp +Ms = I and then again applying the mean value theorem to the

resulting expression. The proof of Lemma 2.5 (i) is thus complete. 2
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