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Abstract

In the present paper a general technique is developed for construction of compact
high-order finite difference schemes to approximate Schrödinger problems on nonuniform
meshes. Conservation of the finite difference schemes is investigated. Discrete transpar-
ent boundary conditions are constructed for the given high-order finite difference scheme.
The same technique is applied to construct compact high-order approximations of the
Robin and Szeftel type boundary conditions. Results of computational experiments are
presented.

1 Introduction

High power high brightness edge-emitting semiconductor lasers and optical amplifiers are com-
pact devices and they can serve a key role in different laser technologies such as free space
communication [1], optical frequency conversion [2], printing, marking materials processing [3],
or pumping fiber amplifiers [4].

To simulate the generation and/or propagation of the optical fields along the cavity of the con-
sidered device one can use a 2+1 dimensional system of PDEs which is based on the traveling
wave (TW) equations for slowly varying in time longitudinally counter-propagating and later-
ally diffracted complex optical fields E±(z, x, t) [5], which are nonlinearly coupled to the linear
ODEs for the complex induced polarization functions p±(z, x, t) and to the diffusion equation
for the real carrier density N(z, x, t) [6]:

∂E±

∂t
± ∂E±

∂z
= − i

2

∂2E±

∂x2
− iβ(N, ε|E±|2)E± − iκ∓E∓ − gp(E∓ − p±),

∂p±

∂t
= iωpp

± + γp
(
E± − p±

)
,

1

µ

∂N

∂t
=

∂

∂x

(
D
∂N

∂x

)
+ <eN

(
N,E±, p±

)
.

Here, t ∈ R+, z ∈ [0, L] and x ∈ R denote temporal, longitudinal and lateral coordinates,
respectively, while optical field functions E± satisfy the following reflection-injection conditions
at the longitudinal boundaries of the domain:

E+(0, x, t) = r0(x)E−(0, x, t) + a0(x, t),

E−(L, x, t) = rL(x)E+(L, x, t) + aL(x, t).

A large scale system implied by a discretization of the computational domain and an appropriate
approximation of artificially imposed lateral boundary conditions can be solved effectively with
the help of parallel computing [6, 7, 8]. However, for the precise dynamic simulations of long and
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broad devices and tuning/optimization of the model with respect to one or several parameters,
a further speedup of computations is still desired.

Since, in general, the carrier dynamics is slow (0 < µ � 1), and in the most cases the
polarization equations have only a small impact on the overall dynamics of the optical fields (0 ≥
gp/γp � 1), a proper construction of numerical schemes for the diffractive field equations plays
a decisive role. Here we note, that for the temporarily fixed distribution of the propagation factor
β, neglected polarization and absent coupling between counter-propagating fields (vanishing
distributed coupling κ± = 0 as well as field reflectivities at the longitudinal boundaries r0 =
rL = 0), the equation for the forward (backward) propagating field on the characteristic lines
t− z = t0 (or t− (L− z) = t0) is given by a linear 1+1 dimensional Schrödinger equation

∂u

∂ν
= − i

2

∂2u

∂x2
− iB(ν, x)u,

where the field u(ν, x) = E+(z, x, t) (or u(ν, x) = E−(L− z, x, t)), and the initial condition
u(0, x) is defined by the optical injection function a0(x, t) (or aL(x, t)). Thus, a construction
of the effective numerical schemes for the full model is closely related to the construction of the
schemes for above given linear Schrödinger problem. One of the main challenges in this case is
an implementation of the appropriate boundary conditions (BCs) [9]. In our previous paper [10]
we have investigated the performance of the standard Crank-Nicolson scheme supplemented
with the exact discrete transparent boundary conditions (DTBCs) [11], with the approximate
DTBCs suggested by Szeftel [12] as well as with simple Dirichlet boundary conditions.

The main goal of the present paper is to develop a general technique for construction of compact
high-order finite difference schemes for approximation of Schrödinger problems on nonuniform
meshes. All these schemes can be of practical interest when dealing with broad lasers having
a relatively high regularity of transversal heterostructures. In this case, due to enhanced spatial
approximation precision, we can use a relatively sparse mesh in the transversal spatial direction,
and, nevertheless, obtain the numerical solutions with a required precision.

The rest of the paper is organized as follows. In Section 2 we construct compact finite difference
schemes on uniform and nonuniform meshes. On uniform mesh this high-order finite difference
scheme coincides with the Numerov approximation. The conservation laws of the constructed
finite difference schemes are investigated. For non-uniform meshes these laws can be violated
due to non-symmetrical approximation of the source terms. Results of computational experi-
ments are presented, which confirm the predicted accuracy of compact high-order schemes.

For the compact high-order finite difference scheme the corresponding exact DTBCs are derived
in Section 3. Next, by using the technique from previous sections, we construct compact high-
order approximations of the Robin type BCs, which can be interpreted as an approximation of
the DTBCs suggested by Szeftel [12]. For Neumann type BCs, which are a particular case of
Robin BCs, a stability analysis of the obtained compact schemes is done. It is shown that the
finite difference scheme is unconditionally stable in this case. Finally, in Section 4 we present
several computational experiments which confirm a convergence rate of the compact high-order
finite difference schemes and lateral boundary conditions.
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2 Compact high-order finite difference schemes

We consider the following linear Schrödinger problem in the laterally unbounded domain:

−d∂
2u

∂x2
= f(x, t) + B(x, t)u− i∂u

∂t
, (x, t) ∈ R× R+,

u(x, 0) = u0(x), x ∈ R.
(1)

It is easy to show, that once u0(x) ∈ W 1,2(R), potential B(x, t) is real, and ∂u(x,t)
∂x

or u(x, t)
are vanishing with x → ±∞, the homogeneous Schrödinger equation (f ≡ 0) preserves in
time the following integral:

I1(t) :=

∫
R
|u(x, t)|2 dx = const, t ≥ 0. (2)

If, in addition, function B(x, t) is globally bounded and independent on time, the following inte-
gral is also preserved:

I2(t) := d

∫
R

∣∣∣∂u(x, t)

∂x

∣∣∣2 dx− ∫
R
B(x)|u(x, t)|2 dx = const, t ≥ 0. (3)

In this section we describe very briefly the technique for derivation of compact high-order ap-
proximations to Eq. (1), investigating also the conservation of discrete analogues of the integrals
(2) and (3).

In the first step we restrict to the Method of Lines (MOL), when PDE is discretized only in space
and we get semi-discrete schemes. For this reason we introduce a non-uniform spatial mesh

ωh = {xj : xj = xj−1 + hj− 1
2
, j ∈ Z},

min
j∈Z
|xj| = x0, hj =

hj− 1
2

+ hj+ 1
2

2
, h := max

j∈Z
(hj),

the first and the second order difference operators for spatially discrete functions ηj

∂xηj :=
ηj − ηj−1
hj− 1

2

, ∂2xηj :=
1

hj

(
∂xηj+1 − ∂xηj

)
,

as well as mesh counterparts of the inner product and norm in the complex space L2(R):

(η, ζ)h =
∑
j∈Z

ηjζ
∗
j hj, ‖η‖ =

√
(η, η)h,

(∂xη, ∂xζ]h =
∑
j∈Z

∂xηj ∂xζ
∗
j hj− 1

2
, ‖∂xη]| =

√
(∂xη, ∂xη]h.

In the next step we perform a discretization of the resulting equations in time by using the
Crank-Nicolson method. For this reason we introduce a uniform time mesh

ωτ =
{
tn : tn = nτ, n = 0 ∪ N

}
,
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and define the forward difference quotient and symmetric averaging in time for spatially and
temporarily discrete functions ηnj

∂tη
n
j =

ηn+1
j − ηnj

τ
, η

n+ 1
2

j =
1

2

(
ηn+1
j + ηnj

)
.

2.1 Second order approximation on non-uniform mesh

The first example is selected to demonstrate the basic technique for derivation of finite difference
schemes of high approximation order when a given stencil of the mesh is used. We consider the
following family of three-point semi-discrete finite difference approximations to the Schrödinger
equation (1):

ajUj−1 + cjUj + bjUj+1 = Vj, (4)

where Uj , Vj are mesh functions approximating u(x, t) and v(x, t) = −∂2u
∂x2

at x = xj ,
respectively. In order to find coefficients (aj, bj, cj) we require that corresponding pairs of test
functions

(
U(x), V (x)

)
U(x) = {1, (x− xj), (x− xj)2}, V (x) = {0, 0, −2}

would satisfy the discrete scheme (4) exactly. Then we get a system of linear equations
aj + cj + bj = 0,

−hj− 1
2
aj + hj+ 1

2
bj = 0,

h2
j− 1

2

aj + h2
j+ 1

2

bj = −2.

By solving it and using the equality

dVj = fj + BjUj − i
dUj
dt

, (5)

we get the standard Finite Volume Method (FVM) semi-discrete scheme of approximation order
O(h2):

−d ∂2xUj = fj + BjUj − i
dUj
dt

. (6)

It is easy to prove that for f ≡ 0 and real B the solution of this scheme satisfies the condition
‖U(t)‖2 = const, t ≥ 0, which is the discrete analogue of Eq. (2). If, additionally, B is globally
bounded and time-independent, than d‖∂xU(t)]|2 − (BU(t), U(t))h = const, t ≥ 0, i.e. the
discrete analogue of Eq. (3) holds as well.

A corresponding Crank-Nicolson finite difference scheme

−d ∂2xU
n+ 1

2
j = Bn+

1
2

j U
n+ 1

2
j − i∂tUn

j

under the same assumptions on function B satisfies similar discrete conservation laws:

‖Un‖2 = const, d‖∂xUn]|2 − (BUn, Un)h = const, n ≥ 0.
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2.2 High-order approximation on uniform mesh

Now we consider a family of compact semi-discrete finite difference schemes, that are defined
on the following three-point template:

aUj−1 +
2

h2
Uj + bUj+1 = αVj−1 + γVj + βVj+1. (7)

In order to find coefficients (a, b, α, β, γ) we require that the corresponding pairs of test func-
tions

U(x) = {1, (x− xj), (x− xj)2, (x− xj)3, (x− xj)4}, (8)

V (x) = {0, 0, −2, −6(x− xj), −12(x− xj)2}

would satisfy the discrete scheme (7) exactly. Then we get a system of linear equations

a+ b = −2,

h(a− b) = 0,

h2(a+ b) = −2(α + γ + β),

−h3(a− b) = 6h(α− β),

h4(a+ b) = −12h2(α + β).

By solving it and using equality (5), we derive the following semi-discrete scheme

−d∂2xUj = Ah

(
fj + BjUj − i

dUj
dt

)
, (9)

where the averaging operator Ah is defined as

Ahηj :=
1

12
ηj−1 +

10

12
ηj +

1

12
ηj+1 =

(
I +

h2

12
∂2x

)
ηj.

This scheme coincides with the well-known Numerov scheme of higher order O(h4), see also
[15].

The conservation of a discrete approximation to Schrödinger equation, i.e., conservation of
discrete analogues of integrals (2) and (3), is a desired property of any finite difference scheme.
For a self-completeness of this paper, we present basic results on the conservation of the semi-
discrete scheme (9) with f ≡ 0, as well as of corresponding high-order Crank-Nicolson finite
difference scheme

−d∂2xU
n+ 1

2
j =

(
I +

h2

12
∂2x

)(
Bn+

1
2

j U
n+ 1

2
j − i∂tUn

j

)
. (10)

For more results, see [9].

Theorem 1 Let the real mesh function Bj(t) be bounded for all t ≥ 0 and xj ∈ ωh. Then
the semi-discrete finite difference scheme (9) with f ≡ 0 and the finite difference scheme (10)
preserve the discrete analogue of (2) in time

‖U(t)‖2 = const, t ≥ 0, ‖Un‖2 = const, n ≥ 0. (11)
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If, additionally, function B is constant, then the discrete version of the second integral (3) is also
preserved

d ‖∂xU(t)]|2 − B‖U(t)‖2 = const, t ≥ 0,

d ‖∂xUn]|2 − B‖Un‖2 = const, n ≥ 0.
(12)

Proof. First we consider the case Bj(t) = B. Doing the inner product on both sides of equation
(9) with −2iUj(t), using summation by parts and taking the real part, we obtain

d

dt

(
‖U(t)‖2 − h2

12
‖∂xU(t)]|2

)
= 0.

Similarly, when doing the same operations with Eq. (9) and 2 d
dt
Uj(t) we get

d

dt

((
d+

h2

12
B
)
‖∂xU(t)]|2 − B‖U(t)‖2

)
= 0.

>From these two equalities we get

d

dt
‖U(t)‖2 =

d

dt
‖∂xU(t)]|2 = 0,

what proves the first part of (11) and (12).

For a general case of mesh function Bj we use the technique from Ref. [16]. Since I + h2

12
∂2x ≥

2
3
I > 0, we can rewrite the semi-discrete scheme (9) with f ≡ 0 as follows:

−i d
dt
Uj(t) = Bj(t)Uj(t) + dA∂2xUj(t), A :=

(
I +

h2

12
∂2x

)−1
.

After taking the inner product on both sides of this scheme with−2iUj(t), using summation by
parts and taking the real parts we get

d

dt
‖U(t)‖2 = −2d=m

(
A∂2xUj(t), Uj(t)

)
.

OperatorsA and ∂2x have a common system of eigenvectors, they commute and are self-adjoint.
Thus, A∂2x is also a self adjoint operator and the right-hand side of the last equality vanishes.
This completes the proof of (11) for the semi-discrete scheme (9).

The fully discrete version of conservation laws (11) and (12) are obtained after performing similar

operations with difference scheme (10) and grid functions −2iU
n+ 1

2
j or 2τ∂tU

n
j , n = 0, 1, . . .

2

In general, the above derived scheme (9) is similar to that one presented in Ref. [14]

−d ∂2xUj = Ch[1]fj + Ch[B]Uj − iCh[1]
dUj
dt

, (13)

where the averaging operator Ch is given by

Ch[w]ηj :=
1

12
wj− 1

2
ηj−1 +

10

12

wj− 1
2

+ wj+ 1
2

2
ηj +

1

12
wj+ 1

2
ηj+1.
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We see that averaging operator Ch[w] is self-adjoint for any w, and, therefore, the scheme (13)
satisfies discrete analogues of conservation laws (2) and (3) even for non-uniform potential B.
Since Ch[1] ≡ Ah, for constant B both finite difference schemes (9) and (13) coincide, but for
general non-constant B, however, the approximation order of the scheme (13) is only O(h2),
since

Ch[B]u− AhBu = h2
( 1

24

∂2B
∂x2

u− ∂B
∂x

∂u

∂x

)
.

2.3 High-order approximation on non-uniform mesh

In this section we apply the same technique to construct a high-order compact semi-discrete
finite difference scheme on non-uniform mesh. It is defined on the same three-point template:

ajUj−1 +
2

hj− 1
2
hj+ 1

2

Uj + bjUj+1 = αjVj−1 + γjVj + βjVj+1.

Applying corresponding pairs of test functions (8) as approximation order conditions and solving
the obtained system of linear equations, we get the semi-discrete high-order finite difference
scheme

−d ∂2xUj = Ãh

(
fj + BjUj − i

dUj
dt

)
, (14)

where the averaging operator Ãh is defined as

Ãhηj := αjηj−1 + (1− αj − βj)ηj + βjηj+1,

αj =
h2
j− 1

2

+ hj+ 1
2
(hj− 1

2
− hj+ 1

2
)

12hjhj− 1
2

, βj =
h2
j+ 1

2

+hj− 1
2
(hj+ 1

2
− hj− 1

2
)

12hjhj+ 1
2

.

Since for non-uniform meshes the condition of self-adjoint operators hjα∗j = hj−1βj−1 is,
in general, not satisfied, we can not prove conservation estimates, similar to (11) and (12).
Computational experiments have also confirmed that the related Crank-Nicolson finite difference
scheme

−d∂2xU
n+ 1

2
j = Ãh

(
Bn+

1
2

j U
n+ 1

2
j − i∂tUn

j

)
(15)

on the arbitrary non-uniform mesh is not conservative.

The finite difference scheme (14) on non-uniform mesh reminds the scheme presented in
Ref. [14]:

−d ∂2xUj = C̃h[1]fj + C̃h[B]Uj − iC̃h[1]
dUj
dt

,

where the averaging operator C̃h[w] is defined as

C̃h[w]ηj :=
hj−1/2
12hj

wj−1/2ηj−1 +
10

12
ŵjηj +

hj+1/2

12hj
wj+1/2ηj+1, (16)

ŵj :=
hj−1/2

2hj
wj−1/2 +

hj+1/2

2hj
wj+1/2.

7



It is noteworthy that this averaging operator is self-adjoint, and the difference scheme possesses
discrete analogues of the conservation laws (11) and (12). However, even in the case of con-
stant mesh function w the scheme (16) differs from the high-order approximation (14) and has
approximation accuracyO(h2).

3 DTBCs for compact high-order finite difference scheme

Let us consider the linear Schrödinger problem (1) with f ≡ 0 and a corresponding compact
high-order finite difference scheme (15) constructed on a spatially non-uniform mesh. In practi-
cal computations we should restrict our considerations to the truncated domain (x, t) ∈ ΩT =
[−X,X]× [0, T ] and the truncated mesh

ΩT
h = ωTh × ωTτ , where ωTτ := ωτ ∩ [0, T ],

ωTh := ωh ∩ [−X,X] = {xj ∈ ωh, j = Jl, . . . , Jr}.
(17)

Without loss of generality we can assume, that outside of the computational domain [xJl , xJr ]
the spatial mesh ωh is determined by the uniform steps hJl+ 1

2
and hJr− 1

2

ωh =


xj = xJl + (j − Jl)hJl+ 1

2
if j < Jl

xj ∈ ωTh if j = Jl, . . . , Jr

xj = xJl + (j − Jr)hJr− 1
2

if j > Jr

, (18)

and the finite difference scheme (15) in these outer regions coincide with the Numerov scheme (10).

To close the system (15) defined on the inner part of the finite mesh ΩT
h we need to define the

boundary conditions for field function Un
j at the left and right spatial boundary point xJl and xJr .

In the rest of this section we will construct two different types of boundary conditions admitting
nearly reflection-free field propagation through the boundary of the truncated domain.

3.1 Exact DTBCs

Let us assume that outside of the computational bounds the initial function u0 = 0 and the
potential function B is constant:

u0(x) ≡ 0 if x ∈ R \ [xJl+1, xJr−1], B(t, x) =

{
B̄l, if x ≤ xJl+1

B̄r, if x ≥ xJr−1
. (19)

Following [13] we can prove the theorem:

Theorem 2 Assume, that conditions (19) are satisfied. Then the exact DTBCs for the high-order
compact finite difference scheme (15) considered on the truncated grid ΩT

h are given by

ηk0U
n
Jk
− Un

Jk+νk
= βkU

n−1
Jk+νk

−
n∑
s=0

ηkn−sU
s
Jk
, k ∈ {l, r}, (20)

8



where all parameters entering these conditions are defined as follows:

ηkn =
6 + 5σk
6− σk

δ0n +
6 + 5σ∗k
6− σk

δ1n + αkλ
−n
k

Pn(µk)− Pn−2(µk)
2n− 1

,

βk =
6− σ∗k
6− σk

, σk =
(−B̄kτ + 2i)h2Jk+νk/2

2dτ
, λk =

−σk(3 + σk)

|σk(3 + σk)|
,

µk =
<e((3 + σ∗k)σk)

|σk(3 + σk)|
, αk =

− +
√

24σk(3 + σk)

6− σk
, νl = 1, νr = −1.

(21)

Proof. Taking into account the assumptions (18) and (19), the finite difference scheme (15) at
the outer regions is of Numerov type and can be written as

Un+1
j−1 + Un+1

j+1 + βk
(
Un
j−1 + Un

j+1

)
− 2

(
6 + 5σk
6− σk

Un+1
j +

6 + 5σ∗k
6− σk

Un
j

)
= 0,

where k = l for j ≤ Jl, k = r for j ≥ Jr, and constants βk and σk are as defined in (21).
Following [11, 13], for derivation of the DTBCs we apply the Z-transformation

Z(fn) = f̂(z) :=
∞∑
n=0

fnz
−n, z ∈ C, |z| > Rf

with respect to the time series {fn}∞n=0 representing the considered finite difference scheme at
temporal grid points tn ∈ ωτ . Taking into account the assumption (19) on the initial conditions
u0, the resulting equation reads as

Ûj+1(z)− 2
(6 + 5σk)z + 6 + 5σ∗k

(6− σk)(z + βk)
Ûj(z) + Ûj−1(z) = 0.

For all j ≤ Jl (k = l) and j ≥ Jr (k = r) the solutions of this scheme are given by

Ûj(z) = A+
k (z)χ̂j−Jkk (z) + A−k (z)χ̂Jk−jk (z),

where χ̂k ∈ {χ̂+
k , χ̂

−
k }, χ̂

−
k χ̂

+
k = 1, |χ̂k| = max |χ̂±k | ≥ 1, and {χ̂−k , χ̂

+
k } are two roots of

the characteristic equation

χ̂2
k(z)− 2

(6 + 5σk)z + 6 + 5σ∗k
(6− σk)(z + βk)

χ̂k(z) + 1 = 0.

In order to have a decaying solution Ûj(z) outside of the computational domain, we should set
A−l (z) = 0 (or A+

r (z) = 0). These assumptions yield the boundary conditions

ÛJk+νk(z) = χ̂k(z)ÛJk(z) =⇒ z + βk
z

ÛJk+νk(z) = η̂k(z)ÛJk(z), (22)

where η̂k = z+βk
z
χ̂k(z) ∈ {η̂+k (z), η̂−k (z)} and

η̂±k (z) = 6+5σk
6−σk

+
6+5σ∗

k

6−σk
z−1 ± αk

(
2µkλ

−1
k z−1 − 1− λ−2k z−2

)
F̂ (λkz, µk),

F̂ (z, y) := 1
+
√

1−2yz−1+z−2
=
∑∞

n=0 Pn(y)z−n for |z| > Rf ,

9



After performing an inverse Z-transform we get

ηk,±n = Z−1η̂±k (z)
∣∣
n

=
6 + 5σk
6− σk

δ0n +
6 + 5σ∗k
6− σk

δ1n

± αk
n∑
s=0

(
2µkλ

−1
k δ1n−s− δ0n−s− λ−2k δ2n−s

)
Z−1F̂ (λkz, µk)

∣∣
s

=
6+5σk
6−σk

δ0n +
6+5σ∗k
6−σk

δ1n ± αkλ−nk [2µkPn−1(µk)− Pn(µk)− Pn−2(µk)] .

Here and above Pn(µ) are the Legendre polynomials, δsn are the Croneker symbols, λk, µk,
νk, and αk are the parameters defined in (21), and +

√
z =

√
|z|ei arg(z)/2 denotes the principal

branch of square root of the complex number (i.e., arg(z) ∈ (−π, π]). The numerical test
has shown that η̂k = η̂+k , and, therefore, the required Z−1-transformed sets {ηkn}|∞n=0 =
{ηk,+n }|∞n=0.

The inverse Z-transform of the boundary conditions (22) together with the recurrence property

xPn−1(x) =
n

2n− 1
Pn(x) +

n− 1

2n− 1
Pn−2(x)

of the Legendre polynomials imply the discrete transparency boundary conditions (20). 2

In the case if the solution u and the potential function B are smooth enough, the finite difference
scheme (15) on the grid ΩT

h together with the exact DTBCs (20) have a precision of order
O(τ 2 + h4).

3.2 High-order approximation of transparent BCs

Being elegant and exact, the DTBCs (20) have, however, a serious drawback: with each conse-
quent time step one needs to estimate convolution sums of growing length involving full history
of the field function U at the boundaries of the domain. Due to slow convergence of these
sums (truncation of the sums implies significant errors!), some less computationally demanding
algorithms providing good approximation of DTBCs are still required.

First of all, we construct a compact high-order approximation for the Robin type BCs at the
lateral bounds x = ±X of the truncated domain ΩT :

−
√
d
∂u(−X, t)

∂x
+ irlu(−X, t) = µl,

√
d
∂u(X, t)

∂x
+ irru(X, t) = µr. (23)

In order to derive a compact high-order approximation of BCs, we apply the same technique as
in previous sections. In addition to functions u and v = −∂2u(x,t)

∂x2
, let us define w = −∂u(x,t)

∂x
.

Now we use the following two-point template with a maximal number of free parameters:

akUJk + bkUJk+νk = WJk + γkVJk + βkVJk+νk , k ∈ {l, r}, νl = 1, νr = −1.
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Thus we can take the corresponding triples of test functions

U(x) = {1, x− xj, (x− xj)2, (x− xj)3},
W (x) = {0, −1, −2(x− xj), −3(x− xj)2},
V (x) = {0, 0, −2, −6(x− xj)},

and solve the system of linear equations derived from approximation conditions. The compact
semi-discrete approximation of boundary condition (23) is obtained:

d
UJk−UJk+νk
h
Jk+

νk
2

+
√
d (irkUJk − µk) =

h
Jk+

νk
2

3

(
fJk + BJkUJk − i

dUJk
dt

)
+

h
Jk+

νk
2

6

(
fJk+νk + BJk+νkUJk+νk − i

dUJk+νk
dt

)
, k ∈ {l, r}.

(24)

The approximation error of (24) is of order O(h3). By setting βk = 0 one can also get a
standardO(h2)-order approximation of (24):

d
UJk−UJk+νk
h
Jk+

νk
2

+
√
d (irkUJk − µk) =

h
Jk+

νk
2

2

(
fJk + BJkUJk − i

dUJk
dt

)
,

k ∈ {l, r}.
(25)

The Robin type BCs are also important when considering nonlocal transparent BCs [9, 17] for
the linear homogeneous (f ≡ 0) Schrödinger problem (1) in the laterally truncated domain ΩT .
In Ref. [12], Szeftel proposed to approximate the nonlocal transparent BCs with a sequence of
local operators. Assuming that the conditions (19) are satisfied, we can write these approximate
transparent BCs for (1) at x = ±X as follows [10]:

−νs
√
d ∂u(−νsX,t)

∂x
+ i

(
β +

m∑
k=1

ak

)
u(−νsX, t) = i

m∑
k=1

akdkϕk,s(t),

dϕk,s
dt

= iu(−νsX, t)− i(B̄s + dk)ϕk,s(t), t > 0,

ϕk,s(0) = 0, k = 1, . . . ,m, m ≥ 1, s ∈ {l, r}.

(26)

Having a similar form as Robin BCs (23), these conditions can be approximated by the semi-
discrete compact high-order scheme

d
UJs−UJs+νs
hJs+ νs2

+ i
√
d
(
βUJs +

m∑
k=1

ak
(
UJs − dkΦk,s

))
=

hJs+ νs2
3

(
B̄sUJs − i

dUJs
dt

)
+

hJs+ νs2
6

(
B̄sUJs+νs − i

dUJs+νs
dt

)
,

dΦk,s

dt
= iUJs − i(B̄s+dk)ϕk,s(t), Φk,s(0) = 0, k = 1, . . . ,m, s ∈ {l, r}.

The stability analysis of compact high-order BCs is a non-trivial task. It is important to see if
the proposed approximations are A-stable. In the case of constant B and uniform mesh ωh,
a general technique of spectral analysis can be used. Since the operator defining the finite
difference scheme together with BCs is not symmetric, we only can check whether it can be
diagonalized and eigenvalues of the operator have positive real parts. Applying this method,

11



we should find eigenvalues and eigenvectors of the generalized eigenvalue problem, defined
by the appropriate discrete diffusion operator and the compact boundary conditions [18]. The
influence of compact approximations is taken into account through the generalized formulation
of eigenvalue problem by using the nondiagonal eigenvalue operator.

−∂2xVj = λAhVj, j = Jl + 1, . . . , Jr − 1, Jr = Jl + J,

VJs − VJs+νs
h

+ irsVJs =
hλ

6

(
2VJs+ VJs+νs

)
, s ∈ {l, r}, νl = 1, νr = −1.

(27)

Here we are interested to separate the influence of the compact approximation of boundary
conditions. Thus we take Ah = I , as in the case of standard second-order scheme (6). In
order to simplify analysis, we restrict to the Neumann type boundary condition on boundary
x = xJr = X , i.e. rr = 0, and the Dirichlet boundary condition VJl = 0 at x = xJl = −X .
Then it can be shown that (J − 1) eigenvectors V k and corresponding eigenvalues λk are
defined as

V k
j = sinαk(xj +X), λk =

4

h2
sin2 αkh

2
, k = 1, . . . , J − 1,

where 0 < αk < π/h are (J − 1) roots of nonlinear equation

sinαJh− sinα(J − 1)h =
2

3
sin2 αh

2

(
2 sinαJh+ sinα(J − 1)h

)
.

The remaining eigenvalue λJ is computed numerically and it is shown that λJ > 4/h2. Thus
the compact high-order approximation of boundary conditions is unconditionally stable in this
case.

4 Numerical examples

4.1 Example 1

In order to test the accuracy of compact high-order scheme (15) we have solved a test problem
from [9, 10]. Consider linear Schrödinger equation (1) with B ≡ 0, f ≡ 0, d = 0.5, the exact
solution is given as

u1(x, t) = u1(x, t) :=

√
i

i+ 2t
exp

[
(−ix2 + 4x− 8t)/(i+ 2t)

]
. (28)

We simulate the movement of a soliton for (x, t) ∈ [−X,X] × [0, T ], where X = 10 and
T = 0.7. The initial and boundary conditions are defined by the solution (28):

u0(x) = u1(x, 0), u(±X, t) = u1(±X, t). (29)

The computational grid (17) is determined by the time step τ = 1/N , and the truncated non-
uniform spatial mesh ωTh having |ωTh | = J spatial steps

hj− 1
2

= (α + rj− 1
2
)η, j = Jl + 1, . . . , Jr = Jl + J

12



defined by the random number generator. Here, 0 < rj− 1
2
≤ 1 are pseudo-random numbers,

α is a regularization parameter and η is a scaling constant allowing to locate exactly J steps
within computational interval [−X,X].

In Table 1 errors in the maximum norm ε and convergence rates ρ

εα(|ωTh |, N) := max
tn∈ωTτ

εα(|ωTh |, tn), εα(|ωTh |, tn) = max
xj∈ωTh

|u(xj, t
n)− Un

j |,

ρα(J) := εα(J/2, N/4)
/
εα(J,N)

(30)

for solution of high-order compact finite difference scheme (15) are presented for a sequence
of meshes and α = 0.1 or α = 0.25. Results of experiments show the discrete solution
convergence with fourth order of accuracy even in the case of highly non-uniform space meshes.

Table 1: Errors εα and convergence rates ρα for solution of high-order compact finite difference
scheme (15) with initial and boundary conditions (29).

J N ε0.1 ρ0.1 ε0.25 ρ0.25

200 100 1.29e-2 — 1.03e-2 —
400 400 8.09e-4 15.9 6.64e-4 15.5
800 1600 4.62e-5 17.5 3.85e-5 17.2
1600 6400 3.11e-6 14.8 2.50e-6 15.4

4.2 Example 2

In this case we have solved numerically the test problem of Example 1 with the BCs (23), where

µl = −
√
d
∂u1(−X, t)

∂x
, µr =

√
d
∂u1(X, t)

∂x
, rl = rr = 0. (31)

We note, that these boundary conditions are of Neumann type and are exact once the initial
function u0 is given by (29).

In this example we have tested the accuracy of the new compact high-order finite difference
approximation of BCs (24), and compared it with the standard second-order accuracy scheme
(25). The linear Schrödinger equation is approximated by the high-order finite difference scheme
(10) on a uniform mesh. The results were computed using a very small time step τ , to make
temporal errors negligible. Table 2 gives maximum norm errors ε0(J, T ) at time T = 1.8
for a sequence of space mesh points J , and the observed orders of convergence log2 ρ0(J)
defined in Eq. (30). Crank-Nicolson time discretization of (24) and (25) are used to approximate
boundary conditions of the problem.

Results of computational experiments confirm the conclusion that local approximation errors of
BCs should dominate the global error and the observed convergence orders coincide with the
approximation orders of finite difference schemes (24) and (25).
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Table 2: Errors ε0(J, T ) and orders of convergence log2 ρ0(J) for solution of high-order com-
pact finite difference scheme (10), when BCs (23), (31) are approximated by the third order
accuracy scheme (24) and the standard second order accuracy scheme (25).

FDS J = 250 J = 500 J = 1000 J = 2000

(24) ε0 1.41E-3 1.26E-4 1.47E-5 1.76E-6

(24) log2 ρ0 — 3.48 3.10 3.06

(25) ε0 8.75E-3 2.02E-3 4.99E-4 1.24E-4

(25) log2 ρ0 — 2.11 2.01 2.01
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