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Abstract

The topic of the present paper is the reflection of electromagnetic plane waves by rough

surfaces, i.e., by smooth and bounded perturbations of planar faces. Moreover, the contrast

between the cover material and the substrate beneath the rough surface is supposed to

be low. In this case, a modification of Stearns’ formula based on Born approximation and

Fourier techniques is derived for a special class of surfaces. This class contains the graphs

of functions, where the interface function is a radially modulated almost periodic function.

For the Born formula to converge, a sufficient and almost necessary condition is given. A

further technical condition is defined, which guarantees the existence of the corresponding

far field of the Born approximation. This far field contains plane waves, far-field terms like

those for bounded scatterers, and, additionally, a new type of terms. The derived formulas

can be used for the fast numerical computations of far fields and for the statistics of random

rough surfaces.

1 Introduction

The progress of modern technology vitally relies on computer chips or other components with

small details processing electromagnetic waves of smaller and smaller wavelength. However, a

perfect fabrication in accordance with the guidelines of design becomes either too difficult or is

even not possible. Instead, the manufactured components of the technical devices deviate from

ideal components by random abberations. In the simplest case, a planar interface separating

two different materials has typically a lot of tiny corrugations called roughness. Thus, in the

present paper, roughness means a mostly smooth perturbation from a flat surface. Using such

an interface to refract electromagnetic waves, the surface deviations, now almost in the size of

the small wavelengths, become visible. Though the example of a planar interface is simple, a full

understanding of the roughness phenomena is crucial for many applications. For example, the

lithographic fabrication of computer chips in the extreme ultraviolet light range, say of about 13

nm, requires the use of multi-layer systems (MLS) as Bragg mirrors, and each of the interface in

this MLS has a specific roughness. To understand the impact of such MLS on the reflection of

light, the roughness effects on the reflection and transmission of light at each of the interfaces

must be clarified.

One of the models to describe MLS is used in the software of Windt [17] and is based on for-

mulas derived by Stearns [14]. Note that similar models have been proposed for MLS earlier by

e.g. Bousquet et al. [5] and Elson et al. [9]. Stearns’ formulas for a single interface scattering

are obtained as follows: Suppose the rough interface is a fixed smooth interface, which is a

bounded non-local perturbation of the ideal planar interface, and suppose a timeharmonic elec-

tromagnetic plane wave is incident from above. Manipulating the Maxwell’s equations according
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to Jackson [10, Sect. 10.2.A], the partial differential equation can be reduced to an inhomoge-

neous vector Helmholtz equation for the scattered electric displacement field. On the right-hand

side, however, there appears a second order derivative of the total electric field, i.e., of the sum

of the incoming field plus the scattered field. Since the scattered field is small in comparison to

the incoming field, the first order Born approximation suggests to neglect the scattered electric

field on the right-hand side. In other words, it remains to solve a vector Helmholtz equation with

unknown displacement field and with known right-hand side. This is done by applying Fourier

transform to both sides and by dividing with the coefficient of the Fourier transformed displace-

ment field. Then the inverse Fourier transform yields an explicit formula for the displacement

field. This formula is an integral over the three-dimensional space. However, one of the integra-

tions can be computed analytically by the residue theorem. Finally, taking limits, a corresponding

far-field formula can be derived.

Of course, the Born approximation is not always justified. For electromagnetic waves in the

range of X-rays, the optical contrast of the materials is often relatively small, i.e., the refractive

index is often close to one. In this case, if the corrugations of the interface are not too large,

and if the interface is smooth, then the scattered field is expected to be small in comparison

to the incoming wave field. Born approximation should be meaningful even if the scattered

displacement field in the vector Helmholtz equation is replaced by the deviation of the scattered

displacement field from that of an ideal planar interface, in which case a small term concentrated

close to the interface and the deviation of the scattered electric field from that of the ideal

interface is neglected.

Besides the formula of Stearns, there exist many alternative approximate formulas or approxi-

mate numerical methods. These results are reported in the monographs by Beckmann et al. [3],

Ogilvy [13], and Voronovich [16] as well as in the overview article of DeSanto [8]. One approach

is to represent the field by potentials or simplified potentials over the interface, which leads to

integral equations. Again, Born approximation can be used to derive simple explicit formulas. On

the other hand, to get rigorous formulas, the integral equation or the corresponding transmission

problem for the Maxwell’s equation is to be solved. Clearly, this can be done only numerically,

i.e., upto a small error of the numerical method depending on the computing power. Note, how-

ever, that a numerical solution for the rigorous approach will take longer computing times then

the evaluation of the approximate formulas. Moreover, the analysis of the numerical algorithms

in the rigorous case is difficult. Even for the simpler acoustic case in three-dimensional space,

there seems not to be any analytic theory for rough interfaces involving incident and reflected

plane waves. The case of point sources is treated by Chandler-Wilde et al. [7, 6] using a varia-

tional approach.

So far, the rough interface has been considered as a single smooth interface. In applications,

however, the shape is not known explicitly. Realistically, only a few parameters are given to de-

scribe e.g. the size of the corrugations and the smoothness of the interface. On the other hand,

the incoming plane wave is in reality a ray with a diameter much larger then the wavelength. The

processing of the wave often acts like averaging over the local corrugations. Hence, the rough

interface should be considered as a random process and the statistics of the resulting stochastic

electric field is the entity of interest (cf. the above-mentioned monographs). In the present paper,

the stochastic view will not be considered. Note, however, that a fast approximate formula for
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the single realisations of the stochastic process is a good starting point for a statistical analysis.

The aim of the present paper is to check the validity of the Stearns’ formula. No doubt, when-

ever the Born approximation is meaningful, the formulas yield accurate results when compared

to physical measurements. From the mathematical point of view, however, the integrals in the

formula do not exist for general bounded rough surfaces, even not for smooth ones. Therefore,

in the present paper, a mathematically rigorous modification of Stearns’ formula is sought. For

this, the following points are required.

– The vector Helmholtz equation for the scattered displacement field is replaced by that for

the deviation to the displacement field of the ideal planar interface.

– The direct and inverse Fourier transforms are applied in the generalised sense, i.e., in the

sense of Schwartz distributions.

– In order to justify the change in the order of integration, the unbounded domains of inte-

gration are to be truncated. After all manipulations are performed, the limit of the resulting

formula for the truncated domains tending to the original unbounded domains is to be ac-

cessed.

– A special variant of the limiting absorption principle is to be applied.

– To get the inverse Fourier transform, a Fourier transform of bounded functions along

the radial directions is to be evaluated. This requires a specific behaviour of the radial

functions at infinity. For example, the class of interfaces can be restricted to special com-

binations of Fourier modes.

In fact, the rough interfaces in the present paper are restricted to graphs of functions belonging

to a special class. This class contains the algebra of almost periodic functions as well as almost

periodic functions modulated by radial functions decaying at infinity. Note that almost periodic

functions have been used already by Stover [15], and combinations of Fourier modes play an

important role for stochastic processes (cf. e.g. Yaglom [18, Equ. (2.61) in Sect. 8]).

The main result of the present paper is a formula of Born approximation for the electromagnetic

field, which is adapted to the above-mentioned class of interfaces. For simplicity, all formu-

las are restricted to the case of reflection. Formulas for the transmitted fields can be obtained

by analogous arguments. Moreover, combining reflections and transmission over several inter-

faces, the case of MLS can be treated like in e.g. [14]. Even though the class of interfaces is

already restricted, for the formula to be well defined, a further condition on the interface function

is needed. Namely, if the evanescent Fourier modes for the fields with limited absorption tend

to a plane-wave mode propagating parallel to the surface plane, then the coefficients of these

Fourier modes diverge, and no limit of limiting absorption exists. In particular, for the special

case of gratings, the formula of Born approximation converges if there is no Rayleigh mode, i.e.,

no reflected plane-wave mode propagating parallel to the plane of the grating. Since the differ-

entiated formulas converge as well, it is clear that the Born approximation is the solution of the

vector Helmholtz equation. To derive the far field of this approximate solution, another technical

condition is introduced. However, this can hopefully be relaxed in future investigations. The far

field consists of plane waves and far-field terms like those for bounded scatterers. Additionally,

there appears a new type of terms, for which it is yet unclear whether they are physically mean-

ingful. The derived formulas can be used for fast numerical computations of far fields as well as

for the statistics of random rough surfaces.
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Figure 1: Coordinate system and propagation direction of incident field

The remaining part is organised as follows. The notation and the inhomogeneous vector Helm-

holtz equation is introduced in Sects. 2.1–2.2. A general formula for its solutions based on the

Fourier transform is given in Sect. 2.3.1. This will be simplified in Sects. 2.3.2–2.5. In particular,

for these manipulations, a class of special interface functions is defined in Sect. 2.4.1, and

the final formula is presented in Theorem 2.1 of Sect. 2.5. The far-field asymptotics of this

approximate solution is derived in Sect. 3. In Sect. 3.4 the attenuation formula of Stearns [14] for

the efficiency of the specularly reflected plane-wave mode is proved for the special interfaces.

Finally, in Sect. 3.5 the resulting formula is compared with a well-known result for sinusoidal

gratings.

2 Near-field formula of the reflected field

2.1 Incident wave

Consider an incident plane wave E0(~x, t) = ~E0(~x) e−iωt, ~E0(~x) = ~e 0 ei
~k·~x with a wave vector

~k := (kx, ky, kz)
> = k~n0, with k :=

√
µ0ε0ω > 0 real valued, kz < 0 and ~n0 a normalised

vector that describes the direction of propagation in the coordinate system shown in Figure 1.

The values ε0 > 0 and µ0 > 0 are the dielectric constant resp. magnetic permeability of the

medium above the interface. Note that ε0 and µ0 are not necessarily the free space values

for the vacuum. The symbol ~e 0 stands for a constant vector fixing polarisation and phase. Of

course, ~e 0 is perpendicular to ~k.

2.2 Inhomogeneous vector Helmholtz equation

In this section the Maxwell equations will be used to describe the total field in form of a solution to

an inhomogeneous vector Helmholtz equation. Furthermore, this equation will be approximated

in the sense of the first order Born approximation. It will also be seen that a similar equation

holds for the approximation of the desired scattered field minus the scattered field that results

from an ideal interface, which is an interface defined by a plane. Some minor preparations for

the following examinations will end this section.
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Note that, since k =
√
ε0µ0ω is assumed as real valued, the material above the interface is

non-absorbing. The physical background, on the other hand, states that there are no materials

that do not absorb at least a very small amount of the energy of an electromagnetic field. To

incorporate this information into the solution of the subsequently established vector Helmholtz

equation, the limiting absorption principle is applied. In this sense the examinations in this

and the following sections will be done for a wave vector ~kτ of the incident field with a complex

valued third component, i.e. ~kτ := (kx, ky, kz,τ)
> with kz,τ := kz + iτ and a negative τ ∈

R close to zero. Afterwards the limit τ ↗ 0 is applied. For technical reasons only the third

component of the wave vector instead of the whole vector is chosen complex. Moreover, define

ετ := ε0 − τ2

µ0ω2 + i 2τkz
µ0ω2 , with which k2

τ := ~kτ · ~kτ = µ0ετω
2 and Im ετ > 0.

The Maxwell equations that describe the field in the absence of sources are

∇ · ~B = 0, ∇ · ~D = 0, ∇× ~E = −∂t ~B, ∇× ~H = ∂t ~D. (2.2.1)

For the time-harmonic case, following [10, Sect. 10.2.A], these equations reduce to the vector

Helmholtz equation in the sense of distributions

(

∇2 + k2
τ

)

~Dsc = −∇×
[

∇×
(

α( ~E0 + ~Esc)
)]

. (2.2.2)

Here ~Esc := ~E − ~E0 is the scattered electric field, and ~Dsc is the scattered displacement

field , i.e. ~Dsc := ~D − ~D0 with the total displacement field ~D and that of the incoming wave
~D0 := ετ ~E

0. Supposing the interface is the graph {(x′, f(x′)) : x′ ∈ R2}, the coefficient α is

given by α(~x) := ετ (~x) − ετ with ετ (~x) = ετ for z > f(x′) and ετ (~x) = ε′0 for z < f(x′).

Now suppose the contrast is small s.t. α << 1. Thus the solution ~Dsc of (2.2.2) is small, and,

thereby, ~Esc is small too. Neglecting the term ~Esc in Equ. (2.2.2), a solution is obtained in the

sense of the first order Born approximation.

(

∇2 + k2
τ

)

~Dsc = −∇×
[

∇×
(

α~E0
)

]

(2.2.3)

Of course, this step of Born approximation is heuristic as long as a mathematical model is

lacking. Putting it on a rigorous foundation requires a theorem on the transmission value problem

for Maxwell’s equations in a Sobolev type space, which includes plane-wave incidence and

plane-wave solutions. Additional assumptions on the smallness or smoothness of the interface

function f might be needed. The Sobolev type space for such a theorem should locally be the

H(curl) spaces of electro-magnetic fields with finite energy. Globally, the fields in the space

must satisfy a yet unknown radiation condition.

In the special case of an ideal interface fQ ≡ 0 and the corresponding αQ(~x), let ~Dsc
Q (~x)

be the solution of (2.2.3). For an arbitrary f ∈ L∞(R2), set αd(~x) := α(~x) − αQ(~x) and

~Dd(~x) := ~Dsc(~x) − ~Dsc
Q (~x) and use (2.2.3) for the difference field ~Dd to get

(

∇2 + k2
τ

)

~Dd(~x) = −∇×
[

∇×
(

αd(~x) ~E
0(~x)

)]

. (2.2.4)

Here, the small terms ∇×∇×(αd ~E
sc) and ∇×∇×(αQ[ ~Esc− ~Esc

Q ]) have been neglected.
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The set of interface functions f can be chosen such that αd identifies a functional of the space

S ′(R3) dual to the Schwartz space S(R3). Note that this especially holds for all f ∈ L∞(R2),

in which case the support of αd(~x) is bounded in the direction of z. In the following such a

function f will be assumed, with ||f ||∞ < h
2

and h > 0. With this the Fourier transform

α̂d := F(αd) of αd is defined in the generalised sense. To be precise, for Schwartz functions

ϕ, ψ ∈ S(R3), the Fourier transform and its inverse are defined by

(2.2.5)

Fϕ(~s) := ϕ̂(~s) :=

∫

R3

ϕ(~x) e−i~x·~s d~x, F−1ψ(~x) := ψ̌(~x) :=
1

(2π)3

∫

R3

ψ(~s) ei~s·~x d~s,

and ϕ(~x) = (ϕ̂)ˇ(~x). Furthermore, if the duality 〈f, g〉 of the spaces S(R3) and S ′(R3) is the

extension of the scalar product
∫

f ḡ, then the generalised Fourier transform α̂d of the Schwartz

distribution αd ∈ S ′(R3) is defined by

〈α̂d(~s), ϕ(~s)〉 := (2π)3 〈αd(~η), ϕ̌(~η)〉 (2.2.6)

for all ϕ ∈ S(R3). In the next section a similar formula will be used, where the argument of α̂d
is shifted by ~kτ . For ~η := (ηx, ηy, ηz), there holds

〈

α̂d(~s− ~kτ ), ϕ(~s)
〉

= (2π)3
〈

αd(~η) e
i~kτ ·~η, ϕ̌(~η)

〉

.

2.3 Formula for the solution of the Helmholtz equation with a reduction

in the dimension of the domain of integration

2.3.1 Formula for the solution via Fourier transform

Now follow [14, Formula (6), Section II.A]. Applying the Fourier transform to both sides of (2.2.4),

and solving for D̂d:= ( ~Dd)ˆ, leads to

D̂d(~s) =
[(

~s×~e 0
)

×~s
] α̂d(~s− ~kτ )

s2 − k2
τ

,

where s2 := ||~s ||2 6= k2
τ for all ~s ∈ R3 and τ < 0. To get an expression for ~Dd(~x), the

inverse Fourier transform has to be applied. This, however, is to be done in the generalised

sense. Consequently,

〈

~Dd(~x), ϕ(~x)
〉

=
〈

~Dd(~x), (ϕ̂)ˇ(~x)
〉

=
1

(2π)3

〈

α̂d(~s− ~kτ ),

[

[(~s×~e 0)×~s ]

s2 − k2
τ

]

ϕ̂(~s)
〉

=

∫

R3

αd(~η) e
i~kτ ·~η

∫

R3

[(~s×~e 0)×~s ]

s2 − k2
τ

(ϕ̄)ˇ(~s) e−i~η·~s d~s d~η (2.3.1)

for all ϕ ∈ C∞
0 (R3), where the integrals are well defined, since the inverse Fourier transform

F−1
~s

(

[(~s×~e 0)×~s ] /(s2 − k2
τ ) (ϕ̄)ˇ(~s)

)

(~η) is a Schwartz function and since αd(~η) e
i~kτ ·~η is
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uniformly bounded w.r.t. η′ := (ηx, ηy)
>

and αd(~η) has a compact support w.r.t. ηz. Using

these arguments, it is also easily seen that the outer integral in (2.3.1) exists absolutely.

It is the overall goal of this section to integrate w.r.t. sz analytically in (2.3.1) such that only

the integrals w.r.t. sx and sy remain. Following [14, Section II.B], the order of integration is

interchanged and the integral w.r.t. sz is evaluated applying the residue theorem. In the following

section this will be done. Afterwards the limit τ ↗ 0 will be assessed in Section 2.4.1 for a

special type of interface functions.

2.3.2 Interchanging the order of integration

In order to change the order of integration and to apply Lebesgue’s theorem on dominated

convergence, bounded domains of integration are needed. Since the outer integral w.r.t. ~η in

(2.3.1) exists absolutely for a complex valued k2
τ ,

〈

~Dd(~x), ϕ(~x)
〉

= lim
r̃→∞

∫

C3(r̃)

αd(~η) e
i~kτ ·~η

∫

R3

[(~s×~e 0)×~s ]

s2 − k2
τ

(ϕ̄)ˇ(~s) e−i~η·~s d~sd~η,

whereC3(r̃) := B2(r̃)×[−r̃, r̃] andB2(r̃) := {η′ ∈ R2 : |η′| ≤ r̃}. However, for any fixed r̃,

the integrals w.r.t. ~η and ~s are absolutely integrable. Fubini’s theorem implies 〈 ~Dd(~x), ϕ(~x)〉 =

limr̃→∞〈 ~Dd
r̃(~x), ϕ(~x)〉, where

〈

~Dd
r̃(~x), ϕ(~x)

〉

:=
1

(2π)3

∫

R3

∫

C3(r̃)

αd(~η) e
−i~η·(~s−~kτ ) d~η

[(~s×~e 0)×~s ]

s2 − k2
τ

∫

R3

ϕ̄(~x) ei~s·~x d~x d~s

(2.3.2)

will be considered for a fixed r̃ > h. The limit r̃ → ∞ will be examined in Section 2.4.1.

Again, since the integral w.r.t. ~s in (2.3.2) is absolutely integrable,

〈

~Dd
r̃ (~x), ϕ(~x)

〉

=
1

(2π)3
lim

r,R→∞

∫

B2(r)

R
∫

−R

{

∫

C3(r̃)

αd(~η) e
−i~η·(~s−~kτ ) d~η

[(~s×~e 0)×~s ]

s2 − k2
τ

∫

R3

ϕ̄(~x) ei~s·~x d~x

}

dsz ds′,

with s′ := (sx, sy)
>

. Since ϕ has compact support, the integrands of the integrals w.r.t. ~x and ~s
are absolutely integrable for any fixed r, R ∈ R. Hence, for the bounded domain of integration,

Fubini’s theorem applies and

〈

~Dd
r̃ (~x), ϕ(~x)

〉

=
1

(2π)3
lim

r,R→∞

∫

R3

ϕ̄(~x)

∫

B2(r)

R
∫

−R

{

∫

C3(r̃)

αd(~η) e
−i~η·(~s−~kτ ) d~η

[(~s×~e 0)×~s ]

s2
z − ξτ

2 ei~s·~x

}

dsz ds′ d~x,

(2.3.3)
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where ξτ :=
√

k2
τ − s2

x − s2
y. Here and in the remainder of this paper the square root of a

complex number w will be chosen such that the argument of the complex number
√
w is in

[0, π). Thus the imaginary part of ξτ is positive and the integrand of the integration w.r.t. sz in

(2.3.3) has no poles for any fixed s′ ∈ R2.

2.3.3 Analytical integration w.r.t. sz for a fixed r

In this section it will be shown that the integrand of the integral w.r.t. s′ of (2.3.3) is uniformly

bounded onB2(r) and pointwise convergent w.r.t.R→ ∞ andR > |~kτ |, for any fixed r ∈ R.

Note that, for the bound to be integrable, it is sufficient that the integral w.r.t. sz is absolutely

integrable for any s′ ∈ B2(r) and ~x ∈ R3, since B2(r) is bounded. This will allow to apply

Lebesgue’s theorem, to evaluate the limit w.r.t. R before evaluating the integrals w.r.t. s′. The

necessary estimates and the proof of the existence of the pointwise limits will be done for the

case z > h. Recall that z is the third component of the vector ~x.

For convenience, suppose r̃ > h and define

α̂r̃(~s− ~kτ ) :=

∫

C3(r̃)

αd(~η) e
−i~η·(~s−~kτ ) d~η = −∆

∫

B2(r̃)

f(η′)
∫

0

e−iηz(sz−kz,τ ) dηz e
−iη′·(s′−k′) dη′

= i∆

∫

B2(r̃)

1 − e−i(sz−kz,τ ) f(η′)

sz − kz,τ
e−iη

′·(s′−k′) dη′, (2.3.4)

= −∆

∫

B2(r̃)

1
∫

0

e−i(sz−kz,τ ) ζ f(η′) dζf(η′) e−iη
′·(s′−k′) dη′, ∆:=ετ−ε′0 (2.3.5)

which is continuously differentiable and uniformly bounded w.r.t. ~s. Following [14, Section II.B],

by analytic continuation of α̂r̃(~s−~kτ ) [(~s×~e 0)×~s ]
s2z−ξτ 2 eiszz w.r.t. sz onto C for all z > h, a meromor-

phic function is obtained. The residue theorem applies to the integration over the closed path

∂ΩR := CR∪ [−R,R], withCR := {z ∈ C : Im z ≥ 0, |z| = R}. The curveCR is assumed

to be oriented counterclockwise. The integral w.r.t. sz in (2.3.3) can then be written as

R
∫

−R

α̂r̃(~s− ~kτ )
[(~s×~e 0)×~s ]

s2
z − ξτ

2 eiszz dsz = −
∫

CR

α̂r̃(~sw − ~kτ )
[(~sw×~e 0)×~sw]

w2 − ξτ
2 eiwz dw

+ 2πi α̂r̃(~sξτ − ~kτ)
[(~sξτ×~e 0)×~sξτ ]

2ξτ
eiξτ z,

(2.3.6)

where ~sw := (sx, sy, w)> for w ∈ C. The absolute value of the first summand in (2.3.6) can

be estimated as follows
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∣

∣

∣

∣

∣

∣

∫

CR

α̂r̃(~sw − ~kτ )
[(~sw×~e 0)×~sw]

(w − ξτ )(w + ξτ )
eiwz dw

∣

∣

∣

∣

∣

∣

≤ c1c2(s
′)

π
∫

0

e−
z
2
R sinφ dφ ≤ π c1c2(s

′),

(2.3.7)

c1 := sup
s′∈R2

sup
R∈[|~kτ |,∞)

sup
φ∈[0,π]

∣

∣

∣
α̂r̃(~sReiφ − ~kτ )Re

i z
2
Reiφ
∣

∣

∣
,

c2(s
′) := sup

R∈[|~kτ |,∞)

sup
φ∈[0,π]

∣

∣

∣

∣

[(~sReiφ×~e 0)×~sReiφ ]
(Reiφ − ξτ )(Reiφ + ξτ )

∣

∣

∣

∣

,

where it will be shown that the constant C(s′) := c1 c2(s
′) is finite for any s′ ∈ R

2.

The supremum c2(s
′) is finite, since the numerator is a polynomial of Reiφ of order two, while

the second order polynomial in the denominator has no zeros. Obviously c1 is finite too. Together

with (2.3.4), c1 can be estimated as

c1 ≤ sup
R∈[|~kτ |,∞)

sup
φ∈[0,π]

|∆| R
|R− |kz,τ ||

∫

B2(r̃)

[

e−
z
2
R sinφ + e−R sinφ( z2−f(η′)) e−τf(η′)

]

dη′

≤ sup
R∈[|~kτ |,∞)

|∆| R
|R− |kz,τ ||

∫

B2(r̃)

[

1 + e−τf(η′)
]

dη′,

where z > 0 and z
2
− f(η′) > 0 was used and where the last term is bounded for any fixed

r̃, since R > |~kτ | ≥ |kz,τ |. The second term of (2.3.6) is also uniformly bounded w.r.t. s′ for

any fixed r ∈ R and z > h, as will be shown in the following. First note that the supremum

c3 := sups′∈R2 |[(~sξτ×~e 0)×~sξτ ] /ξ2
τ | of a rational function is bounded. Now (2.3.4) implies

∣

∣

∣

∣

α̂r̃(~sξτ−~kτ)
[(~sξτ×~e 0)×~sξτ ]

ξτ
eiξτ z

∣

∣

∣

∣

≤c3

∣

∣

∣

∣

∣

∣

∣

∆

∫

B2(r̃)

1−e−i(ξτ−kz,τ ) f(η′)

ξτ − kz,τ
e−iη

′·(s′−k′) dη′ ξτ e
iξτ z

∣

∣

∣

∣

∣

∣

∣

≤c3
∣

∣

∣

∣

∆ ξτ
ξτ − kz,τ

∣

∣

∣

∣

∫

B2(r̃)

[

1 + e−τ f(η′)
]

dη′. (2.3.8)

Again, the remaining quotient in the last estimate (2.3.8) is uniformly bounded w.r.t. s′. Indeed,

Im ξτ > 0 and Im kz,τ = τ < 0 leading to Im(ξτ − kz,τ) > 0. Hence the supremum

c4(r̃) := sup
s′∈R2

∣

∣

∣

∣

α̂r̃(~sξτ − ~kτ )
[(~sξτ×~e 0)×~sξτ ]

ξτ
eiξτ z

∣

∣

∣

∣

(2.3.9)

is finite for any fixed r̃ > h and τ < 0. Consequently, the integral w.r.t. sz in (2.3.3) is absolutely

bounded by π C(s′) + 2π c4(r̃) (cf. (2.3.7)), which is integrable on the bounded set B2(r).

With this, Lebesgue’s theorem can be applied to evaluate the limit R → ∞. Using estimate

(2.3.7) it can be shown, that the limit of the integral over CR tends to zero as R tends to infinity.
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Indeed, the limit of this estimate can be found by considering the limit of an upper bound for the

non-negative integral for any fixed z > h ≥ 0. However

lim
R→∞

π/2
∫

π/4

e−
z
2
R sinφ dφ ≤ lim

R→∞

π

4
e−

z
2
R sin π

4 = 0, (2.3.10)

lim
R→∞

π/4
∫

0

e−
z
2
R sinφ dφ < lim

R→∞

π/4
∫

0

e−
z
2
R sinφ 2 cosφ dφ = 0. (2.3.11)

Therefore, (2.3.6) leads to

lim
R→∞

R
∫

−R

α̂r̃(~s− ~kτ)
[(~s×~e 0)×~s ]

s2
z − ξτ

2 eiszz dsz = πi α̂r̃(~sξτ − ~kτ )
[(~sξτ×~e 0)×~sξτ ]

ξτ
eiξτ z.

Finally, if ϕ(~x) = 0 for all z ≤ h, it follows that (cf. (2.3.3))

(2.3.12)
〈

~Dd
r̃(~x), ϕ(~x)

〉

=
i

8π2
lim
r→∞

∫

R3

ϕ̄(~x)

∫

B2(r)

α̂r̃(~sξτ − ~kτ )
[(~sξτ×~e 0)×~sξτ ]

ξτ
ei~sξτ ·~x ds′ d~x.

2.3.4 Calculation of the limit w.r.t. r

The goal of this subsection will be to evaluate the limit r → ∞ in equation (2.3.12). To achieve

this, it will be shown that the integrand of the integral w.r.t. s′ in this equation is absolutely

integrable for all fixed x′ ∈ R2 and z > h. This absolute integral is also uniformly bounded

w.r.t. x′ ∈ R2 and z > h. The product of ϕ ∈ C∞
0 (R3) and the integral w.r.t. s′ in equation

(2.3.12) is then dominated by a non-negative integrable function. Therefore Lebesgue’s applies.

First, the term ξτ =
√

k2
τ − s′2, with s′2 := ‖s′‖2, kz,τ = kz + iτ and kz < 0, will be

examined more closely. Since for s′2 > 2|~kτ |2, Re(k2
τ − s′2) = k2 − τ 2 − s′2 < 0 and

Im(k2
τ − s′2) = 2kzτ > 0, the argument arctan

(

2kzτ
k2−τ2−s′2

)

+ π of the complex number

k2
τ − s′2 is in

(

π
2
, π
)

. Here arctan: R →
(

−π
2
, π

2

)

. Hence, the angle θ, the argument of
√

k2
τ − s′2, is in

(

π
4
, π

2

)

leading to sin θ > 1√
2
. With this in mind, with |z − f(η′)| > h

2
for all

z > h, and with the definition of c3, (2.3.8) and (2.3.9), the splitting of the domain of integration

into B2(
√

2|~kτ |) and R2 \B2(
√

2|~kτ |) yields

∣

∣

∣

∣

∣

∣

∫

R2

α̂r̃(~sξτ − ~kτ )
[(~sξτ×~e 0)×~sξτ ]

ξτ
ei~sξτ ·~x ds′

∣

∣

∣

∣

∣

∣

≤ 2π|~kτ |2c4(r̃) (2.3.13)

+ c3 ∆

∫

R2\B2(
√

2|~kτ |)

∣

∣

∣

∣

ξτ π r̃
2

ξτ − kz,τ

∣

∣

∣

∣

e
− h

2
√

2

√
|k2
τ−s′2| eτ h ds′.
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Similarly to the estimate (2.3.8), the quotient on the right-hand side is uniformly bounded w.r.t. s′.
This shows that the integral is finite for any fixed z > h since the integrand decreases exponen-

tially. Thus Lebesgue’s theorem can be applied to evaluate the limit r → ∞ and, for a ϕ with

ϕ(~x) = 0 for all z ≤ h,

〈

~Dd
r̃(~x), ϕ(~x)

〉

=
i

8π2

∫

R3

ϕ̄(~x)

∫

R2

α̂r̃(~sξτ−~kτ )
[(~sξτ×~e 0)×~sξτ ]

ξτ
ei~sξτ ·~x ds′ d~x. (2.3.14)

2.4 Limit r̃ → ∞ and limiting absorption for a special interface space

2.4.1 Almost periodic and decaying interface functions

In this section the last remaining limits r̃ → ∞ and τ ↗ 0 will be evaluated for a special choice

of interfaces. Unfortunately, the treatment of general bounded and smooth interface functions f
seems not to be possible. So our analysis is restricted to a special class. Interface functions from

this class must have an explicit Fourier transform. Furthermore, they should contain functions

with a superposition of corrugations, e.g. almost periodic functions (cf. [4]), and functions of the

same type, but with an integer order of decay at infinity.

Consider the space of real valued interface functions A1 :=
{

f : R2 → R, f ∈ AC
1

}

taken

from the complex valued space

AC

1 :=

{

f : R2 → C| f(η′) =

3
∑

l=0

[

1
√

1 + |η′|2
l

∑

j∈Z
λl,j e

iω′
l,j ·η′
]

+ g(η′)

λl,j ∈ C, ω′
l,j ∈ R

2
, ||f ||A1

<∞
}

where

||f ||A1
:=

3
∑

l=0

∑

j∈Z
|λl,j|+ ||g||1,1 + ||g||∞ ,

∣

∣

∣

∣g(η′)
∣

∣

∣

∣

1,1
:=
∣

∣

∣

∣(1+|η′|) g(η′)
∣

∣

∣

∣

L1(R2)
. (2.4.1)

Note that the summation over l in the sum for f in the definition of AC
1 can be restricted to l≤3

since the gl,j := {1+ |η′|2}−l/2eiω′
l,j ·η′ , l > 3 have a finite norm ‖gl,j‖1,1 and can be included

into g. Further note that the restrictions ω′
l,j = −ω′

l,−j and λl,j = λl,−j , l = 0, 1, 2, 3, j ∈ Z

ensure that the function f , given as a sum in the definition of AC
1 , is real valued. There holds

Lemma 2.1. The spaces A1 and AC
1 together with the norm ||·||A1

and pointwise multiplication

form Banach algebras.

The proof of this lemma consists of a straightforward verification of the properties of a Banach

algebra. Since the process is lengthy, but contains no difficulties, the proof is omitted.

Remark 2.1. The coefficients λl,j depend continuously on f ∈ A1. Moreover, the term g
depends continuously on f ∈ A1 w.r.t. to the norm || · ||1,1 + || · ||∞.
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Figure 2: Example of an interface function from A1 using only the almost periodic portion and

choosing a finite number of uniformly distributed random parameters λ0,j and ω′
0,j .

2.4.2 Existence of the remaining Cauchy principle value and the limit of the limiting

absorption principle

Assuming an interface function f from A1, it will be shown that the limit of (2.3.14)

〈

~Dd(~x), ϕ(~x)
〉

=
i

8π2
lim
τ↗0
r̃→∞

∫

R3

ϕ̄(~x)

∫

R2

α̂r̃(~sξτ−~kτ )
[(~sξτ×~e 0)×~sξτ ]

ξτ
ei~sξτ ·~x ds′ d~x (2.4.2)

exists. First consider the integral w.r.t. s′ for an interface function f . Using Equs. (2.3.4) and

(2.3.5) for α̂r̃, the integral w.r.t. s′ transforms to i∆ times

∫

R2

∫

B2(r̃)

1 − e−i(ξτ−kz,τ )f(η′)

ξτ − kz,τ
e−iη

′·(s′−k′) dη′
[(~sξτ×~e 0)×~sξτ ]

ξτ
ei~sξτ ·~x ds′ (2.4.3)

= i

∫

R2

∫

B2(r̃)

1
∫

0

e−i
(

ξτ−(kz+iτ)
)

ζ f(η′) dζ f(η′) e−iη
′·(s′−k′) dη′

[(~sξτ×~e 0)×~sξτ ]
ξτ

ei~sξτ ·~x ds′.

Here Fubini’s theorem applies for any fixed r̃ and τ < 0, since eiξτ (z−ζf(η′)) decays exponen-

tially as |s′| tends to infinity and since the integrand is uniformly bounded w.r.t. η′ ∈ B2(r̃).

Replacing f(η′) e−i(ξτ−iτ)ζ f(η′) by
∑

n∈N
0

(−iζ)n f(η′)n+1 (ξτ−iτ)n
n!

leads to

∫

R2

∫

B2(r̃)

1 − e−i(ξτ−kz,τ )f(η′)

ξτ − kz,τ
e−iη

′·(s′−k′) dη′
[(~sξτ×~e 0)×~sξτ ]

ξτ
ei~sξτ ·~x ds′ = i I1+i I2,

I1 :=

1
∫

0

∫

R2

{

∫

B2(r̃)

8
∑

n=0

(−iζ)n f(η′)n+1 (ξτ − iτ)n

n!
eikzζ f(η′) e−iη

′·(s′−k′) dη′

[(~sξτ×~e 0)×~sξτ ]
ξτ

ei~sξτ ·~x

}

ds′ dζ, (2.4.4)
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I2 :=

1
∫

0

∫

R2

{

∫

B2(r̃)

∞
∑

n=9

(−iζ)n f(η′)n+1 (ξτ − iτ)n

n!
eikzζ f(η′) e−iη

′·(s′−k′) dη′

[(~sξτ×~e 0)×~sξτ ]
ξτ

ei~sξτ ·~x

}

ds′ dζ. (2.4.5)

where N0 is the set of non-negative integers. First, examine integral (2.4.4) by replacing the

exponential eikzζ f(η′) with its sum leading to

I1 =

8
∑

n=0

1
∫

0

(−iζ)n
n!

∫

R2

{

(ξτ − iτ)n

ξτ

∫

B2(r̃)

f(η′)n+1
∑

m∈N
0

(ikzζ f(η′))m

m!
e−iη

′·(s′−k′) dη′

[(

~sξτ×~e 0
)

×~sξτ
]

ei~sξτ ·~x

}

ds′ dζ. (2.4.6)

Since f ∈ A1 ⊂ AC
1 , the term

fn(η
′) := fn,kz,ζ(η

′), fn,kz,ζ := fn+1 eikzζ f =
∑

m∈N
0

(ikzζ)
m

m!
fm+n+1

(2.4.7)

is also an element of AC
1 . More precisely, there holds

Lemma 2.2. For any function f in A1, the function fn (cf. (2.4.7)) is equal to

fn(η
′) =

3
∑

`=0

[

1
√

1 + |η′|2
`

∑

j∈Z
λ̃n`,j e

iω̃′
`,j ·η′

]

+ g̃n(η
′), (2.4.8)

where the ω̃′
`,j , ` = 0, 1, 2, 3 are defined as the entries of the sets

{

ω̃′
0,j : j ∈ Z

}

=

{

∑

κ∈Z
mκω

′
0,κ : mκ ∈ N0,

∑

κ∈Z
mκ <∞

}

, (2.4.9)

{

ω̃′
`,j : j ∈ Z

}

=

{

∑̀

l=0

∑

κ∈Z
ml
κω

′
l,κ : ml

κ ∈ N0,
∑

κ∈Z
m0
κ <∞,

∑̀

l=1

l
∑

κ∈Z
ml
κ = `

}

and where

λ̃n0,j :=
∑

mκ∈N0
:

m̃:=
P

κ∈Z
mκ≥n+1, m̃<∞

P

κ∈Z
mκω′

0,κ=ω̃′
0,j

(ikzζ)
m̃−n−1 m̃!

(m̃− n− 1)!

[

∏

κ∈Z

[λ0,κ]
mκ

mκ!

]

, (2.4.10)

λ̃n`,j :=
∑

mlκ∈N0
:

m̃:=
P`
l=0

P

κ∈Z
mlκ≥n+1, m̃<∞

P`
l=1

l
P

κ∈Z
mlκ=`,

P`
l=0

P

κ∈Z
mlκω

′
l,κ=ω̃′

`,j

(ikzζ)
m̃−n−1 m̃!

(m̃− n− 1)!

[

∏̀

l=0

∏

κ∈Z

[λl,κ]
mlκ

ml
κ!

]

,

(2.4.11)
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g̃n(η
′) :=

∑

m∈N
0

(m+ n+ 1)!

m!
(ikzζ)

m
∑

~n5∈Im+n+1\
„

3
S

`=0

I`m+n+1

«











g(η′)n4

n4!
√

1 + |η′|2
„

3
P

l=1

lnl

«

3
∏

l=0

∑

m∞∈Jnl

{[

∏

j∈Z

[λl,j]
mj

mj !

]

e
iη′· P

j∈Z

mjω′
l,j

}











, (2.4.12)

Ia :=

{

(n0, . . . , n4) ∈ N
5
0

∣

∣

∣

∣

4
∑

l=0

nl = a

}

, Ja :=

{

(mj)j∈Z

∣

∣

∣

∣

mj ∈ N0,
∑

j∈Z
mj = a

}

,

I`a :=

{

(n0, . . . , n4) ∈ N
5
0

∣

∣

∣

∣

4
∑

l=0

nl = a,

4
∑

l=1

lnl = `

}

, ` = 0, 1, 2, 3.

Proof. The existence of representation (2.4.8) is a simple consequence of the algebra structure

of A1. The coefficients and g̃n can be found by evaluating (2.4.8) using the multinomial theorem

and rearranging the resulting sums.

Note that fn also depends on the constant kz and the variables ζ ∈ [0, 1] and n ∈ {0, . . . , 8}.

To be precise, λ̃n`,j is dependent on kz , ζ and n, while ω̃′
`,j is a constant for any fixed ` =

0, . . . , 3 and j ∈ Z. Similarly the function g̃n depends on kz and ζ . With this, the limit r̃ → ∞
of (2.4.6) can be evaluated as the sum limr̃→∞ I1 = I1,1 + I1,2 + I1,3, where

I1,1 := lim
r̃→∞

8
∑

n=0

∑

j∈Z

{ 1
∫

0

λ̃n0,j
(−iζ)n
n!

dζ

∫

R2

{

(ξτ − iτ)n

ξτ

∫

B2(r̃)

eiω̃
′
0,j ·η′ e−iη

′·(s′−k′) dη′

[(

~sξτ×~e 0
)

×~sξτ
]

ei~sξτ ·~x

}

ds′

}

, (2.4.13)

I1,2 := lim
r̃→∞

3
∑

`=1

8
∑

n=0

∑

j∈Z

{ 1
∫

0

λ̃n`,j
(−iζ)n
n!

dζ

∫

R2

{

∫

B2(r̃)

1
√

1 + |η′|2
`
eiω̃

′
`,j ·η′ e−iη

′·(s′−k′) dη′

(ξτ − iτ)n

ξτ

[(

~sξτ×~e 0
)

×~sξτ
]

ei~sξτ ·~x

}

ds′

}

, (2.4.14)

I1,3 := lim
r̃→∞

8
∑

n=0

1
∫

0

(−iζ)n
n!

∫

R2

{

(ξτ − iτ)n

ξτ

∫

B2(r̃)

g̃n(η
′) e−iη

′·(s′−k′) dη′

[(

~sξτ×~e 0
)

×~sξτ
]

ei~sξτ ·~x

}

ds′ dζ. (2.4.15)
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Obviously, the limit (2.4.15) exists since for any n ∈ {0, . . . , 8} the function g̃n is independent of

s′ and absolutely integrable w.r.t. η′, and
(ξτ−iτ)n

ξτ
[(~sξτ×~e 0)×~sξτ ] ei~sξτ ·~x is uniformly bounded

and absolutely integrable w.r.t. s′ for any fixed τ < 0.

To evaluate the limits (2.4.13) and (2.4.14) consider
∫

R2

√

1 + |η′|2 −`
e−iη

′·(s′−(k′+ω̃′
`,j)) dη′

for ` = 0, 1, 2, 3, which can be evaluated as a Hankel transform of order zero defined as (cf. [1,

Equ. 9.1.18, Sect. 9.1] for the relation between Hankel and Fourier transform)

∞
∫

0

f
(

|η′|
)

J0

(

|s′||η′|
)

|η′| d|η′| =
1

2π

∫

R2

f
(

|η′|
)

e−is
′·η′ dη′.

Keeping in mind that the inverse Hankel transform coincides with the Hankel transform, the well-

known Fourier transform for the Dirac delta and [12, Equs. 2.19, 2.20 and 2.110, Sect. I.1.2] lead

to

∫

R2

e−iη
′·(s′−(k′+ω̃′

`,j))
√

1 + |η′|2
`

dη′ =























4π2 δ
(

s′ − (k′ + ω̃′
0,j)
)

if ` = 0

2π e−|s′−(k′+ω̃′
1,j)|/

∣

∣s′ − (k′ + ω̃′
1,j)
∣

∣ if ` = 1

2πK0

(∣

∣s′ − (k′ + ω̃′
2,j)
∣

∣

)

if ` = 2

2π e−|s′−(k′+ω̃′
3,j)| if ` = 3

, (2.4.16)

where K0(z) is the modified Bessel function of the second kind, which has a logarithmic singu-

larity at z = 0. Note that the right-hand side of (2.4.16) with ` = 1 is a weakly singular function,

while that of (2.4.16) with ` = 3 is uniformly bounded.

The limits of the integrals (2.4.13) and (2.4.14) are well defined in the sense of a limit in S ′(R2),

since

ϕn(s
′) :=

(ξτ − iτ)n

ξτ

[(

~sξτ×~e 0
)

×~sξτ
]

ei~sξτ ·~x

is a Schwartz function for τ < 0 and z > h. To be more exact, for the function Fr̃,`,j(η
′) :=

1B2(r̃)(η
′) (1 + |η′|2)−`/2 eiη′·(ω̃′

`,j+k
′)

the limit is evaluated as

(2.4.17)

lim
r̃→∞

∫

R2

FFr̃,`,j(s′)ϕn(s′) ds′= lim
r̃→∞

∫

R2

Fr̃,`,j(η
′)Fϕn(η′) dη′=

∫

R2

eiη
′(ω̃′

`,j+k
′)

√

1 + |η′|2
`
Fϕn(η′) dη′

which is finite for any z > h and τ < 0, since Fϕn ∈ S(R2). Note that the limit is uniform

w.r.t. j. Indeed, switching to absolute values in the formulas for I1,1 and I1,2 will lead to a product

of a sum over j independent of r̃ times an integral independent of j, which is the right-hand

side of Equ. (2.4.17) switched to absolute values. The sum w.r.t. j exists, since (λ̃n`,j)j∈Z is an

absolutely summable sequence.

Altogether, for the integral w.r.t. s′ and η′ in I1,2, i.e. for ` ∈ {1, 2, 3}, this results in

lim
r̃→∞

∫

R2

∫

B2(r̃)

1
√

1 + |η′|2
`
eiη

′·(ω̃′
`,j+k

′) e−is
′·η′ dη′ ϕn(s

′) ds′ =

∫

R2

FF∞,`,j(s
′)ϕn(s

′) ds′.
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Inserting this into (2.4.14) leads to

(2.4.18)

I1,2 =
3
∑

`=1

8
∑

n=0

∑

j∈Z

1
∫

0

λ̃n`,j
(−iζ)n
n!

dζ

∫

R2

FF∞,`,j(s
′)

(ξτ−iτ)n
ξτ

[(

~sξτ×~e 0
)

×~sξτ
]

ei~sξτ ·~x ds′.

These integrals exist since the integrands are at most weakly singular, since the FF∞,`,j are

bounded at infinity (cf. [1, Equ. 9.7.2, Sect. 9.1]), and since ei~sξτ ·~x is exponentially decreasing

and ensures the existence of the integral w.r.t. s′.

It remains to examine the limit τ ↗ 0 of (2.4.18). Note that the integral w.r.t. s′ exists even if

the singularity points of (2.4.16) with ` = 1 or (2.4.16) with ` = 2 coincide with the singularity

point of 1
ξτ

= 1√
k2
τ−s′2

for τ = 0.

Lemma 2.3. For any k∈R+ and k′∈R
2, the integral

∫

B2(2k)
1/
√

k − |s′| 1/ |k′ − s′| ds′ is

finite.

Changing to local coordinates the proof is straightforward. This lemma can be used to apply

Lebesgue’s theorem to evaluate the limit τ ↗ 0 of the integrand w.r.t. s′ in (2.4.18) and thus

(2.4.14).

On the other hand, for the integral w.r.t s′ and η′ in I1,1 the limit

lim
r̃→∞

∫

R2

∫

B2(r̃)

eiη
′·(ω̃′

0,j+k
′) e−is

′·η′ dη′ ϕn(s
′) ds′ = 4π2ϕn(ω̃

′
0,j + k′)

is obtained. In this sense, the limit in (2.4.13) evaluates as

I1,1 = 4π2
8
∑

n=0

∑

j∈Z

1
∫

0

λ̃n0,j (−iζ)n dζ

(

ωjz,τ − τ
)n

n! ωjz,τ

[(

~ωjτ×~e 0
)

×~ωjτ
]

ei~ω
j
τ ·~x, (2.4.19)

with ~ωjτ :=
(

k′ + ω̃′
0,j, ω

j
z,τ

)>
and ωjz,τ :=

√

k2
τ −

∣

∣k′ + ω̃′
0,j

∣

∣

2
. Note again that the λ̃n0,j are

absolutely summable w.r.t. j. This is a consequence of AC
1 being a Banach algebra.

It remains to consider the limit τ ↗ 0 of the two terms (2.4.19) and (2.4.15). The limit can

easily be evaluated since the sum w.r.t. j exists absolutely and the integral w.r.t. ζ is uniformly

bounded w.r.t. τ . However, to obtain a finite limit of
(

ωjz,τ − τ
)n
/ωjz,τ for n = 0, it has to be

assumed that ωjz,0 6= 0, i.e., (cf. (2.4.9) for the connection between ω′
0,j and ω̃′

0,j)

k /∈ cl

{

∣

∣

∣
k′ +

∑

j∈Z
mjω

′
0,j

∣

∣

∣
: mj ∈ N0 s.t.

∑

j∈Z
mj <∞

}

. (2.4.20)

Remark 2.2. This condition is not necessary. If k is equal to
∣

∣k′ +
∑

j∈Zmjω
′
0,j

∣

∣ for a special

sequence mj , if this is an isolated point of the set in Equ. (2.4.20), and if, by chance, the

coefficient

∑

n∈N
0

1
∫

0

λ̃n0,j (−iζ)n dζ [ωjz,0]
n/n!
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of the corresponding 1/ωjz,τ (see the subsequent (2.5.3) and Theorem 2.1) vanishes, then the

limit τ ↗ 0 exists even though (2.4.20) is violated.

Analogously, the limit τ ↗ 0 of (2.4.15) is easily calculated using Lebesgue’s theorem, since the

integral
∫

B2(r̃)
g̃n(η

′) e−iη
′·(s′−k′) dη′ is uniformly bounded w.r.t. s′ by ||g̃n||L1(R2) < ∞ while

the quotient
(ξτ−iτ)n

ξτ
[(~sξτ×~e 0)×~sξτ ] ei~sξτ ·~x is pointwise convergent and uniformly bounded

w.r.t. τ by a function that is integrable w.r.t. s′. It follows that the limits r̃ → ∞ and τ ↗ 0 of

(2.4.6) can be evaluated.

Now consider the remaining integral (2.4.5). Using
1+|η′|4∗
1+|η′|4∗

e−iη
′·(s′−k′) =

(1+∇4

s′) e
−iη′·(s′−k′)

1+|η′|4∗
,

where ∇4
s′ := ∂4

sx + ∂4
sy and |η′|4∗ := η4

x + η4
y , leads to

I2 =

1
∫

0

∫

R2

{

∫

B2(r̃)

∞
∑

n=9

(−iζ)n f(η′)n+1 (ξτ − iτ)n

n!
eikzζ f(η′) (1 + ∇4

s′) e
−iη′·(s′−k′)

1 + |η′|4∗
dη′

[(~sξτ×~e 0)×~sξτ ]
ξτ

eis
′·x′ eizξτ

}

ds′ dζ. (2.4.21)

To further transform this expression, consider the following lemma.

Lemma 2.4. For two complex valued functions f, g ∈ C4(R2) the following equation holds

true.

f(s′) ∂4
sxg(s

′) =
4
∑

m=0

(−1)m
(

4

m

)

∂4−m
sx

[

∂msxf(s′) g(s′)
]

This is easily shown using the Leibniz rule. Naturally, Lemma 2.4 also holds for derivatives

w.r.t. sy . Using this and setting S∞
9 := S∞

9 (s′, η′, ζ) :=
∑∞

n=9(−iζ)n f(η′)n+1 (ξτ−iτ)n
n!

ei
z
2
ξτ ,

equation (2.4.21) transforms to

I2 =
2
∑

j=0

Mj
∑

m=0

(−1)m
(

4

m

)

1
∫

0

∫

R2

{

∂
(4−m)α′

j

s′

[

∫

B2(r̃)

∂
mα′

j

s′ S∞
9

eikzζ f(η′)

1 + |η′|4∗
e−iη

′·(s′−k′) dη′

]

[(~sξτ×~e 0)×~sξτ ]
ξτ

eis
′·x′ ei

z
2
ξτ

}

ds′ dζ, (2.4.22)

α′
j :=











(0, 0) if j = 0

(1, 0) if j = 1

(0, 1) if j = 2

, Mj :=

{

0 if j = 0

4 otherwise
.

Applying integration by parts (4 −m) times to the integral w.r.t. s′, the term I2 takes the form

I2 =
2
∑

j=0

Mj
∑

m=0

(

4

m

)

1
∫

0

∫

R2

{

∫

B2(r̃)

∂
mα′

j

s′ S∞
9

eikzζ f(η′)

1 + |η′|4∗
e−iη

′·(s′−k′) dη′

∂
(4−m)α′

j

s′

[

[(~sξτ×~e 0)×~sξτ ]
ξτ

eis
′·x′ ei

z
2
ξτ

]}

ds′ dζ, (2.4.23)
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where the absolute value of

S∞
9 = f(η′) e−i(ξτ−iτ)(ζ f(η′)− z

2) e−τ
z
2 −

8
∑

n=0

(−iζ)n f(η′)n+1 (ξτ − iτ)n

n!
ei
z
2
ξτ (2.4.24)

is uniformly bounded w.r.t. η′ and τ and decreases exponentially as |s′| tends to infinity. Indeed,

f(η′) is bounded, |τ | ≤ 1 and the right-hand side of the last equation is an exponentially

decaying function w.r.t. s′, since (ζ f(η′) − z/2) < 0. On the other hand, ei
z
2
ξτ and all its

derivatives decay exponentially as |s′| tends to infinity, which shows that the boundary terms

that would usually occur after integrating by parts are zero. Note that the derivatives do not

introduce singularities for τ < 0. Thus, the limit r̃ → ∞ can now be evaluated, since the

integrand w.r.t. η′ is dominated by the term 1
1+|η′|4∗

. Furthermore, for the terms in the sum with

the index j = 0, the same arguments can be used to evaluate the limit τ ↗ 0, since the term
1
ξτ

is only weakly singular for τ = 0. To evaluate the limit τ ↗ 0 for any fixed j ∈ {1, 2} it

remains to show that
∣

∣

∣

∣

∣

∂
mα′

j

s′ S∞
9 ∂

(4−m)α′
j

s′

[

[(~sξτ×~e 0)×~sξτ ]
ξτ

eis
′·x′ ei

z
2
ξτ

]∣

∣

∣

∣

∣

(2.4.25)

is uniformly bounded w.r.t. η′ and −1 < τ < 0 by a function integrable w.r.t. s′. If this condition

is satisfied, Lebesgue’s theorem can be applied. The existence of the integral w.r.t. η′ is then

ensured by the term 1
1+|η′|4∗

. Before an estimate of (2.4.25) can be found, the derivatives have to

be examined. This is done by splitting the domain of integration w.r.t. s′ in (2.4.23) into B2(2k)
and R

2 \B2(2k) to examine the behaviour of (2.4.25) at the singularity s′2 = k2 and at infinity

separately. To study the behaviour around the singularity, the subsequent lemma is used to

show that differentiation and summation can be interchanged in (2.4.25).

Lemma 2.5. The sums S∞
9 and

∂
mα′

j

s′ S∞
9 =

∞
∑

n=9

(−iζ)n
n!

f(η′)n+1∂
mα′

j

s′

[

(ξτ − iτ)n ei
z
2
ξτ
]

(2.4.26)

are uniformly bounded w.r.t. s′ ∈ B2(2k), η′ ∈ B2(r̃) and τ ∈ [−1, 0].

Proof. This is obviously true for j = 0 or m = 0 since no singularities occur. To show this

for m > 0, the product rule for higher order derivatives and Faà di Bruno’s formula are applied

to evaluate the derivatives. Afterwards the resulting sums are examined leading to summands,

which are uniformly bounded w.r.t. s′, times the term (ξτ − iτ)n−a/ξτ
(2m−a−b)

, where a and

b are non-negative integers depending on the indices of the sums. Obviously, this quotient is

uniformly bounded w.r.t. s′ ∈ B2(2k) and τ ∈ [−1, 0] for any n ≥ 9, since m ≤ 4. It can now

be shown that there exist functions qm
j,l̃,~̀1

(s′, z) := qm
j,l,l̃,~̀1

(s′, z, τ), uniformly bounded w.r.t. s′

and τ , such that

∂
mα′

j

s′ S∞
9 =

∞
∑

n=9

(−iζ)n f(η′)n+1
∑

(l,~̀1,l̃)∈Sm

qm
j,l̃,~̀1

(s′, z)
(

n− sl(~̀1)
)

!

(

ξτ − iτ
)n

ξτ
(2m−l̃)

ei
z
2
ξτ , (2.4.27)
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where Sm := {(l, ~̀1, l̃) : l = 0, . . . , m, ~̀1 ∈ Tl, l̃ = 0, . . . , l̃b}, where the index set

Tl := {(`1, . . . , `l) ∈ Nl
0 :
∑l

o=1 o`o = l}, where the upper index bound l̃b := l̃b(m) :=

maxl=0,...,m max~̀
2∈Tm−l

sm−l(~̀2)≤m≤4, and where sl: N
l
0 → N0, (`1, . . . , `l) 7→

∑l
o=1`o.

Since the sum over Sm is finite and since (ξτ − iτ)n/ξτ
(2m−l̃)

is bounded for bounded s′, the

boundedness of (2.4.26) follows easily.

The second derivative in (2.4.25) can be evaluated as

∂
(4−m)α′

j

s′

[

[(~sξτ×~e 0)×~sξτ ]
ξτ

eis
′·x′ ei

z
2
ξτ

]

=
~qj(s

′, ξτ )

ξτ
(9−2m)

eis
′·x′ ei

z
2
ξτ , (2.4.28)

where ~qj(s
′, ξτ ) := ~qj(s

′, ξτ , z) is a vector valued polynomial of positive finite order that col-

lects the remaining terms resulting from the differentiation. Thus the product of the derivatives

in (2.4.25) is equal to

∞
∑

n=9

(−iζ)n f(η′)n+1
∑

(l,~̀1,l̃)∈Sm

qm
j,l̃,~̀1

(s′, z)
(

n− sl(~̀1)
)

!

(ξτ − iτ)n

ξτ
9−l̃

~qj(s
′, ξτ) e

is′·x′ eizξτ (2.4.29)

for s′ ∈ B2(2k). However, this is bounded uniformly w.r.t. τ and η′ by a function that is inte-

grable w.r.t. s′. Hence, Lebesgue’s theorem applies to this part of integral (2.4.23), i.e. for the

integration w.r.t. s′ over B2(2k).

For all s′ ∈ R2 \B2(2k), the right-hand side of (2.4.27) yields

∂
mα′

j

s′ S∞
9 =

∑

(l,~̀1,l̃)∈Sm

{

qm
j,l̃,~̀1

(s′, z)

(

ξτ − iτ
)sl(~̀1)

ξτ
(2m−l̃)

f(η′)sl(
~̀
1)+1 (−iζ)sl(~̀1)

(2.4.30)

(

e−i(ξτ−iτ)ζ f(η′) −
8−sl(~̀1)
∑

n=0

(−iζ)n f(η′)n
(

ξτ − iτ
)n

n!

)}

ei
z
2
ξτ

which is uniformly bounded w.r.t. τ and η′ by a function that is integrable w.r.t. s′. The same

holds again for (2.4.28). Note that the integrand in (2.4.23) is uniformly bounded w.r.t. η′ as well.

Hence, Lebesgue’s theorem can also be applied to integral (2.4.23) taken for s′ ∈ R
2\B2(2k).

2.4.3 Formula for the limit r̃ → ∞ and τ ↗ 0

Thus it has been shown that the limits τ ↗ 0 and r̃ → ∞ of the sum iI1 + iI2 (cf. (2.4.4) and

(2.4.5)) exist, by showing that they exist for the two summands separately. Note that the splitting

of the sum over n, leading to I1 and I2, can be done for 8 replaced by any fixed N ≥ 8. The

existence of the limits of (2.4.4) and (2.4.5) will still hold. This will now be used to show that

lim
τ↗0
r̃→∞

(I1 + I2) = lim
τ↗0
r̃→∞

1
∫

0

∫

R2

∫

R2

∑

n∈N
0

wr̃,τn (ζ, η′, s′) dη′ ds′ dζ
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=
∑

n∈N
0

lim
τ↗0
r̃→∞

1
∫

0

∫

R2

∫

R2

wr̃,τn (ζ, η′, s′) dη′ ds′ dζ, (2.4.31)

wr̃,τn (ζ, η′, s′) := (−iζ)n f(η′)n+1
1B2(r̃)(η

′)
(ξτ − iτ)n

n!
eikzζ f(η′) e−iη

′·(s′−k′)

[(~sξτ×~e 0)×~sξτ ]
ξτ

ei~sξτ ·~x,

where limτ↗0,r̃→∞ := limτ↗0 limr̃→∞. Note that the existence of the limit on the first line of

(2.4.31) is what has been shown above. Clearly,

∑

n∈N
0

lim
τ↗0
r̃→∞

1
∫

0

∫

R2

∫

R2

wr̃,τn (ζ, η′, s′) dη′ ds′ dζ

= lim
N→∞
N≥8

lim
τ↗0
r̃→∞

1
∫

0

∫

R2

∫

R2

N
∑

n=0

wr̃,τn (ζ, η′, s′) dη′ ds′ dζ

= lim
τ↗0
r̃→∞

1
∫

0

∫

R2

∫

R2

∑

n∈N
0

wr̃,τn (ζ, η′, s′) dη′ ds′ dζ

− lim
N→∞
N≥8

lim
τ↗0
r̃→∞

1
∫

0

∫

R2

∫

R2

∞
∑

n=N+1

wr̃,τn (ζ, η′, s′) dη′ ds′ dζ,

for which the existence of the first term on the right-hand side has already been shown. It

remains to evaluate the limit of the second term on the right-hand side applying Lebesgue’s

theorem. To do so, the same transformations that led to (2.4.23) are applied here. Furthermore,

the integral w.r.t. s′ is again split into the sum of integrals over the two domains B2(2k) and

R
2 \B2(2k). As before this allows to evaluate the limits r̃ → ∞ and τ ↗ 0 by evaluating the

limits of the integrand before evaluating the integrals. Thus

lim
N→∞
N≥8

lim
τ↗0
r̃→∞

1
∫

0

∫

R2

∫

R2

∞
∑

n=N+1

wr̃,τn (ζ, η′, s′) dη′ ds′ dζ

= lim
N→∞
N≥8

1
∫

0

∫

R2

∫

R2

∞
∑

n=N+1

w∞,0
n (ζ, η′, s′) dη′ ds′ dζ. (2.4.32)

In view of (2.4.23), for τ = 0 the limit (2.4.32) transforms to

lim
N→∞
N≥8

lim
τ↗0
r̃→∞

1
∫

0

∫

R2

∫

R2

∞
∑

n=N+1

wr̃,τn (ζ, η′, s′) dη′ ds′ dζ

= lim
N→∞
N≥8

1
∫

0

∫

B2(2k)

∫

R2

∞
∑

n=N+1

w̃1(n, ζ, η
′, s′) dη′ ds′ dζ
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+ lim
N→∞
N≥8

1
∫

0

∫

R2\B2(2k)

∫

R2

w̃2(N, ζ, η
′, s′) dη′ ds′ dζ,

where (cf. (2.4.23) and (2.4.29))

w̃1(n, ζ, η
′, s′) :=

2
∑

j=0

Mj
∑

m=0

∑

(l,~̀1,l̃)∈Sm

{

(

4

m

)

(−iζ)n f(η′)n+1
qm
j,l̃,~̀1

(s′, z)
(

n− sl(~̀1)
)

!

ξn

ξ9−l̃

~qj(s
′, ξ) eis

′·x′ eizξ eikzζ f(η′) 1

1 + |η′|4∗
e−iη

′·(s′−k′)

}

and (cf. (2.4.23), (2.4.28) and (2.4.30) with 8 replaced by N and with the exponential replaced

by its Taylor series expansion)

w̃2(N, ζ, η
′, s′) :=

2
∑

j=0

Mj
∑

m=0

{

∑

(l,~̀1,l̃)∈Sm

[

qm
j,l̃,~̀1

(s′, z)
ξsl(

~̀
1)

ξ9−l̃
(−iζ)sl(~̀1) f(η′)sl(

~̀
1)+1

∞
∑

n=N+1−sl(~̀1)

(

− iζf(η′)
)n

n!
ξn

]

(

4

m

)

~qj(s
′, ξ) ei~sξ·~x eikzζ f(η′) e

−iη′·(s′−k′)

1 + |η′|4∗

}

,

using ξ :=
√
k2 − s′2. It remains to apply Lebesgue’s theorem to evaluate the limit N → ∞.

First, observe

∣

∣

∣

∣

∣

∞
∑

n=N+1

w̃1(n, ζ, η
′, s′)

∣

∣

∣

∣

∣

≤
∞
∑

n=N+1

|w̃1(n, ζ, η
′, s′)| ≤

∞
∑

n=9

|w̃1(n, ζ, η
′, s′)| .

However, estimating (2.4.29), it has already be shown that this function is integrable w.r.t. η′, s′

and ζ . Hence, Lebesgue’s theorem can be applied. On the other hand, it is easily shown that

|w̃2(N, ζ, η
′, s′)| ≤

2
∑

j=0

Mj
∑

m=0

{

∑

(l,~̀1,l̃)∈Sm

[ ∣

∣

∣

∣

∣

qm
j,l̃,~̀1

(s′, z)

ξ9−l̃
f(η′)sl(

~̀
1)+1

∣

∣

∣

∣

∣

ζsl(
~̀
1)

]

∣

∣

∣

∣

∣

(

4

m

)

~qj(s
′, ξ) eis

′·x′ eikzζ f(η′) e
−iη′·(s′−k′)

1 + |η′|4∗
e−(z−ζf(η′))

√
s′2−k2

∣

∣

∣

∣

∣

}

,

which is integrable w.r.t. s′∈R2\B2(2k), η′ and ζ for z>h. Thus Lebesgue’s theorem implies

lim
N→∞
N≥8

1
∫

0

∫

R2

∫

R2

∞
∑

n=N+1

w∞,0
n (ζ, η′, s′) dη′ ds′ dζ

=

1
∫

0

∫

R2

∫

R2

lim
N→∞
N≥8

∞
∑

n=N+1

w∞,0
n (ζ, η′, s′) dη′ ds′ dζ = 0
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since the sum w.r.t. n converges pointwise to zero. Consequently, equation (2.4.31) holds true.

Thus it was shown that both limits in (2.4.2) can be evaluated by applying Lebesgue’s theorem,

integration by parts and generalised Fourier transform, which then leads to a representation of
~Dd(~x) in the sense of a generalised function. Since the integral w.r.t. s′ is a locally bounded

integrable function w.r.t. ~x, the distribution ~Dd(~x) can be identified with the locally integrable

function

~Dd(~x) =
i

8π2

∫

R2

α̂(~sξ − ~k)
[(~sξ×~e 0)×~sξ]

ξ
ei~sξ·~x ds′, (2.4.33)

where the above manipulations are needed to define the integral (see the subsequent Equa-

tion (2.4.34)). More precisely, the last integral is well defined in the following sense (cf. (2.4.2),

(2.4.4), (2.4.5), (2.4.15), (2.4.16) with ` = 1, 2, 3, (2.4.18) and (2.4.19)): For convenience,

define the new variable ~nr := ~sξz/
√

s2
x + s2

y + ξ2
z= ~sξz/k = (nx, ny, n

r
z)

> with nrz :=√
1 − n′2. Observe ds′ = k2 dn′ and define λ̃n4,j := 1 for j = 0 and all n ∈ N0 and

λ̃n4,j := 0 for j ∈ Z \ {0} and n ∈ N0. Then

~Dd(~x) = −i ∆

2

∑

n∈N
0

∑

j∈Z

1
∫

0

λ̃n0,j
(−iζ)n
n!

dζ
[(

~ωj×~e 0
)

×~ωj
] (

ωjz
)n−1

ei~ω
j ·~x

− ε0

4
∑

`=1

∑

n∈N
0

∑

j∈Z

1
∫

0

λ̃n`,j
(−ikζ)n
n!

∫

R2

~h`,j(n
′)

nrz
eik~n

r·~x dn′ dζ, (2.4.34)

~ωj :=
(

k′ + ω̃′
0,j, ω

j
z

)>
, ωjz :=

√

k2 −
∣

∣k′ + ω̃′
0,j

∣

∣

2
(2.4.35)

with ∆ := ε0 − ε′0, with λ̃n`,j , ω̃
′
`,j and g̃n as in Lemma 2.2 and with ~h`,j := ~h`,j,n,

(2.4.36)

~h`,j,n := i
∆ k3

4πε0
[nrz]

n
[(

~nr×~e 0
)

×~nr
]























e−|kn′−(k′+ω̃′
1,j)|/

∣

∣kn′−(k′+ω̃′
1,j)
∣

∣ , if `=1

K0

(∣

∣kn′−(k′+ω̃′
2,j)
∣

∣

)

, if `=2

e−|kn′−(k′+ω̃′
1,j)|, if `=3

1/(2π)
∫

R2 g̃n(η
′) e−iη

′·(kn′−k′) dη′, if `=4, j=0

Recall ~Dsc(~x) = ~Dd(~x) + ~Dsc
Q (~x). For z > f(x′) [10, Boundary conditions (7.37), Sect. 7.3]

implies ~Dsc
Q (~x) = ε0 ~r(~k,~e

0) ei
~kr·~x/|k′|2, where ~kr := (kx, ky,−kz)> = (k′,−kz)> is the

wave vector of the reflected wave mode, k̃ :=
√

µ0ε′0 ω the wave number beneath the interface,

~e 0 =(e0x, e
0
y, e

0
z)

> the vector of polarisation, and

~r(~k,~e 0) :=
kz +

√

k̃2 − |k′|2

kz −
√

k̃2 − |k′|2
(kye

0
x − kxe

0
y)





ky
−kx
0





+
k̃2kz + k2

√

k̃2 − |k′|2

k̃2kz − k2

√

k̃2 − |k′|2
kz(kxe

0
x + kye

0
y) − |k′|2 e0z

k2





−kxkz
−kykz
− |k′|2



 . (2.4.37)
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2.5 Scattered electric field

Following the definitions and notation introduced in Section 2.2 the reflected displacement field
~Dd(~x) for z > h can be reduced to its underlying electric fields, Hence, when applying this to

(2.4.33), the component of the scattered electric field with polarisation ~e is represented by

~e ∗ · ~Esc
d (~x) =

i

8π2ε(~x)

∫

R2

α̂(~sξ − ~k)
~e ∗ · [(~sξ×~e 0)×~sξ]

ξ
ei~sξ·~x ds′,

for all ~x ∈ R
3 with z > h, where ~e ∗ is the complex conjugate of the polarisation vector ~e.

Theorem 2.1. Assume the interface, described by the graph of a function f ∈ A1 that satisfies

condition (2.4.20), is illuminated by an incoming plane wave as in Subsection 2.1. Then the Born

approximation of the reflected polarised electric field for z > 2h can be written as

~e ∗ · ~Er(~x) = ~e ∗ ·
(

~Er
d(~x) + ~EQ(~x)

)

= EQ −E0 − E1 −E2 − E3 − E4, (2.5.1)

EQ := r(~k,~e 0, ~e ∗)
ei
~kr ·~x

|k′|2
, (2.5.2)

E0 := i
∆

2ε0

∑

n∈N
0

∑

j∈Z

1
∫

0

λ̃n0,j
(−iζ)n
n!

dζ ~e ∗ ·
[(

~ωj×~e 0
)

×~ωj
] (

ωjz
)n−1

ei~ω
j ·~x, (2.5.3)

E` :=
∑

n∈N
0

∑

j∈Z

1
∫

0

λ̃n`,j
(−ikζ)n

n!

∫

R2

h`,j(n
′)

nrz
eik~n

r·~x dn′ dζ, ` = 1, . . . , 4, (2.5.4)

where r(~k,~e 0, ~e ∗) := ~e ∗ · ~r(~k,~e 0) (cf. (2.4.37)) and ~kr := (kx, ky,−kz)>. The numbers λ̃n`,j
and ω̃′

`,j are defined in Lemma 2.2, the symbols ~ωj and ωjz in (2.4.35). For a two-dimensional

vector n′, the vector ~nr := (n′, nrz)
> is defined with nrz :=

√
1 − n′2, and h`,j := ~e ∗ · ~h`,j

for ` = 1, . . . , 4 (cf. (2.4.36)). Furthermore, there exists a z0 > 0 such that the sums in E`,
` = 0, . . . , 4, are absolutely and uniformly convergent for any z ≥ z0.

Proof. As already stated above, Equ. (2.5.2) can be deduced from [10, Sect. 7.3]. Furthermore,

taking the derivations in the previous subsections into account (cf. (2.4.34)), it remains to show

the absolute convergence. To do so, the definition of the algebra norm in (2.4.1) implies that, for

any 0 ≤ ζ ≤ 1,
∑

j∈Z

∣

∣

∣
λ̃n`,j

∣

∣

∣
≤
∣

∣

∣

∣fn+1 eikzζ f
∣

∣

∣

∣

A1
≤ c ||f ||nA1

, (2.5.5)

with a constant c > 0 independent of n. Furthermore, for any ` = 0, . . . , 3, the function

λ̃n`,j(ζ) := λ̃n`,j (cf. (2.4.10) and (2.4.11)) is continuous w.r.t. ζ by the algebra property of AC
1 .
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Split E0 according to E0 = Ea
0 + Eb

0,

Ea
0 := i

∆

2ε0

∑

n∈N
0

∑

j∈Z
|ω̃′

0,j|<k

1
∫

0

λ̃n0,j
(−iζ)n
n!

dζ ~e ∗ ·
[(

~ωj×~e 0
)

×~ωj
] (

ωjz
)n−1

ei~ω
j ·~x,

and Eb
0 := E0 − Ea

0 . With this, first consider Ea
0 , leading to ωjz ∈ R. Thus, (2.5.5) implies

|Ea
0 | ≤ c

∑

n∈N
0

1

n!

1
∫

0

∑

j∈Z
|ω̃′

0,j|<k

∣

∣

∣
λ̃n0,j(ζ0)

∣

∣

∣
dζ kn+1 ≤ c

∑

n∈N
0

kn ||f ||nA1

n!
<∞.

For Eb
0 define a z0 with z0 > ||f ||A1

, and assume z > z0. It follows that

∣

∣Eb
0

∣

∣ ≤ c
∑

n∈N
0

1

n!

∑

j∈Z
|ω̃′

0,j|≥k

1
∫

0

∣

∣

∣
λ̃n0,j

∣

∣

∣
dζ k2

∣

∣ωjz
∣

∣

n−1
e−|ω

j
z| z0

≤ c
∑

n∈N
0

1

n!

∑

j∈Z
|ω̃′

0,j|≥k

1
∫

0

∣

∣

∣
λ̃n0,j

∣

∣

∣
dζ k

∣

∣ωjz
∣

∣

n
e−|ω

j
z| z0.

The supremum of |ωjz|
n
e−|ω

j
z| z0 is

(

n
e

)n
z−n0 . Stirling’s formula (cf. [2, Sect. 2.5.2]) implies

(

n
e

)n
z−n0 ∼ n!√

2π n
z−n0 for n→ ∞. Using once more (2.5.5), it follows that

∣

∣Eb
0

∣

∣ ≤ c
∑

n∈N
0

1√
n

∑

j∈Z
|ω̃′

0,j|≥k

1
∫

0

∣

∣

∣
λ̃n0,j

∣

∣

∣
dζ z−n0 ≤ c

∑

n∈N
0

1√
n

( ||f ||A1

z0

)n

<∞

for z0 > ||f ||A1
. Hence, Eb

0 and thereby E0 is absolutely and uniformly convergent for any

z ≥ z0.

The E`, with ` = 1, . . . , 4 (cf. (2.4.36)) can be treated similarly. This time the domain of inte-

gration of the integral w.r.t. s′ is split into the two parts B2(k) and R2 \B2(k). Moreover, it has

to be taken into account that the integrands w.r.t. s′ ∈ B2(k) are at most weakly singular.

3 Far-field formula

3.1 Plane-wave modes in the far field

The goal of this section will be to find the far-field pattern for the Born solution of the transmitted

electric field in the case of interface functions from A1.
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To obtain this far field, the terms on the right-hand side of (2.5.1) will be treated separately, start-

ing with the first, i.e. (2.5.3). Examining the exponent of ei~ω
j
z ·~x= ei(k

′+ω̃′
0,j)·x′eiz(k

2−|k′+ω̃′
0,j |2)1/2 ,

it can be deduced that the electric field E0 is a superposition of plane waves and evanescent

modes, which correspond to |k′+ ω̃′
0,j| < k and |k′+ ω̃′

0,j| > k, respectively. This is a result of

(k2−|k′+ ω̃′
0,j|2)

1

2 being either real or purely imaginary with a non-negative imaginary part. To

evaluate the far field, fix the far-field direction by a unit vector ~m with mz > 0 and consider the

far-field asymptotics at the points ~x =: R~m, where R tends to infinity. In (2.5.3) all summands,

for which
∣

∣k′ + ω̃′
0,j

∣

∣

2
> k2, decay exponentially as R tends to infinity and are thus negligible

evanescent modes of the electric field. Only the remaining terms contribute as the plane-wave

modes eiR ~ω
j
z ·~m to the far field.

3.2 Several parts of the field in correspondence to a partition of the do-

main of integration

3.2.1 Splitting of the field

Continue by considering the remaining terms (2.5.4) for ` = 1, . . . , 4. Examining the exponent

of eik~n
r·~x = eikn

′·x′ eikz
√

1−n′2
it can be deduced that this part of the electric field is also a

superposition of plane waves and evanescent modes, which correspond to n′2≤1 and n′2>1,

respectively. Moreover, the functions h1,j(n
′) and h2,j(n

′) possess weak singularities at kn′ =
k′+ω̃′

1,j and kn′ = k′+ω̃′
2,j , respectively. To further study the integrals, the technical condition

|k′ + ω̃′
1,j| 6= k or |k′ + ω̃′

2,j| 6= k is assumed. The integral w.r.t. n′ will thus be separated into

∫

R2

h`,j(n
′)

nrz
eik~n

r·~x dn′ = W 1
`,j +W 2

`,j +W 3
`,j, (3.2.1)

W 1
`,j :=

∫

B2(1)

(

1 − χε(kn
′ − k′ − ω̃′

`,j)
) h`,j(n

′)

nrz
eik~n

r·~x dn′, (3.2.2)

W 2
`,j :=

∫

R2\B2(1)

(

1 − χε(kn
′ − k′ − ω̃′

`,j)
) h`,j(n

′)

nrz
eik~n

r·~x dn′, (3.2.3)

W 3
`,j :=

∫

R2

χε(kn
′ − k′ − ω̃′

`,j)
h`,j(n

′)

nrz
eik~n

r·~x dn′. (3.2.4)

Here χε ∈ C∞
0 (R2), suppχε ⊂ B2(ε), χε(n

′) = 1 for n′ ∈ B2

(

ε
2

)

and a small constant

ε > 0 with ε <
∣

∣k −
∣

∣k′ + ω̃′
`,j

∣

∣

∣

∣ for ` = 1, 2. This choice of ε ensures that either the support

suppχε(k · −k′−ω̃′
`,j) ⊂ B2(1) or suppχε(k · −k′−ω̃′

`,j) ⊂ R2\B2(1). Consider the point

~x =: R~m. The asymptotics for R→ ∞ of these three integrals will be examined separately.
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3.2.2 Far field generated by smooth integrands of evanescent modes

First consider W 2
`,j by introducing polar coordinates n′ = ρn′

0, with n′
0 := (cosφ, sinφ)>.

Integration by parts leads to

W 2
`,j =

2π
∫

0

∞
∫

1

(

1 − χε(kρn
′
0 − k′ − ω̃′

`,j)
)

h`,j(ρn
′
0) e

ikρRn′
0
·m′
ρ
e−kRmz

√
ρ2−1

√

1 − ρ2
dρ dφ

=
1

ikRmz
W 2,1
`,j +

1

ikRmz
W 2,2
`,j , (3.2.5)

W 2,1
`,j :=

2π
∫

0

(

1 − χε(kn
′
0 − k′ − ω̃′

`,j)
)

h`,j(n
′
0) e

ikRn′
0
·m′

dφ, (3.2.6)

W 2,2
`,j :=

2π
∫

0

∞
∫

1

∂ρ

[(

1 − χε(kρn
′
0 − k′ − ω̃′

`,j)
)

h`,j(ρn
′
0) e

ikρRn′
0
·m′
]

e−kRmz
√
ρ2−1 dρ dφ.

(3.2.7)

First, consider W 2,1
`,j for m′ 6= (0, 0)> and m′

|m′| = (cosφ′, sin φ′)>. Substitute u = u(φ) :=

kn′
0 · m′ = k |m′| cos(φ − φ′). Naturally this has to be done separately for the two sets

φ− φ′ ∈ [0, π) and φ− φ′ ∈ [π, 2π) leading to

W 2,1
`,j =

2
∑

l=1

(−1)l
−k|m′|
∫

k|m′|

(

1 − χε(kn
′
0,l(u) − k′ − ω̃′

`,j)
) h`,j

(

n′
0,l(u)

)

√

k2 |m′|2 − u2

eiRu du,

n′
0,j(u) :=





cos
[

(−1)j+1 arccos
(

u
k|m′|

)

+ φ′ + (j − 1)2π
]

sin
[

(−1)j+1 arccos
(

u
k|m′|

)

+ φ′ + (j − 1)2π
]





for j = 1, 2. Note that the integrand of both integrals is integrable w.r.t. u on the compact set

[−k |m′| , k |m′|]. Thus, according to the Riemann-Lebesgue lemma, the integral converges to

zero as R tends to infinity. Furthermore, this shows, for m′ 6= (0, 0)>, that the first term on

the right-hand side of (3.2.5) tends to zero faster than 1/R as R tends to infinity. In the case

of m′ = (0, 0)> the term (3.2.6) is independent of R and remains. Later on, when examining

W 1
`,j , it will be seen that this term also occurs for the integral over B2(1) but with opposite sign.

The sum of the two is thus zero.

For W 2,2
`,j examine the derivative

∂ρ

[(

1 − χε(kρn
′
0 − k′ − ω̃′

`,j)
)

h`,j(ρn
′
0) e

ikρRn′
0
·m′
]

= −kn′
0 · ∇χε(kρn′

0 − k′ − ω̃′
`,j) h`,j(ρn

′
0) e

ikρRn′
0·m′

+
(

1 − χε(kρn
′
0 − k′ − ω̃′

`,j)
)

n′
0 · ∇h`,j(ρn′

0) e
ikρRn′

0·m′

+ ikRn′
0 ·m′

(

1 − χε(kρn
′
0 − k′ − ω̃′

`,j)
)

h`,j(ρn
′
0) e

ikρRn′
0
·m′
. (3.2.8)

26



Since

(3.2.9)

|∇n′ [nrz(n
′)]| =

ρ
√

ρ2 − 1
,

∣

∣

∣

∣

∇n′

[

1

|n′ − ν ′|

]∣

∣

∣

∣

≤ c

|n′ − ν ′|2
,
∣

∣

∣
∇n′

[

e−k|n
′−ν′|

]∣

∣

∣
≤ c

it follows, for ` = 1, (cf. (2.4.36) for ` = 1) that

|n′
0 ·∇h`,j(ρn′

0)| e−
k
2
Rmz

√
ρ2−1 ≤ c

∣

∣kn′−k′+ω̃′
`,j

∣

∣

(

1
∣

∣kn′ − k′ + ω̃′
`,j

∣

∣

+
ρ

√

ρ2 − 1
+ 1

)

,

for ρ ∈ [1,∞). The same estimate also holds for ` = 2, 3, 4, since h`,j(ρn
′
0) has a weaker

singularity at the same position in these cases. This shows that

∣

∣

∣

(

1 − χε(kρn
′
0 − k′ − ω̃′

`,j)
)

n′
0 · ∇h`,j(ρn′

0)
∣

∣

∣
e−

k
2
Rmz

√
ρ2−1 ≤ c

(

1 +
ρ

√

ρ2 − 1

)

.

(3.2.10)

It follows that (cf. (3.2.8))

∣

∣

∣∂ρ

[(

1−χε(kρn′
0−k′−ω̃′

`,j)
)

h`,j(ρn
′
0) e

ikρRn′
0
·m′
]∣

∣

∣ e−
k
2
Rmz

√
ρ2−1≤c

(

ρ
√

ρ2 − 1
+R

)

for ρ∈ [1,∞) and substituting u=R
√

ρ2−1 and dρ= 1
R

u√
R2+u2

du (cf. (3.2.7))

∣

∣W 2,2
`,j

∣

∣≤2π c

∞
∫

1

( ρ
√

ρ2 − 1
+R
)

e−
k
2
Rmz

√
ρ2−1 dρ ≤ c

R

∞
∫

0

(1+u) e−
k
4
mzu du=O

(

1

R

)

.

Consequently the second term on the right-hand side of (3.2.5) has an asymptotic behaviour of

o
(

1
R

)

and

W 2
`,j= o

(

1

R

)

. (3.2.11)

3.2.3 Far field generated by smooth integrands of plane waves

To examine the integral in Formula (3.2.2), observe that the mapping n′ = (nx, ny)
> 7→ ~nr =

(nx, ny,
√

1 − n2
x − n2

y)
> is a bijective mapping of the points of the unit disk onto the upper

hemisphere of the unit ball. For convenience the vector ~nr will now be transformed to spherical

coordinates (θ, φ), where the direction of the polar axes is chosen as ~m. As a result ~nr · ~m
equals cos θ. If

~m = (sinα cos β, sinα sin β, cosα)>, (3.2.12)

then ~nr can be represented as

~nr(θ, φ) :=





sinα cosβ cos θ + (cosα cos β cosφ− sin β sin φ) sin θ
sinα sin β cos θ + (cosα sin β cos φ+ cosβ sinφ) sin θ

cosα cos θ − sinα cos φ sin θ



 (3.2.13)

27



b

b

b

mz

~nr

θ

φ

n′
nrx

nry

nrz
~m

α

β

m′
mx

my

z

x

y

Figure 3: Spherical coordinates w.r.t. ~m

as visualised in Figure 3. Now nx and ny can be substituted in integral (3.2.3). For this, the de-

terminant of the Jacobian matrix ∂(nx, ny)/∂(θ, φ) is |∂(nx, ny)/∂(θ, φ)| = nrz(θ, φ) sin θ.

Hence the differential dn′ is replaced by nrz(θ, φ) sin θ dθ dφ. Thus

W 1
`,j =

2π
∫

0

θ(φ)
∫

0

(

1 − χε(kn
′(θ, φ) − k′ − ω̃′

`,j)
)

h`,j

(

n′(θ, φ)
)

sin θ eikR cos θ dθ dφ,

where θ(φ) ≤ π is the angle for which ~nr(θ(φ), φ) is contained in the x−y plane and n′(θ, φ)
is defined as (nrx(θ, φ), nry(θ, φ))>. Substituting cos θ by ψ and applying integration by parts

to the integral over ψ leads to the following expression.

W 1
`,j =

2π
∫

0

1
∫

cos θ(φ)

(

1 − χε(kn
′(ψ, φ) − k′ − ω̃′

`,j)
)

h`,j

(

n′(ψ, φ)
)

eikRψ dψ dφ (3.2.14)

= 2π
(

1 − χε(km
′ − k′ − ω̃′

`,j)
)

h`,j(m
′)
eikR

ikR
− 1

ikR
W 1,1
`,j − 1

ikR
W 1,2
`,j
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W 1,1
`,j :=

2π
∫

0

(

1 − χε(kn
′
0(φ) − k′ − ω̃′

`,j)
)

h`,j

(

n′
0(φ)

)

eikR cos θ(φ) dφ

(3.2.15)

W 1,2
`,j :=

2π
∫

0

1
∫

cos θ(φ)

∂ψ

[(

1 − χε(kn
′(ψ, φ) − k′ − ω̃′

`,j)
)

h`,j

(

n′(ψ, φ)
)]

eikRψ dψ dφ,

where

n′(ψ, φ) :=

(

sinα cosβ ψ + (cosα cosβ cosφ− sin β sinφ)
√

1 − ψ2

sinα sin β ψ + (cosα sin β cosφ+ cosβ sinφ)
√

1 − ψ2

)

(3.2.16)

and n′
0(φ) := n′(cos θ(φ), φ

)

. To examine W 1,1
`,j a closer look at cos θ(φ) is necessary. Since

θ(φ) is the solution of

nrz(θ(φ), φ) = cosα cos θ(φ) − sinα sin θ(φ) cosφ = 0, (3.2.17)

the value cos θ(φ) is either found as

cos θ(φ) =















cos
(

arctan
(

cotα
cosφ

))

if φ 6= π
2
, 3

2
π, α 6= 0 and cotα

cos φ
> 0

cos
(

π + arctan
(

cotα
cosφ

))

if φ 6= π
2
, 3

2
π, α 6= 0 and cotα

cos φ
< 0

0 if φ = π
2
, 3

2
π or α = 0

, (3.2.18)

or cos θ(φ) = tanα cos φ/
√

1 + tan2 α cos2 φ. From this it is easily deduced that cos θ(φ)
is monotone for 0 ≤ φ < π and for π ≤ φ < 2π. Thus, unless α = 0, for these two cases the

substitution t := cos θ(φ) is possible. It is easily calculated that φ(t) = arccos
(

cotα t√
1−t2

)

,

dφ=−cosα/(1−t2) 1/(sin2α−t2)1/2dt and − sinα<cos θ(φ)≤sinα for 0≤φ<π. After

this transformation the integrands are only weakly singular at t = ± sinα and thus absolutely

integrable for 0 < α < π/2. Hence, the asymptotic behaviour 1
R
W 1,1
`,j = o

(

1
R

)

for the second

term on the right-hand side of (3.2.14) follows from the Riemann-Lebesgue lemma. In the case

α = 0, the value cos θ(φ) is identically zero and

− 1

ikR

2π
∫

0

(

1 − χε(kn
′
0(φ) − k′ − ω̃′

`,j)
)

h`,j

(

n′
0(φ)

)

dφ, (3.2.19)

with (cf. (3.2.16)) n′
0(φ) = (cos(β + φ), sin(β + φ))> remains. Note that with this, (3.2.19)

is the negative of (3.2.6) for m′ = (0, 0)>. Thus the two terms cancel when W 1
`,j is added to

W 2
`,j .

Next W 1,2
`,j (cf. (3.2.15)) is examined. Note that the function h`,j(n

′) can also be written as

h̃`,j(n
′, nrz), with nrz :=

√
1 − n′2 and a function h̃`,j analytic for kn′ 6= k′ + ω̃′

`,j (cf. (2.4.36)).

Using this, it can easily be shown that the derivative

∂ψ

[(

1 − χε(kn
′(ψ, φ) − k′ − ω̃′

`,j)
)

h`,j

(

n′(ψ, φ)
)]
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is weakly singular and thus integrable on {(φ, ψ): 0 ≤ φ ≤ 2π, cos θ(φ) ≤ ψ ≤ 1}. Thus

the absolute value of the integral w.r.t. ψ is uniformly bounded w.r.t. R by a function that is

integrable w.r.t. φ. Additionally, it follows from the Riemann-Lebesgue lemma that the integral

w.r.t. ψ converges pointwise to zero as R tends to infinity. Consequently, Lebesgue’s theorem

shows that W 1,2
`,j tends to zero as R tends to infinity. Hence, (cf. (3.2.14))

W 1
`,j = 2π

(

1 − χε(km
′ − k′ − ω̃′

`,j)
)

h`,j(m
′)
eikR

ikR
+ o

(

1

R

)

. (3.2.20)

3.2.4 Far field generated by a singular integrand

Main term for weakly singular integrand over unit disc

To examine the integral in (3.2.4), three cases will be considered separately. At first, the support

of the cut-off function is supposed to be located outside of the unit disk. Then, for the support

inside the unit disk, we distinguish the case 0 ≤ α < π/2 for km′ 6= k′ + ω̃′
`,j and the case

0 ≤ α < π/2 for km′ = k′ + ω̃′
`,j . These distinctions are necessary to apply different substi-

tutions to show the asymptotic behaviour of W 3
`,j . The second case is considered first.

Assume km′ 6= k′ + ω̃′
`,j and that the ε of the cut-off function (cf. Sect. 3.2.1) is small enough

such that m′ is not an element of the support of χε
(

k( · , · )> − k′ − ω̃′
`,j

)

. Apply the same

substitution as in Section 3.2.3. Thus, (cf. the first line of (3.2.14))

W 3
`,j =

2π
∫

0

1
∫

cos θ(φ)

χε
(

kn′(ψ, φ) − k′ − ω̃′
`,j

)

h`,j
(

n′(ψ, φ)
)

eikRψ dψ dφ. (3.2.21)

In the case ` > 1 the same approach as for W 1
`,j can be applied, since in this case h`,j has at

most a logarithmic singularity at the point kn′ = k′ + ω̃′
`,j . For ` = 2, 3 it follows that even the

derivative w.r.t. ψ of h`,j , occurring when applying integration by parts w.r.t. ψ (cf. (3.2.14)), is

still integrable w.r.t. ψ ∈ [cos θ(φ), 1] and φ ∈ [0, 2π). For ` = 4 the derivative w.r.t. ψ of h4,0

is also integrable w.r.t. ψ ∈ [cos θ(φ), 1] and φ ∈ [0, 2π), since ∂ψn
′(ψ, φ) is weakly singular

and since (cf. (2.4.36) for ` = 4)

∇n′

∫

R2

g̃n(η
′) e−iη

′·(kn′−k′) dη′ = −ik
∫

R2

η′ g̃n(η
′) e−iη

′·(kn′−k′) dη′

is uniformly bounded w.r.t. n′(ψ, φ) ∈ B2(1). Indeed the function g̃n(η
′), as an element of the

algebra AC
1 , was defined such that ||(1 + |η′|) g̃n(η′)||L1(R2) is finite.

Next the case ` = 1 is examined. Define

fj(ψ, φ) := h1,j

(

n′(ψ, φ)
)

|n′(ψ, φ) − ν ′| , (3.2.22)

where ν ′ :=
k′+ω̃′

`,j

k
. Moreover, the cut-off function is further specified as the tensor product of

two cut-off functions χ̃1
ε = χ̃2

ε ∈ C∞
0 (R) with the same epsilon as before. Thus, by defining
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(ψ0, φ0)
> such that n′(ψ0, φ0) = ν ′,

W 3
1,j =

2π
∫

0

χ̃1
ε(φ− φ0)

1
∫

ψ0−ε

χ̃2
ε (ψ − ψ0)

fj(ψ, φ)

|n′(ψ, φ) − ν ′| e
ikRψ dψ dφ.

For 0 ≤ α < π/2, the integral is now split into

W 3
1,j = W 3,1

j + gj(ψ0, φ0)W
3,2
j , (3.2.23)

W 3,1
j :=

2π
∫

0

1
∫

ψ0−ε

χ̃1
ε (φ− φ0) χ̃

2
ε(ψ − ψ0)

[

gj(ψ, φ) − gj(ψ0, φ0)
]

√

ã (ψ − ψ0)2 + b̃ (φ− φ0)2 + c̃ (ψ − ψ0) (φ− φ0)
eikRψ dψ dφ,

W 3,2
j :=

2π
∫

0

1
∫

ψ0−ε

χ̃1
ε(φ− φ0) χ̃

2
ε(ψ − ψ0)

√

ã (ψ − ψ0)2 + b̃ (φ− φ0)2 + c̃ (ψ − ψ0) (φ− φ0)
eikRψ dψ dφ,

(3.2.24)

gj(ψ, φ) := fj(ψ, φ)

√

ã (ψ − ψ0)2 + b̃ (φ− φ0)2 + c̃ (ψ − ψ0) (φ− φ0)

|n′(ψ, φ) − ν ′| (3.2.25)

ã :=
∣

∣

∣
∂ψ

[

n′(ψ, φ)
]

ψ=ψ0

φ=φ0

∣

∣

∣

2

b̃ :=
∣

∣

∣
∂φ

[

n′(ψ, φ)
]

ψ=ψ0

φ=φ0

∣

∣

∣

2

, (3.2.26)

c̃ := 2
{

∂ψ
[

n′(ψ, φ)
]

· ∂φ
[

n′(ψ, φ)
]

}

ψ=ψ0

φ=φ0

.

Note that gj is continuous if gj(ψ0, φ0) is defined as the limit of ψ → ψ0 and φ→ φ0, which is

finite as will be shown now. Obviously lim(ψ,φ)→(ψ0,φ0) fj(ψ, φ) = fj(ψ0, φ0) since the func-

tion fj is defined by removing the singularity of h1,j . For the limit (ψ, φ) → (ψ0, φ0) of the re-

maining factor in gj , transform (ψ−ψ0, φ−φ0) to the polar coordinates ρ̃(cos θ̃, sin θ̃) and con-

sider the limit ρ̃ → 0. Clearly all these radial limits exist and are independent of the angle θ̃ for

ã cos2 θ̃+ b̃ sin2 θ̃+ c̃ cos θ̃ sin θ̃ 6= 0. This, however, follows if and only if the two vectors ∂ψn
′

and ∂φn
′ are not parallel. To be precise, if the determinant d̃ := |∂n′(ψ, φ)/∂(ψ, φ)|ψ=ψ0,φ=φ0

is non-zero for ψ0 > cos θ(φ0). Evaluating d̃, leads to d̃ = −nrz(ψ0, φ0) 6= 0 for ψ0 6=
cos θ(φ0), since nrz(ψ, φ) is by construction only zero for ψ = cos θ(φ). Note that this also

shows that ã 6= 0 and b̃ 6= 0, since, if either of them were zero, the partial derivative of n′

w.r.t. ψ or φ (cf. (3.2.26)) would be zero and thus d̃ = 0.

Using an approach similar to the one used for W 1
1,j , it will now be shown that W 3,1

j has an

asymptotic behaviour of o(1/R) as R tends to infinity. Apply integration by parts w.r.t. ψ to

W 3,1
j , keeping in mind that χ̃2

ε (1 − ψ0) = χ̃2
ε (−ε) = 0. Then

W 3,1
j = − 1

ikR

2π
∫

0

1
∫

ψ0−ε

χ̃1
ε (φ− φ0) [χ̃2

ε ]
′
(ψ − ψ0)

[

gj(ψ, φ) − gj(ψ0, φ0)
]

√

ã (ψ − ψ0)2 + b̃ (φ− φ0)2 + c̃ (ψ − ψ0) (φ− φ0)
eikRψ dψ dφ

− 1

ikR

2π
∫

0

1
∫

ψ0−ε

χ̃1
ε (φ− φ0) χ̃

2
ε(ψ − ψ0) ∂ψgj(ψ, φ)

√

ã (ψ − ψ0)2 + b̃ (φ− φ0)2 + c̃ (ψ − ψ0) (φ− φ0)
eikRψ dψ dφ
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+
1

ikR

2π
∫

0

1
∫

ψ0−ε











χ̃1
ε (φ− φ0) χ̃

2
ε (ψ − ψ0)

[

gj(ψ, φ) − gj(ψ0, φ0)
]

√

ã (ψ − ψ0)2 + b̃ (φ− φ0)2 + c̃ (ψ − ψ0) (φ− φ0)
3

[

ã (ψ − ψ0) +
c̃

2
(φ− φ0)

]

eikRψ











dψ dφ, (3.2.27)

where

∂ψgj(ψ, φ) = ∂ψ





fj(ψ, φ)
√

1 +
∑

(l1,l2)∈N2
0

l1+l2≥3

bl1,l2
(ψ−ψ0)l1 (φ−φ0)l2

ã (ψ−ψ0)2+b̃ (φ−φ0)2+c̃ (ψ−ψ0) (φ−φ0)



 (3.2.28)

is uniformly bounded in a neighbourhood of (ψ, φ) = (ψ0, φ0). Indeed, for ∂ψfj(ψ, φ) this can

be seen by considering (3.2.22), (2.4.36) for ` = 1, the third equation of (3.2.9) and (3.2.13) for

cos θ = ψ, sin θ =
√

1 − ψ2 and ψ0 < 1. Furthermore, by using radial coordinates as before,

it can be proven that

gj(ψ, φ) − gj(ψ0, φ0)
√

ã (ψ − ψ0)2 + b̃ (φ− φ0)2 + c̃ (ψ − ψ0) (φ− φ0)

is bounded for (ψ, φ) → (ψ0, φ0). In fact the existence of radial limits can be shown. This limit

can be evaluated using the fact that the gradient of fj is uniformly bounded for ψ0 < 1 and that

ã cos2 θ̃ + b̃ sin2 θ̃ + c̃ cos θ̃ sin θ̃ 6= 0.

Hence, using this and the fact that (3.2.28) is uniformly bounded in a neighbourhood of (ψ, φ) =
(ψ0, φ0), it is easily seen that all the integrands on the right-hand side of (3.2.27) are at most

weakly singular and thus absolutely integrable w.r.t. ψ. Thus the integrals w.r.t. ψ are uniformly

bounded w.r.t. R by a function that is integrable w.r.t. φ. Therefore, using Lebesgue’s theorem

and the Riemann-Lebesgue lemma shows that W 3,1
j = o(1/R).

To examine W 3,2
j (cf. (3.2.24)) interchange the order of integration and substitute ψ and φ by

introducing the new variables ψ̃ − ψ̃0 := d̃b̃1/2 (ψ − ψ0) and φ̃ − φ̃0 := b̃1/2 c̃
2
(ψ − ψ0) +

b̃3/2 (φ− φ0), where d̃ = (ã b̃ − c̃2

4
)1/2, ψ̃0 := d̃b̃1/2 ψ0 and φ̃0 := b̃1/2( c̃

2
ψ0 + b̃ φ0). Thus

dφ dψ = 1
d̃ b̃2

dφ̃ dψ̃,

√

ã (ψ − ψ0)2 + b̃ (φ− φ0)2 + c̃ (ψ − ψ0)(φ− φ0) =

√

(ψ̃ − ψ̃0)2 + (φ̃− φ̃0)2

b̃
.

Defining d̃1 := 1

d̃
√
b̃

and d̃2 := c̃
2d̃

, it follows that (cf. (3.2.24))

(3.2.29)

W 3,2
j =

1

d̃b̃

1

d̃1
∫

ψ0−ε
d̃1

χ̃2
ε

(

d̃1(ψ̃ − ψ̃0)
)

d̃2ψ̃+2π
√
b̃
3

∫

d̃2ψ̃

χ̃1
ε

(

φ̃−φ̃0−d̃2(ψ̃−ψ̃0)√
b̃
3

)

√

(ψ̃ − ψ̃0)2 + (φ̃− φ̃0)2

dφ̃ eikd̃1Rψ̃ dψ̃
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Recall that ε was chosen such that χ̃1
ε([φ̃− φ̃0 − d̃2(ψ̃ − ψ̃0)]/b̃

3/2) is zero for φ̃ equal to the

boundaries of the domain of integration w.r.t. φ̃. Thus, integrating by parts leads to

(3.2.30)

d̃2ψ̃+2π
√
b̃
3

∫

d̃2ψ̃

χ̃1
ε

(

φ̃−φ̃0−d̃2(ψ̃−ψ̃0)√
b̃
3

)

√

(ψ̃ − ψ̃0)2 + (φ̃− φ̃0)2

dφ̃ = −
d̃2ψ̃+2π

√
b̃
3

∫

d̃2ψ̃

[χ̃1
ε ]

′
(

t(ψ̃, φ̃)
)

√

b̃
3 log

(

s(ψ̃, φ̃)
)

dφ̃,

where the two functions t and s are defined as t(ψ̃, φ̃) := [φ̃ − φ̃0 − d̃2(ψ̃ − ψ̃0)]/b̃
3/2 and

s(ψ̃, φ̃) := φ̃ − φ̃0 + [(ψ̃ − ψ̃0)
2 + (φ̃ − φ̃0)

2]1/2. Note that the integrand of the integral on

the right-hand side is uniformly bounded since [χ̃1
ε ]

′
(φ) is zero in a neighbourhood of φ = 0.

Applying (3.2.30) and taking into account that ∂ψ̃[log s(ψ̃, φ̃)] = −(ψ̃ − ψ̃0) ∂φ̃[1/s(ψ̃, φ̃)],

another integration by parts w.r.t. φ̃ implies

∂ψ̃









d̃2ψ̃+2π
√
b̃
3

∫

d̃2ψ̃

χ̃1
ε

(

t(ψ̃, φ̃)
)

√

(ψ̃ − ψ̃0)2 + (φ̃− φ̃0)2

dφ̃









(3.2.31)

=
d̃2

b̃3

d̃2ψ̃+2π
√
b̃
3

∫

d̃2ψ̃

[

χ̃1
ε

]′′
(

t(ψ̃, φ̃)
)

log s(ψ̃, φ̃) dφ̃− 1

b̃3

d̃2ψ̃+2π
√
b̃
3

∫

d̃2ψ̃

[

χ̃1
ε

]′′
(

t(ψ̃, φ̃)
) ψ̃ − ψ̃0

s(ψ̃, φ̃)
dφ̃.

Again, all integrands on the right-hand side of (3.2.31) are uniformly bounded, since [χ̃1
ε ]
′′
(φ)

is zero in a neighbourhood of φ = 0.

With this in mind integration by parts w.r.t. ψ̃ is applied to integral W 3,2
j (cf. (3.2.29)). Once

more χ̃2
ε (d̃1 (ψ̃ − ψ̃0)) is zero at the boundaries of the domain of integration w.r.t. ψ̃, and

W 3,2
j = o(1/R). Indeed, since the remaining integrand is uniformly bounded on the domain of

integration, the Riemann-Lebesgue lemma applies. Hence (cf. (3.2.23))

W 3
1,j= o

(

1

R

)

. (3.2.32)

Main term for asymptotics in the direction of the weak singularity

It is now assumed that km′ = kν ′ = k′+ω̃′
`,j and ε < 1−sinα such that nrz =

√
1 − n′2 > 0

for all n′ ∈ suppχε(k( · , · )>− km′). In this subsection the two cases of ` = 1 and ` = 2 are

examined separately, since in both cases the function h`,j(n
′,
√

1 − n′2) has a singularity at

n′ = ν ′ = m′. For ` > 2 the same techniques and arguments as for W 1
`,j can be used to prove

an asymptotic behaviour of o(1/R) for W 3
`,j (compare with the beginning of Section 3.2.4). The

same substitution as in Section 3.2.3 is applied. Thus, (compare with (3.2.4) and perform the

substitution of variables leading to the first line of (3.2.14))

W 3
`,j =

2π
∫

0

1
∫

0

χε
(

kn′(ψ, φ) − kν ′
)

h`,j
(

n′(ψ, φ)
)

eikRψ dψ dφ. (3.2.33)
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FirstW 3
1,j is examined by using (3.2.22). Moreover, this time the cut-off function is further spec-

ified as χε
(

kn′(ψ, φ) − kν ′
)

= χ̃ε
(

ψ − 1), where χ̃ε ≡ 1 in a neighbourhood of zero and

where χ̃ε ∈ C∞
0 (R) is defined with the same epsilon as before (cf. Sect. 3.2.1). Note that

n′(1, φ0) = ν ′ for any φ0 ∈ [0, 2π),

W 3
1,j =

2π
∫

0

1
∫

0

χ̃ε
(

ψ−1) fj(ψ, φ)

|n′(ψ, φ) − ν ′| eikRψ dψ dφ =

2π
∫

0

1
∫

0

gj(ψ, φ)√
1 − ψ

eikRψ dψ dφ, (3.2.34)

gj(ψ, φ) := χ̃ε
(

ψ − 1) fj(ψ, φ)

√
1 − ψ

|n′(ψ, φ) − ν ′| (3.2.35)

For 0 ≤ α < π/2, (3.2.16) implies

|n′(ψ, φ) − ν ′|2 = (1 − ψ)
[

2
(

1 − sin2 α cos2 φ
)

− 2 sinα cosα cosφ
√

1 − ψ2

+ (1 − ψ)
(

sin2 α cos2 φ− cos2 α
)

]

, (3.2.36)

gj(ψ, φ) = χ̃ε
(

ψ − 1) fj(ψ, φ)
(

2 − 2 sin2 α cos2 φ− 2 sinα cosα cosφ
√

1 − ψ2

+ (1 − ψ)
(

sin2 α cos2 φ− cos2 α
)

)− 1

2

. (3.2.37)

Note that gj(1, φ)=
fj(1,φ0)

√
2
√

1−sin2α cos2φ
<∞, since fj(1, φ) = fj(1, φ0) and sin2α cos2φ < 1

for all φ ∈ [0, 2π) and any α ∈
[

0, π
2

)

. Furthermore the function fj(ψ, φ) has the form

(cf. (3.2.22) and (2.4.36) for ` = 1)

fj(ψ, φ) = ch
[

nrz(ψ, φ)
]n
e−k

√
1−ψ

q

A(φ)+B(φ) (1−ψ)+C(φ)
√

1−ψ2

(

D(φ) + E(φ)ψ
√

1 − ψ2 + F (φ)ψ2
)

= ch

(

[

cosαψ
]n

+G(ψ, φ) + 1[1,∞)(n)H(φ)ψn−1
√

1 − ψ2
)

(3.2.38)

e−k
√

1−ψ
q

A(φ)+B(φ) (1−ψ)+C(φ)
√

1−ψ2
(

D(φ) + E(φ)ψ
√

1 − ψ2 + F (φ)ψ2
)

.

HereA(φ) :=2−2 sin2α cos2φ,B(φ) :=sin2α cos2φ−cos2α,C(φ) :=−2 sinα cosα cosφ
and

ch := i
∆k2

4πε0
. (3.2.39)

SimilarlyD(φ),E(φ) and F (φ) are second order polynomials of sin φ and cosφ defined such

that (cf. (3.2.13))

D(φ) + E(φ)ψ
√

1 − ψ2 + F (φ)ψ2 = ~e ∗ ·
[(

~nr(ψ, φ)×~e 0
)

×~nr(ψ, φ)
]

. (3.2.40)

Finally,G and H are defined by the binomial formula for (cosαψ− sin α cosφ
√

1 − ψ2)n as

G(ψ, φ) :=

n
∑

m=2

(

n

m

)

[

cosαψ
]n−m

[

− sinα cosφ
√

1 − ψ2
]m

,

H(φ) := − n!

(n− 1)!
sinα cos φ

[

cosα
]n−1

. (3.2.41)
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This shows that ∂ψG(ψ, φ) and G(ψ, φ)/
√

1 − ψ are uniformly bounded w.r.t. (ψ, φ) ∈
suppχ̃ε(· − 1) × [0, 2π] for any fixed n.

Later on, the following lemma for the function gj (cf. (3.2.35)) is needed.

Lemma 3.1. There exist a continuous function g0
j (φ) such that, for any 0 ≤ φ < 2π, the limit

limψ→1{∂ψ[gj(ψ, φ)] − g0
j (φ)/

√
1−ψ} exists and is uniformly bounded w.r.t. φ.

Proof. Using (3.2.38) it can be shown that ∂ψ[fj(ψ, φ)] = f sj (ψ, φ)/
√

1 − ψ + f rj (ψ, φ),

where both f sj and f rj are continuous functions. Moreover, with this it can be shown that

(cf. (3.2.37))

∂ψ [gj(ψ, φ)] =
gsj (ψ, φ)√

1 − ψ
+ grj (ψ, φ), (3.2.42)

where again both gsj and grj are continuous functions. In order to get the limit behaviour of

∂ψ [gj(ψ, φ)] at ψ = 1, evaluate the limit ψ → 1 of the two functions f sj (ψ, φ) and f sr (ψ, φ).

A lengthy but simple calculation reveals

f 0
j (φ) := f sj (1, φ) = ch cosn α

{

−E(φ)√
2

+
k

2

√

A(φ)
(

D(φ) + F (φ)
)

}

+ ch 1[1,∞)(n)
H(φ)√

2

(

D(φ) + F (φ)
)

, (3.2.43)

f 1
j (φ) := f rj (1, φ)

= ch cosn α

{

k√
2
E(φ)

√

A(φ) + 2F (φ) +
k C(φ)

2
√

2
√

A(φ)

(

D(φ) + F (φ)
)

}

+ ch 1[1,∞)(n)

{

[

n!

2(n− 2)!
sin2 α cos2 φ

[

cosα
]n−2

k√
2
H(φ)

√

A(φ) − n cosn α

]

(

D(φ) + F (φ)
)

}

. (3.2.44)

Consequently (cf. 3.2.37), the limit ψ → 1 of the functions gsj (ψ, φ) and grj (ψ, φ) evaluates as

g0
j (φ) := gsj (1, φ) =

f 0
j (φ)

√
2
√

1 − sin2 α cos2 φ
− fj(1, φ0) sinα cosα cosφ

4
√

1 − sin2 α cos2 φ
3 , (3.2.45)

g1
j (φ) := grj (1, φ) =

f 1
j (φ)

√
2
√

1 − sin2 α cos2 φ
− fj(1, φ0)

(

cos2 α− sin2 α cos2 φ
)

4
√

2
√

1 − sin2 α cos2 φ
3 .

(3.2.46)

To evaluate the limit limψ→1{∂ψ[gj(ψ, φ)] − g0
j (φ)/

√
1−ψ} it is necessary to take a closer

look at ∂ψf
s
j (ψ, φ) and ∂ψg

s
j (ψ, φ). For the first, there exist two continuous functions F r

j and

F s
j such that

∂ψf
s
j (ψ, φ) = F r

j (ψ, φ) +
F s
j (ψ, φ)√
1 − ψ

. (3.2.47)
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Similarly (cf. 3.2.37)), two continuous functions Gr
j and Gs

j can be found such that

(3.2.48)

∂ψg
s
j (ψ, φ) = Gr

j(ψ, φ) +
χ̃ε(ψ − 1) ∂ψ

[

f sj (ψ, φ)
]

√

A(φ) +B(φ) (1 − ψ) + C(φ)
√

1 − ψ2

+
Gs
j(ψ, φ)√
1 − ψ

.

Using l’Hospital’s rule, it can now be seen that (cf. (3.2.42), (3.2.48) and (3.2.47))

lim
ψ→1

{

∂ψ [gj(ψ, φ)] −
g0
j (φ)√
1 − ψ

}

= lim
ψ→1

[

gsj (ψ, φ) − g0
j (φ)√

1 − ψ

]

+ g1
j (φ)

= lim
ψ→1

[

∂ψg
s
j (ψ, φ) (−2)

√

1 − ψ
]

+ g1
j (φ)

= g1
j (φ) − 2

{ lim
ψ→1

[

∂ψf
s
j (ψ, φ)

√
1 − ψ

]

√

A(φ)
+Gs

j(1, φ)

}

= g1
j (φ) − 2

{

F s
j (1, φ)
√

A(φ)
+Gs

j(1, φ)

}

, (3.2.49)

which (cf. (3.2.46)) is uniformly bounded w.r.t. φ ∈ [0, 2π).

Now W 3
1,j (cf. (3.2.34), (3.2.35) and (3.2.45)) is split into W 3

1,j = W 3,5
j +W 3,6

j +W 3,7
j , where

W 3,5
j :=

2π
∫

0

1
∫

0

gj(ψ, φ) − gj(1, φ) + 2 g0
j (φ)

√
1 − ψ√

1 − ψ
eikRψ dψ dφ, (3.2.50)

W 3,6
j :=

2π
∫

0

gj(1, φ) dφ

1
∫

0

eikRψ√
1 − ψ

dψ, (3.2.51)

W 3,7
j := −2

2π
∫

0

g0
j (φ) dφ

1
∫

0

eikRψ dψ = −2

2π
∫

0

g0
j (φ) dφ

eikR − 1

ikR
. (3.2.52)

Transform W 3,5
j by applying integration by parts w.r.t. ψ. For this, note that by once more using

l’Hospital’s rule it can be shown that (cf. (3.2.49))

lim
ψ→1

[

gj(ψ, φ) − gj(1, φ) + 2 g0
j (φ)

√
1 − ψ√

1 − ψ

]

= lim
ψ→1

−2

[

∂ψ gj(ψ, φ) −
g0
j (φ)√
1 − ψ

]

√

1 − ψ = 0.

Moreover, since gj(ψ, φ) (cf. (3.2.37)) is an analytic function of
√

1 − ψ for ψ close to one, it

can even be concluded that
∣

∣

∣
gj(ψ, φ) − gj(1, φ) + 2 g0

j (φ)
√

1 − ψ
∣

∣

∣
∼ |1 − ψ| . (3.2.53)
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Thus integration by parts in (3.2.50) provides

W 3,5
j =

1

ikR

2π
∫

0

[

gj(1, φ) − 2 g0
j (φ)

]

dφ− 1

ikR

2π
∫

0

1
∫

0







∂ψ gj(ψ, φ) − g0j (φ)√
1−ψ√

1 − ψ

+
1

2

gj(ψ, φ) − gj(1, φ) + 2 g0
j (φ)

√
1 − ψ

√
1 − ψ

3







eikRψ dψ dφ,

where the integrand of the second integral on the right-hand side is absolutely integrable w.r.t. ψ
and φ (cf. (3.2.49) and (3.2.53)). Hence, the Riemann-Lebesgue lemma applies, and

W 3,5
j =

1

ikR

2π
∫

0

[

gj(1, φ) − 2 g0
j (φ)

]

dφ+ o

(

1

R

)

. (3.2.54)

It remains to consider W 3,6
j (cf. (3.2.51)). Using [11, Equ. 16, Sects. I.1 and II.1] as well as [1,

Equs. 7.3.9, 7.3.10, 7.3.27 and 7.3.28, Sect. 7.3] leads to

1
∫

0

eikRψ√
1 − ψ

dψ =
√
π

1 − i√
2k

eikR√
R

+ o

(

1

R

)

.

Thus (cf. (3.2.54), (3.2.51) and (3.2.52))

(3.2.55)

W 3
1,j =

1

ikR

2π
∫

0

gj(1, φ) dφ+
√
π

2π
∫

0

gj(1, φ) dφ
1−i√

2k

eikR√
R

− 2

2π
∫

0

g0
j (φ) dφ

eikR

ikR
+ o

(

1

R

)

.

Using fj(1, φ) = fj(1, φ0) (cf. (3.2.22) and (3.2.16)), [1, Equ. 17.2.6, Sect. 17.2] and (3.2.37)

leads to

2π
∫

0

gj(1, φ) dφ =
fj(1, φ0)√

2

2π
∫

0

1
√

1 − sin2 α cos2 φ
dφ = 2

√
2 fj(1, φ0) F̃ (

π

2
\ α)

(3.2.56)

where F̃ denotes the elliptic integral of the first kind (cf. [1, Equ. 17.2.6]). For the last remaining

integral
∫ 2π

0
g0
j (φ) dφ, a closer look at g0

j yields (cf. (3.2.45), (3.2.43), (3.2.38) and (3.2.41))

g0
j (φ) = −ch

2

cosnαE(φ)
√

1 − sin2 α cos2 φ
+ ch

k

2
cosnα

(

D(φ) + F (φ)
)

− ch
2

n!

(n− 1)!
1[1,∞)(n)

[

cosα
]n−1 sinα cosφ

√

1 − sin2 α cos2 φ

(

D(φ) + F (φ)
)

− fj(1, φ0) sinα cosα cosφ

4
√

1 − sin2 α cos2 φ
3 .
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With (3.2.13), ~nr(ψ, φ) = ~v0(α, β, ψ)+cosφ~v1(α, β,
√

1 − ψ2)+sinφ~v2(α, β,
√

1 − ψ2).

Equ. (3.2.40) implies that D(φ) + F (φ) = ~e ∗ · [(~m×~e 0)× ~m]. For the coefficient E(φ) of

ψ
√

1 − ψ2 in (3.2.40), it is concluded that E(φ) = E1 sinφ + E2 cosφ, with constants E1

andE2 only dependent on α, β, ~e ∗ and ~e 0. Indeed, due to (3.2.13) the coefficient of cos2 φ can

arise only from those terms in ~e ∗ · [(~v1×~e 0)×~v1], which do not contribute to the terms with

factor cos θ sin θ = ψ
√

1 − ψ2. Similarly, the coefficients of sin2 φ and 1 do not contribute to

the terms with factor ψ
√

1 − ψ2, i.e., to E(φ).

Hence
∫ 2π

0
g0
j (φ) dφ = ch πk cosnα ~e ∗ · [(~m×~e 0)× ~m], since for any fixed m ∈ R the

integrals
∫ 2π

0
sin φ/(1 − sin2 α cos2 φ)−m/2 dφ and

∫ 2π

0
cosφ/(1 − sin2 α cos2 φ)−m/2 dφ

are zero. Consequently, since mz = cosα (cf. (3.2.12)) and in view of (3.2.39), (3.2.55) and

(3.2.56),

W 3
1,j = fj(1, φ0) F̃ (π \ α)

(√
2

ikR
+
√
π

1−i√
k

eikR√
R

)

− i
∆k3

2ε0
mn
z ~e

∗ ·
[(

~m×~e 0
)

× ~m
] eikR

ikR
+ o

(

1

R

)

,

= i
∆k2

4πε0
mn
z ~e

∗ ·
[(

~m×~e 0
)

× ~m
]

{

2F̃ (
π

2
\ α)

(√
2

ikR
+
√
π

1−i√
k

eikR√
R

)

−2kπ
eikR

ikR

}

+o

(

1

R

)

, (3.2.57)

where fj(1, φ0)= i ∆ k2

4πε0
mn
z ~e

∗ · [(~m×~e 0)× ~m] was used (cf. (2.4.36) for `=1 and (3.2.22)).

Next W 3
2,j of (3.2.33) is examined. The cut-off function is defined the same way as for ` = 1.

Recall that the modified Bessel functionK0

(

k |n′ − ν ′|
)

in h2,j

(

n′(ψ, φ)
)

(cf. (2.4.36) for ` =
2) has a logarithmic singularity of the form log

(

k
2
|n′ − ν ′|

)

. This, as seen above (cf. (3.2.36)),

can be transformed to

log

(

k

2
|n′ − ν ′|

)

=
1

2
log(1 − ψ) +

1

2
log

[

k2

4

(

(1 − ψ)
(

sin2 α cos2 φ− cos2 α
)

+ 2 − 2 sin2 α cos2 φ− 2 sinα cosα cos φ
√

1 − ψ2
)

]

. (3.2.58)

Furthermore, using [1, Equs. 9.6.13 and 9.6.12, Sect. 9.6] and (3.2.58), we arrive at

K0 (k |n′ − ν ′|) = −1

2
log (1 − ψ) − γ̃ + O

(

log |n′ − ν ′| |n′ − ν ′|2
)

− 1

2
log

[

k2

4

(

2

− 2 sin2 α cos2 φ− 2 sinα cosα cosφ
√

1 − ψ2 + (1 − ψ)
(

sin2 α cos2 φ− cos2 α
)

)

]

(3.2.59)
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where γ̃ is Euler’s constant. Define (cf. (2.4.36) for ` = 2)

hj(ψ, φ) := chk χ̃ε(ψ − 1)
√

1 − n′2n ~e ∗ ·
[(

~nr×~e 0
)

×~nr
]

K0 (k |n′ − ν ′|)

+ chkm
n
z ~e

∗ ·
[(

~m×~e 0
)

× ~m
] 1

2
log (1 − ψ) , (3.2.60)

where ch is as in (3.2.39). It follows with hj(1, φ) := limψ↗1 hj(ψ, φ) that

hj(1, φ) = −chkmn
z ~e

∗ ·
[(

~m×~e 0
)

× ~m
]

{

γ̃ +
1

2
log

[

k2

2

(

1 − sin2 α cos2 φ
)

]}

.

Again the integral W 3
2,j is split as

W 3
2,j = W 3,8

j +W 3,9
j , W 3,8

j :=

∫ 2π

0

∫ 1

0

hj(ψ, φ) eikRψ dψ dφ, (3.2.61)

W 3,9
j := −chk πmn

z ~e
∗ ·
[(

~m×~e 0
)

× ~m
]

1
∫

0

log(1 − ψ) eikRψ dψ. (3.2.62)

Once more, integration by parts w.r.t.ψ is applied to examine the asymptotic behaviour ofW 3,8
j .

Recalling χ̃ε(−1) = 0 leads to

W 3,8
j = −chkmn

z ~e
∗ ·
[(

~m×~e 0
)

× ~m
]

2π
∫

0

{

γ̃ +
1

2
log

(

k2

2

)

(3.2.63)

+
1

2
log
(

1 − sin2 α cos2 φ
)

}

dφ
eikR

ikR
− 1

ikR

2π
∫

0

1
∫

0

∂ψhj(ψ, φ) eikRψ dψ dφ.

To show that the last integral on the right-hand side tends to zero with order o(1/R), it is

necessary to show that the derivative ∂ψhj(ψ, φ) is absolutely integrable w.r.t. ψ ∈ [0, 1].
Consider (cf. (3.2.60) and [1, Equ. 9.6.27, Sect. 9.6])

∂ψhj(ψ, φ)

= chk χ̃
′
ε(ψ − 1)

√
1 − n′2n ~e ∗ ·

[(

~nr×~e 0
)

×~nr
]

K0 (k |n′ − ν ′|)
+ chk χ̃ε(ψ − 1)∂ψ

[

n′(ψ, φ)
]

·∇n′

[√
1 − n′2n ~e ∗ ·

[(

~nr×~e 0
)

×~nr
]

]

K0 (k |n′ − ν ′|)

− chk χ̃ε(ψ − 1)
√

1 − n′2n ~e ∗ ·
[(

~nr×~e 0
)

×~nr
]

k ∂ψ
[

|n′ − ν ′|
]

K1 (k |n′ − ν ′|)

− ch
k

2
mn
z ~e

∗ ·
[(

~m×~e 0
)

× ~m
] 1

1 − ψ
, (3.2.64)

where (cf. (3.2.16))

∂ψ [n′(ψ, φ)] =





sinα cosβ + (cosα cos β cosφ− sin β sinφ) −ψ√
1−ψ2

sinα sin β + (cosα sin β cos φ+ cos β sinφ) −ψ√
1−ψ2



 .
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Recall that χ̃ε was defined in such a way that χ̃′
ε ≡ 0 in a neighbourhood of zero. Consequently

the first term on the right-hand side of (3.2.64) is uniformly bounded w.r.t. ψ ∈ [0, 1] and

thus absolutely integrable. The second term, on the other hand, is bounded for ψ ∈ [0, 1]
by the integrable function (cf. (3.2.59)) c (1 + 1/

√
1 − ψ + log(1 − ψ)/

√
1 − ψ), since

∇n′[
√

1 − n′2n ~e ∗ · [(~nr×~e 0)×~nr]] is uniformly bounded w.r.t. ψ and φ. Indeed, nrz(ψ, φ) =
√

1 − n′(ψ, φ)2 > 0 for all ψ ∈ suppχ̃ε. It remains to consider the last two terms in (3.2.64).

For this the series expansion of K1 is needed (cf. [1, Equs. 9.6.11 and 9.6.10, Sect. 9.6] and [1,

Equ. 6.3.2, Sect. 6.3])

(3.2.65)

K1(k |n′−ν ′|) =
1

k |n′−ν ′|+
1

4

[

2 log

(

k

2
|n′−ν ′|

)

+2γ̃−1

]

k |n′−ν ′| + o
(

|n′−ν ′|2
)

,

as well as the derivative (cf. (3.2.36))

∂ψ
[

|n′ − ν ′|
]

= −1

2

|n′ − ν ′|
1 − ψ

(3.2.66)

+
1

2

2 sinα cosα cosφ ψ√
1+ψ

−
√

1 − ψ
(

sin2 α cos2 φ− cos2 α
)

|n′(ψ, φ) − ν ′| /
√

1 − ψ

is needed. Note that the last denominator on the right-hand side is bounded. Indeed,
√

1 − ψ
is the singular factor in |n′(ψ, φ) − ν ′| in the neighbourhood not cut-off by the factor χ̃ε(ψ−1),

and the denominator equals
|n′(ψ,φ)−ν′|√

1−ψ (cf. (3.2.36)). Since the last two terms on the right-hand

side of (3.2.64) are bounded for any ψ ∈ [0, 1), it remains to examine the asymptotics of the

two for ψ ↗ 1 using (3.2.65) and (3.2.66). For ψ ↗ 1, this leads to

− chk χ̃ε(ψ − 1)
√

1 − n′2n ~e ∗ ·
[(

~nr×~e 0
)

×~nr
]

k ∂ψ
[

|n′ − ν ′|
]

K1 (k |n′ − ν ′|)

− ch
k

2
mn
z ~e

∗ ·
[(

~m×~e 0
)

× ~m
] 1

1 − ψ

∼ −ch
k

2
mn
z ~e

∗ ·
[(

~m×~e 0
)

× ~m
]

{

1

1 − ψ
+ 2k ∂ψ

[

|n′ − ν ′|
]

K1 (k |n′ − ν ′|)
}

= −ch
k

2
mn
z ~e

∗ ·
[(

~m×~e 0
)

× ~m
]

O
(

1√
1 − ψ

)

.

Thus the derivative ∂ψhj(ψ, φ) is absolutely integrable w.r.t. ψ ∈ [0, 1]. Furthermore, using

the Riemann-Lebesgue lemma, this shows that the integral w.r.t. ψ on the right-hand side of

(3.2.63) multiplied by 1/R converges to zero with the order o
(

1
R

)

. Since the integral w.r.t. ψ
is also uniformly bounded w.r.t. R and φ, Lebesgue’s theorem can be applied to show that this

convergence order also holds for the integral w.r.t. φ. Hence

W 3,8
j = −chkmn

z ~e
∗ ·
[(

~m×~e 0
)

× ~m
]

{

2πγ̃ + π log

(

k2

2

)

+

π
∫

0

log
(

1−sin2 α cos2 φ
)

dφ

}

eikR

ikR
+ o

(

1

R

)
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= −chkmn
z ~e

∗ ·
[(

~m×~e 0
)

× ~m
]

{

2πγ̃ + π log

(

k2

2

)

+ 4π log
(

cos
α

2

)

}

eikR

ikR

+ o

(

1

R

)

. (3.2.67)

FinallyW 3,9
j (cf. (3.2.62)) is evaluated using [11, Equ. 116, Sects. I.4 and II.4] and [1, Equations

5.2.8, 5.2.9, 5.2.34 and 5.2.35, Sect. 5.2] leading to

W 3,9
j = −chk πmn

z ~e
∗ ·
[(

~nr×~e 0
)

×~nr
]

[

− γ̃ − log(kR) − i
π

2

] eikR

ikR
+ o

(

1

R

)

.

It follows that (cf. the first equation of (3.2.61), (3.2.67) and (3.2.39))

W 3
2,j = i

∆ k3

4 ε0
mn
z ~e

∗ ·
[(

~m×~e 0
)

× ~m
]

[

logR− γ̃ − log

(

k

2

)

− 4 log
(

cos
α

2

)

+ i
π

2

]

eikR

ikR
+ o

(

1

R

)

(3.2.68)

Main term for weakly singular integrand outside the unit disc

The substitution used in the first line of (3.2.5) leads to (cf. (3.2.4))

W 3
1,j =

φ0+π
∫

φ0−π

∞
∫

1

χε(kρn
′
0 − kν ′)

f̃j(ρn
′
0)

|ρn′
0 − ν ′|

ρ
√

1 − ρ2
eikρRn

′
0
·m′
e−kRmz

√
ρ2−1 dρ dφ,

where (cf. (2.4.36) for ` = 1) f̃j(ρn
′
0) := h1,j(ρn

′
0) |ρn′

0 − ν ′| is uniformly bounded w.r.t. ρ
and φ on a compact set. Note that, since the support of (ρ, n′

0) 7→ χε(kρn
′
0−kν ′) is completely

outside the unit circle around zero, there exists a constant δ > 0 such that
√

ρ2 − 1 ≥ δ for all

kρn′
0 − kν ′ ∈ suppχε. Thus for R ≥ 1

∣

∣W 3
1,j

∣

∣ ≤ c

δ

φ0+π
∫

φ0−π

∞
∫

1

|χε(kρn′
0 − kν ′)|

|ρn′
0 − ν ′| dρ dφ e−kRmzδ= o

(

1

R

)

, (3.2.69)

since |ρn′
0 − ν ′|−1

is locally integrable w.r.t. ρ and φ.

The three cases together

Finally, combining (3.2.4), (3.2.32), (3.2.57), (3.2.68), (3.2.69) and the argument after (3.2.21),

41



W 3
`,j =







































































1k′+ω̃′
1,j

(km′)

{

i ∆ k2

4πε0
mn
z ~e

∗ · [(~m×~e 0)× ~m]
[

2F̃ (π
2
\ α)

( √
2

ikR
+
√
π 1−i√

k
eikR√
R

)

− 2πk eikR

ikR

]

}

, if ` = 1

1k′+ω̃′
2,j

(km′)

{

i ∆ k3

4 ε0
mn
z ~e

∗ · [(~m×~e 0)× ~m]

[

logR − γ̃ − log k
2
− 4 log cos α

2
+ iπ

2

]

eikR

ikR

}

, if ` = 2

2π χε(km
′ − k′ − ω̃′

`,j) h`,j(m
′) e

ikR

ikR
, if ` = 3, 4

+ o(1/R) (3.2.70)

no matter if the point n′ with kn′ = k′ + ω̃′
`,j is located inside or outside the unit circle. Note

that the terms for ` = 3, 4 are obtained similarly to (3.2.20), but with 1 − χε(km
′ − k′ − ω̃′

`,j)
replaced by χε(km

′ − k′ − ω̃′
`,j) and with W 1

`,j replaced by W 3
`,j . Furthermore, the symbol 1

is used for the indicator function, i.e., for a set M the value 1M(m) is one if m ∈ M and zero

else. For a singleton M = {m0}, 1M(m) is shortly written as 1
m0

(m).

3.3 The final formula for the reflected field

In conclusion this shows that (cf. (3.2.1), (3.2.11), (3.2.20) and (3.2.70))

∫

R2

h`,j(n
′)

nrz
eik~n

r·~x dn′

= 2π 1{1,2}(`)
(

1 − 1k′+ω̃′
`,j

(km′)
)

h`,j(m
′)
eikR

ikR
+ 2π 1{3,4}(`) h`,j(m

′)
eikR

ikR

− i11(`)1k′+ω̃′
1,j

(km′)
∆ k2

2ε0
mn
z ~e

∗ ·
[(

~m×~e 0
)

× ~m
]

{

k
eikR

ikR

− 1

π
F̃ (
π

2
\ α)

( √
2

ikR
+
√
π

1 − i√
k

eikR√
R

)}

+ i12(`)1k′+ω̃′
2,j

(km′)
∆ k3

4 ε0
mn
z ~e

∗ ·
[(

~m×~e 0
)

× ~m
]

(3.3.1)

[

logR− γ̃ − log

(

k

2

)

− 4 log
(

cos
α

2

)

+ i
π

2

]

eikR

ikR
+ o

(

1

R

)

.

This gives the asymptotics of one term in (2.5.4). From the uniform and absolute convergence

of the sum in (2.5.4) (cf. Theorem 2.1), it is obvious that the asymptotic limit and the summation

in (2.5.4) can be interchanged.

Theorem 3.1. Assume the interface is the graph of a function f ∈ A1 that satisfies con-

dition (2.4.20) and
∣

∣k′ + ω̃′
`,j

∣

∣ 6= k for ` = 1, 2 and all j ∈ Z. Suppose this interface is
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illuminated by an incoming plane wave described in Subsection 2.1. Then the far-field asymp-

totics of the reflected polarised electric field for z > max
{

2 ||f ||A1
, 2 ||f ||∞

}

in the direction

~m = (m′, mz)
> = (sinα cos β, sinα sin β, cosα)> is

~e ∗· ~Er(R~m)

= r(~k,~e 0, ~e ∗)
eikR~n

r
0·~m

|k′|2

− i
∆

2ε0

∑

n∈N
0

∑

j∈Z

1
∫

0

λ̃n0,j
(−iζ)n
n!

dζ ~e ∗ ·
[(

~ωj×~e 0
)

×~ωj
] (

ωjz
)n−1

eiR~ω
j ·~m

−
∑

n∈N
0

∑

j∈Z

{

2π

2
∑

`=1

[ 1
∫

0

λ̃n`,j
(−ikζ)n
n!

dζ
(

1 − 1k′+ω̃′
`,j

(km′)
)

h`,j(m
′)

]

eikR

ikR

− 2π

4
∑

`=3

1
∫

0

λ̃n`,j
(−ikζ)n
n!

dζ h`,j(m
′)
eikR

ikR
(3.3.2)

−i ∆ k2

2πε0
1k′+ω̃′

1,j
(km′)mn

z

1
∫

0

λ̃n1,j
(−ikζ)n
n!

dζ ~e ∗ ·
[(

~m×~e 0
)

× ~m
]

[

F̃ (
π

2
\ α)

(
√

2

ikR
+
√
π

1 − i√
k

eikR√
R

)

− πk
eikR

ikR

]

− i
∆ k3

4 ε0
1k′+ω̃′

2,j
(km′)mn

z

1
∫

0

λ̃n2,j
(−ikζ)n
n!

dζ ~e ∗ ·
[(

~m×~e 0
)

× ~m
]

[

logR − γ̃ − log
k

2
− 4 log cos

α

2
+ i

π

2

]

eikR

ikR

}

+ o

(

1

R

)

,

where ~nr0 := (n0
x, n

0
y,−n0

z)
> for the incoming direction ~n0 = (n0

x, n
0
y, n

0
z)

> := ~k/k and where

r(~k,~e 0, ~e ∗) := ~e ∗ · ~r(~k,~e 0) with ~r(~k,~e 0) defined in (2.4.37). The numbers λ̃n`,j and ω̃′
`,j are

defined in Lemma 2.2, the symbols ~ωj , ωjz in (2.4.35), and h`,j := ~e ∗ · ~h`,j with ~h`,j given in

(2.4.36). The symbol γ̃ stands for Euler’s constant, and F̃ is the elliptic integral of the first kind.

3.4 Reduced efficiency in specular reflection

In this subsection it will be shown that the results, derived in [14, Sect.II.E.1] without fixing any

sufficient assumption on the interface, hold for interface functions in A1. To be precise, it will be

proven that the efficiency of the plane wave reflected in specular direction can be represented

as the efficiency for reflection at an ideal interface multiplied by an explicit correction term.

Theorem 3.2. Assuming an interface function f ∈ A1, the reflected field ~Er in the Born ap-

proximation of Theorem 2.1 contains a plane-wave mode propagating in the specular direction
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~nr := (nx, ny,−n0
z)

> := ~kr/k with ~kr := (kx, ky,−kz)> of the form

∆
4ε0 [n0

z]
2 ŵ(−2kz) [(~nr×~e 0)×~nr] ei~kr ·~x +O

(

[

∆
[n0
z]

2

]2
)

, (3.4.1)

ŵ(−2kz) :=

h
2
∫

−h
2

∂ζ

[

limR→∞
1

4R2

R
∫

−R

R
∫

−R
1[f(η′),∞)(ζ) dηx dηy

]

e−i2|kz|ζ dζ. (3.4.2)

Remark 3.1. In the case of an ideal surface with f = fQ ≡ 0, the function ŵ = ŵQ is the

Fourier transform of ∂ζ1[0,∞) = δ, i.e., ŵQ ≡ 1. Consequently, Equ. (3.4.1) shows that the

specularly reflected plane-wave mode for a general rough surface is that of the reflected plane-

wave mode of the ideal planar surface multiplied by the attenuation factor ŵ(−2kz). Conse-

quently, the efficiency of that mode is attenuated by the factor [ŵ(−2kz)]
2, where |ŵ(−2kz)|

is less or equal to one. Indeed,

|ŵ(−2kz)| =

∣

∣

∣

∣

∞
∫

−h
2

e−i2|kz |ζ dp(ζ)

∣

∣

∣

∣

≤ p(∞) − p(−h/2) = 1

with the monotonically increasing function p(ζ) :=limR→∞
1

4R2

∫ R

−R
∫ R

−R 1[f(η′),∞)(ζ) dηx dηy
satisfying p(∞) = 1 and p(−h/2) = 0.

Remark 3.2. Applying the formula for the Fourier transform of a derivative to Equ. (3.4.2) and

subtracting ŵQ(−2kz) ≡ 1, there holds

ŵ(−2kz)−1= i2|kz|

h
2
∫

−h
2

[

lim
R→∞

1

4R2

R
∫

−R

R
∫

−R

(

1[f(η′),∞)(ζ)−1[0,∞)(ζ)
)

dηx dηy

]

e−i2|kz |ζ dζ.

This provides a way to define ŵ by classical integration.

Proof. Examining Equ. (2.5.3) and the definition of ~ωjz, it is easily seen that a plane wave in

specular direction appears if ω̃′
0,j = (0, 0)>. The corresponding index j will be denoted by j0.

Note that the corresponding λ̃n0,j0 is the mean value of fn+1(η′) eikzζ f(η′). To be precise it can

be represented as (cf. (2.4.8))

λ̃n0,j0 = Φn
0,j0

(fn+1) := lim
R→∞

1

4R2

R
∫

−R

R
∫

−R

fn+1(η′) eikzζ f(η′) dηx dηy. (3.4.3)

By ~Esp denote the specular part of ~Er (cf. (2.5.1) and (2.5.3) without scalar product by ~e ∗)

minus the summand ~EQ, corresponding to the reflection at an ideal interface. Picking up the

corresponding terms of (2.5.3) and replacing λ̃n0,j0 by (3.4.3) leads to
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~Esp := −i ∆

2ε0

∑

n∈N
0

1
∫

0

λ̃n0,j0
(−iζ)n
n!

dζ
[(

~kr×~e 0
)

×~kr
]

|kz|n−1 ei
~kr ·~x

= −i ∆

2ε0

∑

n∈N
0

1
∫

0

lim
R→∞

1

4R2

R
∫

−R

R
∫

−R

fn+1(η′) eikzζ f(η′) dηx dηy
(−iζ)n
n!

dζ |kz|n−1

[(

~kr×~e 0
)

×~kr
]

ei
~kr·~x.

Clearly, the Φn
0,j0 is a continuous linear functional on the Banach algebra AC

1 . Hence, the func-

tional evaluation can be interchanged with the summation over n and the integration w.r.t. ζ ,

which themselves are continuous operations in AC
1 .

~Esp = −i ∆

2ε0
lim
R→∞

1

4R2

R
∫

−R

R
∫

−R

1
∫

0

∑

n∈N
0

(−i|kz|ζ f(η′))n

n!
eikzζ f(η′) dζ

f(η′)

|kz|
dηx dηy

[(

~kr×~e 0
)

×~kr
]

ei
~kr ·~x

(3.4.4)

= −i ∆

2ε0
lim
R→∞

1

4R2

R
∫

−R

R
∫

−R

1
∫

0

e−i2|kz|ζ f(η′) dζ
f(η′)

|kz|
dηxdηy

[(

~kr×~e 0
)

×~kr
]

ei
~kr·~x,

since kz < 0. Note that

1
∫

0

e−i2|kz|ζ f(η′) dζ f(η′) =

f(η′)
∫

0

e−i2|kz|ζ dζ =

h
2
∫

−h
2

χ(f, η′, ζ) e−i2|kz|ζ dζ,

χ(f, η′, ζ) :=

{

1[0,f(η′)](ζ) if 0 ≤ f(η′)
−1[f(η′),0](ζ) if f(η′) < 0

.

Applying this to the right-hand side of (3.4.4) and using Fubini’s theorem leads to

(3.4.5)

~Esp = −i ∆

2ε0
lim
R→∞

h
2
∫

−h
2

1

4R2

R
∫

−R

R
∫

−R

χ(f, η′, ζ) dηx dηy e
−i2|kz|ζ dζ

[(

~kr×~e 0
)

×~kr
]

|kz|
ei
~kr ·~x.

In order to apply Lebesgue’s theorem in (3.4.5), it must be shown that the limit

lim
R→∞

1

4R2

R
∫

−R

R
∫

−R

χ(f, η′, ζ) dηx dηy (3.4.6)
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exists a.e. for ζ s.t. −h/2 ≤ ζ ≤ h/2. Note that µ(f, ζ, R) :=
∫ R

−R
∫ R

−R χ(f, η′, ζ) dηx dηy
is the measure for the set of points η′ ∈ [−R,R]2 with 0 ≤ ζ ≤ f(η′) minus the measure for

the set of points η′ ∈ [−R,R]2 with 0 ≥ ζ ≥ f(η′) . Hence, −1 ≤ µ(f, ζ, R)/(4R2) ≤ 1
for all R > 0. Furthermore, for ζ 6= 0 and for any decaying function f̃ ∈ A1, the integral

µ(f̃ , ζ, R)/(4R2) tends to zero as R tends to infinity. Consequently, only the non-decaying

part of f is significant for the limit in (3.4.6). Finally, by density arguments it can be assumed

that f is only a finite sum of Fourier modes. However, the existence of the limit in (3.4.6) for

such a biperiodic function is easy to see.

Now Lebesgue’s theorem for (3.4.5) and the formula for a differentiated generalised Fourier

transform yield

~Esp=−i ∆

2ε0|kz|

∫

R

[

lim
R→∞

1

4R2

R
∫

−R

R
∫

−R

χ(f, η′, ζ) dηxdηy

]

e−i2|kz |ζ dζ
[(

~kr×~e 0
)

×~kr
]

ei
~kr·~x

(3.4.7)

=
−∆

4ε0|kz|2
∫

R

∂ζ

[

lim
R→∞

1

4R2

R
∫

−R

R
∫

−R

χ(f, η′, ζ) dηxdηy

]

e−i2|kz |ζ dζ
[(

~kr×~e 0
)

×~kr
]

ei
~kr·~x.

In correspondence with [14, Equ. (12)] define p as in Remark 3.1 and set

pQ(ζ) := lim
R→∞

1

4R2

R
∫

−R

R
∫

−R

1[0,∞)(ζ) dηx dηy = 1[0,∞)(ζ).

It is easily confirmed that limR→∞
∫ R

−R
∫ R

−R χ(f, η′, ζ) dηx dηy =limR→∞ µ(f, ζ, R)/(4R2)

= pQ(ζ)− p(ζ) and that the Fourier transform ŵQ(−2|kz|) =
∫

R
∂ζ [pQ(ζ)] e−i2|kz|ζ dζ is

equal to one, by using results for generalised Fourier transforms. Furthermore, supp(∂ζp) ⊆
[−h/2, h/2]. Thus, substituting limR→∞

∫ R

−R
∫ R

−R χ(f, η′, ζ) dηxdηy by pQ(ζ)−p(ζ) in Equa-

tion (3.4.7) and writing the integral of the difference as a difference of integrals, there holds

~Esp=
∆

4ε0|kz|2
ŵ(−2kz)

[

(~kr×~e 0)×~kr
]

ei
~kr ·~x − ∆

4ε0|kz|2
[

(~kr×~e 0)×~kr
]

ei
~kr·~x, (3.4.8)

where ŵ(−2kz) is defined in (3.4.2). Finally, the theorem is a consequence of the following

asymptotics, which is not hard to prove (compare Stearns [14, Equ. (36), Sect. II.E.1]).

~EQ(~x) = ~r (~k,~e 0)
ei
~kr·~x

|k′|2
=

∆

4 ε0[kz]
2

[

(~kr×~e 0)×~kr
]

ei
~kr·~x + O

(

[

∆

[n0
z]

2

]2
)

. (3.4.9)

3.5 The special case of a sinusoidal grating

3.5.1 Applied far-field formula

Now consider the reflected electric field for a sinusoidal grating, which is constant in y-direction.

First Equ. (3.3.2) will be applied, and in the next subsection it is compared with that of Stearns

[14].
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Assume

f(x′) :=λ0,−1 e
iω′

0,−1 +λ0,1 e
iω′

0,1 =
h

2
cosx, λ0,±1 :=

h

4
, ω′

0,±1 :=

(

±1
0

)

. (3.5.1)

To evaluate the second term on the right-hand side of (3.3.2) it is necessary to determine the

values of λ̃n0,j and ω̃′
0,j for the interface (3.5.1). For ` = 1, . . . , 4 the λ̃n`,j are zero. To do

so, consider Equs. (2.4.9) and (2.4.10). Note that the index set Z in this equation is reduced

to {−1, 1} for the interface function (3.5.1). Thus (cf. (3.5.1)) ω̃′
0,j = (j, 0)> for j ∈ Z.

Consequently, (cf. the definition of ~ωjz after (2.4.34)) ~ωjz = (kx + j, ky, (k
2 − (kx + j)2 −

k2
y)

1/2)>. From now on classical diffraction will be assumed, which means that ky = 0, leading

to

~ωjz =
(

kx + j, 0,
√

k2 − (kx + j)2
)>
. (3.5.2)

The factor λ̃n0,j can further be transformed to

λ̃n0,j =
∞
∑

m̃=max{n+1,|j|}
m̃+j≡0 mod 2

(ikzζ)
m̃−n−1 m̃!

(m̃− n− 1)!

hm̃

4m̃
(

m̃−j
2

)

!
(

m̃+j
2

)

!

=
∞
∑

m̃=max{0,|j|−n−1}
m̃+n+1+j≡ 0 mod 2

(ikzζ)
m̃ (m̃+ n+ 1)!

m̃!

hm̃+n+1

4(m̃+n+1)
(

m̃+n+1−j
2

)

!
(

m̃+n+1+j
2

)

!
.

It follows that

~Er(~x) = −i ∆

2ε0

∑

n∈N
0

∑

j∈Z

∞
∑

m̃=max{0,|j|−n−1}
m̃+n+1+j≡ 0 mod 2

{

(−i)n
n!

1
∫

0

ζn+m̃ dζ (ikz)
m̃ (m̃+ n + 1)!

m̃!

hm̃+n+1 [(~ωj×~e 0)×~ωj] (ωjz)
n−1

4(m̃+n+1)
(

m̃+n+1−j
2

)

!
(

m̃+n+1+j
2

)

!
ei~ω

j ·~x

}

+ ~Er
Q(~x)

= −i ∆

2ε0

∑

n∈N
0

∑

j∈Z

∞
∑

m̃=max{0,|j|−n−1}
m̃+n+1+j≡ 0 mod 2

{

(−i)n
n!

(ikz)
m̃ (m̃+ n)!

m̃!

hm̃+n+1 [(~ωj×~e 0)×~ωj] (ωjz)
n−1

4(m̃+n+1)
(

m̃+n+1−j
2

)

!
(

m̃+n+1+j
2

)

!
ei~ω

j ·~x

}

+ ~Er
Q(~x).

Furthermore, in view of the absolute convergence of (2.5.3) these sums can be rearranged in

such a way that

~Er(~x) = −i ∆

2ε0

∑

j∈Z\{0}

∞
∑

n=|j|
n+j≡ 0 mod 2

n−1
∑

m̃=0

[

(−i)(n−1) hn(n− 1)! (−kz)m̃
4n m̃! (n− m̃− 1)!

(

ωjz
)n−m̃−2
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[(~ωj×~e 0)×~ωj]
(

n−j
2

)

!
(

n+j
2

)

!
ei~ω

j ·~x

]

(3.5.3)

− i
∆

2ε0

∞
∑

n=1
n≡ 0 mod 2

n−1
∑

m̃=0

(−i)(n−1)hn(n−1)!

4n m̃! (n−m̃−1)!
(−kz)n−2

[(

~kr×~e 0
)

×~kr
]

[(

n
2

)

!
]2 ei

~kr·~x + ~Er
Q(~x),

where ~kr = ~ω0
z = (kx, 0,−kz) for ky = 0 and kz < 0.

3.5.2 Near-field formula of Stearns

According to Stearns (cf. [14, Equ. (19), Sect. II.B])

~Er(~x) =
∆k2

8π2ε0

∫

R2

ĝ(k~nr − ~k)

nrz(n
r
z − n0

z)

[(

~nr×~e 0
)

×~nr
]

eik~n
r·~x dn′,

where ~nr :=
(

nx, ny,
√

1 − n′2
)>

, n′ := (nx, ny)
>, n′2 := n2

x+n2
y, n0

z := kz
k

, ∆ := ε0− ε′0
and where ĝ(~s) := F(g)(~s), for g(~x) := δ

(

z − h
2
cosx

)

, is defined in a generalised sense

(cf. (2.2.6)). Formally applying the Fourier transform to g and the Taylor-series expansion of the

exponential function leads to

ĝ(~s) := 4π2 δ(sy)
∑

n∈N
0

(−ihsz)n
4n

n
∑

m=0

1

m! (n−m)!
δ(sx + n− 2m)

~Er(~x) =
∆k

2ε0

∑

n∈N
0

n
∑

m=0

(−ih)n(kwn,mz − kz)
n

4nm! (n−m)!

[(~wn,m×~e 0)× ~wn,m]

wn,mz (kwn,mz − kz)
eik ~w

n,m·~x,

where ~wn,m :=
(

kx
k

+ 2m−n
k

, ky
k
, wn,mz

)

and wn,mz :=

√

1 −
(

kx
k

+ 2m−n
k

)2 − k2
y

k2 with ky=0.

Applying the binomial theorem to (kwn,mz −kz)n, rearranging the resulting sum and performing

a few simple transformations leads to

~Er(~x) = −i ∆

2ε0

∑

j∈Z\{0}

∞
∑

n=|j|
n+j≡ 0 mod 2

n−1
∑

m̃=0

[

(−i)n−1hn (n− 1)! (−kz)m̃
4n m̃! (n− m̃− 1)!

(

ωjz
)n−m̃−2

[(~ωjz×~e 0)×~ωjz]
(

n−j
2

)

!
(

n+j
2

)

!
ei~ω

j
z ·~x

]

− i
∆

2ε0

∞
∑

n=1
n≡ 0 mod 2

n−1
∑

m̃=0

(−i)n−1hn (n− 1)!

4n m̃! (n− m̃− 1)!
(−kz)n−2

[(

~kr×~e 0
)

×~kr
]

[(

n
2

)

!
]2 ei

~kr·~x

+
∆

4 ε0[n0
z]

2

[(

~nr0×~e 0
)

×~nr0
]

eik~n
r
0·~x (3.5.4)
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for kz = k~n0
z , where ~ωjz is defined by (3.5.2) and ~kr as at the end of Section 3.5.1. Thus the

two equations (3.5.3) and (3.5.4) are approximately equal for ∆
[n0
z ]

2 � 1 (cf. Equ. (3.4.9) and

compare Stearns [14, Equ. (36), Sect. II.E.1]).
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