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Abstract

The topic of the present paper is the reflection of electromagnetic plane waves by rough
surfaces, i.e., by smooth and bounded perturbations of planar faces. Moreover, the contrast
between the cover material and the substrate beneath the rough surface is supposed to
be low. In this case, a modification of Stearns’ formula based on Born approximation and
Fourier techniques is derived for a special class of surfaces. This class contains the graphs
of functions, where the interface function is a radially modulated almost periodic function.
For the Born formula to converge, a sufficient and almost necessary condition is given. A
further technical condition is defined, which guarantees the existence of the corresponding
far field of the Born approximation. This far field contains plane waves, far-field terms like
those for bounded scatterers, and, additionally, a new type of terms. The derived formulas
can be used for the fast numerical computations of far fields and for the statistics of random
rough surfaces.

1 Introduction

The progress of modern technology vitally relies on computer chips or other components with
small details processing electromagnetic waves of smaller and smaller wavelength. However, a
perfect fabrication in accordance with the guidelines of design becomes either too difficult or is
even not possible. Instead, the manufactured components of the technical devices deviate from
ideal components by random abberations. In the simplest case, a planar interface separating
two different materials has typically a lot of tiny corrugations called roughness. Thus, in the
present paper, roughness means a mostly smooth perturbation from a flat surface. Using such
an interface to refract electromagnetic waves, the surface deviations, now almost in the size of
the small wavelengths, become visible. Though the example of a planar interface is simple, a full
understanding of the roughness phenomena is crucial for many applications. For example, the
lithographic fabrication of computer chips in the extreme ultraviolet light range, say of about 13
nm, requires the use of multi-layer systems (MLS) as Bragg mirrors, and each of the interface in
this MLS has a specific roughness. To understand the impact of such MLS on the reflection of
light, the roughness effects on the reflection and transmission of light at each of the interfaces
must be clarified.

One of the models to describe MLS is used in the software of Windt [17] and is based on for-
mulas derived by Stearns [14]. Note that similar models have been proposed for MLS earlier by
e.g. Bousquet et al. [5] and Elson et al. [9]. Stearns’ formulas for a single interface scattering
are obtained as follows: Suppose the rough interface is a fixed smooth interface, which is a
bounded non-local perturbation of the ideal planar interface, and suppose a timeharmonic elec-
tromagnetic plane wave is incident from above. Manipulating the Maxwell’s equations according



to Jackson [10, Sect. 10.2.A], the partial differential equation can be reduced to an inhomoge-
neous vector Helmholtz equation for the scattered electric displacement field. On the right-hand
side, however, there appears a second order derivative of the total electric field, i.e., of the sum
of the incoming field plus the scattered field. Since the scattered field is small in comparison to
the incoming field, the first order Born approximation suggests to neglect the scattered electric
field on the right-hand side. In other words, it remains to solve a vector Helmholtz equation with
unknown displacement field and with known right-hand side. This is done by applying Fourier
transform to both sides and by dividing with the coefficient of the Fourier transformed displace-
ment field. Then the inverse Fourier transform yields an explicit formula for the displacement
field. This formula is an integral over the three-dimensional space. However, one of the integra-
tions can be computed analytically by the residue theorem. Finally, taking limits, a corresponding
far-field formula can be derived.

Of course, the Born approximation is not always justified. For electromagnetic waves in the
range of X-rays, the optical contrast of the materials is often relatively small, i.e., the refractive
index is often close to one. In this case, if the corrugations of the interface are not too large,
and if the interface is smooth, then the scattered field is expected to be small in comparison
to the incoming wave field. Born approximation should be meaningful even if the scattered
displacement field in the vector Helmholtz equation is replaced by the deviation of the scattered
displacement field from that of an ideal planar interface, in which case a small term concentrated
close to the interface and the deviation of the scattered electric field from that of the ideal
interface is neglected.

Besides the formula of Stearns, there exist many alternative approximate formulas or approxi-
mate numerical methods. These results are reported in the monographs by Beckmann et al. [3],
Ogilvy [13], and Voronovich [16] as well as in the overview article of DeSanto [8]. One approach
is to represent the field by potentials or simplified potentials over the interface, which leads to
integral equations. Again, Born approximation can be used to derive simple explicit formulas. On
the other hand, to get rigorous formulas, the integral equation or the corresponding transmission
problem for the Maxwell’s equation is to be solved. Clearly, this can be done only numerically,
i.e., upto a small error of the numerical method depending on the computing power. Note, how-
ever, that a numerical solution for the rigorous approach will take longer computing times then
the evaluation of the approximate formulas. Moreover, the analysis of the numerical algorithms
in the rigorous case is difficult. Even for the simpler acoustic case in three-dimensional space,
there seems not to be any analytic theory for rough interfaces involving incident and reflected
plane waves. The case of point sources is treated by Chandler-Wilde et al. [7, 6] using a varia-
tional approach.

So far, the rough interface has been considered as a single smooth interface. In applications,
however, the shape is not known explicitly. Realistically, only a few parameters are given to de-
scribe e.g. the size of the corrugations and the smoothness of the interface. On the other hand,
the incoming plane wave is in reality a ray with a diameter much larger then the wavelength. The
processing of the wave often acts like averaging over the local corrugations. Hence, the rough
interface should be considered as a random process and the statistics of the resulting stochastic
electric field is the entity of interest (cf. the above-mentioned monographs). In the present paper,
the stochastic view will not be considered. Note, however, that a fast approximate formula for



the single realisations of the stochastic process is a good starting point for a statistical analysis.

The aim of the present paper is to check the validity of the Stearns’ formula. No doubt, when-
ever the Born approximation is meaningful, the formulas yield accurate results when compared
to physical measurements. From the mathematical point of view, however, the integrals in the
formula do not exist for general bounded rough surfaces, even not for smooth ones. Therefore,
in the present paper, a mathematically rigorous modification of Stearns’ formula is sought. For
this, the following points are required.

— The vector Helmholtz equation for the scattered displacement field is replaced by that for
the deviation to the displacement field of the ideal planar interface.

— The direct and inverse Fourier transforms are applied in the generalised sense, i.e., in the
sense of Schwartz distributions.

— In order to justify the change in the order of integration, the unbounded domains of inte-
gration are to be truncated. After all manipulations are performed, the limit of the resulting
formula for the truncated domains tending to the original unbounded domains is to be ac-
cessed.

— A special variant of the limiting absorption principle is to be applied.

— To get the inverse Fourier transform, a Fourier transform of bounded functions along
the radial directions is to be evaluated. This requires a specific behaviour of the radial
functions at infinity. For example, the class of interfaces can be restricted to special com-
binations of Fourier modes.

In fact, the rough interfaces in the present paper are restricted to graphs of functions belonging
to a special class. This class contains the algebra of almost periodic functions as well as almost
periodic functions modulated by radial functions decaying at infinity. Note that almost periodic
functions have been used already by Stover [15], and combinations of Fourier modes play an
important role for stochastic processes (cf. e.g. Yaglom [18, Equ. (2.61) in Sect. 8]).

The main result of the present paper is a formula of Born approximation for the electromagnetic
field, which is adapted to the above-mentioned class of interfaces. For simplicity, all formu-
las are restricted to the case of reflection. Formulas for the transmitted fields can be obtained
by analogous arguments. Moreover, combining reflections and transmission over several inter-
faces, the case of MLS can be treated like in e.g. [14]. Even though the class of interfaces is
already restricted, for the formula to be well defined, a further condition on the interface function
is needed. Namely, if the evanescent Fourier modes for the fields with limited absorption tend
to a plane-wave mode propagating parallel to the surface plane, then the coefficients of these
Fourier modes diverge, and no limit of limiting absorption exists. In particular, for the special
case of gratings, the formula of Born approximation converges if there is no Rayleigh mode, i.e.,
no reflected plane-wave mode propagating parallel to the plane of the grating. Since the differ-
entiated formulas converge as well, it is clear that the Born approximation is the solution of the
vector Helmholtz equation. To derive the far field of this approximate solution, another technical
condition is introduced. However, this can hopefully be relaxed in future investigations. The far
field consists of plane waves and far-field terms like those for bounded scatterers. Additionally,
there appears a new type of terms, for which it is yet unclear whether they are physically mean-
ingful. The derived formulas can be used for fast numerical computations of far fields as well as
for the statistics of random rough surfaces.
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Figure 1: Coordinate system and propagation direction of incident field

The remaining part is organised as follows. The notation and the inhomogeneous vector Helm-
holtz equation is introduced in Sects. 2.1-2.2. A general formula for its solutions based on the
Fourier transform is given in Sect. 2.3.1. This will be simplified in Sects. 2.3.2-2.5. In particular,
for these manipulations, a class of special interface functions is defined in Sect. 2.4.1, and
the final formula is presented in Theorem 2.1 of Sect. 2.5. The far-field asymptotics of this
approximate solution is derived in Sect. 3. In Sect. 3.4 the attenuation formula of Stearns [14] for
the efficiency of the specularly reflected plane-wave mode is proved for the special interfaces.
Finally, in Sect. 3.5 the resulting formula is compared with a well-known result for sinusoidal
gratings.

2 Near-field formula of the reflected field

2.1 Incident wave

Consider an incident plane wave & (&, t) = E°(Z) e~, EO(Z) = &° ¢’ with a wave vector
k= (ko ky, k)T = ki, with k := /fig€gw > 0 real valued, k. < 0 and 7i° a normalised
vector that describes the direction of propagation in the coordinate system shown in Figure 1.
The values €y > 0 and gy > 0 are the dielectric constant resp. magnetic permeability of the
medium above the interface. Note that €y and pg are not necessarily the free space values
for the vacuum. The symbol €° stands for a constant vector fixing polarisation and phase. Of
course, €V is perpendicular to k.

2.2 Inhomogeneous vector Helmholtz equation

In this section the Maxwell equations will be used to describe the total field in form of a solution to
an inhomogeneous vector Helmholtz equation. Furthermore, this equation will be approximated
in the sense of the first order Born approximation. It will also be seen that a similar equation
holds for the approximation of the desired scattered field minus the scattered field that results
from an ideal interface, which is an interface defined by a plane. Some minor preparations for
the following examinations will end this section.



Note that, since & = /€gjiow is assumed as real valued, the material above the interface is
non-absorbing. The physical background, on the other hand, states that there are no materials
that do not absorb at least a very small amount of the energy of an electromagnetic field. To
incorporate this information into the solution of the subsequently established vector Helmholtz
equation, the limiting absorption principle is applied. In this sense the examinations in this
and the following sections will be done for a wave vector ET of the incident field with a complex
valued third component, i.e. ET = (ky, ky, k. ,) " with k. := k, + i7 and a negative T €
R close to zero. Afterwards the limit 7 " 0 is applied. For technical reasons only the third
component of the wave vector instead of the whole vector is chosen complex. Moreover, define

o T2 - 27k, : f 2._ 1. o 2
€r 1= €~ o +1 ot with which k7 := k, - k; = poe,w” and Ime, > 0.

The Maxwell equations that describe the field in the absence of sources are

V-B=0, V-D=0, V x E =—0,B, V x H=9,D. (2.2.1)

For the time-harmonic case, following [10, Sect. 10.2.A], these equations reduce to the vector
Helmholtz equation in the sense of distributions

(V2 +k2) D** = —V x [v x (a(EO + E))} . (2.2.2)

Here E%¢ := E — E is the scattered electric field, and D= is the scattered displacement
field , i.e. D¢ := D — DO with the total displacement field D and that of the incoming wave
D° .= ¢, E°. Supposing the interface is the graph {(z/, f () : 2’ € R2}, the coefficient « is
given by a(Z) := €,(Z) — €, with €. (Z) = €, for z > f(2') and €, (Z) = ¢ for z < f(a').

Now suppose the contrast is small s.t. « << 1. Thus the solution D¢ of (2.2.2) is small, and,
thereby, F/°° is small too. Neglecting the term E*¢ in Equ. (2.2.2), a solution is obtained in the
sense of the first order Born approximation.

(V? + k%) D* = -V x [V X (aEO)] (2.2.3)

Of course, this step of Born approximation is heuristic as long as a mathematical model is
lacking. Putting it on a rigorous foundation requires a theorem on the transmission value problem
for Maxwell's equations in a Sobolev type space, which includes plane-wave incidence and
plane-wave solutions. Additional assumptions on the smallness or smoothness of the interface
function f might be needed. The Sobolev type space for such a theorem should locally be the
H (curl) spaces of electro-magnetic fields with finite energy. Globally, the fields in the space
must satisfy a yet unknown radiation condition.

In the special case of an ideal interface fo = 0 and the corresponding ag(%), let ESQC(:?)
be the solution of (2.2.3). For an arbitrary f € L°°(R?), set ay(Z) = a(F) — ag(Z) and
D¥(Z) := D**(Z) — D(F) and use (2.2.3) for the difference field D to get

(V?+k2) DUF) = -V x [v X (ad(f)ﬁo(f)ﬂ . (2.2.4)

Here, the small terms V x V x (azE*¢) and V X V x (QQ[ESC—ESQC]) have been neglected.



The set of interface functions f can be chosen such that o, identifies a functional of the space
&’ (R?) dual to the Schwartz space S(IR?). Note that this especially holds for all f € L>°(RR?),

in which case the support of a;(Z) is bounded in the direction of z. In the following such a

function f will be assumed, with ||f||.. < 2 and 2 > 0. With this the Fourier transform

Gy = f(ozd) of oy is defined in the generalised sense. To be precise, for Schwartz functions
R INS S(IR?’), the Fourier transform and its inverse are defined by

Fo(5) = @(5) = | (@) 77747, F (@) = (&

and ¢(Z) = () (). Furthermore, if the duality (f, g) of the spaces S(RR?) and S'(R?) is the
extension of the scalar product f £, then the generalised Fourier transform &, of the Schwartz
distribution oy € S'(RR?) is defined by

(6a(3), p()) = (2m)* (ea(77), 2(7)) (2.2.6)

for all @ € S(RR?). In the next section a similar formula will be used, where the argument of Gy
is shifted by k. For 77 := (1, 1y, 1), there holds

(6ul5 =) 0(5)) = 2m)* (alid) ™7, 2(17) ).
2.3 Formula for the solution of the Helmholtz equation with a reduction
in the dimension of the domain of integration
2.3.1 Formula for the solution via Fourier transform

Now follow [14, Formula (6), Section II.A]. Applying the Fourier transform to both sides of (2.2.4),
and solving for D%:= (D?), leads to

where s2 := ||5]|* # k2 forall § € R3 and 7 < 0. To get an expression for D%(Z), the
inverse Fourier transform has to be applied. This, however, is to be done in the generalised
sense. Consequently,

(0@ 6@) = (0. () @) = e (aats— . S22 )

forall ¢ € CSO(IR3), where the integrals are well defined, since the inverse Fourier transform
F([(5x &%) x 5] /(s* — k2) (¢) (5)) (i) is a Schwartz function and since ay(77) e i1 g

s



uniformly bounded w.r.t. ' := (nm,ny)T and ay(77) has a compact support w.r.t. 7,. Using
these arguments, it is also easily seen that the outer integral in (2.3.1) exists absolutely.

It is the overall goal of this section to integrate w.r.t. s, analytically in (2.3.1) such that only
the integrals w.r.t. s, and s, remain. Following [14, Section II.B], the order of integration is
interchanged and the integral w.r.t. s, is evaluated applying the residue theorem. In the following
section this will be done. Afterwards the limit 7 " 0 will be assessed in Section 2.4.1 for a
special type of interface functions.

2.3.2 Interchanging the order of integration

In order to change the order of integration and to apply Lebesgue’s theorem on dominated
convergence, bounded domains of integration are needed. Since the outer integral w.r.t. 77 in
(2.3.1) exists absolutely for a complex valued k? .
=, =0 —
oo S ) z SXEV)XS| | _~ iAE
(5@, 0@) = [ agtip e [ LEEDF 5y s gz
T—00 52 — k‘Z
C3(7) R3

where C3(7) := By(7)x[—7, 7] and By(7) := {n/ € R? : || < 7'}. However, for any fixed 7,
the integrals w.r.t. 7j and 5 are absolutely integrable. Fubini’s theorem implies ( D(%), (7)) =
limz_, oo ( D(T), ©()), where

— 5 R 1 _» —if g_“ N §X€O Xg PN iTE 1= 1=
<Dg(ﬂ?),(p(1’)> = (27‘(‘)3/ / Oéd('r])e T (5=kr) dn%/gp(@e d¥ ds

R3 C3(7) R3

(2.3.2)
will be considered for a fixed 77 > h. The limit ¥ — oo will be examined in Section 2.4.1.

Again, since the integral w.r.t. 5'in (2.3.2) is absolutely integrable,

N (7 T —if(5—k 4 §><€0 ><§
<Dg($)"p<x>>: o m / /{ / ) et g (X
/ @(7) emdf} ds, ds/,

R3

with 8" := (s, sy)T. Since ¢ has compact support, the integrands of the integrals w.r.t. 7 and §
are absolutely integrable for any fixed r, R € R. Hence, for the bounded domain of integration,
Fubini’s theorem applies and

R
~d (= = 1 . i (5—k —
(54 20) = dm. [ 60 [ | { / e g
R3 Ba(r) —R Cs (7
g 0
[(Sxe )XZS] zgf}dszds d.l’
Sg—f,r

(2.3.3)



where & = /kZ — s2 — s2. Here and in the remainder of this paper the square root of a
complex number w will be chosen such that the argument of the complex number \/w is in
[0, 7). Thus the imaginary part of &, is positive and the integrand of the integration w.r.t. s, in
(2.3.3) has no poles for any fixed s’ € R2.

2.3.3 Analytical integration w.r.t. s, for a fixed r

In this section it will be shown that the integrand of the integral w.r.t. ' of (2.3.3) is uniformly
bounded on B,(r) and pointwise convergent w.r.t. R — oo and R > |k, |, for any fixed € R.
Note that, for the bound to be integrable, it is sufficient that the integral w.r.t. s, is absolutely
integrable for any s’ € By(r) and ¥ € R?, since By(r) is bounded. This will allow to apply
Lebesgue’s theorem, to evaluate the limit w.r.t. R before evaluating the integrals w.r.t. s’. The
necessary estimates and the proof of the existence of the pointwise limits will be done for the
case z > h. Recall that z is the third component of the vector 7.

For convenience, suppose 7 > h and define

")
df(g_ ET) _ / ad(ﬁ) 6_iﬁ.(§—ET) dﬁ = —A / / e_inz(sz—kz,r) dnz e_in/.(s’_lg’) d77/
o Ba(7) O
1— —i(s2—kz,r) F(7') VNERY,
—iA / : 2 e (234
Sy — Rz r

Tl ke ) IO Q¢ () e TR Ay A=, — €y (2.3.5)

Il

>
—
—

Bs(7) 0

which is continuously differentiable and uniformly bounded w.r.t. 5. Following [14, Section II.B],
- 3c0)xz]
by analytic continuation of & (5 — k) Kj;e_ié)x;] e w.rt. s, onto C for all z > h, a meromor-
phic function is obtained. The residue theorem applies to the integration over the closed path
0Ng := CrU[—R, R|,withCg := {z € C:Imz > 0, |z| = R}. The curve Cf, is assumed
to be oriented counterclockwise. The integral w.r.t. s, in (2.3.3) can then be written as

R
=, =0 - . 0 .
/o?;(g— k) M 5% ds, = — / (5 — K2) (S X €Y) X 5y 0% gy
-R

Sg - 57'2 4 'LU2 - 572
R
- 5, xeN %3 )
+ 27TZ df(g'&_ _ kT) [(S§T € ) 857] e’lf-,—z’
2,
(2.3.6)

where 5, := (S, Sy, w) " for w € C. The absolute value of the first summand in (2.3.6) can
be estimated as follows



s

- -0 -
/d;(E’w — k) (TEESiU ;j(iﬁjg) ™% dw| < c1ey(s") / e 250 4o < meyeo(s),

Cr 0

(2.3.7)

Lo -~ (2 Reio
& (5peio — ky) Re' 27

c1:= sup sup  sup
s'€R? Rel|k, | ,00) €[0,]

Y

[(gReid’ X 50) X §Rei¢]

(Re' — &) (Re' + &)

co(s’) == sup  sup
Re[|k-|,00) 9€10,7]

Y

where it will be shown that the constant C'(s’) := ¢; c,(s') is finite for any s' € R2.

The supremum ¢, (') is finite, since the numerator is a polynomial of Re™ of order two, while
the second order polynomial in the denominator has no zeros. Obviously c; is finite too. Together
with (2.3.4), c; can be estimated as

Al R
cp < osup sup

Re(|kr |,00) $E€10,7] 2T

Ba(7)

< sup 7R|A|lf / [1+6_Tf(77/)} dn’,
Re[|ET|,oo)| - | Z’T||BQ(F)

where z > 0 and 5 — f(') > 0 was used and where the last term is bounded for any fixed

7, since R > |k,| > |k.-|. The second term of (2.3.6) is also uniformly bounded w.r.t. s’ for
any fixed 7 € R and z > h, as will be shown in the following. First note that the supremum
3 i = supyepz|[(Se. x €°) x 8¢ ] /&3] of arational function is bounded. Now (2.3.4) implies

= [(5e, x@%) x5, ]

) 1 _ _i(gf_kz,f) f(n/) Y .
OAz;(g&— kr) g ezﬁrz <c3 A/ eg — e~ (s'—K") dn/ 57— eZ§TZ
T B2(F) T zZ,T
AE, /
<cs gfi / [1 + e /0 )} dn. (2.3.8)

Bs(7)

Again, the remaining quotient in the last estimate (2.3.8) is uniformly bounded w.r.t. s’. Indeed,
Im¢, > 0andImk, , =7 < 0 leading to Im(&, — k. ;) > 0. Hence the supremum

= [(Be, xE0) x B,
ozf(Sg,—kT)[(5 §> &)

is finite for any fixed 7 > h and 7 < 0. Consequently, the integral w.r.t. s, in (2.3.3) is absolutely
bounded by 7 C'(s") 4 27 c4(7) (cf. (2.3.7)), which is integrable on the bounded set Ba ().

eif-,z

cy(7) == §u£2
s'e

(2.3.9)

With this, Lebesgue’s theorem can be applied to evaluate the limit R — oo. Using estimate
(2.3.7) it can be shown, that the limit of the integral over C'; tends to zero as R tends to infinity.



Indeed, the limit of this estimate can be found by considering the limit of an upper bound for the
non-negative integral for any fixed z > h > 0. However

w/2
4 i T zZ e I
li “2Rsnd g < lim —e 2N i= 0 2.3.10
e / © 0= Rooe 4 € ’ ( )
w/4
w/4 w/4
lim /e—SRsin¢d¢< lim /e—éRsin¢2cos¢d¢:0. (2.3.11)
R—o0 R—oo
0 0
Therefore, (2.3.6) leads to
i 2w 70\« T 2 50\ 2
L = (SxeV)xS| o = (S, x€Y) X 5e |
llm Oé;(S _ kT) % elSzZ dsz = i OKF(S&T _ kT) [( 5 ) 5 ] 67«572.
R—oo . S, — 57- 57'

Finally, if (&) = 0 for all z < h, it follows that (cf. (2.3.3))
(2.3.12)

(B 0(@) = 55 i [o@ [ st — g LT sz

872 rooco
R3 Ba(r)

2.3.4 Calculation of the limit w.r.t. r

The goal of this subsection will be to evaluate the limit r — oo in equation (2.3.12). To achieve
this, it will be shown that the integrand of the integral w.r.t. s’ in this equation is absolutely
integrable for all fixed 2’ € R? and z > h. This absolute integral is also uniformly bounded
w.rt. z’ € R* and z > h. The product of p € C$°(R?) and the integral w.r.t. s’ in equation
(2.3.12) is then dominated by a non-negative integrable function. Therefore Lebesgue’s applies.

First, the term &, = /k2 — s, with s = ||§'||%, k., = k. + 97 and k., < 0, will be
examined more closely. Since for 52 > 2|k, |2, Re(k2 — §2) = k2 — 72 — 2 < 0 and
Im(k? — %) = 2k.7 > 0, the argument arctan (25"—) + m of the complex number
k2 — s%isin (Z,7). Here arctan: R — (—Z,%). Hence, the angle 6, the argument of
VK2 — 57 isin (5,%) leading to sin 6 > % With this in mind, with |z — f (1) > 2 for all
z > h, and with the definition of c3, (2.3.8) and (2.3.9), the splitting of the domain of integration
into By(v/2|k,|) and R2 \ By(v/2|k,|) yields

~ [(5e x5 ] . - -
/OAAF(E’&_ . kr) [(857— Z ) 857—] 62557;:(: dS/ S 27T‘k7|2c4<7:> (2313)
R2 ’
~2
_|_ 03 A / 667—% 6_2}_L\/§ |k72—_s/2‘ eTh dS/.

R2\ By (v/2|k-|)
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Similarly to the estimate (2.3.8), the quotient on the right-hand side is uniformly bounded w.r.t. s’.
This shows that the integral is finite for any fixed z > h since the integrand decreases exponen-
tially. Thus Lebesgue’s theorem can be applied to evaluate the limit 7 — oo and, for a ¢ with
o(Z) =0forall z < h,

Sd = - i - N N O B
<D?($)7<P($)> =52 /w(@/%(s@—k‘f) (% : )X¥Se] piseea gy gz (2.3.14)
R3 R2

2.4 Limit 7 — oo and limiting absorption for a special interface space
2.4.1 Almost periodic and decaying interface functions

In this section the last remaining limits 7 — oo and 7 " 0 will be evaluated for a special choice
of interfaces. Unfortunately, the treatment of general bounded and smooth interface functions f
seems not to be possible. So our analysis is restricted to a special class. Interface functions from
this class must have an explicit Fourier transform. Furthermore, they should contain functions
with a superposition of corrugations, e.g. almost periodic functions (cf. [4]), and functions of the
same type, but with an integer order of decay at infinity.

Consider the space of real valued interface functions A; := {f ‘R2—= R, fe A‘f} taken
from the complex valued space

3
Af = {f R = O f(n) =) {; > My 6’”’54'"} +9(n)

l
=0 ST e
)\l,j c C, WJ/J € R2, HfH.Al < OO}

where 3

10 =23 gl gl (oG = 1D 902 - 241

=0 jeZ

Note that the summation over [ in the sum for f in the definition of .A‘f can be restricted to [ <3
since the g, j == {1+]1/|*} /215 | | > 3 have a finite norm /g ;1.1 and can be included
into g. Further note that the restrictions w; ; = —w; _;and A\ = A, 5,1 =0,1,2,3,j € Z
ensure that the function f, given as a sum in the definition of A%, is real valued. There holds

Lemma 2.1. The spaces A, and AY together with the norm ||-|| ,, and pointwise multiplication
form Banach algebras.

The proof of this lemma consists of a straightforward verification of the properties of a Banach
algebra. Since the process is lengthy, but contains no difficulties, the proof is omitted.

Remark 2.1. The coefficients \; ; depend continuously on f &€ A,. Moreover, the term g
depends continuously on f € Ay w.rt. tothe norm || - ||, ; + || - || -
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Figure 2: Example of an interface function from A; using only the almost periodic portion and
choosing a finite number of uniformly distributed random parameters )\, ; and w67j.

2.4.2 Existence of the remaining Cauchy principle value and the limit of the limiting
absorption principle

Assuming an interface function f from A, it will be shown that the limit of (2.3.14)

. o
<Dd(f); 90(975)> = #11% go(x)/ol,:(:?& —k,) (G XZ ) X ¢S ds AT (2.4.2)
T_)OOR3 R2

exists. First consider the integral w.r.t. s’ for an interface function f. Using Equs. (2.3.4) and
(2.3.5) for &7, the integral w.r.t. s’ transforms to iA times

—i(e—ke () g x@xg | . -
/ / e~ ('K dn/ [(857— Z ) 857—] RET I dS/ (243)
R2 Bo(7 77 !
— =() —
_ Z/ / /6_ (fr—(kz-i-i‘r)){f(ﬁ') dCf(n/) o' (s'—K") dn/[(sﬁr XZ )XSET] e T 4
R2 By(7) O "

Here Fubini’s theorem applies for any fixed 7 and 7 < 0, since eiér (==CF (") decays exponen-
tially as |s’| tends to infinity and since the integrand is uniformly bounded w.r.t. ' € Bsy(7).

Replacing f (1) e~ "€ =/ by 37 (=i¢)" f (') = leads to

e~ (& —ker) ) Sy XENXSe | .o -
/ / - eint =) g (e Z) Serl gise7 4y — i1 4Ly,

R2 B> (7)

8 Y )
Il — / { Z (_ZC)H f(n/)n—i-l (67’ - ZT) eik:zg“f(n/) e—in'~(s'—k') dﬂ/
0 R2 B

n!
2(7) "0
— =0 b
[( MZ ) X 3¢, ] (i5erE }ds dc, (2.4.4)



1
12 Z:/
0

> ST n gT—’iTn i N —in (s —K'
{ Z(_ZO () +1%€Mf(n)e (=K Qg
) "=

3

RQ

= -0 -
[(Se. XZ ) X3¢, i,z }ds dc. (2.4.5)

where N, is the set of non-negative integers. First, examine integral (2.4.4) by replacing the
exponential ¢#=¢ /(") with its sum leading to

s Lo .
_ZC " n 1 (Zkzgf( ,))m —in'-(s'—k' /
Ty -

n=07 R2

[(8e, x&°) x 5, ] e ® } ds’ d¢. (2.4.6)
Since f € A; C AY, the term

/ / n 7 Zkz " m+n
Fult) = fusoc), o= et = 30 D gt g4
melN

is also an element of A‘f. More precisely, there holds

Lemma 2.2. For any function f in Ay, the function f,, (cf. (2.4.7)) is equal to
3

/ 1 In id, -y
RS {7e > iy eth ”} + G (1), (2.4.8)
(=0 -, /1 4+ |77/|2 jez

where the @, ;, { = 0,1, 2, 3 are defined as the entries of the sets

{@67]- (j € Z} = {Z mewy .+ My € Ny, Zm,{ < oo} , (2.4.9)

KEZ KEZ
{@27j:j€Z}:{Zmelﬁzm E]N(],Zm < 00, ZlZm —6}
=0 KEZ KEZ = KEZ
and where
3 e m! Ao
Aoy = Z (ik.Q) ! m [H [ 70713! ] ; (2.4.10)
my€Ng: KEZ

m;:EnEZ mg>n+1, m<oo

rez MW =00

\n . m—n—1 m! ‘ [)‘l H]mL
A= 3 (ik.C) T 1111 |
mfiEINO: ®

=30 Lez M 21, <00
0 Y -
et 1 kez mk=¢, 2oim0 ez mfﬁwl,,n:wé,j
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ai)= 3 P gy st

melN, ﬁ561m+n+1\<L:J m+n+1) 1+ | ,| (Z lnl)
3 . miw) .
I > { LH Aul™ | ”} . (2412

1=0 Moo €Jn, z

m; € IN, ij:a},

JEZ

4
an = CL} 5 Ja = {(mj)jEZ
=0
4 4
dm=a, ) I :6}, (=0,1,2,3.
=0 =1

Proof. The existence of representation (2.4.8) is a simple consequence of the algebra structure
of A;. The coefficients and g,, can be found by evaluating (2.4.8) using the multinomial theorem
and rearranging the resulting sums. O

I, = {(no,...,m)elNg

I = {(no,...,m) e Ny

Note that f,, also depends on the constant k. and the variables ¢ € [0, 1] andn € {0,...,8}.
To be precise, S‘Zj is dependent on k., ( and n, while @g,j is a constant for any fixed ¢ =
0,...,3and j € Z. Similarly the function g,, depends on k, and (. With this, the limit 7 — oo
of (2.4.6) can be evaluated as the sum lim;_,o, I; = I; ; + I; 2 + 11 3, where

i b S5 [0, {60 [ ot ctinag
2

n=0 j€Z

Ba(7)
[(5, &%) x5, ] e } ds’}, (2.4.13)
3 8 ~ —ZC B
1172 = JHII ZZ {/ i dC/{ / g e We ;M e—mf,(s/_k/) dn/
=1 n=0 jez \ Re Spae \/14 |77 |
@ [(5e, x€°) x5, ] e“’fr'f} ds’}, (2.4.14)
L ig)" [ 6
—1 ;s — T 5 inl (s — !
L3 := TILH;IOZ/ - /{ ; / Gu(n) e ( k)dn/
n=0 0 ' R2 T BQ(f)
(86, x &%) x 3, ] € } ds' d¢. (2.4.15)
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Obviously, the limit (2.4.15) exists since forany n € {0, . . ., 8} the function g, is independent of
s" and absolutely integrable w.r.t. 7} and & ”) (5, x %) X 5¢,] €T is uniformly bounded
and absolutely integrable w.r.t. s’ for any flxed T <0.

—Z s ! ! ! ~ !
To evaluate the limits (2.4.13) and (2.4.14) consider [p, /1 + /]2 e (5= 461) gy
for ¢ =0, 1, 2, 3, which can be evaluated as a Hankel transform of order zero defined as (cf. [1,
Equ. 9.1.18, Sect. 9.1] for the relation between Hankel and Fourier transform)

/f|nuo $111) | o = 5~ /f\n| i .
0

Keeping in mind that the inverse Hankel transform coincides with the Hankel transform, the well-
known Fourier transform for the Dirac delta and [12, Equs. 2.19, 2.20 and 2.110, Sect. I.1.2] lead
to

Am? 5 (s — (K + @ ;) ifl=0
o' (8= (K43 ) , o e—ls’—<k’+®iﬁj>|/ |8 — (K +a,)| ite=1
21 Ko (|s' — (K + &4 )|) if =2

dn' = . (2.4.16)

e L
1+ |/ (4, |
R?2 m 271_ 6_|S —(k +‘U3’j)| if g — 3

where Ko(z) is the modified Bessel function of the second kind, which has a logarithmic singu-
larity at z = 0. Note that the right-hand side of (2.4.16) with ¢ = 1 is a weakly singular function,
while that of (2.4.16) with ¢ = 3 is uniformly bounded.

The limits of the integrals (2.4.13) and (2.4.14) are well defined in the sense of a limit in S’(]Rz),

since o
on(s) = (& — i) ; i) (56, x&%) x5, ] e ™
T

is a Schwartz function for 7 < 0 and z > h. To be more exact, for the function F; ; ;(1)) :=
I, (1) (1+ W|2)_4/2 e @t the limit is evaluated as

2.417
! / / . ! / ! eml(%’j—‘rkl) ( ! /)
m [ FFrpi(s') pn(s)ds'= lim [ Frp;(n') Feon(n') dn zfigfwn(n)dn

T—00 r—00

R2 R2 R? I+ |7]/‘2

which is finite for any z > h and 7 < 0, since F¢,, € S(IR?). Note that the limit is uniform
w.r.t. 7. Indeed, switching to absolute values in the formulas for I; ; and I » will lead to a product
of a sum over j independent of 7 times an integral independent of 7, which is the right-hand
side of Equ. (2.4.17) switched to absolute values. The sum w.r.t. j exists, since (S\Zj)jez is an
absolutely summable sequence.

Altogether, for the integral w.r.t. s and 1’ in I; 5, i.e. for £ € {1,2, 3}, this results in
n ]

1 s ~ ! ! s ol /
lim — " (@) =i 4y o, (s7) ds” = /fFoo,Z,j(Sl) Pn(s')ds’.

R By(7) \/ 1+ [’
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Inserting this into (2.4.14) leads to

38 . (-
b= % [
€2

These integrals exist since the integrands are at most weakly singular, since the F I, ; are
bounded at infinity (cf. [1, Equ. 9.7.2, Sect. 9.1]), and since %7 is exponentially decreasing
and ensures the existence of the integral w.r.t. s’.

(2.4.18)
(57’ - ZT)n
&

S xe%) x5 | Ty,
[(86, &) x 3, ]

d¢ /]—"Foo,gvj(s’)
R2

It remains to examine the limit 7 " 0 of (2.4.18). Note that the integral w.r.t. s’ exists even if
the singularity points of (2.4.16) with £ = 1 or (2.4.16) with ¢ = 2 coincide with the singularity

. 1 1 _
point ofg = \/Wfow = 0.

Lemma 2.3. Forany k€ R, and k' € R?, the integral fBQ(%) 1/ k—|s|1/|K — | dsis
finite.

Changing to local coordinates the proof is straightforward. This lemma can be used to apply
Lebesgue’s theorem to evaluate the limit 7 0 of the integrand w.r.t. s" in (2.4.18) and thus
(2.4.14).

On the other hand, for the integral w.r.t s and 7’ in I; ; the limit
lim / / e dif (') ds' = 4m (@55 + K)
T—00 )
R2 Ba(7)

is obtained. In this sense, the limit in (2.4.13) evaluates as

) N (Wi =7)" L o i s
Ly =4r ZZ/)\ 0. (—iQ)" d¢ —=— [(wixe )xwﬂ e (2.4.19)

| J
n=0 jE€Z 0 n. Wzr

with &7 = (k' + & ;, w;T)T and w! = \/k:Z — |k + 5’6,;’}2- Note again that the A} ; are
absolutely summable w.r.t. j. This is a consequence of A‘F being a Banach algebra.
It remains to consider the limit 7 0 of the two terms (2.4.19) and (2.4.15). The limit can

easily be evaluated since the sum w.r.t. j exists absolutely and the integral w.r.t. { is uniformly
bounded w.r.t. 7. However, to obtain a finite limit of (w! = — 7)"/wl_for n = 0, it has to be

assumed that wio =0, i.e., (cf. (2.4.9) for the connection between w(’m» and &J(’M)
k ¢ cl { K + ijw(')’j : m; € Ny sit. ij < oo} (2.4.20)

j€Z j€z
Remark 2.2. This condition is not necessary. If k is equal to |k’ + 3~ jezmjwéd} for a special
sequence my;, if this is an isolated point of the set in Equ. (2.4.20), and if, by chance, the
coefficient

1

> [ R a0 acled

nelN, 0
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of the corresponding 1/ ngﬁ (see the subsequent (2.5.3) and Theorem 2.1) vanishes, then the
limit T /0 exists even though (2.4.20) is violated.

Analogously, the limit 7 0 of (2.4.15) is easily calculated using Lebesgue’s theorem, since the
integral fBQ(F) Gn(n') e~ ('=K) dn is uniformly bounded w.r.t. s’ by 190l L1 g2y < o0 while

the quotient @Tgﬂ [(5e. x %) x 5¢.] eS¢~ is pointwise convergent and uniformly bounded
w.rt. 7 by a function that is integrable w.r.t. s’. It follows that the limits ¥ — oo and 7 " 0 of
(2.4.6) can be evaluated.

1+|n’ | 6_”7l'(3/_k/) - (1+V§,) e*in’-(sl—k/)
L[| - L+’ [ ’
where V3, := 97, + 95 and 0[5 == 0%+ nl, leads to

B Nt (& —in)" oik=C ) (14 Vi) e &=+ a
Z ZC n! 1 4 N
R2 By ' + Il

0 2(

Now consider the remaining integral (2.4.5). Using

&

To further transform this expression, consider the following lemma.

[(szxe ) %3] istr w&}ds dc. (2.4.21)

Lemma 2.4. For two complex valued functions f,g € C*(IR?) the following equation holds

true.
4

Pk als) = S0 (1) b [0 o)

m=0

This is easily shown using the Leibniz rule. Naturally, Lemma 2.4 also holds for derivatives
w.r.t. s,. Using this and setting Sg° := S§°(s’, 7, ¢) ==Y oo o(—iQ)" f (1 )”+IM elaér,
equation (2.4.21) transforms to

2 M 1 ; ’
J m 4 (4_m)a3 ma- o eszC f(77 ) —in’-(s’—k’) ,
L= (0) [/ {as' [ R e
0 R2 By (7)

- () 2
[(Se. xz ) X ¢, ] ois' ! eigsf} ds’ dc¢, (2.4.22)
/ (0,0) it 0 ifj=0
;=4 (L,0) ifj=1, M;:= ise
o 4  otherwise
(0,1) ifj=2

Applying integration by parts (4 — m) times to the integral w.r.t. s, the term I, takes the form

2

/ 6ikz<f(77/) il (sl — !
12: ( )// / 507/4@ n'-( k)dn/
L+ 'l

j= Om 0 R2 Ba ()

pme; [[(55 XZ‘ °) X5 ista! ei%&]}ds’ d¢, (24.23)
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where the absolute value of

8 . \M
S5 = ff) & IN5) = -3 (igyr oy T _,”) €3t (2.4.24)
nt
n=0

is uniformly bounded w.r.t. 7’ and 7 and decreases exponentially as |s’| tends to infinity. Indeed,
f')i <
decaying function w.r.t. s, since (¢ f(') — 2/2) < 0. On the other hand, ¢’2¢" and all its
derivatives decay exponentially as |s’| tends to infinity, which shows that the boundary terms
that would usually occur after integrating by parts are zero. Note that the derivatives do not
introduce singularities for 7 < 0. Thus, the Iimit 7 — 00 can now be evaluated, since the
integrand w.r.t. " is dominated by the term T Furthermore, for the terms in the sum with

1+\
the index 7 = 0, the same arguments can be used to evaluate the limit 7 " 0, since the term

5% is only weakly singular for 7 = 0. To evaluate the limit 7 " 0 for any fixed j € {1,2} it
remains to show that

(2.4.25)

o s T [KSE X i ") X5 istar e%]

is uniformly bounded w.r.t. 7 and —1 < 7 < 0 by a function integrable w.r.t. s’. If this condition
is satisfied, Lebesgue’s theorem can be applied. The existence of the integral w.r.t. ' is then
ensured by the term F ‘ T Before an estimate of (2.4.25) can be found, the derivatives have to
be examined. This is done by splitting the domain of integration w.r.t. s" in (2.4.23) into By (2k)
and R? \ B,(2k) to examine the behaviour of (2.4.25) at the singularity s> = k? and at infinity
separately. To study the behaviour around the singularity, the subsequent lemma is used to

show that differentiation and summation can be interchanged in (2.4.25).

Lemma 2.5. The sums S5° and

a:/w& S0 = Z (—i¢) f(n’)"+18:7“9 (&, —ir)" eiggf} (2.4.26)

!
—~ nl
are uniformly bounded w.r.t. s' € By(2k), ' € By(7) and T € [—1,0].

Proof. This is obviously true for 5 = 0 or m = 0 since no singularities occur. To show this
for m > 0, the product rule for higher order derivatives and Faa di Bruno’s formula are applied
to evaluate the derivatives. Afterwards the resulting sums are examined leading to summands,
which are uniformly bounded w.rt. s', times the term (£, — i7)"~%/£, ™Y where a and
b are non-negative integers depending on the indices of the sums. Obviously, this quotient is
uniformly bounded w.r.t. s € By(2k) and 7 € [—1,0] for any n > 9, since m < 4. It can now

be shown that there exist functions q;,”ﬁl(s’, z) = =47 - (s, z,7), uniformly bounded w.r.t. s’
and 7, such that h
ma; o > n Nl Q;njjl(slv Z) (57— — ’LT)n izes
0y 7S5 =Y (—=i¢)" f(n) > ) &) 2 (24.27)
n=9 (L8 )ESm W) &
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where S,,, = {(Z,le) 1 =0,...,m, Zl e 1, [ = 0,. lb} where the index set
T = {(ty,....0) € N} : Z 106 = l} where the upper mdex bound I, := ly(m) :=
max;—o,...m maxéeTm#sm_l(&) <m<4,andwhere s;: N}, — N, ({1,...,4) »—>ZO:1€0
Since the sum over S,,, is finite and since (&, — i7)" /&, *™~" is bounded for bounded s', the
boundedness of (2.4.26) follows easily. O

The second derivative in (2.4.25) can be evaluated as

aﬁ%_m)a; [<§§‘r X 50) X §§T] 6i8/~x/ 67;%57— — qj<sl7 57') e’is’fc’ 67;%&—’ (2428)

é‘T gT (9—2m)

where ¢;(s', &) = @;(s',&-, 2) is a vector valued polynomial of positive finite order that col-
lects the remaining terms resulting from the differentiation. Thus the product of the derivatives
in (2.4.25) is equal to

00 g (s, 2) .
Z TL+1 Z ],l,gl _ (57— gjz:) — ( £T> is’-x! 2257— (2.4.29)

for s € B(2k). However, this is bounded uniformly w.r.t. 7 and 7’ by a function that is inte-
grable w.r.t. . Hence, Lebesgue’s theorem applies to this part of integral (2.4.23), i.e. for the
integration w.r.t. s’ over By (2k).

Forall s € R?\ Bs(2k), the right-hand side of (2.4.27) yields

S o (sT—z'T)sl(a) Na@)l (s mvsi@)
Oy 755" = Z Q-[[(sz)wf(ﬁ)l Y (=1C) (2.4.30)

‘ ‘ 8—s1(01) (5 _Z-T)n ‘

(e_l(éf_”)”(“— DRSS a— >}5

n!
n=0

which is uniformly bounded w.r.t. 7 and 7’ by a function that is integrable w.r.t. s’. The same
holds again for (2.4.28). Note that the integrand in (2.4.23) is uniformly bounded w.r.t. ' as well.
Hence, Lebesgue’s theorem can also be applied to integral (2.4.23) taken for s’ € R?\ By(2k).

2.4.3 Formula for the limit7 — ocoand 7 7 0

Thus it has been shown that the limits 7 * 0 and 7 — oo of the sum ¢I; + il5 (cf. (2.4.4) and
(2.4.5)) exist, by showing that they exist for the two summands separately. Note that the splitting
of the sum over n, leading to I; and I, can be done for 8 replaced by any fixed N > 8. The
existence of the limits of (2.4.4) and (2.4.5) will still hold. This will now be used to show that

;%(Iﬁm—;%///Zw;Tm ) di s’ d

F—00 F=o0 g R2 R2 "WNo
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11}1’(1)/// w7 (¢, 8" dn ds’ d¢, (2.4.31)

No7=00 R2 R2
. \n
WG, ) 1= () F) o) ST b ) o0
[(5¢, x€°) x 3¢, ] REE
& ’
where lim, g7 .o := lim, » lim;_ .. Note that the existence of the limit on the first line of
(2.4.31) is what has been shown above. Clearly,

1;110/// Wi (¢, ) A ds' A

nelNy 7500 ) R2 R2

:]\}Enwl%///z:wn (¢,n',s")dn'ds’ d¢

T—00 () R2 R2 T 0

:ll/r%///ZwZTCns dn’ ds' d¢

F—00 ) R2 R2 nE]N

i For ro )
ngnool%/// S (¢ ) dof A dC,

T—00 () R2 R2 T N+1

for which the existence of the first term on the right-hand side has already been shown. It
remains to evaluate the limit of the second term on the right-hand side applying Lebesgue’s
theorem. To do so, the same transformations that led to (2.4.23) are applied here. Furthermore,
the integral w.r.t. s is again split into the sum of integrals over the two domains B(2k) and
R? \ By(2k). As before this allows to evaluate the limits 7 — oo and 7 * 0 by evaluating the
limits of the integrand before evaluating the integrals. Thus

nglgo}l/r%///z w, (¢, ', s") dn' ds’ d¢

r—>000 R2 R2 "= N+1

[e.e]

= lim / / / D> wXt(¢n, s dn' ds' d¢. (2.4.32)

N—oo
N>8 | R2 R2 n=N+1

In view of (2.4.23), for 7 = 0 the limit (2.4.32) transforms to

nggol;no/// S (Gl ) dnf st

N>8 F—00 ) R2 ]R2 n=N+1

:J}EI;O///ZW1HCUS)dUdeC

N8 plop re "=N+1
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A}i_l)rclx)/ / /w (N, ¢, 1, s diy ds’ dc,

NZ28 0 R2\By(2k) R?
where (cf. (2.4.23) and (2.4.29))

M;

o By D) e
wi(n,,n',s") —JZZ {( )( i€)" f(n) (n—sl(a))!fg_i

0(1,81,1)€Sm

. . . 1 ERY,
Y is’-x’ iz€ ik.C f(n') —in’-(s'—k")
qgi(s, &) e e“~e — e
52 1+ [, }

and (cf. (2.4.23), (2.4.28) and (2.4.30) with 8 replaced by N and with the exponential replaced
by its Taylor series expansion)

2 é"sl(zl) S R
ZZJQ(N, C,n/, S') = Z { Z [q;nw (s/ Z) 59_[ (_Z-C)SL(Zl) f(n/)sl(&)ﬂ
(

J=0m=0 \ (1.7 NeSm
0 — 3 n\" 4 L. , —in'-(s'—k')
> wfn ( )@(Sl’f) T eSO £
. ) n! m L+ n'l,
n=N+1—s;(¢1)

using £ := vk? — s’2. It remains to apply Lebesgue’s theorem to evaluate the limit N — oo.
First, observe

> dn(n G | < D in(n. ¢ ) <Y li(n, ¢S
n=N-+1 n=N+1 n=9

However, estimating (2.4.29), it has already be shown that this function is integrable w.r.t. 77/, s’
and (. Hence, Lebesgue’s theorem can be applied. On the other hand, it is easily shown that

2 M
[@a(N, ') <Y { 3 [ Csz(m]
7=0m=0 \ (1.7, l)es
—in!. sl_kl)
4 ) q_'j(gl’ 6) eis’ﬂ:’ eisz ") e ( e—(Z—Cf(nl))\/W }7
which is integrable w.r.t. s’ € R?\ By (2k), i’ and ¢ for z > h. Thus Lebesgue’s theorem implies

m L+ |
: ooO
nggo///Z (€ ) o ' ¢

N>8" p2 e n=N+1

/// hm w(¢, 1, 8" ) dn ds’d¢ = 0

0 B2 R N>8 —N+1

q [[(5 z)

= f)met
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since the sum w.r.t. n converges pointwise to zero. Consequently, equation (2.4.31) holds true.

Thus it was shown that both limits in (2.4.2) can be evaluated by applying Lebesgue’s theorem,
integration by parts and generalised Fourier transform, which then leads to a representation of
ﬁd(*) in the sense of a generalised function. Since the integral w.r.t. s is a locally bounded
integrable function w.r.t. Z, the distribution Dd( ¥) can be identified with the locally integrable

function . [(ﬁ 0 ) ]
Rd(= _ _° oo (Sexel) x5
D (x) = @ /oz(s§ — k) T ds (2.4.33)

R2
where the above manipulations are needed to define the integral (see the subsequent Equa-
tion (2.4.34)). More precisely, the last integral is well defined in the following sense (cf. (2.4.2),
(2.4.4), (2.4.5), (2.4.15), (2.4.16) with £ = 1,2,3, (2.4. 18) and (2 4.19)): For convenience,

define the new variable 7" := ¢ /\/s2 + 32 +&2= 5. /k = (ng,ny,n)" with n7 =
V1 —n72. Observe ds’ = k%dn’ and define \7 4; = lforj = Oandaln € IN; and
NZJ- :=0forj € Z\ {0} andn € IN,. Then

D =—z—ZZ/ o L 4 [(@x ) x ] (wd)"

nelN, jeZ

—EOZZZ/ A _ZM) /hf’;l(;/) T dn! dC, (2.4.34)

¢=1 neN, jeZ | R2

with A := €y — ¢, with 5\?] wy ; and g, as in Lemma 2.2 and with ﬁé,j = EM"’
- (2.4.36)
e B =D ) oy — (k4 )|, =1

- Ak:3

Z,j,TL:

oy o ) Ko (k0 = (K @5 )]) if (=2
[n]" [(n xe )Xn} e_‘kn/_(k/"—@/l,j)‘, (=3

1/(27) [go Gu(n) e =KD Ay it 0=4, j=0

471'60

Recall D*(%) = D(%) + Dg(Z). For 2 > f(x ') [10, Boundary conditions (7.37), Sect. 7.3]
implies D (Z) = ¢ 7(k, &%) e iKE |12, where ko= (kg ky, —k.)T = (K, —k.)T is the

wave vector of the reflected wave mode, k := 1/ 11p€), w the wave number beneath the interface,
e =(e), e, €)' the vector of polarisation, and
R L il LA N o R
r(k,e") == (kyey — kaey) | —ka
ko — /K2 — |k 0

K2k, 4 K2\ k2 — [K? ko (kye® + & WP [ Rk
: m ( € Zz ) | | €z _ky].{;z . (2.4.37)
B2k, — k2 k2 — |/{2/‘2 — ‘]{;"2
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2.5 Scattered electric field

Following the definitions and notation introduced in Section 2.2 the reflected displacement field
Dd(f) for z > h can be reduced to its underlying electric fields, Hence, when applying this to
(2.4.33), the component of the scattered electric field with polarisation € is represented by

) 50)X85

% TASC( 2\ N - é’*'[(_’fx
er- B ([L’)—787T2€<f)/0{($§ k) ¢

RQ

] 67/85'5[7 dS/’

for all Z € R3 with z > h, where €* is the complex conjugate of the polarisation vector €.

Theorem 2.1. Assume the interface, described by the graph of a function f € A, that satisfies
condition (2.4.20), is illuminated by an incoming plane wave as in Subsection 2.1. Then the Born
approximation of the reflected polarised electric field for z > 2h can be written as

—

& B(7) = & (Eg(f) + EQ(:E)> —Fo—Ey—E — Ey— Ey— By,  (25.1)

ikr-Z
= L0 o €
Eg :=r(k,e° &%) P (2.5.2)
A h "
Byi=i / 5o, T e o (@ x e <] ()" e (2s3)
€0 nelN, jEZ | G
1

=ik [ Ry ()
Ep=>"% o (Z1RC) / é’](n)e’k"""dn’dg, (=1,....4, (2.5.4)

, n! n’
nelN, jeZ 0 R2

where r(lg, el e*) = ¢e*- F(E, ) (cf. (2.4.37)) and k= (ky, ky, —k.)T. The numbers S‘Zj
and J)g’j are defined in Lemma 2.2, the symbols &’ and wg in (2.4.35). For a two-dimensional
vector ', the vector ii” := (n’,n%)" is defined with n, := /1 —n'2, and hy; := €*- i_im
for? =1,...,4 (cf (2.4.36)). Furthermore, there exists a z, > 0 such that the sums in E,
¢ =0,...,4, are absolutely and uniformly convergent for any z > z.

Proof. As already stated above, Equ. (2.5.2) can be deduced from [10, Sect. 7.3]. Furthermore,
taking the derivations in the previous subsections into account (cf. (2.4.34)), it remains to show
the absolute convergence. To do so, the definition of the algebra norm in (2.4.1) implies that, for
any0 < (¢ <1,

3 1 ik
Do | < et < e I, - (2.5.5)
JEZ
with a constant ¢ > 0 independent of n. Furthermore, for any ¢ = 0, ..., 3, the function

A7 ;(C) == A}, (cf. (2.4.10) and (2.4.11)) is continuous w.r.t. ¢ by the algebra property of AY.

23



Split Ey according to £y = Ej + E?,

n .
Z Z / ) d¢ & [(&7 x &%) x ] (wg)"‘1 T
nE]N JEZ
|°J0,J‘<k

and E := Ey — E§. With this, first consider ¢, leading to w? € R. Thus, (2.5.5) implies

|E0\<cz / Z

|wOJ|<k

k" HfH_A1

CO ‘ dC kn-l—l <c Z

nelN,

For £y define a zg with 2 > || f|| 4, and assume z > z. It follows that

J

k2 }wj}n_l e~ 1wz %0
z
ne]NO : JEZ
“"0 |>k
20
n' '
nelN, JEZ
‘woj|>k

The supremum of |w?|" e~ lwt]=0 i (2)"25™. stirling's formula (cf. [2, Sect. 2.5.2]) implies
(2) 2" ~ \/;'r—n 2z, ™ for n — o0o. Using once more (2.5.5), it follows that

o, Z (HfHAl) -~

GINO

B <

‘wo ‘>k

for 2o > || fl] 4,- Hence, E} and thereby Ej is absolutely and uniformly convergent for any
z > 2.

The Ey, with ¢ = 1,...,4 (cf. (2.4.36)) can be treated similarly. This time the domain of inte-
gration of the integral w.r.t. s’ is split into the two parts By (k) and R? \ By (k). Moreover, it has
to be taken into account that the integrands w.r.t. s € By (k) are at most weakly singular. O

3 Far-field formula

3.1 Plane-wave modes in the far field

The goal of this section will be to find the far-field pattern for the Born solution of the transmitted
electric field in the case of interface functions from A .
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To obtain this far field, the terms on the right-hand side of (2.5.1) will be treated separately, start-
ing with the first, i.e. (2.5.3). Examining the exponent of ¢i94 @ = ik +6,;)-2" giz(k?—[k"+ ;)12
it can be deduced that the electric field Ej is a superposition of plane waves and evanescent
modes, which correspond to |k’ +&y ;| < kand |k'+y ;| > k, respectively. This is a result of
(k? — |k’+[u67j|2)% being either real or purely imaginary with a non-negative imaginary part. To
evaluate the far field, fix the far-field direction by a unit vector m with m_, > 0 and consider the
far-field asymptotics at the points ¥ =: Rm, where R tends to infinity. In (2.5.3) all summands,
for which ‘k’ + &J(’M 2 > k2, decay exponentially as R tends to infinity and are thus negligible
evanescent modes of the electric field. Only the remaining terms contribute as the plane-wave
modes ¢'2¥ 7 10 the far field.

3.2 Several parts of the field in correspondence to a partition of the do-
main of integration

3.2.1 Splitting of the field

Continue by considering the remaining terms (2.5.4) for ¢ = 1, ..., 4. Examining the exponent
of ek @ = gikn"a’ gikzV1-n" it can pe deduced that this part of the electric field is also a

superposition of plane waves and evanescent modes, which correspond to n?<landn?>1,
respectively. Moreover, the functions h; j(n') and hs j(n') possess weak singularities at kn' =
K +@) ;and kn' = k' +@; 5, respectively. To further study the integrals, the technical condition
|k + @y ;| # kor [k + @y ;| # k is assumed. The integral w.r.t. n' will thus be separated into

hei(n') o =
/ e,jlgn) HE dn = W 4 WR, 4 W (3.2.1)
R2 -

he () o -
W, = / (1—Xe(kn'—k'—&2 .)> Me“m “dn’, (322

»J ng
Ba(1)
he (') ar
Wi = / (1 — Xe(kn' — k' — a%)) M e dp! | (3.2.3)
R2\Bj(1) ‘
hp () par =
We?fj = /Xg(kn’ — kK —@;) 52(:1) T dp! (3.2.4)
R2 z

Here x. € C5°(R?), suppxe C Ba(€), xe(n') = 1forn’ € B, (%) and a small constant
e > 0withe < }k — ‘k:’ + JJ}JH for ¢ = 1, 2. This choice of € ensures that either the support
suppxc(k - —k' =@ ;) C Ba(1) or suppxe(k - =k =&y ;) C R?\ By(1). Consider the point
Z =: Rm. The asymptotics for R — oo of these three integrals will be examined separately.
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3.2.2 Far field generated by smooth integrands of evanescent modes

First consider Wé%j by introducing polar coordinates n' = pnj), with nj := (cos ¢,sin¢)".
Integration by parts leads to

2 oo 5

9 k0B o 6—kRmZ pe—1
W%:// = Xellprty = I = ) ) ey ) 47100 p = dp
= i . W (3.2.5)
szmz 4" ikRm, %9’ 2.
2w
W = / <1 — Xe(kng — k' — C%)) he g () 6™ dg, (3.2.6)
0
21 oo
WZ}? = //@) [(1 — Xe(kpng — k' — JJ@;)) he.j(pmg) €ikpR"6'm,] e~REm PP =1 4 dg.
0 1

(3.2.7)

First, consider WZ}l for m’ # (0,0)" and ™ \m’l = (cos ¢/,sin ¢') ". Substitute u = u(¢) =
kng - m’ = k|m'|cos(¢ — ¢'). Naturally this has to be done separately for the two sets
¢»— ¢ €[0,m)and ¢ — ¢ € [m,2m) leading to

D [ heg (nhy(w)
Wi =2 (1) / (1= etk () — K = 4)) 0D i,
= i k2 | |? — w2

Cos [(—1)”1 arccos (k‘ ,‘) +¢' 4+ (j — 1)2%}
sin [(—l)jJrl arccos (klm’|> +¢'+(j— 1)2%]

for 7 = 1, 2. Note that the integrand of both integrals is integrable w.r.t. « on the compact set
[—k ||, k |m/|]. Thus, according to the Riemann-Lebesgue lemma, the integral converges to
zero as R tends to infinity. Furthermore, this shows, for m’ # (0,0), that the first term on
the right-hand side of (3.2.5) tends to zero faster than 1/ R as R tends to infinity. In the case
of m’ = (0,0)" the term (3.2.6) is independent of R and remains. Later on, when examining
Wéj, it will be seen that this term also occurs for the integral over By (1) but with opposite sign.
The sum of the two is thus zero.

ng’j(u) =

For Wff examine the derivative

% [(1 = Xelhpmp = I - %)> hej(pnp) e"'“pR%'m’}
= —kng - Vxe(kpng — k' — &y ;) hej(png) pikpRnlym!
(1 Xelhony — K = 1)) - Thes(mi) o

+ ikRng - m/ (1 — Xelkpny — k' — Cu%)) haj(pnp) ekPRmom™ (3.2.8)
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Since

(3.2.9)
T N P , 1 c , —kln'—v'|
|V7l/ [nz(n )]| - mv 'vn [|TL’—V’|:|' S |n/_1/,|27 ‘Vn |:6 ]’ SC

it follows, for ¢ = 1, (cf. (2.4.36) for { = 1) that

1 p
nh-Vhe i (pnt o5 Bmay/p?=1 < ¢ + +1],
| 0 w(ﬂ 0)| — ‘kn’—k’+@2,j‘ ‘kn’—k’+®évj‘ /p2—1

for p € [1,00). The same estimate also holds for ¢ = 2, 3,4, since hy ;(png) has a weaker
singularity at the same position in these cases. This shows that

‘(1 — Xe(kpng — k' — @27]-)) ng - th,j(png)‘ e s RmaVP ol < ¢ (1 + L) :

Nz

(3.2.10)

It follows that (cf. (3.2.8))

‘8;)[(1—)(5(1{:[)716—}@/_@2’].)) hej(pny) 6ikpRn6-m/] ’ Y- i, (\/%4.3)
p J—

for p€[1, 00) and substituting u=R+/p>—1 and dp= £~ du (cf. (3.2.7))

P —ERm C Emau 1
ezl <ome [ (2 sn)er bV iap < & fasw et ansof 1)

Consequently the second term on the right-hand side of (3.2.5) has an asymptotic behaviour of
0 (%) and
1
Wii=o0 (E)' (3.2.11)

3.2.3 Far field generated by smooth integrands of plane waves

To examine the integral in Formula (3.2.2), observe that the mapping n’ = (n,,n,)" — " =
(ng, Ny, /1 —n2 — ni)T is a bijective mapping of the points of the unit disk onto the upper
hemisphere of the unit ball. For convenience the vector 77" will now be transformed to spherical
coordinates (6, ¢), where the direction of the polar axes is chosen as 7. As a result 7i" - m
equals cos 6. If

m = (sin o cos 3, sin asin 3, cos a) ", (8.2.12)

then 77" can be represented as

sin avcos 3 cos @ + (cos av cos [ cos ¢ — sin Fsin ¢) sin 0
1" (0,¢) == | sinasinFcosf + (cos asin G cos ¢ + cos fsin ¢) sin 6§ (3.2.13)
cos v cos f — sin «v cos ¢ sin 0
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Sy
N
N,

Figure 3: Spherical coordinates w.r.t. 172

as visualised in Figure 3. Now 7, and n,, can be substituted in integral (3.2.3). For this, the de-
terminant of the Jacobian matrix d(n,, n,)/0(0, ¢) is |0(n,, n,)/0(0, ¢)| = nL(0, ¢)sinb.
Hence the differential dn’ is replaced by n’ (6, ¢) sin 8 df d¢. Thus

0(¢

2w )
W, = / / (1= Xk (0,6) = K = &4,)) ey (n'(0,9) ) sind =0 dg do,
0

0

where 6(¢) < 7 is the angle for which 7" (6(¢), ¢) is contained in the x — y plane and n’ (6, ¢)
is defined as (n,(0, ¢), n;, (0, #))". Substituting cos 6 by 1) and applying integration by parts
to the integral over v leads to the following expression.

2w 1

W, = / / (1 (k' (W, ) — K — %)) he <n’(¢, ¢)) ¢MRY qoh A (3.2.14)
0 cos6(¢)
eikR 1

~ 1,1 1 1,2
—or (1 (k! — K — %)) e (m') = =

R Vei ~ipg Ves
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1 (3.2.15)
witim [ o [(1- bl — 1 = 50)) by (w(0,0))] € dw do,
0 cos6(¢)
where

n' (Y, ¢) = ( sin v cos 3 1 + (cos a cos (3 cos ¢ — sin Bsin ¢)/1 — 12

sin asin 3 4 + (cos asin 3 cos ¢ + cos Bsin ¢)/1 — 92 ) (3.2.16)

and n(¢) 1= n’(cos6(¢), ¢). To examine Wél’;-l a closer look at cos 0(¢) is necessary. Since
() is the solution of

n_(6(4), ¢) = cosacosf(¢) — sinasinf(¢) cos ¢ = 0, (3.2.17)

the value cos 6(¢) is either found as

cos | arctan (2222)) if o # 5,37 a #0and &5 >0
c0s6(9) = | cos (m + arctan (iﬁli)) ito#%,3ma#0and e <0, (3218)
0 ifg=2,2rora=0

or cos 0(¢) = tanacos ¢/+/1 + tan® a cos? ¢. From this it is easily deduced that cos 6(¢)
is monotone for 0 < ¢ < mand for 7 < ¢ < 27. Thus, unless o = 0, for these two cases the
substitution ¢ := cos 0(¢)) is possible. It is easily calculated that ¢(t) = arccos (cot o ot ),
dp=—cosa/(1—t%) 1/(sin®a—1?)"/2dt and — sin o < cos O(¢) <sin o for 0 < ¢ < 7. After
this transformation the integrands are only weakly singular at ¢ = =+ sin « and thus absolutely
integrable for 0 < « < /2. Hence, the asymptotic behaviour + Wé;lz 0 (%) for the second
term on the right-hand side of (3.2.14) follows from the Riemann-Lebesgue lemma. In the case

a = 0, the value cos 0(¢) is identically zero and

2T
_% (1 — Xe(kng(¢) — K — a%)) he,j (ng(¢)) do, (3.2.19)

0

with (cf. (3.2.16)) ny(¢) = (cos(3 + ¢),sin(3 + ¢)) ' remains. Note that with this, (3.2.19)
is the negative of (3.2.6) for m/ = (0,0)". Thus the two terms cancel when W/, is added to
W¢,.

Next W;f (cf. (3.2.15)) is examined. Note that the function %, ;(n’) can also be written as

he(n/,n”), with n” := +/T — n'2 and a function hy; analytic for kn’ # k' + @y (cf. (2.4.36)).
Using this, it can easily be shown that the derivative

00 [ (1= xelhn' (6, 0) = ¥ =34, ))) B (' (0, 0)) |
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is weakly singular and thus integrable on {(¢,1): 0 < ¢ < 2w, cosf(¢p) <1 < 1}. Thus
the absolute value of the integral w.r.t. v/ is uniformly bounded w.r.t. R by a function that is
integrable w.r.t. ¢. Additionally, it follows from the Riemann-Lebesgue lemma that the integral
w.r.t. ¢ converges pointwise to zero as R tends to infinity. Consequently, Lebesgue’s theorem
shows that W tends to zero as R tends to infinity. Hence, (cf. (3.2.14))

1 , , -, , esz 1
W, =2m <1 — Xe(km' — k' — wm—)> he ;(m) N, +o0 (E)' (3.2.20)

3.2.4 Far field generated by a singular integrand
Main term for weakly singular integrand over unit disc

To examine the integral in (3.2.4), three cases will be considered separately. At first, the support
of the cut-off function is supposed to be located outside of the unit disk. Then, for the support
inside the unit disk, we distinguish the case 0 < a < 7/2 for km' # k' + &y ; and the case
0 < a < m/2for km' = k' + & ;. These distinctions are necessary to apply different substi-
tutions to show the asymptotic behaviour of Wé’jj. The second case is considered first.

Assume km' # k' + @, ; and that the € of the cut-off function (cf. Sect. 3.2.1) is small enough
such that m/ is not an element of the support of Y. (k( )T K — Cuéj) Apply the same
substitution as in Section 3.2.3. Thus, (cf. the first line of (3.2.14))

Wz,] / / Xe(kn' (¥, ¢) — k' — @y ;) hyj (0 (4, 0)) R dap dop. (3.2.21)

0 cosf(¢

In the case ¢ > 1 the same approach as for Wél,j can be applied, since in this case /i ; has at
most a logarithmic singularity at the point kn' = &' + &j ;. For £ = 2, 3 it follows that even the
derivative w.r.t. ¢ of h ;, occurring when applying integration by parts w.r.t. ¢ (cf. (3.2.14)), is
still integrable w.r.t. ¢ € [cos6(¢), 1] and ¢ € [0, 27). For ¢ = 4 the derivative w.r.t. ¢ of by g
is also integrable w.r.t. 1) € [cos6(¢), 1] and ¢ € [0, 27), since Oyn’ (¢, ¢) is weakly singular
and since (cf. (2.4.36) for { = 4)

V /gn (kn' k)dn _ _Zk/nlgn(n,) e—in’-(kn’—k’) dn/
R2
is uniformly bounded w.r.t. n' (1, ¢) € By (1). Indeed the function g,,('), as an element of the
algebra A7, was defined such that [|(1 + [1[) Gn(7')1] 11 (gz) is finite.

Next the case ¢ = 1 is examined. Define

Fi(W,8) == hi;(n'(¥,0)) |n'(¥,0) — V], (3.2.22)

k/_,’_"/
where /' := = i . Moreover, the cut-off function is further specified as the tensor product of

two cut-off functions x! = x? € C5°(R) with the same epsilon as before. Thus, by defining
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(o, do) " such that n’ (1o, ¢g) = /'

2 1
v fiw.¢)
ng,j = /Xi@ — o) / 2 (¥ — ) % e A dg.
0 Yo—e€
For 0 < a < 7/2, the integral is now split into
Wi =W+ g;(tho, go) W2, (3.2.23)

Ry do,

/ / 16— o) X2(1h — o) [9; (¥, @) — g5 (w0, ¢0)]
DL e =) + 56— 600 + 2 (0 — o) (6 — o)

2217 / R0 — 00) B — o) S 4
DL =) 56— 600 + 2 (0 — o) (6 — o)

(3.2.24)
@ (1 —10)? + b (¢ — 60)? + &Y — o) (6 — ¢o)
o0 = 0.0 L orEr
2 2
i = )&p [n'w,@ o = ’(% [n’(@b,gb)}w:wo ,  (3.2.26)
$=0¢0 $=g¢o
¢ =2{ 00, 9)] - 0u[ (0] o "

Note that g, is continuous if g; (1o, ¢o) is defined as the limit of ¢ — 1)y and ¢ — ¢, which is
finite as will be shown now. Obviously lim(y ¢)— (.60 f5(¥; @) = fi(%o, o) since the func-
tion f; is defined by removing the singularity of h; ;. For the limit (¢, ¢) — (10, ¢o) of the re-
maining factor in g;, transform (1) — 1), $—¢y) to the polar coordinates j(cos 6, sin #) and con-
sider the limit p — 0. Clearly all these radial limits exist and are independent of the angle 0 for
acos? 0+ bsin® 0+ ¢ cos 0 sin @ = 0. This, however, follows if and only if the two vectors Oy
and d4n’ are not parallel. To be precise, if the determinant d := |91/ (1), ¢) /A(¥, &) | p—vio.=s0
is non-zero for v, > cos (). Evaluating d, leads to d = —n"(¢g, o) # 0 for 1y #
cos (o), since n’ (1, @) is by construction only zero for ¢ = cos 6(¢). Note that this also
shows that @ # 0 and b # 0, since, if either of them were zero, the partial derivative of n/
w.r.t. 1 or ¢ (cf. (3.2.26)) would be zero and thus d = 0.

Using an approach similar to the one used for Wll,j, it will now be shown that VV]?”l has an
asymptotic behaviour of o(1/R) as R tends to infinity. Apply integration by parts w.r.t. ¢ to
W, keeping in mind that ¥2(1 — 1) = ¥?(—€) = 0. Then

31 _ // V(0 — o) K2 (¥ — o) [95(1h, &) — g5 (o, do)] RY 4y dg
" ”“RMOJ (6 = 0)2 + b (6 — 602 + &t — %) (6 — d0)

/ / Xe (@ = d0) X2(¥ — o) Dygi (¢, @)
R S — ) 56— g0+ () — o) (6 )

ika dw d¢
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3

/ / X2 () — o) XE(W — o) [9;(¥, &) — g;(0, ¢0)]
““Rowog G (0 — o)+ b (b — do)? + (b — o) (6 — bo)

. & i
{a (¥ = o) + 5 (6 = go) | € b dydo, (3.2.27)
where
\/ 1+ 30 (00 (oo )1
(11,l2) eml?’b @ (—100)2+b (6—00)>+& (b—1bo) ($—¢0)
l1+l2>3

is uniformly bounded in a neighbourhood of (¢, ¢) = (1o, ¢¢). Indeed, for Oy, f; (1), ¢) this can
be seen by considering (3.2.22), (2.4.36) for ¢/ = 1, the third equation of (3.2.9) and (3.2.13) for
cosf =1, sinf = /1 — 1? and 1)y < 1. Furthermore, by using radial coordinates as before,
it can be proven that

®) — g;(%o, ¢o)
(¢ —¢0)* + ¢ (b — o) (& — o)

95 (¥,
Va W — o+
is bounded for (1, @) — (1o, ¢). In fact the existence of radial limits can be shown. This limit

can be evaluated using the fact that the gradient of f; is uniformly bounded for ¢y < 1 and that
acos® 0 + bsin? 0 + ¢cos O sin 6 £ 0.

Hence, using this and the fact that (3.2.28) is uniformly bounded in a neighbourhood of (¢, ¢) =
(1o, ¢o), it is easily seen that all the integrands on the right-hand side of (3.2.27) are at most
weakly singular and thus absolutely integrable w.r.t. 1). Thus the integrals w.r.t. 1) are uniformly
bounded w.r.t. R by a function that is integrable w.r.t. ¢. Therefore, using Lebesgue’s theorem
and the Riemann-Lebesgue lemma shows that Wf’lz o(1/R).

To examine W3 (cf. (3.2.24)) interchange the order of integration and substitute v and ¢ by
introducing the new variables 1) — @EO = db'/2 (1) — 1) and ¢ — ¢ = 51/25 (¢ — o) +
b3/2 (¢ — gbo) where d = (ab — )1/2 Yo = db'/? 1y and ¢ 1= 51/2(52/)0 + b ¢hy). Thus
dp dip = - dg do,

\/d(¢—¢0)2+5(¢—¢0)2+5(¢_%)(¢_¢O): \/w—%) + (¢ — ¢o) .

b
Defining cil = —1_ and dz ~, it follows that (cf. (3.2.24))
iV
, (3.2.29)
hivan/i 31 (&—%—dﬁg-m)
= J(} ~0)> - Vb — dq;eikleid@Z
L @00 (6 b
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Recall that € was chosen such that ! ([¢ — o — d2 (1) — )] /b*/2) is zero for ¢ equal to the
boundaries of the domain of integration w.r.t. ¢. Thus, integrating by parts leads to

S <M—W) oV [)(,9)
g [T s (56.6) 0
D \/W —0)? + (¢ — ¢o)? v Vb
where the two functions ¢ and s are defined as t(1), ¢) 1= [ — ¢o — da(¥ — 1))]/b*/? and

s(1, @) 1= b — do + [( — 1P0)* + (6 — o) ]1/2 Note that the integrand of the integral on
the right-hand side is uniformly bounded since [X!]' (¢) is zero in a neighbourhood of ¢ = 0.

(3.2.30)

Applying (3.2.30) and taking into account that J;[log s(zﬁ, 95)] = —(1; — 150) 8(5[1/3(15, é)]
another integration by parts w.r.t. gE implies
WV (140.9))
0; n do (3.2.31)
L @00 (6 b
_dyit2nh 1g21;+2m/23 g
__2 ~117 It Yt ~__ ~17" ~ o~ — Yo ~
-5 / [)'(105.9) log s(6.8) 06— / [)(10.)) T =546
dap dayp

Again, all integrands on the right-hand side of (3.2.31) are uniformly bounded, since [)22]” (9)
is zero in a neighbourhood of ¢ = 0.

With this in mind integration by parts w.r.t. 1; is applied to integral Wf’2 (cf. (3.2.29)). Once

more X2(dy (1) — 1)) is zero at the boundaries of the domain of integration w.r.t. 7, and
W;”Qz o(1/R). Indeed, since the remaining integrand is uniformly bounded on the domain of
integration, the Riemann-Lebesgue lemma applies. Hence (cf. (3.2.23))

WP=o (%) (3.2.32)

Main term for asymptotics in the direction of the weak singularity

Itis now assumed that km’ = ki’ = k'+@; ;ande < 1—sinasuchthatn] = v/1 —n" >0
forall n’ € suppx.(k(-, -)" — km'). In this subsection the two cases of / = 1 and / = 2 are
examined separately, since in both cases the function hy ;(n’, v/1 — n'?) has a singularity at
n' = v/ = m/. For { > 2 the same techniques and arguments as for W},j can be used to prove
an asymptotic behaviour of o(1/R) for Wf:j (compare with the beginning of Section 3.2.4). The
same substitution as in Section 3.2.3 is applied. Thus, (compare with (3.2.4) and perform the
substitution of variables leading to the first line of (3.2.14))

2w 1
= / / Xe(kn' (1, ¢) — k') he (' (1, 9)) € du do. (3.2.33)
0 0
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First Wﬁj is examined by using (3.2.22). Moreover, this time the cut-off function is further spec-
ified as x.(kn'(¢, ¢) — k') = Xc(¢ — 1), where X = 1 in a neighbourhood of zero and
where . € C§°(R) is defined with the same epsilon as before (cf. Sect. 3.2.1). Note that
n'(1, ¢o) = V' forany ¢ € [0, 27),

1) fi(¥, 0) ik RY g;(¥, ¢ ik Ry
le // |n 00— 1] dydg = //\/? dy do, (3.2.34)

VI=%

9i(, )= X (¥ = 1) f;(¢, 9) 0. 0) =]

For0 < a < 7/2, (3.2.16) implies
(¥, ¢) — V| = (1 —1) [2 (1 —sin®* acos® ¢) — 2sinacosacos g /1 — 2
+ (1 =) (sin® acos® ¢ — cos® ) } : (3.2.36)

gi(V, ¢) = )26(¢ —1) fi(v¥, ¢) (2 — 2sin® acos? ¢ — 2sin o cos a cos ¢ /1 — 2

(3.2.35)

1

+ (1 — ) (sin® cwcos® ¢ — cos” oz))_Q. (3.2.37)
Note that g;(1, ¢) = ﬁ\/]l”j_(l.ﬁs) =<0, since f;(1,¢) = f;(1, ¢) and sin’a cos’p < 1
for all ¢ € [0,27) and any a € [0, ). Furthermore the function f;(1, $) has the form
(cf. (3.2.22) and (2.4.36) for £ = 1)
£, 0) = e [n0(6, ¢)]" VTP VAW@)+B(9) 1-)+C(8)y/T-92
(D(@) + E(@) v/T= 42 + F(9) v?)
= on ([cosav]" + G, 6) + L ooy (n) H(0) "~ /T = 0?) (3.2.38)
o~ FVTTT AB)+B(8) 1) +C(9)y/ 132 ( D) + E(¢) /T — 02 + F(g) ¢2> _

Here A(¢):=2—2sin’a cos?p, B(¢) :=sin’a cos?¢—cosa, C(¢) :=—2 sin a cos o cos ¢
and

CAK?
cp =1 . (3.2.39)
4dmeq

Similarly D(¢), E(¢) and F'(¢) are second order polynomials of sin ¢ and cos ¢ defined such
that (cf. (3.2.13))

E(¢)o/1 =42 + (o) = & (7" (v, 9) x€°) xi" (¢, ¢)] . (3.2.40)
Finally, G and H are defined by the binomial formula for (cos a:9) — sin v cos ¢/ 1 — 1h2)™ as

G(1),0) = mZ:Q (:,L) [cosay]" " [~sinacosoy/1— 7],

H(¢):=— — sina cos ¢ [cosa]” . (3.2.41)

(n—1)!
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This shows that 0,G (v, ¢) and G(, ¢)/+/1 — 1) are uniformly bounded w.r.t. (¢, ¢) €
suppX.(- — 1) x [0, 27] for any fixed n.

Later on, the following lemma for the function g; (cf. (3.2.35)) is needed.

Lemma 3.1. There exist a continuous function g;-)(gb) such that, for any 0 < ¢ < 2m, the limit
limy_1{y[g;(¥, ®)] — g3 (¢)/v/1—1} exists and is uniformly bounded w.r.t. ¢.

Proof. Using (3.2.38) it can be shown that dy[f;(v, ¢)] = f7(¥,¢)/vV1 =9V + fi (¥, ),

where both fjs and f;f are continuous functions. Moreover, with this it can be shown that

(cf. (3.2.37))
00 o) = S

where again both gj- and g;f are continuous functions. In order to get the limit behaviour of

Oy [9;(¥, ¢)] at ¢ = 1, evaluate the limit 1) — 1 of the two functions f7 (1), #) and f; (1), ¢).
A lengthy but simple calculation reveals

+9; (¥, 9), (3.2.42)

706 = 1500 = encos” o {2 £ /3G (01) + #16) |
+ ¢ 11,00y (1) % (D(¢) + F(9)), (3.2.43)
fi(@) = fi(1,90)
= ¢, cos™ @ {% E(¢) /A(9) +2F(¢) + 2}207\/(% (D(¢) + F(cb))}
+en Lt ooy (n) { {2 (Tﬁ ol sin® v cos? ¢ [cosa]"
L

V2

Consequently (cf. 3.2.37), the limit ¢» — 1 of the functions g3 (1, ¢) and g} (¢, ¢) evaluates as

H(o) \/m —n cos” a} (D(gb) + F(qb)) } (3.2.44)

f7(9) fi(1, ¢p) sin a cos v cos ¢
Q = S 1 = J f— J , 2.
9;(¢) == gi(1, ¢) o silaceto s acor 7 (3.2.45)
fi(o fi(1, ¢o) (cos? a — sin® v cos® ¢)
l = 7“ ]_’ = J J— J .
9(0):= (1, 9) \/5\/1 — sin® avcos? ¢ 44/2 \/1 — sin? o cos? ¢3
(3.2.46)

To evaluate the limit limy,_.1 {0y [g; (¢, ¢)] — g3(¢)/v/I—1} it is necessary to take a closer
look at dy, f£ (1), ¢) and 9,95 (1), ¢). For the first, there exist two continuous functions F and
F? such that

Fi (¥, ¢)

<

O fi (W, 9) = Fj (¥, ¢) + (3.2.47)
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Similarly (cf. 3.2.37)), two continuous functions G} and G can be found such that
(3.2.48)
Xe(¥ —1) 0y [£; (4, 0)] N G, ¢)

VAG) +Bo) (1—4) +C(o)y/T—g2 V7Y
Using I'Hospital’s rule, it can now be seen that (cf. (3.2.42), (3.2.48) and (3.2.47))

95 (o) }:1. {gi-(w,aﬁ)—g?(sﬁ)

Oyg; (¥, ) = G5(, &) +

tin {4 o6, 00) -

VIS e VI-¢
= lim [0,95(6.9) (~2)VI = ¥] + g}(@)
1 lm |0, f3 (0 0)VT=0]
:%w—% = +G@@}
= g;(¢) —2{F’$S(’;) +G§<1,¢>}, (3.2.49)
which (cf. (3.2.46)) is uniformly bounded w.rt. ¢ € [0, 27). O

Now W, (cf. (3.2.34), (3.2.35) and (3.2.45)) is split into W, = W.>* + W + W7, where

2 1
00 Vi-v
2T pikRY
:/gj dgb/\/? (3.2.51)
2w 2w eikR 1
W= _z/gj ) de /e“wa dy) = —2/99(@ do T (3.2.52)
0 0 0

Transform W;”5 by applying integration by parts w.r.t. ¢). For this, note that by once more using
I'Hospital’s rule it can be shown that (cf. (3.2.49))

. [W, ¢) — g;(1,0) +29%¢) VI — ¥ w]

A VI= 0
— lim —2 [a (w.g)— G }\/1—@&:0
T IV /

Moreover, since g;(1), ¢) (cf. (3.2.37)) is an analytic function of /1 — ) for ¢ close to one, it
can even be concluded that

9i (W, 0) — g;(1,0) + 2 g7(¢) /1 — w) ~ |1 =] (3.2.53)

36



Thus integration by parts in (3.2.50) provides

2w

e = ot [ oo —2at0)] s L

0

vVi=v

_ — . V() /1 —
+%gg(?/),¢) gj(l,f)i;g](gb) 1-¢ R dup dop,

1 O
/ Oy 9;(, &) — gjl(_zp
0

o\’;ﬁ

where the integrand of the second integral on the right-hand side is absolutely integrable w.r.t.
and ¢ (cf. (3.2.49) and (3.2.53)). Hence, the Riemann-Lebesgue lemma applies, and

ss_ L[ 1
W’ = ﬁ/ [gj(l,qs) 2g§?(¢)] d¢+o<R). (3.2.54)
0

It remains to consider W;}”G (cf. (38.2.51)). Using [11, Equ. 16, Sects. I.1 and Il.1] as well as [1,
Equs. 7.3.9, 7.3.10, 7.3.27 and 7.3.28, Sect. 7.3] leads to

! eika q 1_Z’€ikR 1
O/ /—1_¢ w—ﬁﬁﬁ—i—O(E)

Thus (cf. (3.2.54), (3.2.51) and (3.2.52))

2 2 2 (3255)
Wiy = o (00,0040 VF [o000a0 L0 2 (g0 S o (5
L = pg |9 ¢ T [g;(1,¢ mﬁ— 9;(9) ¢ﬁ+0 R
0 0 0

Using fj(l, ¢) = fj(l, <b0) (cf. (3.2.22) and (3.2.16)), [1, Equ. 17.2.6, Sect. 17.2] and (3.2.37)
leads to

2w

2T
| f(L6) 1 - T
O/g](17¢>d¢_ V2 O/\/1—sinzacos2¢d¢_2\/5]2(1’%)}7(2\ )

(3.2.56)

where F denotes the elliptic integral of the first kind (cf. [1, Equ. 17.2.6]). For the last remaining
integral f027r g;-)(gﬁ) d¢, a closer look at g;-) yields (cf. (3.2.45), (3.2.43), (3.2.38) and (3.2.41))

¢, cos"a E(¢)

ko
) = -5~ ey o (D) + Flo)
c, nl n—1 sin « cos ¢
2 mﬂ[l’m) () [COS Od \/1 — sin® acos? ¢ (D((b) " F(¢)>

i1, ¢o) sin acos arcos ¢

44/1 — sin® av cos? <b3
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With (3.2.13), 1" (1, ¢) = Ty (v, 3, zp)+cos¢v1(a, B,/ 1 —1?)+sin ¢ Ua(a, 5, /1 — ¥?).
Equ. (3.2.40) implies that D(¢) + F(¢) = &*- [(mxe&®) xni]. For the coefficient F(¢) of
1+/1 — 12 in (3.2.40), it is concluded that E(¢) E\ sin ¢ + FE5 cos ¢, with constants £
and F, only dependent on v, 3, €* and €°. Indeed, due to (3.2.13) the coefficient of cos? ¢ can
arise only from those terms in €*- [(v; x €°) x ¥/1], which do not contribute to the terms with
factor cos @sin @ = /1 — 12. Similarly, the coefficients of sin® ¢ and 1 do not contribute to

the terms with factor /1 — 92, i.e., to E(¢).

Hence fo gj ¢)do = cpmkcos"a €*- [(m x &%) x m], since for any fixed m € R the

integrals fo sin ¢/(1 — sin? acos? ¢) ™2 d¢ and fozw cos ¢/(1 — sin® avcos? ¢)"™2 d¢
are zero. Consequently, since m, = cos« (cf. (3.2.12)) and in view of (3.2.39), (3.2.55) and
(3.2.56),

Wi = fi(L,¢0) F(r\ @) (Z— +Vr

kR VE VR
— 1 %m? e [(mxe®)xm] (;:; +o (%),
zzi’z & (17 x &) ] {2 A(EN )(% \/7?% w;)_m fkk;}
o (%) 7 (3.2.57)
where f;(1, ¢g) =1 4A7r]:(2) m? &*- [(m x Y) x1m] was used (cf. (2.4.36) for {=1 and (3.2.22)).

Next W23 of (3.2.33) is examined. The cut-off function is defined the same way asfor{ = 1.
Recall that the modified Bessel function Ko (k [n' — /| ) in ha j (0 (¢, ¢)) (cf. (2.4.36) for £ =
2) has a logarithmic singularity of the form log (% [’ — /| ). This, as seen above (cf. (3.2.36)),
can be transformed to

2

k ! / o 1 1 k 2 2 2
log <§ |n' — v |) =3 log(1 —1) + 5 log [Z ((1 —9) (sin® acos® ¢ — cos” a)
+2—2sinacos? ¢ — 2sinacosacos /1 — @b?)}. (8.2.58)

Furthermore, using [1, Equs. 9.6.13 and 9.6.12, Sect. 9.6] and (3.2.58), we arrive at

!/ / 1 ~ / / / / 1 k2
Ky (k|n —V|):—§log(1—w)—7+0(log|n — V| |n —1/|2> ——l g[4 (2

—2sin? acos® ¢ — 2sinacosacos p /1 — 2 + (1 — ) (sin2a0082¢ — cos? a))]

(3.2.59)
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where 7 is Euler’s constant. Define (cf. (2.4.36) for { = 2)
hy(,0) = enk Xe( = VI = 0" & [(i"x &%) x "] Ko (k [n' = v/])

+ cpkm? & [(mxe”) xmi] < log (1 —v), (3.2.60)

1
2
where ¢y, is as in (3.2.39). It follows with h;(1, ¢) := limy ~ h; (2, ¢) that

2
hi(1,¢) = —cnkm? & (i x ) x ] {i+%log {% (1 — sin® & cos® ¢)} } .

Again the integral W3 ; is split as

27 1
We =W W, W= / / hy(¥, ¢) e dy d, (3.2.61)
0 0
1

J

W= —cpkmm? € [(mx %) xmi) / log(1 — 1) e* ¥ dy. (3.2.62)

0

Once more, integration by parts w.r.t. ¢ is applied to examine the asymptotic behaviour of W;”S.
Recalling X.(—1) = 0 leads to

21

1 2
VV]?”8 = —cpkm? e*- [(ﬁzxéo) xﬁl} / {i + 3 log (%) (8.2.63)
0
. 27 1
+ 1 log (1 — sin® wcos® ¢) o d¢ et L //8 hi(1, @) e dy dg
2 ikR kR PR '
00

To show that the last integral on the right-hand side tends to zero with order o(1/R), it is
necessary to show that the derivative 0,h;(1), ¢) is absolutely integrable w.r.t. ¢ € [0, 1].
Consider (cf. (3.2.60) and [1, Equ. 9.6.27, Sect. 9.6])

Oyl (1, )
=k V(Y — 1)V —n?" & (T x &%) xit"] Ko (k|n' =)

+enk Xe( — 13y [0/ (1, 9)] - Vo [VI — 02" & [(7" x &) x 7 ]] Ko (k|n' — ')

— kX (¥ — DVI =2 & ("% &%) x| koy[|n' — V|| Ky (k [n' =)
koon e (s 20y 1L

— g my e [(mx &%) xmi] R (3.2.64)

where (cf. (3.2.16))

sin avcos 3 + (cos a cos 3 cos ¢ — sin G sin ¢) —=%

Dy [ (v, 0)] = g

sin asin 3 + (cos asin 3 cos ¢ + cos (3 sin ¢) —

N

:

39



Recall that x. was defined in such a way that x. = 0 in a neighbourhood of zero. Consequently
the first term on the right-hand side of (3.2.64) is uniformly bounded w.r.t. ¢» € [0, 1] and
thus absolutely integrable. The second term, on the other hand, is bounded for ¢ € [0, 1]
by the integrable function (cf. (3.2.59)) ¢ (1 + 1/v/I—¢ + log(1 — ¥)/v/1I — ), since
Vo [VI—=n2" & [(A" x&°) xi"]] is uniformly bounded w.r.t. ¢ and ¢. Indeed, 1”.(¢), ¢) =

1 —n/(1, )% > 0forall i) € suppXe. It remains to consider the last two terms in (3.2.64).
For this the series expansion of K is needed (cf. [1, Equs. 9.6.11 and 9.6.10, Sect. 9.6] and [1,
Equ. 6.3.2, Sect. 6.3])

X X . (3.2.65)
Ki(k|n'=V') = W—I—Z {2 log (5 |n’—u'|) +2§—1} kin'—v'| + 0<|n'—1/|2> :
as well as the derivative (cf. (3.2.36))
Ay[In' =[] = —% % (3.2.66)
1 2sin o cos o cos ¢ % — VT =7 (sin® acos? ¢ — cos® o)
T3 (0. 6)— [ NT=0

is needed. Note that the last denominator on the right-hand side is bounded. Indeed, /1 —
is the singular factor in |n’ (1), ¢) — 1/'| in the neighbourhood not cut-off by the factor (1) — 1),
and the denominator equals %\/di—);”,‘ (cf. (3.2.36)). Since the last two terms on the right-hand
side of (3.2.64) are bounded for any ¢ € [0, 1), it remains to examine the asymptotics of the
two for 1) " 1 using (3.2.65) and (3.2.66). For {) " 1, this leads to

— ek X — VT —n?" &*. [(T"x &%) x| koy[|n' — V|| Ky (k [0/ =)

k. . o . 1
—Ch§mz e - [(mxeo)xm] m
~ —chgmg e [(mxe?) xm] {ﬁ +2k0y[In = V] K; (k:|n'—1/\)}

1
— ol & () <] O (ﬁ)
Thus the derivative 0,,h; (1), ¢) is absolutely integrable w.r.t. 1) € [0, 1]. Furthermore, using
the Riemann-Lebesgue lemma, this shows that the integral w.r.t. 1) on the right-hand side of
(3.2.63) multiplied by 1/R converges to zero with the order o (1—1%) Since the integral w.r.t. ¢
is also uniformly bounded w.r.t. R and ¢, Lebesgue’s theorem can be applied to show that this
convergence order also holds for the integral w.r.t. ¢. Hence

2
W]?o”8 = —cpkm? & - [(mxe®) xm] {27?& + 7 log (%)

A ikR
+ /log(l—sin2 a cos? gb) dgb} ij + 0(%)

0
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/{32 eikR
= —cpkml e™- [(mxéo) xm} {27@ + 7 log <?) + 47 log (COS —) } TR
1
+ o0 (E) (3.2.67)

Finally Wf’g (cf. (3.2.62)) is evaluated using [11, Equ. 116, Sects. |.4 and I.4] and [1, Equations
5.2.8,5.2.9,5.2.34 and 5.2.35, Sect. 5.2] leading to

kR
Wi = —eukmm? & [ %) x '] | =5 —log(kR) —iZ] =— +o <%)

It follows that (cf. the first equation of (3.2.61), (3.2.67) and (3.2.39))

3
W3y = i G & [(1x®) 7]
0

k kR 1
{logR — 7 —log (5) —4log <cos 5) + zg} ij +o (E) (3.2.68)

Main term for weakly singular integrand outside the unit disc

The substitution used in the first line of (3.2.5) leads to (cf. (3.2.4))

do+7 o

~. / . ’ ’
lpng — V| /1 — p

¢o—m 1

where (cf. (2.4.36) for £ = 1) f;(pnl)) := hy(pny) |pnj — +/| is uniformly bounded w.r.t. p
and ¢ on a compact set. Note that, since the support of (p, ng) +— x(kpnj—kv') is completely
outside the unit circle around zero, there exists a constant > 0 such that \/p2 — 1> forall
kpngy — kv' € suppxe. Thus for R > 1

do+m oo

3 |Xs kﬂ”o )| —kRm.6 1
W dpd 0= — .2.69
} g‘—(;// ol — pdoe O(R , 3 )
do—T

since |pnly — /| is locally integrable w.r.t. p and ¢.

The three cases together

Finally, combining (3.2.4), (3.2.32), (3.2.57), (3.2.68), (3.2.69) and the argument after (3.2.21),
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(

\ @)

OE)

4Teq z

Lyry gy (k') {z AR n @ [(17 % €0) x 17i] [QF(

\/5 1—i eikR eikR . o
(@"" T 7 \/E)—27rkikR}}, if¢ =1

Y ) Ly (k) {z SR & (i x @) x 1]

[logR—&—logg—410gcos%+i%}i:€g}, if ¢ =2

etkR

(27 Xe(km' — K — @y ;) hej(m) S it ¢ = 3,4
+0o(1/R) (3.2.70)
no matter if the point n with kn’ = k' + &y ; is located inside or outside the unit circle. Note
that the terms for £ = 3, 4 are obtained similarly to (3.2.20), but with 1 — x.(km' — k' — @ ;)
replaced by x.(km' — k' — & ;) and with szj replaced by ng. Furthermore, the symbol 1

is used for the indicator function, i.e., for a set M the value 1,/(m) is one if m € M and zero
else. For a singleton M = {my}, 1,/(m) is shortly written as 1, (m).

3.3 The final formula for the reflected field

In conclusion this shows that (cf. (3.2.1), (3.2.11), (3.2.20) and (3.2.70))

/ hyj(n') oRTTE J
n
RQ
eikR eisz
= 2110y (0) (1 = oy (k;m’)) e (m') == + 27 Lig.y (6) by (m') ——

. . A/{Z2 0 eikR
— i 11(0) Ly gy (k) 2 m} & [(mxe’) xm)] kikR
1 ~ 7w \/5 1— i ek
_ R Ve
T <2\ )<Z/€R+\/7_T\/E \/R)}
+ i Lo (€) Ty (kM) 1 m? & [(mxe’) xm)] (3.3.1)
5J 60

k ikR 1
{logR—ﬁ — log <§> —4log (cos %) +zg} jk:R +o (ﬁ)

This gives the asymptotics of one term in (2.5.4). From the uniform and absolute convergence
of the sum in (2.5.4) (cf. Theorem 2.1), it is obvious that the asymptotic limit and the summation
in (2.5.4) can be interchanged.

Theorem 3.1. Assume the interface is the graph of a function f € A, that satisfies con-
dition (2.4.20) and ‘k:’ + J)}J‘ %+ kforl = 1,2 and all j € Z.. Suppose this interface is
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illuminated by an incoming plane wave described in Subsection 2.1. Then the far-field asymp-

totics of the reflected polarised electric field for z > max {2 || f|| 4, , 2| f||.. } in the direction

T T

m = (m/;m,)" = (sinacosf3,sinasin 3, cosa)’ is

& E"(Rim)

. ik Rit
— (k& &
e )
A [ (510"
. In \(T0 s =7, = — 7 N1 iRGI.m
s D3 [ S e (@) <] (@ e
nelN, j€Z |
2 ‘
< 'Lk’C) 6sz
— Z Z {27{'2 [/)\Z,j dC (1 — ]]-k’—i-w (km )) h&]( ) ﬁ
nelN, jeZ /=1 0
4 1~ ( ch) etk R
_QWZ/AZdeghM( ) - (3.3.2)
=37
1
Ak2 n \n ( Zk() S -
—i e Loy, (km') m / ( R— d¢ - [(mxe?) xmi
0
T \/§ 1—3 eikR eikR
PV a)(Y2 ok
5\ (R TR)
1
Ak?) n \n (_ch)n ok >, o -
—1 460 ]lk/+%’j(/€m/)mz/)\27deC e - [(mxeo)xm}
0
k 7] etFf 1
log R — 4 — log ~ — 41og cos & + i~ -
{ogR v — og2 ogcos2+l } kR}+O(R)’
where 1}, := (no nO n9) " for the incoming direction i = (n2,ny, n)" =k k/k and where
r(k, &%, &%) = &*- 7k, &%) with 7(k, &°) defined in (2.4.37). The numbers )‘M ande are

defined in Lemma 2.2, the symbols &7, w’ in (2.4.35), and hy j; = €* hg j with hg j given in
(2.4.36). The symbol 7y stands for Euler’s constant, and Fis the elliptic integral of the first kind.

3.4 Reduced efficiency in specular reflection

In this subsection it will be shown that the results, derived in [14, Sect.ll.E.1] without fixing any
sufficient assumption on the interface, hold for interface functions in A;. To be precise, it will be
proven that the efficiency of the plane wave reflected in specular direction can be represented
as the efficiency for reflection at an ideal interface multiplied by an explicit correction term.

Theorem 3.2. Assuming an interface function f € Ay, the reflected field E" in the Born ap-
proximation of Theorem 2.1 contains a plane-wave mode propagating in the specular direction
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i7" = (g, ny, —n2) T = ET’/k: with k" = (ky, ky, —k.) " of the form

n
. 2
460%12]2 w(—2k,) [(A" x &%) x "] e"'“r'f%—(?({[n%]z} >> (3.4.1)
5 R R
W(—2k,) == [ 0| limp_q0 W{% R]lf(n dnxdn] e~2k=IC4¢. (3.4.2)

SIS

Remark 3.1. In the case of an ideal surface with f = fo = 0, the function W = g, is the
Fourier transform of O: 1y ) = 0, i.e., wg = 1. Consequently, Equ. (3.4.1) shows that the
specularly reflected plane-wave mode for a general rough surface is that of the reflected plane-
wave mode of the ideal planar surface multiplied by the attenuation factor w(—2k,). Conse-
quently, the efficiency of that mode is attenuated by the factor [ (—2k,)]?, where | (—2k,)|
is less or equal to one. Indeed,

(20 = ]O A0 < o)~ l-h/2) = 1

_h
2

with the monotonically increasing function p() :=limp_.c 152 f f 7 L7 (y),00)(€) A1 di,
satisfying p(oo) = 1 and p(—h/2) = 0.

Remark 3.2. Applying the formula for the Fourier transform of a derivative to Equ. (3.4.2) and
subtracting wq(—2k,) = 1, there holds

R R

W(=2k:) =1 =2k |/{hm 4—R2// )00 () =L 0,00) () e dy, | =<1 dC.

—-R

Mlt

This provides a way to define w by classical integration.

Proof. Examining Equ. (2.5.3) and the definition of cﬁg it is easily seen that a plane wave in
specular direction appears if & ; = (0, 0)". The corresponding index j will be denoted by jo.
Note that the corresponding 5\&-0 is the mean value of f"*!(n’) e?*=¢ /(") To be precise it can
be represented as (cf. (2.4.8))

R R

3 3 1 n (2

M = )i i [ [ et D anan,. w49
“R-R

By E*P denote the specular part of E" (cf. (2.5.1) and (2.5.3) without scalar product by &™)
minus the summand Eg, corresponding to the reflection at an ideal interface. Picking up the
corresponding terms of (2.5.3) and replacing )‘873'0 by (3.4.3) leads to
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E? = —j QA Z /5\8’],0 (_Zon ¢ [(Er ><é'0> XET] ke[ ik

_ A n ik ( —i¢)" -
[(k"xé ) xk‘r} eﬁ'f.

Clearly, the &g ; is a continuous linear functional on the Banach algebra A Hence, the func-
tional evaluation can be interchanged with the summation over n and the integration w.r.t. (,
which themselves are continuous operations in A?.

sp s &= - _7’|k ‘Cf )) zk(f f( )
b= 12601%520432///2 ] e
“R-R O nelN,
[(Fxe?) x| e
&R £0r) (3.4.4)
- ;= —i2|kz[¢ f(n') r| k@
- Z2EOI%EI§O4R ///e C|k|d dny[(kxe%(k} ’
—R—-R O

since k, < 0. Note that

1 f(")
e PIIIM A f) = [ P A = [ x(fir, Q) e,
/- fome= [

_h
2

[e=]

by b Do (Q) 10 < f(n)
X0 = { —]1[f<nfz,o1(<’) if f(n') <0

Applying this to the right-hand side of (3.4.4) and using Fubini’s theorem leads to

5 R R L .. (345
ESP — —Z— lim / //X f 77 C dn, dn, e —i2|k=|¢ d¢ [(ereo) Xkr} eii{r.f
260 R—oo 4R? * v e V{?Z‘ .
_h -R-R
2
In order to apply Lebesgue’s theorem in (3.4.5), it must be shown that the limit
R R
}%5204—32//’( £, ¢) dn, dn, (3.4.6)
-R
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exists a.e. for ( s.t. —h/2 < ( < h/2 Note that u(f, (, R) f I R X(f, ', ¢) dny dny
is the measure for the set of points 7’ € [— R, R]? with 0 < ( < f(n') minus the measure for
the set of points ' € [—R, R]? with 0 > ¢ > f(n') . Hence, —1 < u(f,(, R)/(4R?) < 1
for all R > 0. Furthermore, for ( # 0 and for any decaying function f € A, the integral
w(f,¢, R)/(4R?) tends to zero as R tends to infinity. Consequently, only the non-decaying
part of f is significant for the limit in (3.4.6). Finally, by density arguments it can be assumed
that f is only a finite sum of Fourier modes. However, the existence of the limit in (3.4.6) for
such a biperiodic function is easy to see.

Now Lebesgue’s theorem for (3.4.5) and the formula for a differentiated generalised Fourier
transform yield

R R
[3sp - - / —i2|k;|¢ _'r | kT
Bor m@m| {$3;4R2/1/X(ﬁn,OCMAM46 ac [(Frxe) i ]e
R

—-R

r 7 (3.4.7)
=il \2/ o fim g [ () dna,Jem s ac (7 )]
—R —

In correspondence with [14, Equ. (12)] define p as in Remark 3.1 and set

M@lm—//m ) dne g, = Loy (€).

It is easily confirmed that limpg ., f_R f_R xX(fs1', ) dn, dny =limp_o u(f, ¢, R)/(4R?)
= po(¢) —p(¢) and that the Fourier transform wq(—2|k.|) = [5 Oc[po(¢)] e 2*-ICd( is
equal to one, by using results for generalised Fourier transforms. Furthermore, supp(d:p) C

[—h/2, h/2]. Thus, substituting limR_)OOf_RR f_RR x(f.n', ¢) dnydn, by po(¢)—p(¢) in Equa-
tion (3.4.7) and writing the integral of the difference as a difference of integrals, there holds

- A — — T = A
Fer= w(—2k [k"xéo xk"] L
Aeo| k. |2 (=2k:) |( ) 4eo| k|2
where w(—2k,) is defined in (3.4.2). Finally, the theorem is a consequence of the following
asymptotics, which is not hard to prove (compare Stearns [14, Equ. (36), Sect. Il.E.1]).

L e g e N R R A7
Eo (%) =7 (K, é°) P = - TNE [(ere )Xk,} kT L0 [[n0]2] . (3.4.9)
0[fvz

z

[(l? % &%) x E} et (3.4.8)

O

3.5 The special case of a sinusoidal grating

3.5.1 Applied far-field formula

Now consider the reflected electric field for a sinusoidal grating, which is constant in y-direction.
First Equ. (3.3.2) will be applied, and in the next subsection it is compared with that of Stearns

[14].

46



Assume

»-J>|D‘

F(z') = Ao_1 2190, -1 + o1 ewo,1 — g COST, Ag+1:= W(/),ﬂ = < j(:)l ) . (8.5.1)
To evaluate the second term on the right-hand side of (3.3. 2) it is necessary to determine the
values of )\ ; and wo,j for the interface (3.5.1). For { = ,4 the )\M are zero. To do
S0, consider Equs. (2.4.9) and (2.4.10). Note that the index set Z in this equation is reduced
to {—1,1} for the interface function (3.5.1). Thus (cf. (3.5.1)) @y, = (J, 0) for j € Z.
Consequently, (cf. the definition of &7 after (2.4.34)) &I = (ky, + J, ky, (k* — (k. + j)* —
kg)l/Q)T. From now on classical diffraction will be assumed, which means that k,, = 0, leading

to
-
_ (k;w +34,0, /K2 — (k, +j)2) . (3.5.2)
The factor 5\87]- can further be transformed to

o ~ hm

~ , P m!
)‘g,j = Z (Zkzg> !

] (D1 (552)1 (2)]

2 2
m+j=0 mod 2

> hm+n+1

Ty B A (B (B
et 14720 mod 2

It follows that

F@--i2 Y Y Y {<;'>"/<"+md<<m> (mant Lt

nE]NO JE€Z m=max{0,|j|-—n—1} 0
m+n+14+5=0 mod 2

B (@ x @) x ] @D el g
4 (m+n+1) (m+n+1—j)! (ﬁ%-i—n;—l-i—j)[ + ( )

ip Yy > e

nE]NO J€Z m=max{0,|j|—-n—1}
m+n+14+;j=0 mod 2

hm+n+1 L_Jj % é»() x&j uﬂ n—1 )
(m+n+1) [(m+n+1—)j | ]m(+n+)1+j € R O} o).
4 ( 2 ) ( 2 )

8y

Furthermore, in view of the absolute convergence of (2.5.3) these sums can be rearranged in
such a way that

n—1 -
_ ) = D (R e
F@-ig 3y SRR )
Ojem\oy n=lj| m=0
n+j= Omod2
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where k" = @Y = (ky, 0, —k,) for k, = 0and k. < 0.

3.5.2 Near-field formula of Stearns

According to Stearns (cf. [14, Equ. (19), Sect. I.B])

T (= Ak2 g(kﬁr - E) —r =0 S ki /
E<x>:87T260/n2(n2—n2) [(n X € )xn] e dn/,
R2

.
where i = (ng,ny, V1 —n2) 0’ = (ng,n,) ", n* :=n2+n2, nd =% A:=¢—¢
and where §(3) := F(g)(5), for g(Z) := & (2 — L cos ), is defined in a generalised sense
(cf. (2.2.6)). Formally applying the Fourier transform to g and the Taylor-series expansion of the

exponential function leads to

() == 472 8(s,) Z (_isz)n Z . (nl_ 71 s+ = 2m)

@) Ak B (™™ — ) (5 % E0) X AT
— » L 4nm

0 nen, m=0 tn—m)!  wz™ (kw2 — k) ’

k
Applying the binomial theorem to (kw?™ — k)", rearranging the resulting sum and performing
a few simple transformations leads to

] —)"" lh” n—1 k. m \ m—r—2
E( :—z— Z Z Z[ 1l ( )_(1)‘ ) (wg)

= n -
JEZ\{O} n=[j| ~ m=0
ntj= 0 mod 2

- ke | 2 ky ) ke | 2m-n\2 _ k§ .
where "™ (”” + 2men S ?””) andwg’m.:\/l— (B2 4 2m=n)" — 24 with k, =0.

260 == 4! (n —m —1)! [(%)q?
A T 0 —r kil T
P [ (715 x €°) x iiy] e™* (3.5.4)
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for k, = kn?, where &7 is defined by (3.5.2) and k™ as at the end of Section 3.5.1. Thus the
two equations (3.5.3) and (3.5.4) are approximately equal for ﬁ < 1 (cf. Equ. (3.4.9) and
compare Stearns [14, Equ. (36), Sect. II.E.1]). ’
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