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AbstractWe discuss a generalization of Lagrange's algebraic identity that provides valuable insightsinto the nature of Jensen's inequality and of many other inequalities of convexity.
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2 1 THE GENERALIZATION OF LAGRANGE’S IDENTITY

Joseph Louis Lagrange (1736-1813), who have made significant contributions to the develop-
ment of analysis, variational calculus, mechanics and astronomy, is also well known for several
identities that bear his name. Lagrange’s algebraic identity asserts that for every family of

points z, x1, ..., xn in the Euclidean space R
N and every family of real weights p1, ..., pn with

∑n
k=1 pk = 1, we have

n
∑

k=1

pk ‖z − xk‖
2 =

∥

∥

∥

∥

∥

z −
n
∑

k=1

pkxk

∥

∥

∥

∥

∥

2

+
∑

1≤i<j≤n

pipj ‖xi − xj‖
2. (L)

The roots and various ramifications of this identity made the subject of a recent paper [4],
where it was noticed that (L) contains as a special case the much more familiar identity,

(

n
∑

i=1

a2
i

)(

n
∑

i=1

b2
i

)

=

(

n
∑

i=1

aibi

)2

+
∑

1≤i<j≤n

(aibj − ajbi)
2,

valid for all families ai, bi (i = 1, . . . , n) of real numbers.
Lagrange’s identity encompasses many other identities like the parallelogram rule,

2 ‖x‖2 + 2 ‖y‖2 = ‖x + y‖2 + ‖x − y‖2 ,

and its 2-dimensional analogue, the Hlawka identity,

‖x‖2 + ‖y‖2 + ‖z‖2 + ‖x + y + z‖2 = ‖x + y‖2 + ‖y + z‖2 + ‖z + x‖2 .

At first glance, Lagrange’s algebraic identity seems limited to the translates of the square norm
function x → ||x||2 , but it can be easily extended to all functions. This will be done below.

1 The generalization of Lagrange’s identity

Suppose that f is a real-valued function defined on a subset C of the Euclidean space R
N . Then

for every family of points x1, ..., xn ∈ C and every family of nonzero real weights p1, ..., pn such
that

∑n
i=1 pi = 1 and xG =

∑n
i=1 pixi ∈ C\ {x1, ..., xn} , the following extension of (L) takes

place:
n
∑

i=1

pif(xi) = f (xG) +
∑

1≤i<j≤n

pipj 〈s(xi) − s(xj), xi − xj〉 , (GL)

where

s(x) =
f(x) − f(xG)

‖x − xG‖
·

x − xG

‖x − xG‖
for x ∈ C\ {xG} .

In the case of functions of one real variable, s(x) is precisely the slope of the secant line joining
the points (x, f(x)) and (xG, f(xG)) .
The point xG is the equilibrium point for the weighted family of points (x1, p1), ..., (xn, pn).
Notice that it coincides with the center of gravity of that family when all weights p1, ..., pn are
nonnegative.
Clearly, the presence of a pair (xi, pi) in the formula (GL) is effective only when pi 6= 0. That’s
way we imposed the condition that all the weights are nonzero. The case where one of the
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points, say xn, coincides with xG is also a case of degeneracy because (x1, p1), ..., (xn, pn) can

be replaced by
(

x1,
p1

1−pn

)

, ...,
(

xn−1,
pn−1

1−pn

)

with the same equilibrium point xG and moreover

n
∑

i=1

pif(xi) − f (xG) =
n−1
∑

i=1

pi

1 − pn

f(xi) − f (xG) .

As shows the argument below, in the case of smooth functions this replacement can be avoided
simply by defining the slope function at x = xG by the formula

s(xG) = ∇f(xG).

Indeed, the proof of (GL) is based on the formulas giving the expression of these secant lines,
more precisely, on the fact that

f(xi) = f (xG) + 〈s(xi), xi − xG〉 , for i ∈ {1, ..., n}.

Then

n
∑

i=1

pif(xi) − f (xG) =
n
∑

i=1

pi (f(xi) − f (xG))

=

n
∑

i=1

pi 〈s(xi), xi − xG〉

=

n
∑

i=1

pi

〈

s(xi),

n
∑

j=1

pjxi −
n
∑

j=1

pjxj

〉

=
n
∑

i=1

n
∑

j=1

pipj 〈s(xi), xi − xj〉

=
1

2

n
∑

i=1

n
∑

j=1

pipj 〈s(xi) − s(xj), xi − xj〉

=
∑

1≤i<j≤n

pipj 〈s(xi) − s(xj), xi − xj〉 ,

and the proof of (GL) is done.

We will next prove that the identity (GL) reduces to Lagrange’s identity when f is the square
norm function on the Euclidean space. Indeed, in this case the vectors s(xi) are given by the
formula

s(xi) =
‖xi‖

2 − ‖xG‖
2

‖xi − xG‖
·

xi − xG

‖xi − xG‖

=
〈xi + xG, xi − xG〉

‖xi − xG‖
·

xi − xG

‖xi − xG‖
.
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Then

〈s(xi) − s(xj), xi − xj〉

= 〈xi + xG, xi − xG〉 −
〈xi + xG, xi − xG〉

‖xi − xG‖
·
〈xi − xG, xj − xG〉

‖xi − xG‖

−
〈xj + xG, xj − xG〉

‖xj − xG‖
·
〈xj − xG, xi − xG〉

‖xj − xG‖
+ 〈xj + xG, xj − xG〉

= ‖xi‖
2 + ‖xj‖

2 − 2 ‖xG‖
2 −

(

‖xi‖
2 − ‖xG‖

2

‖xi − xG‖
2 +

‖xj‖
2 − ‖xG‖

2

‖xj − xG‖
2

)

〈xi − xG, xj − xG〉 ,

so that

1

2

n
∑

i=1

n
∑

j=1

pipj 〈s(xi) − s(xj), xi − xj〉 =

n
∑

i=1

pi ‖xi‖
2 − ‖xG‖

2 =
1

2

n
∑

i=1

n
∑

j=1

pipj ‖xi − xj‖
2 .

Therefore, for f(x) = ‖x‖2 , the identity (GL) reduces to a special case of Lagrange’s algebraic
identity (L) , precisely, to the case where z = 0. However, due to the translation invariance of
the Euclidean metric, this case is actually equivalent to (L) in full generality.

2 A probabilistic interpretation of Lagrange’s general-

ized identity

From the probabilistic point of view, the identity (GL) provides a formula indicating how much
the expectation E(f ; µ) of f, relative to a discrete probability measure µ =

∑n
i=1 piδxi

, differs
from the value of f at the barycenter bµ of µ. Recall that

bµ =

∫

C

xdµ(x) =

n
∑

i=1

pixi,

that is, bµ coincides with the center of gravity xG.
When f = ‖·‖2 , we noticed above that

E(f ; µ) − f (bµ) =

n
∑

i=1

pif(xi) − f (xG)

=
∑

1≤i<j≤n

pipj 〈s(xi) − s(xj), xi − xj〉

equals the variance of the given family of points with respect to µ,

σ2
µ =

∑

1≤i<j≤n

pipj ‖xi − xj‖
2 .

As we shall show in Example 1 below, one can obtain valuable estimates (from above and from
below) of the variance by using appropriate identities (GL).
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In the general case, the term

SV 2
µ (f) =

∑

1≤i<j≤n

pipj 〈s(xi) − s(xj), xi − xj〉

represents a measure of how far the slopes of f at x1, ..., xn are spread out and will be referred
to as the slope variance. Using the slope variance one can put the identity (GL) in the following
probabilistic form

E(f ; µ) = f (bµ) + SV 2
µ (f).

Clearly, the slope variance is linear and can take negative values (unlike the usual variance
which is nonnegative). Indeed, in the case of the function f(x) = 〈Ax, x〉, x ∈ R

N , attached to
a symmetric matrix A with real coefficients, the slope variance corresponding to the discrete
probability measure µ =

∑n
i=1 piδxi

, is

SV 2
µ (f) =

∑

1≤i<j≤n

pipj 〈A(xi − xj), xi − xj〉 .

Then the condition SV 2
µ (f) ≥ 0 for every µ is equivalent to 〈Ax, x〉 ≥ 0 for every x ∈ R

N .

3 Several examples illustrating (GL)

Example 1. By applying the identity (GL) to the function f(x) = 1/x for a family of points
x1, ..., xn contained in the interval [m, M ] ⊂ (0,∞), and positive weights p1, ..., pn that sum to
1, we get a formula relating the (weighted) arithmetic mean A =

∑n
i=1 pixi of these points to

their (weighted) harmonic mean H =
(

∑n
i=1

pi

xi

)−1

:

A

H
− 1 =

∑

1≤i<j≤n

pipj
(xi − xj)

2

xixj
.

Thus the variance σ2
µ =

∑

1≤i<j≤n pipj(xi−xj)
2 of the given family (with respect to the discrete

probability measure µ =
∑n

i=1 piδxi
) verifies the two sided inequality

m2

(

A

H
− 1

)

≤ σ2
µ ≤ M2

(

A

H
− 1

)

.

As a consequence we infer the following estimate for the discrepancy between the harmonic
mean and the arithmetic mean of a family of points as above

1 +
σ2

µ

M2
≤

A

H
≤ 1 +

σ2
µ

m2
.

A better upper bound for σ2, precisely

σ2
µ ≤ (M − A) (A − m) ,

was found by Bhatia and Davis [2], but their result is also a consequence of the identity (GL)
when applied to the function f(x) = x2, x ∈ [m, M ], and to families of points with equal
weights. Indeed, in this case the identity (GL) becomes

n
∑

i=1

pi (M − xi) (xi − m) = (M − A) (A − m) − σ2
µ.
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Example 2. We next consider the case of the identity (GL) when applied to the logarithmic
function and to a family of positive points x1, ..., xn with positive weights p1, ..., pn that sum to
1. This case provides the following curious formula relating the geometric mean G =

∏n
i=1 xpi

i

to the arithmetic mean A :

G = A ·
∏

1≤i<j≤n

(

(xi

A

)1/(xi−A)
(

A

xj

)1/(xj−A)
)pipj(xi−xj)

.

Assuming that not all points x1, ..., xn are equal each other, we know that G < A, so in this
case we get the inequality

∏

1≤i<j≤n

(

(xi

A

)1/(xi−A)
(

A

xj

)1/(xj−A)
)pipj(xi−xj)

< 1.

Example 3. Even more sophisticated appears the case of the entropy function x ln x. Using
the identric mean of two variables,

I(s, t) =

{

1
e

(

tt

ss

)1/(t−s)

if s 6= t

s if s = t,

we can put the corresponding identity (GL) under the form

n
∏

i=1

(xi

A

)pixi

=
∏

1≤i<j≤n

(

I(xi, A)

I(xj , A)

)pipj(xi−xj)

.

Example 4. Our last example enriches the list of identities verified by the square norm
function in the Euclidean space:

6
(

‖x1‖
2 + ‖x2‖

2 + ‖x3‖
2)+ 2 ‖x1 + x2 + x3‖

2

= 3
(

‖x1 + x2‖
2 + ‖x2 + x3‖

2 + ‖x3 + x1‖
2)+

∑

1≤i<j≤3

‖xi − xj‖
2 . (N)

The weighted version of this identity as well as its extension to families of more than 3 points
is left to the reader as an exercise.
For the proof of (N), divide both sides by 18 and notice that in this form it can be derived
from (GL) as follows:

‖x1‖
2 + ‖x2‖

2 + ‖x3‖
2

3
+

∥

∥

∥

∥

x1 + x2 + x3

3

∥

∥

∥

∥

2

−
2

3

(

∥

∥

∥

∥

x1 + x2

2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

x2 + x3

2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

x3 + x1

2

∥

∥

∥

∥

2
)

=
‖x1‖

2 + ‖x2‖
2 + ‖x3‖

2

3
−

∥

∥

∥

∥

x1 + x2 + x3

3

∥

∥

∥

∥

2

− 2

(

∥

∥

x1+x2

2

∥

∥

2
+
∥

∥

x2+x3

2

∥

∥

2
+
∥

∥

x3+x1

2

∥

∥

2

3
−

∥

∥

∥

∥

x1 + x2 + x3

3

∥

∥

∥

∥

2
)

=
1

18

∑

1≤i<j≤3

‖xi − xj‖
2 .



7

4 The connection with convexity inequalities

Very close to our generalization of Lagrange’s algebraic identity is Jensen’s inequality for convex
functions. Indeed, if f is a convex function on an interval [a, b] then the slopes

sc(x) =
f(x) − f(c)

x − c
,

of the secant lines passing to an arbitrarily fixed point (c, f(c)), are nondecreasing on [a, b]\{c}.
See [6], Theorem 1.3.1, p. 20. As a consequence, all products (sc(xi) − sc(xj)) (xi − xj) are
nonnegative, so from the identity (GL) we infer the discrete form of Jensen’s inequality:

f (xG) ≤
n
∑

i=1

pif(xi) (J)

for every family of points x1, ..., xn ∈ [a, b] and every family of nonnegative weights p1, ..., pn

such that
∑n

i=1 pi = 1. The continuous form of this inequality can be established in the same
manner via a suitable extension of (GL) that will be described in the next section.
Jensen’s inequality (J) can work even for nonconvex functions provided the barycenters xG

are well placed. Indeed the fact that the slopes from some point xG are nondecreasing is
not characteristic to convex functions. This is discussed in the appendix, where the case of
polynomials of 4th degree is presented.
Given a real-valued function f on an interval [a, b] assumed to be bounded from below, we
define its convex hull co(f) as the supremum of all convex functions h ≤ f. Of course, f =
co(f) when f is convex. The convex hull of a zigzag function is convex polygonal function.
If f meets co(f) at an interior point xG, then clearly f verifies Jensen’s inequality (J) for every
family of points x1, ..., xn ∈ [a, b] and every family of nonnegative weights p1, ..., pn such that
∑n

i=1 pi = 1 and
∑n

i=1 pixi = xG. It turns out that this condition simply means that f has a
support line at xG that is,

f(x) ≥ f(xG) + λ(x − xG),

for some λ ∈ R. See [6], Lemma 1.5.1, p. 30.
We didn’t exploit here the fact that the identity (GL) actually works for families of real weights
rather than of positive weights. The interested reader will find a more systematic approach of
Jensen’s inequality for nonconvex functions and signed measures in [7].
It is worth mentioning that the identity (GL) touches many other aspects of convexity. For
example, from (N) we immediately infer the inequality

‖x1‖
2 + ‖x2‖

2 + ‖x3‖
2

3
+

∥

∥

∥

∥

x1 + x2 + x3

3

∥

∥

∥

∥

2

≥
2

3

(

∥

∥

∥

∥

x1 + x2

2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

x2 + x3

2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

x3 + x1

2

∥

∥

∥

∥

2
)

,

which illustrates the phenomenon of (2D)-convexity as developed in [1]. This is related to
Popoviciu’s characterization of convexity in the case of real-valued functions defined on inter-
vals: f : I → R is convex if and only if it is continuous at the interior of I and verifies the
inequality

f(x1) + f(x2) + f(x3)

3
+f

(

x1 + x2 + x3

3

)

≥
2

3

[

f

(

x1 + x2

2

)

+ f

(

x2 + x3

2

)

+ f

(

x3 + x1

2

)]

for every x1, x2, x3 ∈ I. See [6], p.12.
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5 Further extensions

Our generalization of Lagrange’s identity has a continuous analogue in the framework of Borel
measures µ supported by a Borel subset C of R

N that verify the conditions

µ(C) = 1 and bµ =

∫

C

xdµ(x) ∈ C.

Then for every (µ-) integrable function f : C → R the following analogue of the identity (GL)
holds true:

∫

C

f(x)dµ(x) − f(bµ) =
1

2

∫

C

∫

C

〈s(x) − s(y), x− y〉 dµ(x)dµ(y),

The details are practically the same as in the discrete case with the only observation that the
slope function s(x) is defined by a formula similar to (S), where the role of xG is taken by the
barycenter bµ.
The whole discussion above extends verbatim from the case of Euclidean spaces to that of
inner product spaces. Surprisingly, an analogue of the identity (GL) can be established in the
general setting of normed linear spaces, by using the so called normalized duality mapping. This
mapping attaches to each element x in a normed linear space E a subset J(x) of the dual space
E ′ defined by

J(x) =
{

x′ ∈ E ′ : [x′, x] = ‖x‖2 = ‖x′‖
2
}

.

Here [x′, x] = x′(x) represents the duality pairing of functionals in E ′ with elements x in E.
The fact that J(x) 6= ∅ is assured by the Hahn-Banach extension theorem. The duality mapping
J is single-valued when E is a reflexive, in particular when E is one of the Lebesgue spaces
Lp(R) for 1 < p < ∞. See [11], Theorem 16.1, p. 69. The usefulness of the normalized duality
mapping in nonlinear analysis is nicely presented in [3].
Suppose now that f is a real-valued function defined on a subset C of a normed vector space E.
Then, exactly as in the Euclidean case, for every family of points x1, ..., xn ∈ C and every family
of nonzero real weights p1, ..., pn such that

∑n
i=1 pi = 1 and xG =

∑n
i=1 pixi ∈ C\ {x1, ..., xn} ,

we have the identity

n
∑

i=1

pif(xi) = f (xG) +
∑

1≤i<j≤n

pipj [s(xi) − s(xj), xi − xj ] .

Here the slope function is defined by the formula

s(x) =
f(x) − f(xG)

‖x − xG‖
2 · ϕx−xG

for x 6= xG,

where ϕx−xG
is any functional in J(x − xG).

Last but not least, Lagrange’s generalized identity (GL) holds not only for real-valued functions,
but also for functions taking values in an arbitrary Banach space.
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6 An open problem

While every nonnegative polynomial of a single variable can be expressed as a sum of squares
(of polynomials), in the case of several variables this does not works. This led Hilbert to address
the following problem:

(Hilbert’s seventeenth problem). Given a multivariate polynomial that takes only nonnegative
values over the reals, can it be represented as a sum of squares of rational functions?

In 1926, E. Artin solved this problem in the affirmative.
A notable example of nonnegative polynomial that cannot be represented as a sum of squares
of polynomials was provided by Motzkin in 1966 (see [5], or [8], p. 46):

1 + x4y2 + x2y4 − 3x2y2 =

(

x2y(x2 + y2 − 2)

x2 + y2

)2

+

(

xy2(x2 + y2 − 2)

x2 + y2

)2

+

(

xy(x2 + y2 − 2)

x2 + y2

)2

+

(

x2 − y2

x2 + y2

)2

. (M)

The fact that
1 + x4y2 + x2y4 − 3x2y2 ≥ 0 for all x, y ∈ R

can be established via the arithmetic mean - geometric mean inequality (which in turns is a
consequence of Jensen’s inequality).
Can (GL) explain Motzkin’s identity or at least is it able to provide an illustration to Hilbert’s
seventeenth problem? At the moment we lack a clear answer.
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Appendix. Jensen’s inequality for nonconvex functions

In this Appendix, we derive Jensen’s inequality via Lagrange’s identity in detail and state an
example, how Jensen’s inequality can be used in nonconvex situations. On the way to Jensen’s
inequality we pass the Cauchy-Schwarz inequality and Chebyshev’s inequality.
Given an interval I ⊂ R, a sequences (ai)

n
i=1, a set of non negative weights (pi)

n
i=1 with

∑n
i=1 pi =

1 and a convex function f : I −→ R, Jensen’s famous inequality reads

f(a0) ≤
n
∑

i=1

pif(ai) , (A.1)

where a0 =
∑n

i=1 piai is the average of the sequence (ai)
n
i=1. Its proof can be found in any

textbook on convex analysis (see, e.g., [6]). Actually, the case n = 2 is the definition of
convexity. Thus, Jensen’s inequality holds if and only if f in convex. But this is true, only if
we allow the points (ai)

n
i=1 to be anywhere on I.

The following proof of Jensen’s inequality via Lagrange’s identity and Chebyshev’s inequality
shows that Jensen’s inequality is true even for nonconvex function, if the points ai are chosen
in a special manner. It turns out that this inequality is more a consequence of monotonicity
than convexity.
Since Jensen’s inequality is one of the most important inequalities in mathematics and physics
(see, e.g., [10] for the role of Jensen’s inequality as origin of the second law of thermodynamics),
this can be useful for applying methods of convex analysis in some nonconvex situations.
Starting from Lagrange’s identity, there are two ways for the derivation of inequalities. We set

L(x, y) =

n
∑

k=1

pkx
2
k ·

n
∑

k=1

pky
2
k −

(

n
∑

k=1

pkxkyk

)2

−
∑

1≤i<j≤n

pipj(xiyj − xjyi)
2 .

Lagrange’s identity reads L(x, y) ≡ 0. The last part has a defined sign. This leads to the
Cauchy-Schwarz inequality

n
∑

k=1

pkx
2
k ·

n
∑

k=1

pky
2
k ≤

(

n
∑

k=1

pkxkyk

)2

.

Now, we define

C(a, b) = L

(

a + b

2
, 1

)

− L

(

a + b

2
, 1

)

=

=
n
∑

k=1

pkakbk −

(

n
∑

k=1

pkak

)(

n
∑

k=1

pkbk

)

−
∑

1≤i<j≤n

pipj(ai − aj)(bi − bj) .

From L(x, 1) ≡ 0 follows C(a, b) ≡ 0. Thus,

n
∑

i=1

piaibi −
n
∑

i=1

piai ·
n
∑

i=1

pibi =
∑

1≤i<j≤n

pipj(ai − aj)(bi − bj) . (A.2)

In this identity, the right hand side is nonnegative, if (ai) and (bi) are equal-monotone sequences,
for example, both are increasing ones. If so, (A.2) implies Chebyshev’s inequality

n
∑

i=1

piaibi ≥
n
∑

i=1

piai ·
n
∑

i=1

pibi .
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Setting a0 =
∑n

i=1 piai, the barycenter or mean value of the sequence (ai), we obtain from (A.2)
the identity

n
∑

i=1

pibi(ai − a0) =
∑

1≤i<j≤n

pipj(ai − aj)(bi − bj) . (A.3)

Given the sequence (ai), an example for a sequence (bi) is bi = sa0
(ai), a sequence defined by

the slope function

sb(x) =
f(x) − f(b)

x − b

of a function f : I ⊂ R −→ R in some fixed pivot b. If (ai) is in increasing order and this slope
is a increasing function in x for given b = a0, (ai) and (bi) are equal-monotone sequences and
we obtain from (A.3)

0 ≤
n
∑

i=1

pi
f(ai) − f(a0)

ai − a0
(ai − a0) =

n
∑

i=1

pif(ai) −
n
∑

i=1

pif(a0) .

This is precisely Jensen’s inequality (A.1), For the derivation we did not use convexity of f .
Thus, Jensen’s inequality holds not only for convex function as well known, but for any function
with monotone slope for a fixed pivot.
sb(x) is the slope of the secant through the points in b and x. sb(x) is increasing, if looking
from the point (b, f(b)) on the graph of f(x), no point (x, f(x)) “lies in the shadow” of the
graph. This can happen for some points b even if the function is not convex.
If f(x) is convex, sb(x) is increasing for any point b. In this case, because of

(ai − aj)(bi − bj) = (ai − aj)

(

f(ai) − f(a0)

ai − a0
−

f(aj) − f(a0)

aj − a0

)

=

=
f(ai)
ai−a0

ai−aj

+
f(aj)
a0−aj

ai−aj

−
f
(

a0−aj

ai−aj
ai + ai−a0

ai−aj
aj

)

(ai−a0)(a0−aj)

(ai−aj)(ai−aj)

≥ 0 ,

(ai) and bi = sa0
(ai) are equal-monotone for any mean value a0, since

0 ≤
1

α2
f(x1) +

1

α1
f(x2) −

1

α1α2
f(α1x1 + α2x2)

is true for any real numbers α1 and α2, if only x1, x2 and α1x1 +α2x2 are points in the interval
of convexity I of f .

An amazing example, published in [9],
are polynomials of forth order – typi-
cal non-convex functions. We consider
such a function f(x) and its turning
points with x-coordinates x1 and x2.
The turning point tangents e1 and e2

intersect the graph of f(x) in points
with x-coordinates x3 and x4. Now,
Jensen’s inequality holds for any se-
quence (ai) with a mean value a0 satis-
fying a0 ≥ x3 or a0 ≤ x4.

x

f(x) e1

e2
r

r

r

r

x4 x1 x2 x3

-

6
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