Weierstraß-Institut für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint

ISSN 0946 - 8633

On the structure of the quasiconvex hull in planar elasticity

Sebastian Heinz

submitted: October 7, 2012

Weierstraß-Institut Mohrenstr. 39 10117 Berlin Germany E-Mail: sebastian.heinz@wias-berlin.de

> No. 1736 Berlin 2012

²⁰¹⁰ Mathematics Subject Classification. 26B25 52A30.

Key words and phrases. Quasiconvexity, rank-one convexity, frame invariance.

The author is financed by the DFG through FOR 797 *Analysis and Computation of Microstructures in Finite Plastic-ity* under Mie 459/5-2. This work was initiated when the author visited UTIA, Prague, in April 2012. Parts of it were done during a visit to HIM, Bonn, in July and August 2012. The support and the hospitality of the two institutes are greatfully acknowledged.

Edited by Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS) Leibniz-Institut im Forschungsverbund Berlin e. V. Mohrenstraße 39 10117 Berlin Germany

Fax:+49 30 20372-303E-Mail:preprint@wias-berlin.deWorld Wide Web:http://www.wias-berlin.de/

Abstract

Let K_1 and K_2 be compact sets of real 2×2 matrices with positive determinant. Suppose that both sets are frame invariant, meaning invariant under the left action of the special orthogonal group. Then we give an algebraic characterization for K_1 and K_2 to be incompatible for homogeneous gradient Young measures. This result permits a simplified characterization of the quasiconvex hull and the rank-one convex hull in planar elasticity.

1 Introduction

We study quasiconvexity in the calculus of variations. Morrey [Mor52] proved that this is the essential property for functions in the context of sequentially weakly lower-semicontinuity for multiple integrals. Unfortunately, his definition of quasiconvexity is very hard to test. Kristensen [Kri99] even showed that there cannot be any "local" characterization which is equivalent to quasiconvexity. Kristensen's proof makes use of Šverák's counterexample of a rank-one convex function that fails to be quasiconvex [Šve92]. The difference between quasiconvexity and rank-one convexity is also visible on the level of sets. Milton [Mil04] showed that there is a rank-one convex set which fails to be quasiconvex. However, Milton's as well as Šverák's counterexample work only in the case of an underlying space $\mathbb{M}^{m \times n}$ with $m \geq 3$ and $n \geq 2$.

In contrast to that, the situation in $\mathbb{M}^{2\times 2}$ seems to be fundamentally different. Whether rank-one convexity and quasiconvexity are the same over $\mathbb{M}^{2\times 2}$ remains an open question. Nevertheless, we would like to recall a few of the results for the 2×2 case. Müller [Mül99b] showed that rank-one convexity implies quasiconvexity on diagonal matrices. Dolzmann [Dol03] proved that rank-one convexity and polyconvexity are equivalent for frame-invariant sets with constant determinant. In this paper, we heavily rely on results by Faraco and Székelyhidi [FS08] on the localization of the quasiconvex hull. One of the key tools that we are going to use is the following, see [FS08, Corollary 3].

Theorem 1.1. Let ν be a compactly supported homogeneous gradient Young measure over $\mathbb{M}^{2\times 2}$. Then the set $\operatorname{supp}(\nu)^{\operatorname{qc}}$ is connected.

In [Hei11], we applied this to the case of isotropic sets. Now we study quasiconvexity in the context of frame-invariant sets in $\mathbb{M}^{2\times 2}$. We prove the following (see Theorem 6.3).

Theorem (Incompatible sets). Let $L_1, L_2 \subseteq \mathbb{M}^{2 \times 2}$ be compact and frame-invariant sets of matrices with positive determinant. Then the following properties are equivalent:

(a) L_1 and L_2 are incompatible for homogeneous gradient Young measures.

- (b) L_1 and L_2 are incompatible for first-order laminates. In addition, $\{A^tA \mid A \in L_1\}$ and $\{C^tC \mid C \in L_2\}$ are incompatible for T4 configurations.
- (c) L_1 and L_2 can be separated by a polyconvex set.

This theorem gives an algebraic characterization for two frame-invariant sets to be incompatible for homogeneous gradient Young measures. In view of elasticity theory, a 2×2 matrix A might represent a deformation gradient. Then the key observation of the theorem is that essential conditions can be nicely written down for the so-called right Cauchy-Green tensor A^tA . In addition, we will construct a set Δ which provides information about the structure of the quasiconvex hull. Our second result reads (see Theorem 6.1)

Theorem (Structure). Let $K \subseteq \mathbb{M}^{2 \times 2}$ be a compact and frame-invariant set of matrices with positive determinant and $A, B \in K$. Then the following properties are equivalent:

- (i) A and B lie in the same connected component of $K^{\rm rc}$.
- (ii) A and B lie in the same connected component of $K^{\rm qc}$.
- (iii) A and B lie in the same connected component of $K^{\rm pc}$.
- (iv) det(A) and det(B) lie in the same connected component of Δ .

The paper is organized as follows:

In Section 2, we recall definitions of the convexity notions that are used later on. Then we give a short introduction to T4 configurations in Section 3. Preliminaries can be found in Section 4. Section 5 provides the most important tool and Section 6 collects the main results of this paper.

2 Convexity notions

We denote by $\mathbb{M}^{2\times 2}$ the vector space of all real 2×2 matrices equipped with the Euclidean structure of \mathbb{R}^4 . We are going to recall some convexity notions in $\mathbb{M}^{2\times 2}$. A detailed discussion, also for higher dimensions, can be found in [Bal77], [Dac89, §4.1], [Mül99a] and [Dol03].

Let $f: \mathbb{M}^{2 \times 2} \to \mathbb{R}$ be a given continuous function. Then f is *convex* if for every $A, B \in \mathbb{M}^{2 \times 2}$ we have

$$\forall \lambda \in [0,1] \quad f(\lambda A + (1-\lambda)B) \le \lambda f(A) + (1-\lambda)f(B). \tag{1}$$

The function f is *polyconvex* if there exists a convex function $g \colon \mathbb{R}^5 \to \mathbb{R}$ such that for every $A \in \mathbb{M}^{2 \times 2}$ we have $f(A) = g(A, \det(A))$, where $\det(A)$ denotes the determinant of A. The function f is *quasiconvex* (in Morrey's sense [Mor52]), if for every $A \in \mathbb{M}^{2 \times 2}$ and every smooth function $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ with compact support we have

$$0 \le \int_{\mathbb{R}^2} \left(f(A + \mathrm{D}\phi(x)) - f(A) \right) \mathrm{d}x.$$

The function f is *rank-one convex* if (1) holds for every $A, B \in \mathbb{M}^{2 \times 2}$ that are *rank-one connected*, meaning A - B equals the tensor product $a \otimes b$ for some vectors $a, b \in \mathbb{R}^2$. Polyconvexity and rank-one convexity were introduced by Ball [Bal77].

Now we consider sets of matrices. Therefore fix a compact set $K \subset \mathbb{M}^{2\times 2}$. We denote by $\mathcal{M}(K)$ the set of all probability measures over the Borel sets of K. Let $\nu \in \mathcal{M}(K)$ be a given element. We write $\bar{\nu}$ for its mean value and $\operatorname{supp}(\nu)$ for its support. We define the sets $\mathcal{M}^{\mathrm{pc}}(K)$, $\mathcal{M}^{\mathrm{qc}}(K)$ and $\mathcal{M}^{\mathrm{rc}}(K)$ as follows. A probability measure $\nu \in \mathcal{M}(K)$ lies in $\mathcal{M}^{\mathrm{pc}}(K)$ ($\mathcal{M}^{\mathrm{qc}}(K)$ or $\mathcal{M}^{\mathrm{rc}}(K)$) if and only if Jensen's inequality

$$f(\bar{\nu}) \le \int_{\mathbb{M}^{2\times 2}} f(A) \mathrm{d}\nu(A) \tag{2}$$

is fulfilled for every continuous function $f: \mathbb{M}^{2 \times 2} \to \mathbb{R}$ which is polyconvex (quasiconvex or rank-one convex). Kinderlehrer and Pedregal [KP91] show that every $\nu \in \mathcal{M}^{qc}(K)$ is a *homogeneous gradient Young measure*. Whereas every $\nu \in \mathcal{M}^{rc}(K)$ is a *laminate*, see [Ped93]. The *polyconvex hull* of K is given by

$$K^{\mathrm{pc}} = \{ \bar{\nu} \mid \nu \in \mathcal{M}^{\mathrm{pc}}(K) \}.$$
(3)

We get the *quasiconvex hull* K^{qc} , the *rank-one convex hull* K^{rc} and the *convex hull* K^{c} if, in (3), we replace $\mathcal{M}^{pc}(K)$ by $\mathcal{M}^{qc}(K)$, $\mathcal{M}^{rc}(K)$ and $\mathcal{M}(K)$, respectively. Finally, we call K *polyconvex* (*quasiconvex*, *rank-one convex* or *convex*) whenever $K = K^{pc}$ ($K = K^{qc}$, $K = K^{rc}$ or $K = K^{c}$) holds. The previous definitions together with the hierarchy of convexity notions imply that $K \subseteq K^{rc} \subseteq K^{qc} \subseteq K^{pc} \subseteq K^{c}$. In particular, every laminate is a homogeneous gradient Young measure.

Note that all these convexity notions, both for functions and for sets, are stable against transformations of the underlying space $\mathbb{M}^{2\times 2}$ which are given by $A \mapsto SAT$ for some invertible matrices $S, T \in \mathbb{M}^{2\times 2}$. We will make use of this fact several times.

3 Laminates

Two classes of laminates play an important role in our paper. First, consider the case of two rank-one connected matrices $A, B \in \mathbb{M}^{2\times 2}$, where A = B is possible. Then for every real number $\lambda \in (0, 1)$ the measure $\lambda \delta_A + (1-\lambda) \delta_B$ with support $\{A, B\}$ is a laminate, a so-called *first-order laminate*. In fact, it fulfills Jensen's inequality (see (2)) for rank-one convex functions.

Second, consider the case of four matrices $A_1, \ldots, A_4 \in \mathbb{M}^{2 \times 2}$ without rank-one connections. Tartar [Tar93] showed that $\{A_1, \ldots, A_4\}$ can be the support of a laminate. Consider the following definition, compare [Szé05]. A 4-tuple (A_1, A_2, A_3, A_4) over $\mathbb{M}^{2 \times 2}$ without rank-one connections forms a *T4 configuration* whenever there exist matrices $C_1, \ldots, C_4 \in \mathbb{M}^{2 \times 2}$ of rank equal to 1, a matrix $P \in \mathbb{M}^{2 \times 2}$ and real numbers $\kappa_1, \ldots, \kappa_4 > 1$ such that (T4) or (T4*)

Figure 1: Three matrix configurations in $\mathbb{M}^{2\times 2}$. Solid lines follow rank-one directions.

is fulfilled:

$$(T4) \begin{cases} A_1 = P + \kappa_1 C_1 \\ A_2 = P + C_1 + \kappa_2 C_2 \\ A_3 = P + C_1 + C_2 + \kappa_3 C_3 \\ A_4 = P + C_1 + C_2 + C_3 + \kappa_4 C_4 \\ 0 = C_1 + \ldots + C_4 \end{cases}$$

$$(T4^*) \begin{cases} A_1 = P + C_1 \\ A_2 = P + C_2 \\ A_3 = P + C_3 \\ A_4 = P + C_4 \\ 0 \in \{C_1, \ldots, C_4\}^c \end{cases}$$

$$(4)$$

The lemma collects well-known properties of T4 configurations.

Lemma 3.1. Let $A_1, \ldots, A_4 \in \mathbb{M}^{2 \times 2}$ be matrices such that (A_1, A_2, A_3, A_4) forms a T4 configuration. Then, for (T4*), the matrix P and, for (T4), the matrices $P_1 = P$, $P_2 = P + C_1$, $P_3 = P + C_1 + C_2$ as well as $P_4 = P + C_1 + C_2 + C_3$ lie in the rank-one convex hull $\{A_1, \ldots, A_4\}^{\text{rc}}$.

Proof. Compare with Figure 1. There exists a laminate ν so that $\bar{\nu} = P$ and $\operatorname{supp}(\nu) = \{A_1, \ldots, A_4\}$. A way how to construct such a ν for (T4) can be found, for example, in [Mül99a, §2.5]. Similar constructions can be used when P is replaced by P_2 , P_3 or P_4 . Condition (T4*), which can be seen as a limit case of (T4), is handled by Kirchheim [Kir03, Corollary 4.19]. \Box

4 Incompatibility and frame invariance

Let $K_1, K_2 \subseteq \mathbb{M}^{2 \times 2}$ be compact sets. We call K_1 and K_2 incompatible for homogeneous gradient Young measures if for every $\nu \in \mathcal{M}^{qc}(K_1 \cup K_2)$ we have either $\operatorname{supp}(\nu) \subseteq K_1$ or $\operatorname{supp}(\nu) \subseteq K_2$. In the same spirit, we call K_1 and K_2 incompatible for first-order laminates if there are no rank-one connected matrices A, B with $A \in K_1$ and $B \in K_2$. We call K_1 and K_2 incompatible for T4 configurations if for every T4 configuration (A_1, \ldots, A_4) over $K_1 \cup K_2$ we have either $\{A_1, \ldots, A_4\} \subseteq K_1$ or $\{A_1, \ldots, A_4\} \subseteq K_2$. Furthermore, we say that K_1 and K_2 can be separated by a polyconvex set whenever there exist disjoint open sets $U_1, U_2 \subseteq \mathbb{M}^{2 \times 2}$ such that $K_1 \subset U_1, K_2 \subset U_2$ as well as $(K_1 \cup K_2)^{pc} \subseteq U_1 \cup U_2$ holds. Then the set polyconvex set $(K_1 \cup K_2)^{pc}$ "separates" K_1 and K_2 .

In view of [FS08, Theorem 2], we obtain a sufficient condition for K_1 and K_2 to be incompatible for homogeneous gradient Young measures:

Theorem 4.1. Let $K_1, K_2 \subseteq \mathbb{M}^{2 \times 2}$ be compact and assume that K_1 and K_2 can be separated by a polyconvex set. Then K_1 and K_2 are incompatible for homogenous gradient Young measures.

We want to apply Theorem 4.1 to a special situation. Therefore, we introduce additional notation. Given a column vector $x \in \mathbb{R}^2$ and a matrix $A \in \mathbb{M}^{2 \times 2}$, we denote by |x| and |A| the corresponding Euclidean norms and by x^t and A^t the transposed objects. The letter I is used for the identity matrix in $\mathbb{M}^{2 \times 2}$. Let $\mathbb{M}^{2 \times 2}_{\text{sym}}$ be the subspace of all symmetric matrices and $A, B \in \mathbb{M}^{2 \times 2}_{\text{sym}}$. Then we write $A \prec B$ whenever A - B is negative definite and $A \preceq B$ whenever A - B is negative semi-definite. If $A \in \mathbb{M}^{2 \times 2}_{\text{sym}}$ is positive semi-definite, then we denote by \sqrt{A} the only positive semi-definite matrix which solves $X^2 = A$ in $\mathbb{M}^{2 \times 2}_{\text{sym}}$. Now we define the disjoint open sets

$$P_1 = \{A \in \mathbb{M}^{2 \times 2} \mid A^t A \prec I\}, \qquad P_2 = \{A \in \mathbb{M}^{2 \times 2} \mid I \prec A^t A \land \det(A) > 0\}.$$
(5)

We show that the union $P_1 \cup P_2$ is a lower level-set of a polyconvex function. In order to do so, we consider the following notation, which has been used before by many authors in the context of isotropic sets. Let $A \in \mathbb{M}^{2\times 2}$ be a given matrix, then we define $\lambda_1(A), \lambda_2(A) \in \mathbb{R}^2$ as the only real numbers such that $\{|\lambda_1(A)|, \lambda_2(A)\}$ is the set of singular values of A (the eigenvalues of $\sqrt{A^t A}$) and, in addition, $|\lambda_1(A)| \leq \lambda_2(A)$ as well as $\det(A) = \lambda_1(A)\lambda_2(A)$ holds.

Following Conti et al. [CDLMR03, Lemma 2.2], we know that the function $f: \mathbb{M}^{2\times 2} \to \mathbb{R}$ given by $f(A) = \lambda_1(A) + \lambda_2(A) - \det(A) - 1$ is polyconvex. We write the function f in factorized form $f = (1-\lambda_1)(\lambda_2-1)$ and realize that f is negative if and only if either $\lambda_2 < 1$ holds or $1 < \lambda_1$. By simple computations, we get that $\lambda_2(A) < 1$ holds whenever A lies in P_1 and $\lambda_1(A) > 1$ holds whenever A lies in P_2 . This directly implies that we can write $P_1 \cup P_2$ as a lower level-set of a polyconvex function. We would like to point out that a key idea of this paper is to exploit the fact that P_1 and P_2 , as defined in (5), are incompatible for homogeneous gradient Young measures. A first step is done in the next lemma.

Lemma 4.2. Let $K_1, K_2 \subseteq \mathbb{M}^{2 \times 2}$ be compact sets with positive determinant. Moreover, we assume that there exists a matrix $B \in \mathbb{M}^{2 \times 2}$ with positive determinant such that for every $A \in K_1$ and $C \in K_2$ we have $A^t A \prec B^t B \prec C^t C$. Then K_1 and K_2 can be separated by a polyconvex set.

Proof. Take $U_1 = P_1B$ and $U_2 = P_2B$ where P_1 and P_2 are given by (5). Note that the determinant is positive for all elements in U_2 and K_2 by assumption. A simple computation shows that U_1 and U_2 contain K_1 and K_2 , respectively. The set $P_1 \cup P_2$ is the lower level-set of a polyconvex function and so is $U_1 \cup U_2$. In fact, if $f \colon \mathbb{M}^{2 \times 2} \to R$ is polyconvex, the function given by $A \mapsto f(AB^{-1})$ is also polyconvex, by definition. Here B^{-1} stands for the inverse of the matrix B. In view of (2) and (3), it is not hard to see that the polyconvex hull $(K_1 \cup K_2)^{\text{pc}}$ must be a subset of $U_1 \cup U_2$.

Now we come to frame invariance. Let $K \subset \mathbb{M}^{2 \times 2}$ be a given set. We call K frame invariant whenever it is invariant under the left action of the special orthogonal group SO(2), meaning,

for every $A \in K$ the whole orbit SO(2)A is contained in K. Here we consider SO(2) as a subset of $\mathbb{M}^{2\times 2}$ so that the group action becomes just matrix multiplication. In the context of frame invariance, we will need the following lemma.

Lemma 4.3. Let $D \in \mathbb{M}^{2 \times 2}_{sym}$ be positive definite and $Y \in \mathbb{M}^{2 \times 2}$ a matrix with positive determinant. Assume that Y^tY and D are rank-one connected. Then there is a positive real number $\gamma > 0$ and a rotation $R \in SO(2)$ such that $Y^tY - D = \gamma \sqrt{D}(RY - \sqrt{D})$. In particular, RY and \sqrt{D} are rank-one connected.

Proof. If $Y^t Y$ and D are rank-one connected, so are the matrices $\widetilde{D} = \sqrt{D}^{-1} Y^t Y \sqrt{D}^{-1}$ and I. Fix a real number $\alpha \in \mathbb{R}$ and a vector $\widetilde{x} \in \mathbb{R}^2$ with $|\widetilde{x}| = 1$ such that $\widetilde{D} - I = \alpha \widetilde{x} \otimes \widetilde{x}$. Since \widetilde{D} is positive definite, we must have $\alpha > -1$. Then there is a real number $\beta > -1$ with the same sign as α so that

$$(I + \beta \widetilde{x} \otimes \widetilde{x})^t (I + \beta \widetilde{x} \otimes \widetilde{x}) - I = (2\beta + \beta^2) \widetilde{x} \otimes \widetilde{x} = \alpha \widetilde{x} \otimes \widetilde{x}.$$

Note that the matrix $I + \beta \tilde{x} \otimes \tilde{x}$ has positive determinant. Multiplication from the right and left by \sqrt{D} gives

$$\left(\sqrt{D} + \beta\sqrt{D}^{-1}x \otimes x\right)^2 - D = \alpha x \otimes x = Y^t Y - D$$

where we set $x = \sqrt{D}\tilde{x}$. This implies that the matrices Y and $\sqrt{D} + \beta\sqrt{D}^{-1}x \otimes x$ have the same symmetric part in the polar decomposition. Since both matrices have positive determinant, there must be a rotation $R \in SO(2)$ such that $RY - \sqrt{D}$ and $\beta\sqrt{D}^{-1}x \otimes x$ are the same. \Box

The next lemma states well-known facts, compare [Dol03, §A.2] and the references therein. For the convenience of the reader, we give a proof here.

Lemma 4.4. Let $A, C \in \mathbb{M}^{2 \times 2}$ be given matrices such that $0 < \det(A) \le \det(C)$. Then $\det(A^t A - C^t C) \ge 0$ holds if and only if $A^t A \preceq C^t C$. In addition, the following properties are equivalent:

- (i) SO(2)A and SO(2)C are incompatible for first-order laminates.
- (ii) $\det(A^t A C^t C) > 0.$
- (iii) $A^t A \prec C^t C$.

Proof. Condition (ii) holds if and only if $A^tA - C^tC$ is either negative or positive definite. In view of $\det(A) \leq \det(C)$, it must be negative definite and, hence, we have (ii) \Leftrightarrow (iii). The first part of the lemma follows by a similar argument. Condition \neg (ii) holds if and only if there is a vector $x \in \mathbb{R}^2 \setminus \{0\}$ which fulfills one of these equivalent properties: $x^tA^tAx = x^tC^tCx$, |Ax| = |Cx| or QAx = RCx for some rotations $Q, R \in SO(2)$. We conclude that \neg (ii) holds if and only if there are rotations $Q, R \in SO(2)$ such that the rank of the matrix QA - RC is at most 1. This implies that \neg (ii) $\Leftrightarrow \neg$ (i).

5 A necessary condition for incompatibility

We are going to prove that, in the context of frame invariance, separability by a polyconvex set is also necessary for incompatibility. Here we look at a special case first. In order to prove the proposition, we will use Helly's theorem, see, for example, [DGK63].

Theorem 5.1 (Helly's theorem). Let d be a positive integer, \mathcal{I} an index set, possibly uncountable, and $\{\mathcal{D}_{\alpha}\}_{\alpha\in\mathcal{I}}$ a family of compact convex sets in a d-dimensional Euclidean space. If for every $\alpha_1, \ldots, \alpha_{d+1} \in \mathcal{I}$ the intersection $\mathcal{D}_{\alpha_1} \cap \cdots \cap \mathcal{D}_{\alpha_{d+1}}$ is non-empty, then the whole intersection $\bigcap \{\mathcal{D}_{\alpha} \mid \alpha \in \mathcal{I}\}$ is non-empty.

Proposition 5.2. Let $K_1, K_2 \subseteq \mathbb{M}^{2 \times 2}$ be compact and frame-invariant sets of matrices with positive determinant such that

$$\max\{\det(A) \mid A \in K_1\} < \min\{\det(C) \mid C \in K_2\}.$$

Then the following properties are equivalent:

- (a) K_1 and K_2 are incompatible for homogeneous gradient Young measures.
- (b) K_1 and K_2 are incompatible for first-order laminates. In addition, C_{K_1} and C_{K_2} are incompatible for T4 configurations where $C_{K_i} = \{X^t X \mid X \in K_i\}$ for i = 1, 2.
- (c) K_1 and K_2 can be separated by a polyconvex set.

Proof. We assume that K_1 and K_2 are non-empty. Otherwise the proof is trivial. Theorem 4.1 implies that (c) \Rightarrow (a). We show that (b) \Rightarrow (c). Assume that K_1 and K_2 are incompatible for first-order laminates and, in addition, \mathcal{C}_{K_1} and \mathcal{C}_{K_2} are incompatible for T4 configurations. Then, in particular, K_1 and K_2 are disjoint. Let $\Lambda \in \mathbb{R}$ be a positive real number such that for every $Y \in K_1 \cup K_2$ we have $Y^t Y \preceq \Lambda I$. Such a Λ exists, since K_1 and K_2 are compact. Given $Y \in K_1 \cup K_2$ we define the set \mathcal{D}_Y via

$$\mathcal{D}_Y = \begin{cases} \{ D \in \mathbb{M}^{2 \times 2}_{\text{sym}} \mid Y^t Y \prec D \preceq \Lambda I \} & \text{if } Y \in K_1, \\ \{ D \in \mathbb{M}^{2 \times 2}_{\text{sym}} \mid 0 \preceq D \prec Y^t Y \} & \text{if } Y \in K_2. \end{cases}$$

Fix a subset $\{Y_1, \ldots, Y_4\} \subseteq K_1 \cup K_2$. We show that the intersection $\mathcal{D} = \mathcal{D}_{Y_1} \cap \cdots \cap \mathcal{D}_{Y_4}$ is non-empty. In order to do that, we distinguish between different cases. Nothing is to show if $Y_1, \ldots, Y_4 \in K_1$ or $Y_1, \ldots, Y_4 \in K_2$. To shorten notation, set $X_i = Y_i^t Y_i$ for $i = 1, \ldots, 4$. If $Y_1 \in K_1$ and $Y_2, Y_3, Y_4 \in K_2$, then, by Lemma 4.4, we must have $X_1 \prec X_i$ for i =1, 2, 3. Hence, there is a positive real number $\epsilon > 0$ such that $X_1 + \epsilon I$ lies in \mathcal{D} . Similarly, if $Y_1, Y_2, Y_3 \in K_1$ and $Y_4 \in K_2$, then $X_4 - \epsilon I$ lies in \mathcal{D} for some $\epsilon > 0$. Up to a permutation, there is only one case left: $Y_1, Y_4 \in K_1$ and $Y_2, Y_3 \in K_2$. If $X_1 \preceq X_4$ holds, then $X_4 + \epsilon I$ lies in \mathcal{D} for some $\epsilon > 0$. Similar arguments can be used to treat $X_4 \preceq X_1, X_2 \preceq X_3$ and $X_3 \preceq X_2$. Thus, in view of Lemma 4.4, it remains to deal with matrices $Y_1, Y_4 \in K_1$ and $Y_2, Y_3 \in K_2$ which fulfill the following condition. For indices $i, j \in \{1, 2, 3, 4\}$ with i < j we have

$$\det(X_i - X_j) \begin{cases} < 0 & \text{if } (i, j) \in \{(1, 4), (2, 3)\}, \\ > 0 & \text{else.} \end{cases}$$
(6)

Now we apply a result by Székelyhidi [Szé05, Theorem 2]. Condition (6) is equivalent to what he calls *sign-configuration (B)*. Hence, exactly one of the following three holds:

- (i) There is a $O \in \{X_1, \ldots, X_4\}^c$ such that $det(X_i O) > 0$ for every $i = 1, \ldots, 4$.
- (ii) There is a $O \in \{X_1, \ldots, X_4\}^c$ such that $det(X_i O) = 0$ for every $i = 1, \ldots, 4$ and then (X_1, \ldots, X_4) forms a T4 configuration, (T4*) in (4).
- (iii) There is a $O \in \{X_1, \ldots, X_4\}^c$ such that $det(X_i O) < 0$ for every $i = 1, \ldots, 4$ and then (X_1, \ldots, X_4) forms a T4 configuration, (T4) in (4).

Note that, by definition, X_1, \ldots, X_4 are symmetric as well as positive definite and so is O. We have that C_{K_1} and C_{K_2} are incompatible for T4 configurations. Hence, (i) must hold. This can only happen when O lies in \mathcal{D} , see Lemma 4.4. This shows that \mathcal{D} is non-empty.

Since K_1 and K_2 are compact, there is an integer n > 0 and matrices $O_1, \ldots, O_n \in \mathbb{M}^{2 \times 2}_{\text{sym}}$ such that the matrix O in (i) can always be taken from $\{O_1, \ldots, O_n\}$. We can fix a positive real number $\epsilon > 0$ such that for every subset $\{Y_1 \ldots, Y_4\} \subseteq K_1 \cup K_2$ the intersection $\mathcal{D}^{\epsilon}_{Y_1} \cap \cdots \cap \mathcal{D}^{\epsilon}_{Y_4}$ is non-empty. Here we set

$$\mathcal{D}_{Y}^{\epsilon} = \begin{cases} \{ D \in \mathbb{M}_{\text{sym}}^{2 \times 2} \mid Y^{t}Y + \epsilon I \leq D \leq \Lambda I \} & \text{if } Y \in K_{1}, \\ \{ D \in \mathbb{M}_{\text{sym}}^{2 \times 2} \mid 0 \leq D \leq Y^{t}Y - \epsilon I \} & \text{if } Y \in K_{2}. \end{cases}$$

The set $\mathcal{D}^{\epsilon} = \bigcap \{ \mathcal{D}_{Y}^{\epsilon} \mid Y \in K_1 \cup K_2 \}$ is the intersection of compact convex sets in the 3-dimensional space $\mathbb{M}^{2 \times 2}_{\text{sym}}$. What we have just shown together with Theorem 5.1 implies that \mathcal{D}^{ϵ} is non-empty. Fix an element $D \in \mathcal{D}^{\epsilon}$ and set $B = \sqrt{D}$. Then we obtain (c) as a consequence of Lemma 4.2.

Finally, it remains to prove $\neg(b) \Rightarrow \neg(a)$. All first-order laminates are homogenous gradient Young measures. Hence, we have to show $\neg(a)$ given that the following is true: K_1 and K_2 are incompatible for first-order laminates, but \mathcal{C}_{K_1} and \mathcal{C}_{K_2} are not incompatible for T4 configurations. Recall that we have set $X_i = Y_i^t Y_i$ for $i = 1, \ldots, 4$. In view of what we have done above, there are matrices $Y_1, Y_4 \in K_1$ and $Y_2, Y_3 \in K_2$ such that (6) holds together with (ii) or (iii).

Case (ii). Lemma 4.3 implies two things. First, for every $i \in \{1, ..., 4\}$ there must be a rotation $R_i \in SO(2)$ such that $R_i Y_i$ and \sqrt{O} are rank-one connected. Second, we must have that

$$0 \in \{X_1 - O, \dots, X_4 - O\}^{c} = \sqrt{O}\{\gamma_1 R_1 Y_1 - \sqrt{O}, \dots, \gamma_4 R_4 Y_4 - \sqrt{O}\}^{c}$$

for some positive real numbers $\gamma_1, \ldots, \gamma_4 > 0$. In particular, \sqrt{O} must lie in the convex hull $\{R_1Y_1, \ldots, R_4Y_4\}^c$. Hence, (R_1Y_1, \ldots, R_4Y_4) forms a T4 configuration (of type (T4*) in (4)) with $P = \sqrt{O}$. We have \neg (a).

Case (iii). Assume that (X_1, \ldots, X_4) forms a T4 configuration and fix matrices C_1, \ldots, C_4, P such that (T4) in (4) is fulfilled. Since the matrices X_1, \ldots, X_4 are symmetric and positive definite, so are P_1, \ldots, P_4 , see Lemma 3.1. Then, in view of Lemma 4.3, we find matrices $\widetilde{C}_1, \widetilde{C}_2, \ldots \in \mathbb{M}^{2\times 2}$ of rank equal to 1, real numbers $\widetilde{\kappa}_1, \widetilde{\kappa}_2, \ldots > 1$ and rotations Q_0, R_1 ,

 $Q_1, R_2, Q_2, \ldots \in SO(2)$ such that

$$R_{1}Y_{1}-Q_{0}\sqrt{P_{1}} = \tilde{\kappa}_{1}(Q_{1}\sqrt{P_{2}}-Q_{0}\sqrt{P_{1}}) = \tilde{C}_{1},$$

$$R_{2}Y_{2}-Q_{1}\sqrt{P_{2}} = \tilde{\kappa}_{2}(Q_{2}\sqrt{P_{3}}-Q_{1}\sqrt{P_{2}}) = \tilde{C}_{2},$$

$$R_{3}Y_{3}-Q_{2}\sqrt{P_{3}} = \tilde{\kappa}_{3}(Q_{3}\sqrt{P_{4}}-Q_{2}\sqrt{P_{3}}) = \tilde{C}_{3},$$

$$R_{4}Y_{4}-Q_{3}\sqrt{P_{4}} = \tilde{\kappa}_{4}(Q_{4}\sqrt{P_{1}}-Q_{3}\sqrt{P_{4}}) = \tilde{C}_{4},$$

$$R_{5}Y_{1}-Q_{4}\sqrt{P_{1}} = \tilde{\kappa}_{5}(Q_{5}\sqrt{P_{2}}-Q_{4}\sqrt{P_{1}}) = \tilde{C}_{5},$$

$$R_{6}Y_{2}-Q_{5}\sqrt{P_{2}} = \tilde{\kappa}_{6}(Q_{6}\sqrt{P_{3}}-Q_{5}\sqrt{P_{2}}) = \tilde{C}_{6},$$

$$\vdots$$

$$\vdots$$

$$(7)$$

By definition, the matrices $X_1, \ldots, X_4, P_1, \ldots, P_4$ are pairwise distinct. This implies that there is a uniform bound $\tilde{\kappa}_0 > 1$ such that $\tilde{\kappa}_i \ge \tilde{\kappa}_0$ holds for every $i = 1, 2, \ldots$. The equations in (7) present a way how to construct a laminate $\nu \in \mathcal{M}^{\mathrm{rc}}(K_1 \cup K_2)$ such that both sets $\mathrm{supp}(\nu) \cap K_1$ and $\mathrm{supp}(\nu) \cap K_2$ are non-empty. Recall the "classical" construction of laminates for T4 configurations, see, for example, [Mül99a, §2.5]. In fact, the same procedure can be used here. This shows that $\neg(a)$ holds and finishes the proof.

6 Main results

Let $K \subseteq \mathbb{M}^{2 \times 2}$ be a compact and frame-invariant set of matrices with positive determinant. We construct a set which can be used to determine the structure of the quasiconvex hull K^{qc} . Therefore, let $\Delta \subseteq \mathbb{R}$ be the union of all closed intervals

$$\left[\min\{\det(A), \det(B)\}, \max\{\det(A), \det(B)\}\right]$$

where A and B are rank-one connected matrices in K together with all closed intervals

$$\left[\min\{\sqrt{\det(A_i)} \mid i = 1, \dots, 4\}, \max\{\sqrt{\det(A_i)} \mid i = 1, \dots, 4\}\right]$$

where (A_1, \ldots, A_4) are T4 configurations over $C_K = \{X^t X \mid X \in K\}$.

Theorem 6.1. Let $K \subseteq \mathbb{M}^{2 \times 2}$ be a compact and frame-invariant set of matrices with positive determinant and $A, B \in K$. Then the following properties are equivalent:

- (i) A and B lie in the same connected component of $K^{\rm rc}$.
- (ii) A and B lie in the same connected component of $K^{\rm qc}$.
- (iii) A and B lie in the same connected component of $K^{\rm pc}$.
- (iv) det(A) and det(B) lie in the same connected component of Δ .

Proof. If necessary, we exchange the roles of A and B so that $0 < \det(A) \le \det(B)$ holds. We know that (i) \Rightarrow (ii) \Rightarrow (iii) is true. Condition \neg (iv) implies that there is a real number $d \in \mathbb{R}$ such that $\det(A) < d < \det(B)$ holds and $d \notin \Delta$. Consider the disjoint sets

$$K_1 = K \cap \{A \in \mathbb{M}^{2 \times 2} \mid \det(A) < d\}, \qquad K_2 = K \cap \{C \in \mathbb{M}^{2 \times 2} \mid d > \det(C)\}.$$

Clearly, we have $K_1 \cup K_2 = K$. Since K is compact, so are K_1 and K_2 . The number d is chosen in such a way that the sets K_1 and K_2 are incompatible for first-order laminates and, in addition, C_{K_1} and C_{K_2} are incompatible for T4 configurations. Proposition 5.2 implies that K_1 and K_2 can be separated by a polyconvex set. In particular, A and B must lie in different connected components of $K^{\rm pc}$. We have \neg (iii).

Assume that \neg (i) is fulfilled. If there is a real number $d \in \mathbb{R}$ such that $\det(A) < \det(B)$ as well as $d \notin \Delta$ holds, then we get \neg (iv) and we are done. If not, we must have that the whole interval $[\det(A), \det(B)]$ is contained in Δ . In order to get a contradiction, it is sufficient to show that the set

 $M = \{X \in K^{\mathrm{rc}} \mid \det(A) \leq \det(X) \leq \det(B)\}$

is connected. Since K is compact and frame invariant, so is K^{rc} and M. If M fails to be connected, then there exist compact, disjoint and frame-invariant sets M_1 and M_2 such that the union $M_1 \cup M_2$ is M and the intersection $M_1 \cap M_2$ is empty. On one hand, we can find matrices $X_1 \in M_1$ and $X_2 \in M_2$ with $\det(X_1) = \det(X_2)$. On the other hand, for every $X_1 \in M_1$ and $X_2 \in M_2$ the sets $\mathrm{SO}(2)X_1$ and $\mathrm{SO}(2)X_2$ must be incompatible for first-order laminates and, hence, $\det(X_1) = \det(X_2)$ is impossible in view of Lemma 4.4. The set M must be connected. This finishes the proof.

Remark 6.2. The set Δ is constructed in such a way that for every $X \in K^{qc}$ we have that det(X) lies in Δ .

Proof. Let $X \in K^{qc}$ be given and $\nu \in \mathcal{M}^{qc}(K)$ a homogeneous gradient Young measure such that $X = \bar{\nu}$ holds. Since the functions given by $A \mapsto \det(A)$ and $A \mapsto -\det(A)$ are polyconvex (and, in particular, quasiconvex), we can fix matrices $A, B \in \operatorname{supp}(\nu)$ such that $\det(A) \leq \det(X) \leq \det(B)$ holds. As an application of Theorem 1.1, we know that $\operatorname{supp}(\nu)^{qc}$ is connected. This means that A and B lie in the same connected component of K^{qc} . By Theorem 6.1, $\det(A)$ and $\det(B)$ lie in the same connected component of Δ . Then $\det(X)$ must lie in Δ .

Now we prove a generalization of Proposition 5.2.

Theorem 6.3. Let $L_1, L_2 \subseteq \mathbb{M}^{2 \times 2}$ be compact and frame-invariant sets of matrices with positive determinant. Then the following properties are equivalent:

- (a) L_1 and L_2 are incompatible for homogeneous gradient Young measures.
- (b) L_1 and L_2 are incompatible for first-order laminates. In addition, $\{A^tA \mid A \in L_1\}$ and $\{C^tC \mid C \in L_2\}$ are incompatible for T4 configurations.
- (c) L_1 and L_2 can be separated by a polyconvex set.

Proof. Theorem 4.1 implies that (c) \Rightarrow (a) holds. The implication \neg (b) $\Rightarrow \neg$ (a) can be shown like in the proof of Proposition 5.2. It remains to show that (b) \Rightarrow (c) holds. Like before, given any $K \subseteq \mathbb{M}^{2\times 2}$ we set $\mathcal{C}_K = \{X^tX \mid X \in K\}$. Assume that L_1 and L_2 are incompatible for first-order laminates and, in addition, \mathcal{C}_{L_1} and \mathcal{C}_{L_2} are incompatible for T4 configurations.

Set $K = L_1 \cup L_2$. We will use the set Δ which was defined above. For i = 1, 2 let Z_i be a connected component of L_i . In particular, Z_1 and Z_2 are incompatible for first-order laminates and, in addition, C_{Z_1} and C_{Z_2} are incompatible for T4 configurations. Then there is a real number $d \notin \Delta$ such that

$$\max\{\det(A) \mid A \in Z_1\} < d < \min\{\det(C) \mid C \in Z_2\}$$

where we exchange the roles of Z_1 and Z_2 if necessary. Consider the disjoint sets

$$K_1 = K \cap \{A \in \mathbb{M}^{2 \times 2} \mid \det(A) < d\}, \qquad K_2 = K \cap \{C \in \mathbb{M}^{2 \times 2} \mid d > \det(C)\}.$$

By definition, K_1 and K_2 are compact and frame invariant. The union $K_1 \cup K_2$ is equal to K. The sets K_1 and K_2 are incompatible for homogeneous gradient Young measures. Otherwise, in view of Theorem 1.1, there is a matrix X with det(X) = d. But then Remark 6.2 implies that d lies in Δ , which gives a contradiction. Hence, we can apply Proposition 5.2 to K_1 and K_2 . Then K_1 and K_2 and, in particular, Z_1 and Z_2 can be separated by a polyconvex set. Now we vary Z_1 over all connected components of L_1 and Z_2 over all connected components of L_2 . Every choice of Z_1 and Z_2 gives a polyconvex set. If we take the intersection of all those polyconvex sets, we end up with a polyconvex set which separates L_1 and L_2 .

References

- [Bal77] John M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. *Arch. Rational Mech. Anal.*, 63(4):337–403, 1977.
- [CDLMR03] Sergio Conti, Camillo De Lellis, Stefan Müller, and Mario Romeo. Polyconvexity equals rank-one convexity for connected isotropic sets in $\mathbb{M}^{2\times 2}$. *C. R. Acad. Sci. Paris, Sér. I*, 337(4):233–238, 2003.
- [Dac89] Bernard Dacorogna. *Direct Methods in the Calculus of Variations*. Springer-Verlag, Berlin, 1989.
- [DGK63] Ludwig Danzer, Branko Grünbaum, and Victor Klee. Helly's theorem and its relatives. In *Proc. Sympos. Pure Math.*, volume VII, pages 101–180. Amer. Math. Soc., 1963.
- [Dol03] Georg Dolzmann. Variational Methods for Crystalline Microstructure Analysis and Computation. Springer-Verlag, 2003.
- [FS08] Daniel Faraco and László Székelyhidi. Tartar's conjecture and localization of the quasiconvex hull in $\mathbb{R}^{2\times 2}$. *Acta Math.*, 200:279–305, 2008. 10.1007/s11511-008-0028-1.
- [Hei11] Sebastian Heinz. Quasiconvexity equals rank-one convexity for isotropic sets of 2x2 matrices. WIAS Preprint 1637, 2011.

- [Kir03] Bernd Kirchheim. Rigidity and Geometry of Microstructures. University of Leipzig, 2003. Habilitation thesis.
- [KP91] David Kinderlehrer and Pablo Pedregal. Characterizations of Young measures generated by gradients. *Arch. Rational Mech. Anal.*, 115:329–365, 1991.
- [Kri99] Jan Kristensen. On the non-locality of quasiconvexity. *Ann. I. H. Poincaré AN*, 16(1):1–13, 1999.
- [Mil04] Graeme W. Milton. *The Theory of Composites*. Cambridge University Press, 2004.
- [Mor52] Charles B. Morrey, Jr. Quasi-convexity and the lower semicontinuity of multiple integrals. *Pacific J. Math.*, 2:25–53, 1952.
- [Mül99a] S. Müller. Variational models for microstructure and phase transitions. In *Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996)*, pages 85–210. Springer, Berlin, 1999.
- [Mül99b] Stefan Müller. Rank-one convexity implies quasiconvexity on diagonal matrices. Internat. Math. Res. Notices, 20:1087–1095, 1999.
- [Ped93] Pablo Pedregal. Laminates and microstructure. *Eur. J. Appl. Math.*, 4:121–149, 1993.
- [Šve92] Vladimír Šverák. Rank-one convexity does not imply quasiconvexity. *Proc. Roy. Soc. Edinburgh Sect. A*, 120(1-2):185–189, 1992.
- [Szé05] László Székelyhidi. Rank-one convex hulls in $\mathbb{R}^{2\times 2}$. *Calculus of Variations and Partial Differential Equations*, 22:253–281, 2005. 10.1007/s00526-004-0272-y.
- [Tar93] Luc Tartar. Some remarks on separately convex functions. In *Microstructure and phase transition*, pages 183–189. Springer, New York, 1993.