Weierstraß-Institut für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint

On the structure of the quasiconvex hull in planar elasticity

Sebastian Heinz

submitted: October 7, 2012

Weierstraß-Institut
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: sebastian.heinz@wias-berlin.de

No. 1736
Berlin 2012

[^0]Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: $\quad+4930$ 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

Abstract

Let K_{1} and K_{2} be compact sets of real 2×2 matrices with positive determinant. Suppose that both sets are frame invariant, meaning invariant under the left action of the special orthogonal group. Then we give an algebraic characterization for K_{1} and K_{2} to be incompatible for homogeneous gradient Young measures. This result permits a simplified characterization of the quasiconvex hull and the rank-one convex hull in planar elasticity.

1 Introduction

We study quasiconvexity in the calculus of variations. Morrey [Mor52] proved that this is the essential property for functions in the context of sequentially weakly lower-semicontinuity for multiple integrals. Unfortunately, his definition of quasiconvexity is very hard to test. Kristensen [Kri99] even showed that there cannot be any "local" characterization which is equivalent to quasiconvexity. Kristensen's proof makes use of Šverák's counterexample of a rank-one convex function that fails to be quasiconvex [Šve92]. The difference between quasiconvexity and rank-one convexity is also visible on the level of sets. Milton [Mil04] showed that there is a rank-one convex set which fails to be quasiconvex. However, Milton's as well as Šverák's counterexample work only in the case of an underlying space $\mathbb{M}^{m \times n}$ with $m \geq 3$ and $n \geq 2$.

In contrast to that, the situation in $\mathbb{M}^{2 \times 2}$ seems to be fundamentally different. Whether rank-one convexity and quasiconvexity are the same over $\mathbb{M}^{2 \times 2}$ remains an open question. Nevertheless, we would like to recall a few of the results for the 2×2 case. Müller [Mül99b] showed that rank-one convexity implies quasiconvexity on diagonal matrices. Dolzmann [Dol03] proved that rank-one convexity and polyconvexity are equivalent for frame-invariant sets with constant determinant. In this paper, we heavily rely on results by Faraco and Székelyhidi [FS08] on the localization of the quasiconvex hull. One of the key tools that we are going to use is the following, see [FS08, Corollary 3].

Theorem 1.1. Let ν be a compactly supported homogeneous gradient Young measure over $\mathbb{M}^{2 \times 2}$. Then the set $\operatorname{supp}(\nu)^{\text {qc }}$ is connected.

In [Hei11], we applied this to the case of isotropic sets. Now we study quasiconvexity in the context of frame-invariant sets in $\mathbb{M}^{2 \times 2}$. We prove the following (see Theorem 6.3).

Theorem (Incompatible sets). Let $L_{1}, L_{2} \subseteq \mathbb{M}^{2 \times 2}$ be compact and frame-invariant sets of matrices with positive determinant. Then the following properties are equivalent:
(a) L_{1} and L_{2} are incompatible for homogeneous gradient Young measures.
(b) L_{1} and L_{2} are incompatible for first-order laminates. In addition, $\left\{A^{t} A \mid A \in L_{1}\right\}$ and $\left\{C^{t} C \mid C \in L_{2}\right\}$ are incompatible for T4 configurations.
(c) L_{1} and L_{2} can be separated by a polyconvex set.

This theorem gives an algebraic characterization for two frame-invariant sets to be incompatible for homogeneous gradient Young measures. In view of elasticity theory, a 2×2 matrix A might represent a deformation gradient. Then the key observation of the theorem is that essential conditions can be nicely written down for the so-called right Cauchy-Green tensor $A^{t} A$. In addition, we will construct a set Δ which provides information about the structure of the quasiconvex hull. Our second result reads (see Theorem 6.1)

Theorem (Structure). Let $K \subseteq \mathbb{M}^{2 \times 2}$ be a compact and frame-invariant set of matrices with positive determinant and $A, B \in K$. Then the following properties are equivalent:
(i) A and B lie in the same connected component of K^{rc}.
(ii) A and B lie in the same connected component of K^{qc}.
(iii) A and B lie in the same connected component of K^{pc}.
(iv) $\operatorname{det}(A)$ and $\operatorname{det}(B)$ lie in the same connected component of Δ.

The paper is organized as follows:
In Section 2, we recall definitions of the convexity notions that are used later on. Then we give a short introduction to T4 configurations in Section 3. Preliminaries can be found in Section 4. Section 5 provides the most important tool and Section 6 collects the main results of this paper.

2 Convexity notions

We denote by $\mathbb{M}^{2 \times 2}$ the vector space of all real 2×2 matrices equipped with the Euclidean structure of \mathbb{R}^{4}. We are going to recall some convexity notions in $\mathbb{M}^{2 \times 2}$. A detailed discussion, also for higher dimensions, can be found in [Bal77], [Dac89, §4.1], [Mül99a] and [Dol03].
Let $f: \mathbb{M}^{2 \times 2} \rightarrow \mathbb{R}$ be a given continuous function. Then f is convex if for every $A, B \in \mathbb{M}^{2 \times 2}$ we have

$$
\begin{equation*}
\forall \lambda \in[0,1] \quad f(\lambda A+(1-\lambda) B) \leq \lambda f(A)+(1-\lambda) f(B) \tag{1}
\end{equation*}
$$

The function f is polyconvex if there exists a convex function $g: \mathbb{R}^{5} \rightarrow \mathbb{R}$ such that for every $A \in \mathbb{M}^{2 \times 2}$ we have $f(A)=g(A, \operatorname{det}(A))$, where $\operatorname{det}(A)$ denotes the determinant of A. The function f is quasiconvex (in Morrey's sense [Mor52]), if for every $A \in \mathbb{M}^{2 \times 2}$ and every smooth function $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with compact support we have

$$
0 \leq \int_{\mathbb{R}^{2}}(f(A+\mathrm{D} \phi(x))-f(A)) \mathrm{d} x .
$$

The function f is rank-one convex if (1) holds for every $A, B \in \mathbb{M}^{2 \times 2}$ that are rank-one connected, meaning $A-B$ equals the tensor product $a \otimes b$ for some vectors $a, b \in \mathbb{R}^{2}$. Polyconvexity and rank-one convexity were introduced by Ball [Bal77].
Now we consider sets of matrices. Therefore fix a compact set $K \subset \mathbb{M}^{2 \times 2}$. We denote by $\mathcal{M}(K)$ the set of all probability measures over the Borel sets of K. Let $\nu \in \mathcal{M}(K)$ be a given element. We write $\bar{\nu}$ for its mean value and $\operatorname{supp}(\nu)$ for its support. We define the sets $\mathcal{M}^{\mathrm{pc}}(K), \mathcal{M}^{\mathrm{qc}}(K)$ and $\mathcal{M}^{\mathrm{rc}}(K)$ as follows. A probability measure $\nu \in \mathcal{M}(K)$ lies in $\mathcal{M}^{\text {pc }}(K)\left(\mathcal{M}^{\text {qc }}(K)\right.$ or $\left.\mathcal{M}^{\text {rc }}(K)\right)$ if and only if Jensen's inequality

$$
\begin{equation*}
f(\bar{\nu}) \leq \int_{\mathbb{M}^{2} \times 2} f(A) \mathrm{d} \nu(A) \tag{2}
\end{equation*}
$$

is fulfilled for every continuous function $f: \mathbb{M}^{2 \times 2} \rightarrow \mathbb{R}$ which is polyconvex (quasiconvex or rank-one convex). Kinderlehrer and Pedregal [KP91] show that every $\nu \in \mathcal{M}^{\mathrm{qc}}(K)$ is a homogeneous gradient Young measure. Whereas every $\nu \in \mathcal{M}^{\mathrm{rc}}(K)$ is a laminate, see [Ped93]. The polyconvex hull of K is given by

$$
\begin{equation*}
K^{\mathrm{pc}}=\left\{\bar{\nu} \mid \nu \in \mathcal{M}^{\mathrm{pc}}(K)\right\} . \tag{3}
\end{equation*}
$$

We get the quasiconvex hull K^{qc}, the rank-one convex hull K^{rc} and the convex hull K^{c} if, in (3), we replace $\mathcal{M}^{\mathrm{pc}}(K)$ by $\mathcal{M}^{\mathrm{qc}}(K), \mathcal{M}^{\mathrm{rc}}(K)$ and $\mathcal{M}(K)$, respectively. Finally, we call K polyconvex (quasiconvex, rank-one convex or convex) whenever $K=K^{\mathrm{pc}}$ ($K=K^{\mathrm{qc}}, K=$ K^{rc} or $K=K^{\mathrm{c}}$) holds. The previous definitions together with the hierarchy of convexity notions imply that $K \subseteq K^{\text {rc }} \subseteq K^{\text {qc }} \subseteq K^{\text {pc }} \subseteq K^{\text {c }}$. In particular, every laminate is a homogeneous gradient Young measure.
Note that all these convexity notions, both for functions and for sets, are stable against transformations of the underlying space $\mathbb{M}^{2 \times 2}$ which are given by $A \mapsto S A T$ for some invertible matrices $S, T \in \mathbb{M}^{2 \times 2}$. We will make use of this fact several times.

3 Laminates

Two classes of laminates play an important role in our paper. First, consider the case of two rank-one connected matrices $A, B \in \mathbb{M}^{2 \times 2}$, where $A=B$ is possible. Then for every real number $\lambda \in(0,1)$ the measure $\lambda \delta_{A}+(1-\lambda) \delta_{B}$ with support $\{A, B\}$ is a laminate, a so-called first-order laminate. In fact, it fulfills Jensen's inequality (see (2)) for rank-one convex functions.
Second, consider the case of four matrices $A_{1}, \ldots, A_{4} \in \mathbb{M}^{2 \times 2}$ without rank-one connections. Tartar [Tar93] showed that $\left\{A_{1}, \ldots, A_{4}\right\}$ can be the support of a laminate. Consider the following definition, compare [Szé05]. A 4 -tuple $\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ over $\mathbb{M}^{2 \times 2}$ without rank-one connections forms a $T 4$ configuration whenever there exist matrices $C_{1}, \ldots, C_{4} \in \mathbb{M}^{2 \times 2}$ of rank equal to 1 , a matrix $P \in \mathbb{M}^{2 \times 2}$ and real numbers $\kappa_{1}, \ldots, \kappa_{4}>1$ such that (T4) or ($\mathrm{T} 4^{\star}$)

Figure 1: Three matrix configurations in $\mathbb{M}^{2 \times 2}$. Solid lines follow rank-one directions.
is fulfilled:

$$
\text { (T4) }\left\{\begin{array} { r l }
{ A _ { 1 } } & { = P + \kappa _ { 1 } C _ { 1 } } \tag{4}\\
{ A _ { 2 } } & { = P + C _ { 1 } + \kappa _ { 2 } C _ { 2 } } \\
{ A _ { 3 } } & { = P + C _ { 1 } + C _ { 2 } + \kappa _ { 3 } C _ { 3 } } \\
{ A _ { 4 } } & { = P + C _ { 1 } + C _ { 2 } + C _ { 3 } + \kappa _ { 4 } C _ { 4 } } \\
{ 0 } & { = C _ { 1 } + \ldots + C _ { 4 } }
\end{array} , \quad \text { (T44) } \left\{\begin{array}{r}
A_{1}=P+C_{1} \\
A_{2}=P+C_{2} \\
A_{3}=P+C_{3} \\
A_{4}=P+C_{4} \\
0
\end{array} \quad\left\{C_{1}, \ldots, C_{4}\right\}^{c} .\right.\right.
$$

The lemma collects well-known properties of T4 configurations.
Lemma 3.1. Let $A_{1}, \ldots, A_{4} \in \mathbb{M}^{2 \times 2}$ be matrices such that $\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ forms a $T 4$ configuration. Then, for (T4*), the matrix P and, for (T4), the matrices $P_{1}=P, P_{2}=P+C_{1}, P_{3}=$ $P+C_{1}+C_{2}$ as well as $P_{4}=P+C_{1}+C_{2}+C_{3}$ lie in the rank-one convex hull $\left\{A_{1}, \ldots, A_{4}\right\}^{\mathrm{rc}}$.

Proof. Compare with Figure 1. There exists a laminate ν so that $\bar{\nu}=P$ and $\operatorname{supp}(\nu)=$ $\left\{A_{1}, \ldots, A_{4}\right\}$. A way how to construct such a ν for (T4) can be found, for example, in [Mül99a, §2.5]. Similar constructions can be used when P is replaced by P_{2}, P_{3} or P_{4}. Condition (T4*), which can be seen as a limit case of (T4), is handled by Kirchheim [Kir03, Corollary 4.19].

4 Incompatibility and frame invariance

Let $K_{1}, K_{2} \subseteq \mathbb{M}^{2 \times 2}$ be compact sets. We call K_{1} and K_{2} incompatible for homogeneous gradient Young measures if for every $\nu \in \mathcal{M}^{\text {qc }}\left(K_{1} \cup K_{2}\right)$ we have either $\operatorname{supp}(\nu) \subseteq K_{1}$ or $\operatorname{supp}(\nu) \subseteq K_{2}$. In the same spirit, we call K_{1} and K_{2} incompatible for first-order laminates if there are no rank-one connected matrices A, B with $A \in K_{1}$ and $B \in K_{2}$. We call K_{1} and K_{2} incompatible for T4 configurations if for every T4 configuration (A_{1}, \ldots, A_{4}) over $K_{1} \cup K_{2}$ we have either $\left\{A_{1}, \ldots, A_{4}\right\} \subseteq K_{1}$ or $\left\{A_{1}, \ldots, A_{4}\right\} \subseteq K_{2}$. Furthermore, we say that K_{1} and K_{2} can be separated by a polyconvex set whenever there exist disjoint open sets $U_{1}, U_{2} \subseteq$ $\mathbb{M}^{2 \times 2}$ such that $K_{1} \subset U_{1}, K_{2} \subset U_{2}$ as well as $\left(K_{1} \cup K_{2}\right)^{\mathrm{pc}} \subseteq U_{1} \cup U_{2}$ holds. Then the set polyconvex set $\left(K_{1} \cup K_{2}\right)^{\text {pc }}$ "separates" K_{1} and K_{2}.
In view of [FS08, Theorem 2], we obtain a sufficient condition for K_{1} and K_{2} to be incompatible for homogeneous gradient Young measures:

Theorem 4.1. Let $K_{1}, K_{2} \subseteq \mathbb{M}^{2 \times 2}$ be compact and assume that K_{1} and K_{2} can be separated by a polyconvex set. Then K_{1} and K_{2} are incompatible for homogenous gradient Young measures.

We want to apply Theorem 4.1 to a special situation. Therefore, we introduce additional notation. Given a column vector $x \in \mathbb{R}^{2}$ and a matrix $A \in \mathbb{M}^{2 \times 2}$, we denote by $|x|$ and $|A|$ the corresponding Euclidean norms and by x^{t} and A^{t} the transposed objects. The letter I is used for the identity matrix in $\mathbb{M}^{2 \times 2}$. Let $\mathbb{M}_{\text {sym }}^{2 \times 2}$ be the subspace of all symmetric matrices and $A, B \in$ $\mathbb{M}_{\text {sym }}^{2 \times 2}$. Then we write $A \prec B$ whenever $A-B$ is negative definite and $A \preceq B$ whenever $A-B$ is negative semi-definite. If $A \in \mathbb{M}_{\text {sym }}^{2 \times 2}$ is positive semi-definite, then we denote by \sqrt{A} the only positive semi-definite matrix which solves $X^{2}=A$ in $\mathbb{M}_{\text {sym }}^{2 \times 2}$. Now we define the disjoint open sets

$$
\begin{equation*}
P_{1}=\left\{A \in \mathbb{M}^{2 \times 2} \mid A^{t} A \prec I\right\}, \quad P_{2}=\left\{A \in \mathbb{M}^{2 \times 2} \mid I \prec A^{t} A \wedge \operatorname{det}(A)>0\right\} . \tag{5}
\end{equation*}
$$

We show that the union $P_{1} \cup P_{2}$ is a lower level-set of a polyconvex function. In order to do so, we consider the following notation, which has been used before by many authors in the context of isotropic sets. Let $A \in \mathbb{M}^{2 \times 2}$ be a given matrix, then we define $\lambda_{1}(A), \lambda_{2}(A) \in \mathbb{R}^{2}$ as the only real numbers such that $\left\{\left|\lambda_{1}(A)\right|, \lambda_{2}(A)\right\}$ is the set of singular values of A (the eigenvalues of $\sqrt{A^{t} A}$) and, in addition, $\left|\lambda_{1}(A)\right| \leq \lambda_{2}(A)$ as well as $\operatorname{det}(A)=\lambda_{1}(A) \lambda_{2}(A)$ holds.
Following Conti et al. [CDLMR03, Lemma 2.2], we know that the function $f: \mathbb{M}^{2 \times 2} \rightarrow \mathbb{R}$ given by $f(A)=\lambda_{1}(A)+\lambda_{2}(A)-\operatorname{det}(A)-1$ is polyconvex. We write the function f in factorized form $f=\left(1-\lambda_{1}\right)\left(\lambda_{2}-1\right)$ and realize that f is negative if and only if either $\lambda_{2}<1$ holds or $1<\lambda_{1}$. By simple computations, we get that $\lambda_{2}(A)<1$ holds whenever A lies in P_{1} and $\lambda_{1}(A)>1$ holds whenever A lies in P_{2}. This directly implies that we can write $P_{1} \cup P_{2}$ as a lower level-set of a polyconvex function. We would like to point out that a key idea of this paper is to exploit the fact that P_{1} and P_{2}, as defined in (5), are incompatible for homogeneous gradient Young measures. A first step is done in the next lemma.

Lemma 4.2. Let $K_{1}, K_{2} \subseteq \mathbb{M}^{2 \times 2}$ be compact sets with positive determinant. Moreover, we assume that there exists a matrix $B \in \mathbb{M}^{2 \times 2}$ with positive determinant such that for every $A \in K_{1}$ and $C \in K_{2}$ we have $A^{t} A \prec B^{t} B \prec C^{t} C$. Then K_{1} and K_{2} can be separated by a polyconvex set.

Proof. Take $U_{1}=P_{1} B$ and $U_{2}=P_{2} B$ where P_{1} and P_{2} are given by (5). Note that the determinant is positive for all elements in U_{2} and K_{2} by assumption. A simple computation shows that U_{1} and U_{2} contain K_{1} and K_{2}, respectively. The set $P_{1} \cup P_{2}$ is the lower level-set of a polyconvex function and so is $U_{1} \cup U_{2}$. In fact, if $f: \mathbb{M}^{2 \times 2} \rightarrow R$ is polyconvex, the function given by $A \mapsto f\left(A B^{-1}\right)$ is also polyconvex, by definition. Here B^{-1} stands for the inverse of the matrix B. In view of (2) and (3), it is not hard to see that the polyconvex hull $\left(K_{1} \cup K_{2}\right)^{\text {pc }}$ must be a subset of $U_{1} \cup U_{2}$.

Now we come to frame invariance. Let $K \subset \mathbb{M}^{2 \times 2}$ be a given set. We call K frame invariant whenever it is invariant under the left action of the special orthogonal group $\mathrm{SO}(2)$, meaning,
for every $A \in K$ the whole orbit $\mathrm{SO}(2) A$ is contained in K. Here we consider $\mathrm{SO}(2)$ as a subset of $\mathbb{M}^{2 \times 2}$ so that the group action becomes just matrix multiplication. In the context of frame invariance, we will need the following lemma.

Lemma 4.3. Let $D \in \mathbb{M}_{\text {sym }}^{2 \times 2}$ be positive definite and $Y \in \mathbb{M}^{2 \times 2}$ a matrix with positive determinant. Assume that $Y^{t} Y$ and D are rank-one connected. Then there is a positive real number $\gamma>0$ and a rotation $R \in \mathrm{SO}(2)$ such that $Y^{t} Y-D=\gamma \sqrt{D}(R Y-\sqrt{D})$. In particular, $R Y$ and \sqrt{D} are rank-one connected.

Proof. If $Y^{t} Y$ and D are rank-one connected, so are the matrices $\widetilde{D}=\sqrt{D}^{-1} Y^{t} Y \sqrt{D}^{-1}$ and I. Fix a real number $\alpha \in \mathbb{R}$ and a vector $\widetilde{x} \in \mathbb{R}^{2}$ with $|\widetilde{x}|=1$ such that $\widetilde{D}-I=\alpha \widetilde{x} \otimes \widetilde{x}$. Since \widetilde{D} is positive definite, we must have $\alpha>-1$. Then there is a real number $\beta>-1$ with the same sign as α so that

$$
(I+\beta \widetilde{x} \otimes \widetilde{x})^{t}(I+\beta \widetilde{x} \otimes \widetilde{x})-I=\left(2 \beta+\beta^{2}\right) \widetilde{x} \otimes \widetilde{x}=\alpha \widetilde{x} \otimes \widetilde{x}
$$

Note that the matrix $I+\beta \widetilde{x} \otimes \widetilde{x}$ has positive determinant. Multiplication from the right and left by \sqrt{D} gives

$$
\left(\sqrt{D}+\beta \sqrt{D}^{-1} x \otimes x\right)^{2}-D=\alpha x \otimes x=Y^{t} Y-D
$$

where we set $x=\sqrt{D} \widetilde{x}$. This implies that the matrices Y and $\sqrt{D}+\beta \sqrt{D}^{-1} x \otimes x$ have the same symmetric part in the polar decomposition. Since both matrices have positive determinant, there must be a rotation $R \in \mathrm{SO}(2)$ such that $R Y-\sqrt{D}$ and $\beta \sqrt{D}^{-1} x \otimes x$ are the same.

The next lemma states well-known facts, compare [Dol03, §A.2] and the references therein. For the convenience of the reader, we give a proof here.

Lemma 4.4. Let $A, C \in \mathbb{M}^{2 \times 2}$ be given matrices such that $0<\operatorname{det}(A) \leq \operatorname{det}(C)$. Then $\operatorname{det}\left(A^{t} A-C^{t} C\right) \geq 0$ holds if and only if $A^{t} A \preceq C^{t} C$. In addition, the following properties are equivalent:
(i) $\mathrm{SO}(2) A$ and $\mathrm{SO}(2) C$ are incompatible for first-order laminates.
(ii) $\operatorname{det}\left(A^{t} A-C^{t} C\right)>0$.
(iii) $A^{t} A \prec C^{t} C$.

Proof. Condition (ii) holds if and only if $A^{t} A-C^{t} C$ is either negative or positive definite. In view of $\operatorname{det}(A) \leq \operatorname{det}(C)$, it must be negative definite and, hence, we have (ii) \Leftrightarrow (iii). The first part of the lemma follows by a similar argument. Condition \neg (ii) holds if and only if there is a vector $x \in \mathbb{R}^{2} \backslash\{0\}$ which fulfills one of these equivalent properties: $x^{t} A^{t} A x=x^{t} C^{t} C x$, $|A x|=|C x|$ or $Q A x=R C x$ for some rotations $Q, R \in \mathrm{SO}(2)$. We conclude that \neg (ii) holds if and only if there are rotations $Q, R \in \mathrm{SO}(2)$ such that the rank of the matrix $Q A-R C$ is at most 1 . This implies that \neg (ii) $\Leftrightarrow \neg$ (i).

5 A necessary condition for incompatibility

We are going to prove that, in the context of frame invariance, separability by a polyconvex set is also necessary for incompatibility. Here we look at a special case first. In order to prove the proposition, we will use Helly's theorem, see, for example, [DGK63].

Theorem 5.1 (Helly's theorem). Let d be a positive integer, \mathcal{I} an index set, possibly uncountable, and $\left\{\mathcal{D}_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ a family of compact convex sets in a d-dimensional Euclidean space. If for every $\alpha_{1}, \ldots, \alpha_{d+1} \in \mathcal{I}$ the intersection $\mathcal{D}_{\alpha_{1}} \cap \cdots \cap \mathcal{D}_{\alpha_{d+1}}$ is non-empty, then the whole intersection $\bigcap\left\{\mathcal{D}_{\alpha} \mid \alpha \in \mathcal{I}\right\}$ is non-empty.

Proposition 5.2. Let $K_{1}, K_{2} \subseteq \mathbb{M}^{2 \times 2}$ be compact and frame-invariant sets of matrices with positive determinant such that

$$
\max \left\{\operatorname{det}(A) \mid A \in K_{1}\right\}<\min \left\{\operatorname{det}(C) \mid C \in K_{2}\right\} .
$$

Then the following properties are equivalent:
(a) K_{1} and K_{2} are incompatible for homogeneous gradient Young measures.
(b) K_{1} and K_{2} are incompatible for first-order laminates. In addition, $\mathcal{C}_{K_{1}}$ and $\mathcal{C}_{K_{2}}$ are incompatible for T4 configurations where $\mathcal{C}_{K_{i}}=\left\{X^{t} X \mid X \in K_{i}\right\}$ for $i=1,2$.
(c) K_{1} and K_{2} can be separated by a polyconvex set.

Proof. We assume that K_{1} and K_{2} are non-empty. Otherwise the proof is trivial. Theorem 4.1 implies that (c) \Rightarrow (a). We show that (b) \Rightarrow (c). Assume that K_{1} and K_{2} are incompatible for first-order laminates and, in addition, $\mathcal{C}_{K_{1}}$ and $\mathcal{C}_{K_{2}}$ are incompatible for T 4 configurations. Then, in particular, K_{1} and K_{2} are disjoint. Let $\Lambda \in \mathbb{R}$ be a positive real number such that for every $Y \in K_{1} \cup K_{2}$ we have $Y^{t} Y \preceq \Lambda I$. Such a Λ exists, since K_{1} and K_{2} are compact. Given $Y \in K_{1} \cup K_{2}$ we define the set \mathcal{D}_{Y} via

$$
\mathcal{D}_{Y}=\left\{\begin{aligned}
\left\{D \in \mathbb{M}_{\text {sym }}^{2 \times 2} \mid Y^{t} Y \prec D \preceq \Lambda I\right\} & \text { if } Y \in K_{1}, \\
\left\{D \in \mathbb{M}_{\text {sym }}^{2 \times 2} \mid 0 \preceq D \prec Y^{t} Y\right\} & \text { if } Y \in K_{2} .
\end{aligned}\right.
$$

Fix a subset $\left\{Y_{1}, \ldots, Y_{4}\right\} \subseteq K_{1} \cup K_{2}$. We show that the intersection $\mathcal{D}=\mathcal{D}_{Y_{1}} \cap \cdots \cap \mathcal{D}_{Y_{4}}$ is non-empty. In order to do that, we distinguish between different cases. Nothing is to show if $Y_{1}, \ldots, Y_{4} \in K_{1}$ or $Y_{1}, \ldots, Y_{4} \in K_{2}$. To shorten notation, set $X_{i}=Y_{i}^{t} Y_{i}$ for $i=1, \ldots, 4$. If $Y_{1} \in K_{1}$ and $Y_{2}, Y_{3}, Y_{4} \in K_{2}$, then, by Lemma 4.4, we must have $X_{1} \prec X_{i}$ for $i=$ $1,2,3$. Hence, there is a positive real number $\epsilon>0$ such that $X_{1}+\epsilon I$ lies in \mathcal{D}. Similarly, if $Y_{1}, Y_{2}, Y_{3} \in K_{1}$ and $Y_{4} \in K_{2}$, then $X_{4}-\epsilon I$ lies in \mathcal{D} for some $\epsilon>0$. Up to a permutation, there is only one case left: $Y_{1}, Y_{4} \in K_{1}$ and $Y_{2}, Y_{3} \in K_{2}$. If $X_{1} \preceq X_{4}$ holds, then $X_{4}+\epsilon I$ lies in \mathcal{D} for some $\epsilon>0$. Similar arguments can be used to treat $X_{4} \preceq X_{1}, X_{2} \preceq X_{3}$ and $X_{3} \preceq X_{2}$. Thus, in view of Lemma 4.4, it remains to deal with matrices $Y_{1}, Y_{4} \in K_{1}$ and $Y_{2}, Y_{3} \in K_{2}$ which fulfill the following condition. For indices $i, j \in\{1,2,3,4\}$ with $i<j$ we have

$$
\operatorname{det}\left(X_{i}-X_{j}\right) \begin{cases}<0 & \text { if }(i, j) \in\{(1,4),(2,3)\} \tag{6}\\ >0 & \text { else }\end{cases}
$$

Now we apply a result by Székelyhidi [Szé05, Theorem 2]. Condition (6) is equivalent to what he calls sign-configuration (B). Hence, exactly one of the following three holds:
(i) There is a $O \in\left\{X_{1}, \ldots, X_{4}\right\}^{\mathrm{c}}$ such that $\operatorname{det}\left(X_{i}-O\right)>0$ for every $i=1, \ldots, 4$.
(ii) There is a $O \in\left\{X_{1}, \ldots, X_{4}\right\}^{\mathrm{c}}$ such that $\operatorname{det}\left(X_{i}-O\right)=0$ for every $i=1, \ldots, 4$ and then $\left(X_{1}, \ldots, X_{4}\right)$ forms a T4 configuration, (T4*) in (4).
(iii) There is a $O \in\left\{X_{1}, \ldots, X_{4}\right\}^{\mathrm{c}}$ such that $\operatorname{det}\left(X_{i}-O\right)<0$ for every $i=1, \ldots, 4$ and then $\left(X_{1}, \ldots, X_{4}\right)$ forms a T4 configuration, (T4) in (4).

Note that, by definition, X_{1}, \ldots, X_{4} are symmetric as well as positive definite and so is O. We have that $\mathcal{C}_{K_{1}}$ and $\mathcal{C}_{K_{2}}$ are incompatible for T4 configurations. Hence, (i) must hold. This can only happen when O lies in \mathcal{D}, see Lemma 4.4. This shows that \mathcal{D} is non-empty.
Since K_{1} and K_{2} are compact, there is an integer $n>0$ and matrices $O_{1}, \ldots, O_{n} \in \mathbb{M}_{\text {sym }}^{2 \times 2}$ such that the matrix O in (i) can always be taken from $\left\{O_{1}, \ldots, O_{n}\right\}$. We can fix a positive real number $\epsilon>0$ such that for every subset $\left\{Y_{1} \ldots, Y_{4}\right\} \subseteq K_{1} \cup K_{2}$ the intersection $\mathcal{D}_{Y_{1}}^{\epsilon} \cap \cdots \cap \mathcal{D}_{Y_{4}}^{\epsilon}$ is non-empty. Here we set

$$
\mathcal{D}_{Y}^{\epsilon}=\left\{\begin{aligned}
\left\{D \in \mathbb{M}_{\text {sym }}^{2 \times 2} \mid Y^{t} Y+\epsilon I \preceq D \preceq \Lambda I\right\} & \text { if } Y \in K_{1} \\
\left\{D \in \mathbb{M}_{\text {sym }}^{2 \times 2} \mid 0 \preceq D \preceq Y^{t} Y-\epsilon I\right\} & \text { if } Y \in K_{2} .
\end{aligned}\right.
$$

The set $\mathcal{D}^{\epsilon}=\bigcap\left\{\mathcal{D}_{Y}^{\epsilon} \mid Y \in K_{1} \cup K_{2}\right\}$ is the intersection of compact convex sets in the 3dimensional space $\mathbb{M}_{\text {sym }}^{2 \times 2}$. What we have just shown together with Theorem 5.1 implies that \mathcal{D}^{ϵ} is non-empty. Fix an element $D \in \mathcal{D}^{\epsilon}$ and set $B=\sqrt{D}$. Then we obtain (c) as a consequence of Lemma 4.2.

Finally, it remains to prove \neg (b) $\Rightarrow \neg$ (a). All first-order laminates are homogenous gradient Young measures. Hence, we have to show \neg (a) given that the following is true: K_{1} and K_{2} are incompatible for first-order laminates, but $\mathcal{C}_{K_{1}}$ and $\mathcal{C}_{K_{2}}$ are not incompatible for T4 configurations. Recall that we have set $X_{i}=Y_{i}^{t} Y_{i}$ for $i=1, \ldots, 4$. In view of what we have done above, there are matrices $Y_{1}, Y_{4} \in K_{1}$ and $Y_{2}, Y_{3} \in K_{2}$ such that (6) holds together with (ii) or (iii).

Case (ii). Lemma 4.3 implies two things. First, for every $i \in\{1, \ldots, 4\}$ there must be a rotation $R_{i} \in \mathrm{SO}(2)$ such that $R_{i} Y_{i}$ and \sqrt{O} are rank-one connected. Second, we must have that

$$
0 \in\left\{X_{1}-O, \ldots, X_{4}-O\right\}^{\mathrm{c}}=\sqrt{O}\left\{\gamma_{1} R_{1} Y_{1}-\sqrt{O}, \ldots, \gamma_{4} R_{4} Y_{4}-\sqrt{O}\right\}^{\mathrm{c}}
$$

for some positive real numbers $\gamma_{1}, \ldots, \gamma_{4}>0$. In particular, \sqrt{O} must lie in the convex hull $\left\{R_{1} Y_{1}, \ldots, R_{4} Y_{4}\right\}^{\text {c }}$. Hence, ($R_{1} Y_{1}, \ldots, R_{4} Y_{4}$) forms a T4 configuration (of type (T4*) in (4)) with $P=\sqrt{ } O$. We have $\neg(\mathrm{a})$.
Case (iii). Assume that (X_{1}, \ldots, X_{4}) forms a T4 configuration and fix matrices C_{1}, \ldots, C_{4}, P such that (T4) in (4) is fulfilled. Since the matrices X_{1}, \ldots, X_{4} are symmetric and positive definite, so are P_{1}, \ldots, P_{4}, see Lemma 3.1. Then, in view of Lemma 4.3, we find matrices $\widetilde{C}_{1}, \widetilde{C}_{2}, \ldots \in \mathbb{M}^{2 \times 2}$ of rank equal to 1 , real numbers $\widetilde{\kappa}_{1}, \widetilde{\kappa}_{2}, \ldots>1$ and rotations Q_{0}, R_{1},
$Q_{1}, R_{2}, Q_{2}, \ldots \in \mathrm{SO}(2)$ such that

$$
\begin{align*}
& R_{1} Y_{1}-Q_{0} \sqrt{P_{1}}=\widetilde{\kappa}_{1}\left(Q_{1} \sqrt{P_{2}}-Q_{0} \sqrt{P_{1}}\right)=\widetilde{C}_{1}, \\
& R_{2} Y_{2}-Q_{1} \sqrt{P_{2}}=\widetilde{\kappa}_{2}\left(Q_{2} \sqrt{P_{3}}-Q_{1} \sqrt{P_{2}}\right)=\widetilde{C}_{2}, \\
& R_{3} Y_{3}-Q_{2} \sqrt{P_{3}}=\widetilde{\kappa}_{3}\left(Q_{3} \sqrt{P_{4}}-Q_{2} \sqrt{P_{3}}\right)=\widetilde{C}_{3}, \\
& R_{4} Y_{4}-Q_{3} \sqrt{P_{4}}=\widetilde{\kappa}_{4}\left(Q_{4} \sqrt{P_{1}}-Q_{3} \sqrt{P_{4}}\right)=\widetilde{C}_{4}, \tag{7}\\
& R_{5} Y_{1}-Q_{4} \sqrt{P_{1}}=\widetilde{\kappa}_{5}\left(Q_{5} \sqrt{P_{2}}-Q_{4} \sqrt{P_{1}}\right)=\widetilde{C}_{5}, \\
& R_{6} Y_{2}-Q_{5} \sqrt{P_{2}}=\widetilde{\kappa}_{6}\left(Q_{6} \sqrt{P_{3}}-Q_{5} \sqrt{P_{2}}\right)=\widetilde{C}_{6},
\end{align*}
$$

By definition, the matrices $X_{1}, \ldots, X_{4}, P_{1}, \ldots, P_{4}$ are pairwise distinct. This implies that there is a uniform bound $\widetilde{\kappa}_{0}>1$ such that $\widetilde{\kappa}_{i} \geq \widetilde{\kappa}_{0}$ holds for every $i=1,2, \ldots$. The equations in (7) present a way how to construct a laminate $\nu \in \mathcal{M}^{\text {rc }}\left(K_{1} \cup K_{2}\right)$ such that both sets $\operatorname{supp}(\nu) \cap K_{1}$ and $\operatorname{supp}(\nu) \cap K_{2}$ are non-empty. Recall the "classical" construction of laminates for T4 configurations, see, for example, [Mül99a, §2.5]. In fact, the same procedure can be used here. This shows that \neg (a) holds and finishes the proof.

6 Main results

Let $K \subseteq \mathbb{M}^{2 \times 2}$ be a compact and frame-invariant set of matrices with positive determinant. We construct a set which can be used to determine the structure of the quasiconvex hull K^{qc}. Therefore, let $\Delta \subseteq \mathbb{R}$ be the union of all closed intervals

$$
[\min \{\operatorname{det}(A), \operatorname{det}(B)\}, \max \{\operatorname{det}(A), \operatorname{det}(B)\}]
$$

where A and B are rank-one connected matrices in K together with all closed intervals

$$
\left[\min \left\{\sqrt{\operatorname{det}\left(A_{i}\right)} \mid i=1, \ldots, 4\right\}, \max \left\{\sqrt{\operatorname{det}\left(A_{i}\right)} \mid i=1, \ldots, 4\right\}\right]
$$

where $\left(A_{1}, \ldots, A_{4}\right)$ are T 4 configurations over $\mathcal{C}_{K}=\left\{X^{t} X \mid X \in K\right\}$.
Theorem 6.1. Let $K \subseteq \mathbb{M}^{2 \times 2}$ be a compact and frame-invariant set of matrices with positive determinant and $A, B \in K$. Then the following properties are equivalent:
(i) A and B lie in the same connected component of K^{rc}.
(ii) A and B lie in the same connected component of K^{qc}.
(iii) A and B lie in the same connected component of K^{pc}.
(iv) $\operatorname{det}(A)$ and $\operatorname{det}(B)$ lie in the same connected component of Δ.

Proof. If necessary, we exchange the roles of A and B so that $0<\operatorname{det}(A) \leq \operatorname{det}(B)$ holds. We know that (i) \Rightarrow (ii) \Rightarrow (iii) is true. Condition \neg (iv) implies that there is a real number $d \in \mathbb{R}$ such that $\operatorname{det}(A)<d<\operatorname{det}(B)$ holds and $d \notin \Delta$. Consider the disjoint sets

$$
K_{1}=K \cap\left\{A \in \mathbb{M}^{2 \times 2} \mid \operatorname{det}(A)<d\right\}, \quad K_{2}=K \cap\left\{C \in \mathbb{M}^{2 \times 2} \mid d>\operatorname{det}(C)\right\} .
$$

Clearly, we have $K_{1} \cup K_{2}=K$. Since K is compact, so are K_{1} and K_{2}. The number d is chosen in such a way that the sets K_{1} and K_{2} are incompatible for first-order laminates and, in addition, $\mathcal{C}_{K_{1}}$ and $\mathcal{C}_{K_{2}}$ are incompatible for T4 configurations. Proposition 5.2 implies that K_{1} and K_{2} can be separated by a polyconvex set. In particular, A and B must lie in different connected components of K^{pc}. We have \neg (iii).
Assume that \neg (i) is fulfilled. If there is a real number $d \in \mathbb{R}$ such that $\operatorname{det}(A)<d<\operatorname{det}(B)$ as well as $d \notin \Delta$ holds, then we get \neg (iv) and we are done. If not, we must have that the whole interval $[\operatorname{det}(A), \operatorname{det}(B)]$ is contained in Δ. In order to get a contradiction, it is sufficient to show that the set

$$
M=\left\{X \in K^{\mathrm{rc}} \mid \operatorname{det}(A) \leq \operatorname{det}(X) \leq \operatorname{det}(B)\right\}
$$

is connected. Since K is compact and frame invariant, so is K^{rc} and M. If M fails to be connected, then there exist compact, disjoint and frame-invariant sets M_{1} and M_{2} such that the union $M_{1} \cup M_{2}$ is M and the intersection $M_{1} \cap M_{2}$ is empty. On one hand, we can find matrices $X_{1} \in M_{1}$ and $X_{2} \in M_{2}$ with $\operatorname{det}\left(X_{1}\right)=\operatorname{det}\left(X_{2}\right)$. On the other hand, for every $X_{1} \in M_{1}$ and $X_{2} \in M_{2}$ the sets $\mathrm{SO}(2) X_{1}$ and $\mathrm{SO}(2) X_{2}$ must be incompatible for first-order laminates and, hence, $\operatorname{det}\left(X_{1}\right)=\operatorname{det}\left(X_{2}\right)$ is impossible in view of Lemma 4.4. The set M must be connected. This finishes the proof.

Remark 6.2. The set Δ is constructed in such a way that for every $X \in K^{\mathrm{qc}}$ we have that $\operatorname{det}(X)$ lies in Δ.

Proof. Let $X \in K^{\mathrm{qc}}$ be given and $\nu \in \mathcal{M}^{\mathrm{qc}}(K)$ a homogeneous gradient Young measure such that $X=\bar{\nu}$ holds. Since the functions given by $A \mapsto \operatorname{det}(A)$ and $A \mapsto-\operatorname{det}(A)$ are polyconvex (and, in particular, quasiconvex), we can fix matrices $A, B \in \operatorname{supp}(\nu)$ such that $\operatorname{det}(A) \leq \operatorname{det}(X) \leq \operatorname{det}(B)$ holds. As an application of Theorem 1.1, we know that $\operatorname{supp}(\nu)^{\text {qc }}$ is connected. This means that A and B lie in the same connected component of K^{qc}. By Theorem 6.1, $\operatorname{det}(A)$ and $\operatorname{det}(B)$ lie in the same connected component of Δ. Then $\operatorname{det}(X)$ must lie in Δ.

Now we prove a generalization of Proposition 5.2.
Theorem 6.3. Let $L_{1}, L_{2} \subseteq \mathbb{M}^{2 \times 2}$ be compact and frame-invariant sets of matrices with positive determinant. Then the following properties are equivalent:
(a) L_{1} and L_{2} are incompatible for homogeneous gradient Young measures.
(b) L_{1} and L_{2} are incompatible for first-order laminates. In addition, $\left\{A^{t} A \mid A \in L_{1}\right\}$ and $\left\{C^{t} C \mid C \in L_{2}\right\}$ are incompatible for T4 configurations.
(c) L_{1} and L_{2} can be separated by a polyconvex set.

Proof. Theorem 4.1 implies that (c) \Rightarrow (a) holds. The implication \neg (b) $\Rightarrow \neg$ (a) can be shown like in the proof of Proposition 5.2. It remains to show that (b) \Rightarrow (c) holds. Like before, given any $K \subseteq \mathbb{M}^{2 \times 2}$ we set $\mathcal{C}_{K}=\left\{X^{t} X \mid X \in K\right\}$. Assume that L_{1} and L_{2} are incompatible for first-order laminates and, in addition, $\mathcal{C}_{L_{1}}$ and $\mathcal{C}_{L_{2}}$ are incompatible for T4 configurations.

Set $K=L_{1} \cup L_{2}$. We will use the set Δ which was defined above. For $i=1,2$ let Z_{i} be a connected component of L_{i}. In particular, Z_{1} and Z_{2} are incompatible for first-order laminates and, in addition, $\mathcal{C}_{Z_{1}}$ and $\mathcal{C}_{Z_{2}}$ are incompatible for T 4 configurations. Then there is a real number $d \notin \Delta$ such that

$$
\max \left\{\operatorname{det}(A) \mid A \in Z_{1}\right\}<d<\min \left\{\operatorname{det}(C) \mid C \in Z_{2}\right\}
$$

where we exchange the roles of Z_{1} and Z_{2} if necessary. Consider the disjoint sets

$$
K_{1}=K \cap\left\{A \in \mathbb{M}^{2 \times 2} \mid \operatorname{det}(A)<d\right\}, \quad K_{2}=K \cap\left\{C \in \mathbb{M}^{2 \times 2} \mid d>\operatorname{det}(C)\right\} .
$$

By definition, K_{1} and K_{2} are compact and frame invariant. The union $K_{1} \cup K_{2}$ is equal to K. The sets K_{1} and K_{2} are incompatible for homogeneous gradient Young measures. Otherwise, in view of Theorem 1.1, there is a matrix X with $\operatorname{det}(X)=d$. But then Remark 6.2 implies that d lies in Δ, which gives a contradiction. Hence, we can apply Proposition 5.2 to K_{1} and K_{2}. Then K_{1} and K_{2} and, in particular, Z_{1} and Z_{2} can be separated by a polyconvex set. Now we vary Z_{1} over all connected components of L_{1} and Z_{2} over all connected components of L_{2}. Every choice of Z_{1} and Z_{2} gives a polyconvex set. If we take the intersection of all those polyconvex sets, we end up with a polyconvex set which separates L_{1} and L_{2}.

References

[Bal77] John M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., 63(4):337-403, 1977.
[CDLMR03] Sergio Conti, Camillo De Lellis, Stefan Müller, and Mario Romeo. Polyconvexity equals rank-one convexity for connected isotropic sets in $\mathbb{M}^{2 \times 2}$. C. R. Acad. Sci. Paris, Sér. I, 337(4):233-238, 2003.
[Dac89] Bernard Dacorogna. Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin, 1989.
[DGK63] Ludwig Danzer, Branko Grünbaum, and Victor Klee. Helly's theorem and its relatives. In Proc. Sympos. Pure Math., volume VII, pages 101-180. Amer. Math. Soc., 1963.
[Dol03] Georg Dolzmann. Variational Methods for Crystalline Microstructure - Analysis and Computation. Springer-Verlag, 2003.
[FS08] Daniel Faraco and László Székelyhidi. Tartar's conjecture and localization of the quasiconvex hull in $\mathbb{R}^{2 \times 2}$. Acta Math., 200:279-305, 2008. 10.1007/s11511-008-0028-1.
[Hei11] Sebastian Heinz. Quasiconvexity equals rank-one convexity for isotropic sets of 2x2 matrices. WIAS Preprint 1637, 2011.
[Kir03] Bernd Kirchheim. Rigidity and Geometry of Microstructures. University of Leipzig, 2003. Habilitation thesis.
[KP91] David Kinderlehrer and Pablo Pedregal. Characterizations of Young measures generated by gradients. Arch. Rational Mech. Anal., 115:329-365, 1991.
[Kri99] Jan Kristensen. On the non-locality of quasiconvexity. Ann. I. H. Poincaré - AN, 16(1):1-13, 1999.
[Mil04] Graeme W. Milton. The Theory of Composites. Cambridge University Press, 2004.
[Mor52] Charles B. Morrey, Jr. Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math., 2:25-53, 1952.
[Mül99a] S. Müller. Variational models for microstructure and phase transitions. In Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), pages 85-210. Springer, Berlin, 1999.
[Mül99b] Stefan Müller. Rank-one convexity implies quasiconvexity on diagonal matrices. Internat. Math. Res. Notices, 20:1087-1095, 1999.
[Ped93] Pablo Pedregal. Laminates and microstructure. Eur. J. Appl. Math., 4:121-149, 1993.
[Šve92] Vladimír Šverák. Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh Sect. A, 120(1-2):185-189, 1992.
[Szé05] László Székelyhidi. Rank-one convex hulls in $\mathbb{R}^{2 \times 2}$. Calculus of Variations and Partial Differential Equations, 22:253-281, 2005. 10.1007/s00526-004-0272-y.
[Tar93] Luc Tartar. Some remarks on separately convex functions. In Microstructure and phase transition, pages 183-189. Springer, New York, 1993.

[^0]: 2010 Mathematics Subject Classification. 26B25 52A30.
 Key words and phrases. Quasiconvexity, rank-one convexity, frame invariance.
 The author is financed by the DFG through FOR 797 Analysis and Computation of Microstructures in Finite Plasticity under Mie 459/5-2. This work was initiated when the author visited UTIA, Prague, in April 2012. Parts of it were done during a visit to HIM, Bonn, in July and August 2012. The support and the hospitality of the two institutes are greatfully acknowledged.

