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Abstract

We discuss state-of-art approaches to modeling of propagation of ultrashort optical

pulses in one and three spatial dimensions. We operate with the analytic signal formulation

for the electric field rather than using the slowly varying envelope approximation, because

the latter becomes questionable for few-cycle pulses. Suitable propagation models are

naturally derived in terms of unidirectional approximation.

1 Introduction

The shortest events ever created by humans are ultrashort laser pulses with the current record

being less then the Bohr-orbit time in hydrogen [1, 2]. These extreme pulses have dramatically

triggered both fundamental and applied science. Their numerical treatment also created new

challenges, since the phenomena in question involve many different time scales, such that a

straightforward solution of the underlying field and material equations becomes impractical. On

the other hand, one cannot eliminate the fastest time-scale of a single optical oscillation us-

ing the slowly varying envelope approximation (SVEA), because SVEA is no longer valid for

ultrashort pulses. Therefore new models allowing for efficient numerical treatment have to be

developed [3, 4, 5, 6]. We discuss several such models starting from a relatively simple case

of a single-mode waveguide in which the field structure in the radial direction is fixed and only

one propagation coordinate is involved [7, 8, 9, 10, 11]. Thereafter we turn to the full three-

dimensional modeling of propagation of ultrashort pulses in gases [12, 13].

2 Scalar case

We start with an exemplary field-level numerical solution for an ultrashort pulse propagating in a

single-mode fiber [8], Fig. 1. As one can see, the envelope structure is destroyed in the course

of propagation. Another observation is that the pulse carrier frequency is gradually shifted and

therefore not well defined. Such extreme propagation regimes require more careful treatment

than the traditional envelope description. A natural approach is to take advantage of the nearly

unidirectional character of pulse propagation.

In principle, an optical pulse in a single-mode waveguide can be described by a single field

component E(~r, t) which, to a good approximation, is governed by a scalar wave equation

~∇2E −
1

c2
∂2

t (ε̂E) = µ0∂
2
t PNL, (1)

where the dispersion operator ε̂ is defined in the frequency domain (ε̂E)ω = ε(ω)Eω and

PNL denotes the nonlinear part of the induced polarization. For a given ω > 0, the standard

forward/backward solutions E ∼ ei(±βz−ωt) of the linearized Eq. (1) yield the propagation

constant β(ω) = ωn(ω)/c, where the refractive index n(ω) =
√

ε(ω).

We now relate β(ω) to the operator β̂ such that

(

β̂E
)

ω
= |ω|

n(ω)

c
Eω and

1

c2
(i∂t)

2ε̂ = β̂2,
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Figure 1: Electric field (a) and spectrum (b) of the initial pulse. (c) and (d), the same after 10 ps

of propagation in a bulk fluoride glass. The envelope structure of the initial pulse is gradually

destroyed in the course of propagation. For further details see [8].

where |ω| is used to ensure that β̂ transforms a real field into a real field [c.f., ε(−ω) = ε∗(ω)
and β(−ω) = −β∗(ω)]. In the following we also assume that the time-averaged pulse field

vanishes, 〈E〉 = 0, which is compatible to Eq. (1). For such pulses Eω → 0 as ω → 0, and

one can safely define β̂−1E. Using β̂, Eq. (1) can be transformed to the form
(

i∂z + β̂
)(

i∂z − β̂
)

E = ~∇2
⊥
E − µ0∂

2
t PNL, (2)

where ~∇2
⊥

= ∂2
x + ∂2

y is the transverse Laplace operator. At this point it is profitable:

(i) to decompose the real-valued electric field

E(~r, t) =
∑

ω

Eω(~r)e−iωt, E−ω = E∗

ω,

into the complex-valued negative- and positive-frequency parts

E =
∑

ω<0

Eωe
−iωt +

∑

ω>0

Eωe
−iωt = E(−) + E(+),

(ii) to introduce the analytic signal E for the electric field such that E = Re[E ]

E(~r, t) = 2E(+)(~r, t) = 2
∑

ω>0

Eω(~r)e−iωt,

(iii) and to replace Eq. (2) with
(

i∂z + β̂
)(

i∂z − β̂
)

E = ~∇2
⊥
E − 2µ0∂

2
t P

(+)
NL . (3)

For a weakly nonlinear pulse consisting of forward waves propagating along the fiber we have
(

i∂z − β̂
)

E ≈ −2β̂E and therefore, neglecting the backward waves, one can simplify Eq. (3)

to the form
(

i∂z + β̂
)

E +
β̂−1

2
~∇2

⊥
E = µ0β̂

−1∂2
t P

(+)
NL .
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For instance, neglecting the third harmonics generation in a cubic medium with PNL =

ε0χ
(3)E3, one can approximate the positive frequency part of E3 by 3

8
(|E|2E)

(+)
. The propa-

gation equation

(

i∂z + β̂
)

E +
β̂−1

2
~∇2

⊥
E =

3χ(3)

8c2
β̂−1∂2

t

(

|E|2E
)(+)

(4)

looks then similar to the generalized nonlinear Schrödingier equation (NSE) and can be solved

with the same numerical technique. However, Eq. (4) is completely independent on SVEA. If the

pulse in question can be characterized by a narrow spectrum with the carrier frequency ω0 and

the corresponding wave vector β0 = β(ω0), then ∂2
t ≈ −ω2

0 , β−1 ≈ 1/β0, and

(

i∂z + β̂
)

E +
1

2β0

~∇2
⊥
E +

3ω0χ
(3)

8cn(ω0)
|E|2E = 0,

where the latter equation can be related to the 1D NSE for the traditional pulse envelope ψ(z, τ)
by a standard transformation to the pulse-comoving frame and projection onto the dominant

waveguide mode [14]

E(~r, t) = R(x, y)ψ(z, τ)ei(β0z−ω0t) + h.o.t.,

where τ = t−β1z is the retarded time, β1 = β ′(ω0) is the inverse group velocity, and R(x, y)
is the approximately fixed radial field structure. The same projection technique can be applied

directly to Eq. (4), the result has the same basic structure

i∂zE(z, t) + β̂E(z, t) =
3χ(3)

8c2
β̂−1∂2

t

(

|E|2E
)(+)

,

but attributes to the so-called effective dispersion βeff(ω) which depends on the fiber in ques-

tion.

3 Vectorial case

In homogeneous media without (linear) waveguiding one has to account, in principle, for a fully

vectorial description of the electric field ~E, e.g., in the frequency domain by

[~∇2 + β2(ω)] ~Eω = ~Sω. (5)

The source term ~Sω is given by

~Sω = −µ0ω
2 ~PNL,ω + iµ0ω ~Jω +

1

ε0
~∇

(

ρ− ~∇ · ~Pω

)

, (6)

and takes account of the nonlinear part ~PNL,ω of the total polarization density ~Pω , the existence

of free carriers with density ρ and current density ~Jω, respectively. The last term on the r.h.s. of

Eq. (6) models vectorial effects which become important for strongly divergent beams occuring

under extreme focusing conditions. Scalar approximations can be restored for many experimen-

tal situations of interest. Nonlinear self-focusing effects may increase the optical intensity to

trigger photoionization, which requires to include free carrier terms. Analogous to the previous
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Section, we wish to introduce the notion of directional propagation. As for the one-dimensional

case, for this purpose we refer to the linear regime where ~Jω = ~PNL,ω = ρ = ~∇ · ~Pω ≡ 0.

In this case, the source term ~Sω vanishes. In Fourier space parametrized by the wavevector
~k> = (kx, ky, kz) and angular frequency ω, the resulting Helmholtz equation is then solved by

the ansatz ~Eω,kx,ky,kz
= ~E+

ω,kx,ky
+ ~E−

ω,kx,ky
if the generalized functions E± are chosen as

~E±

ω,kz,kx,ky
= ~A±

ω,kx,ky,kz
δ

(

kz ∓
√

β2(ω) − k2
⊥

)

(7)

with amplitudes ~A±. The chosen decomposition into generalized functions having support on

the upper (lower) half-sphere defined by ||~k|| = |β| and kz > 0 (kz < 0) then naturally

defines forward and backward running fields ~A±

ω,kx,ky
. A factorization of the nonlinear equation

(5) proceeds analogous to the fiber optical case, and yields, according to [12], the coupled

directional equations for the electric field,

(i∂z ± |kz|)E
±

ω = ~Sω (8)

where |kz| =
√

β2 − k2
⊥

. According to [13], we may rewrite the source terms as

Figure 2: Numerical simulation of optical wavebreaking in a femtosecond filament in argon.

Sω = −µ0ω
2

[

1 −
~k ⊗ ~k

k2

]

~FNL,ω, (9)

where in the frequency domain, ~FNL,ω = ~PNL,ω + i ~Jω/ω. The operator 1−~k⊗~k/k2 projects

out the longitudinal parts of a vector field, and its presence in the propagation equation involves

a very costly numerics. Similar to the waveguiding case, one therefore usually employs the

unidirectional limit by letting

~k ⊗ ~k

k2
~FNL,ω ≈ 0, ~E−

ω ≈ 0. (10)

The first relation states that we can neglect longitudinal field components. Furthermore, it means

that orthogonal polarization states are not coupled, allowing to go back to a scalar description,
~E → E . The second relation states that backward propagating waves are weak and can be

neglected. The resulting unidirectional propagation equation is comparable to the propagation

Eq. (4) in the waveguiding case. Using the approximation |kz| ≈ β(1 − k2
⊥
/2β2) valid for
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k⊥ � β, we obtain the paraxial approximation of Eq. (8). This approximation also restores the

idenfication of directional fields with the analytic signal. Neglecting the backward propagating

wave then yields the forward Maxwell equation (FME) [15]. The latter is successfully used in

the context of femtosecond filamentation. However, as it fails to describe the propagation of the

dc-component of the optical field, optical rectification processes in filaments, like the emission

of Teraherz radation [16], are more suitably described by Eq. (8) using the approximations of

Eq. (10).

The formation of femtosecond filaments can be observed when sufficiently intense pulsed fem-

tosecond laser radiation is loosely focused into a dielectric medium. These filaments are narrow,

longitudinally extended structures of dilute plasma and light. In many cases of interest, filamen-

tation is suitably described by the FME. Numerically, this is solved using a pseudospectral split-

step scheme. A characteristic radially symmetric field configuration arising in a simulation of

femtosecond filamentation [17] is shown in Fig. 2. In fact, this figure depicts the higher dimen-

sional analogue of optical wavebreaking occurring during fiber propagation [14]. It is observed

due to a modulation instability in the interplay of temporal dispersion and nonlinear self-focusing

and also known as hyperbolic shock-wave formation [18].

4 Conclusion

We discuss state-of-art approaches to modeling of propagation of ultrashort optical pulses in

one (waveguide case) and three (bulk propagation in gases) spatial dimensions. As the very

notion of the pulse envelope becomes questionable for a few-cycle pulse, we avoid the use of

the slowly varying envelope approximation and operate with the analytic signal for the electric

field. Suitable propagation models are naturally derived in terms of unidirectional approximation.
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