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Abstract

This paper is concerned with electron transport and heat generation in semiconductor
devices. An improved version of the electrothermal Monte Carlo method is presented. This
modification has better approximation properties due to reduced statistical fluctuations.
The corresponding transport equations are provided and results of numerical experiments
are presented.
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1 Introduction

The Monte Carlo method is one of the common techniques for modelling electron transport in
semiconductors [1, 2, 3]. It is based on Boltzmann transport equations, which describe the time
evolution of the distribution of electrons with respect to position and wave-vector. One of the
main advantages of the Monte Carlo method is its ability to include a large range of physical
effects. The continued miniaturization of semiconductor devices has resulted in new challenges
related to the modelling of heat generation.

Recently an electrothermal Monte Carlo method has been developed [4, 5, 6, 7]. The
method couples a stochastic algorithm for the Boltzmann transport equation with a steady-
state solution of the heat diffusion equation. The lattice heating rate is calculated by accounting
for the exchange of phonons between the electrons and the lattice. This net phonon emission
method was applied in [8] without including heat diffusion effects. A survey on heat generation
and transport in transistors was given in [9].

The purpose of the paper is to study the electrothermal Monte Carlo method and to present
a modification with reduced statistical fluctuations. The paper is organized as follows. Details
of the mathematical model are provided in Section 2. A variance-reduced electrothermal Monte
Carlo method is proposed in Section 3. Results of numerical experiments are presented in
Section 4. Comments and conclusions are given in Section 5.

2 Kinetic equation for electrons

In a semiclassical approximation, the kinetic description of electron transport is given by the
equation

[

∂

∂t
+ v(k) · ∇x −

q

~
E(t, x) · ∇k

]

f(t, x, k) = (Qf)(t, x, k) , (2.1)

which determines the time evolution of the distribution f(t, x, k) of electrons with respect to
position x and wave-vector k . The electric field E depends on the electron distribution function
f . It is defined as

E(t, x) = −∇xΦ(t, x) , (2.2)

where the electric potential Φ satisfies the Poisson equation

ε∆xΦ(t, x) = q [n(t, x)− nD(x)] . (2.3)

The function

n(t, x) =

∫

R3

f(t, x, k) dk (2.4)

is the electron density and nD denotes the donor density. Moreover, q is the absolute value of
the electron charge, ε is the permittivity, ~ denotes Planck’s constant divided by 2π and R

3 is
the Euclidean space. Boundary conditions to (2.3) take into account an external field. Boundary
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conditions to (2.1) are more complicated. In the spatially one-dimensional case we assume
periodic boundaries.

We consider analytic conduction bands in the quasi-parabolic approximation, where the
kinetic energy ε(k) of an electron satisfies the relation

ε(k) [1 + αε(k)] =
~
2|k|2

2m?
, k ∈ R

3 . (2.5)

Here α denotes the non-parabolicity factor (the case α= 0 is called parabolic) and m? is the
effective electron mass. If α > 0 , then (2.5) implies

ε(k) =

√

1 + 2α~2|k|2

m∗
− 1

2α
. (2.6)

The electron group velocity v(k) takes the form

v(k) =
1

~
∇k ε(k) =

~k

m?[1 + 2αε(k)]
. (2.7)

The quasi-parabolic band approximation provides a good description of electron transport at
energies up to 1 eV , where impact ionization does not play a significant role.

The scattering collision operator has the form

(Qf)(t, x, k) =

∫

R3

S(k′, k) f(t, x, k′) dk′ − f(t, x, k)

∫

R3

S(k, k′) dk′ . (2.8)

The main scattering mechanisms in silicon, at room temperature, are due to electron-phonon
interactions (acoustic and optical). The transition rate from a state k to a state k′ is determined
by the function (cf. [1, Section III.D.1])

S(k, k′) = Sac(k, k
′) + Sopt(k, k

′) , (2.9)

where

Sac(k, k
′) = K0 δ(ε(k

′)− ε(k)) (2.10)

and

Sopt(k, k
′) = (2.11)

6
∑

i=1

Ki

[

δ(ε(k′)− ε(k) + ~ωi) (gi + 1) + δ(ε(k′)− ε(k)− ~ωi) gi

]

.

The coefficients in (2.10), (2.11) are

K0 =
kB TL Ξ

2
d

4π2~ % v2s
(2.12)

and

Ki =
(DtK)2iZi

8π2% ωi

, i = 1, . . . , 6 , (2.13)
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me electron rest mass 9.1095 10−28 g

m? effective mass 0.3216 me

% mass density 2.33 g/cm3

vs longitudinal sound speed 9.18 105 cm/sec

Ξd acoustic phonon deformation potential 9 eV

α non-parabolicity factor 0.5 eV−1

Table 1: Silicon parameters

i scattering (branch) ~ωi(meV) (DtK)i (eV Å−1) Zi

1 g-1 (TA) 12 0.5 1

2 g-2 (LA) 18.5 0.8 1

3 g-3 (LO) 61.2 11 1

4 f-1 (TA) 19.0 0.3 4
5 f-2 (LA) 47.4 2.0 4

6 f-3 (TO) 59.0 2.0 4

Table 2: Coupling constants for optical phonon scattering

where kB denotes Boltzmann’s constant, TL is the lattice temperature and further parameters
are given in Tables 1, 2. Finally, the phonon occupation numbers in (2.11) are

gi =
1

exp(~ωi/kBTL)− 1
. (2.14)

We refer to [2, Section 2.2.5] for further details of the modelling.
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3 Monte Carlo algorithm

The Monte Carlo approach is based on a stochastic particle system of the form
(

xl(t), kl(t)
)

l = 1, . . . , N t ≥ 0 . (3.15)

A time step ∆t is used to decouple the transport equation (2.1) and the Poisson equation
(2.3). That is, each particle moves with its velocity (2.7), performs scatterings according to the
transition rate function (2.9) and is accelerated according to a fixed electric field. After ∆t , the
density (2.4) is measured and the field is re-calculated according to (2.2), (2.3).

The system (3.15) provides a numerical algorithm for equation (2.1) in the sense that linear
functionals of the solution f are approximated by averages over the particle system, that is

∫

∆x

∫

R3

ϕ(k) f(t, x, k) dk dx ∼
1

N

∑

l: xl(t)∈∆x

ϕ(kl(t)) , (3.16)

for some spatial cell ∆x and appropriate test functions ϕ . Convergence with respect to the
numerical parameters (N → ∞ and ∆t → 0) has been studied in [10].

The steady state is approximated by a time averaging procedure, that is

∫

∆x

∫

R3

ϕ(k) f(∞, x, k) dk dx ∼
1

Nobs

Nobs
∑

j=1

Φ(tj ,∆x) , (3.17)

where Φ(t,∆x) is a notation for the right-hand side of (3.16) and tj , j = 1, . . . , Nobs , are
observation points (far enough from t = 0). Properties of the steady state distribution have
been studied in [11].

3.1 Scattering mechanisms

The operator (2.8) has a probabilistic interpretation in terms of random jump processes, where
the jumps are determined by various scattering mechanisms. The transition rate function (2.10)
corresponds to acoustic (elastic) scattering, which means that the energy of the electron is
preserved and it just gets a new orientation. The transition rate function (2.11) corresponds to
optical (inelastic) scattering, which means that the electron either looses energy (interpreted as
emission of a phonon) or gains energy (interpreted as absorption of a phonon). The quantities
~ωi in (2.11) are phonon energies (cf. Table 2). Emission of a phonon is only possible if ε(k) >
~ωi , otherwise the electron does not have enough energy.

The relative frequencies of various scattering events are determined by the corresponding
rates. The acoustic scattering rate takes the form

∫

R3

Sac(k, k
′) dk′ = λac(ε(k)) , (3.18)

where [1, eq. (3.54)]

λac(ε) = TL

2
1

2m∗ 3

2kBΞ
2
d

π~4%v2s
(1 + 2αε)

√

ε(1 + αε) . (3.19)
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The optical scattering rate takes the form

∫

R3

Sopt(k, k
′) dk′ =

6
∑

i=1

[

λ+
i (ε(k)) + λ−

i (ε(k))
]

, (3.20)

where [1, eq. (3.73)]

λ+
i (ε) = (gi(TL) + 1)× (3.21)

(DtK)2im
∗ 3

2Zi

2
1

2π~3%ωi

√

(ε− ~ωi)[1 + α(ε− ~ωi)][1 + 2α(ε− ~ωi)] ,

if ε > ~ωi (otherwise, λ+
i (ε) = 0), and

λ−
i (ε) = gi(TL)× (3.22)

(DtK)2im
∗ 3

2Zi

2
1

2π~3%ωi

√

(ε+ ~ωi)[1 + α(ε+ ~ωi)][1 + 2α(ε+ ~ωi)] .

The signs “+” and “−” indicate emission and absorption of a phonon, and the dependence of
the expressions (2.14) on the lattice temperature is emphasized.

3.2 Electrothermal Monte Carlo

The main steps of the algorithm are the following:

1 The standard isothermal Monte Carlo algorithm is run until the steady-state is reached.

2 Various electronic parameters are sampled to generate the results from this iteration. In
particular, the sum over all phonon emission minus phonon absorption events per unit
time is calculated, i.e. [9, p.1590]

〈HC〉(x) =
n

Np tsim

6
∑

i=1

~ωj

[

C+
i − C−

i

]

, (3.23)

where n is the electron density, Np is the number of particles in the x-cell, tsim is to-
tal simulation time after the steady-state has been reached, and C+

i , C−
i are the total

numbers of i-th phonons emitted and absorbed. The quantity (3.23) is used as an approx-
imation to the rate of heat generation at position x ,

g(x) = 〈HC〉(x) . (3.24)

3 The spatially varying lattice temperature distribution TL(x) is obtained by solving the
steady-state heat diffusion equation [6, p.1769]

∇x · (κ∇xTL(x)) + g(x) = 0 , (3.25)

where κ is the thermal conductivity (in Silicon at room temperature 150 W/K m) and g(x)
is the rate of heat generation at position x .
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4 In the next iteration the Monte Carlo algorithm is rerun with the new update lattice temper-
ature distribution TL(x) . Note that the scattering rates (3.19), (3.21) and (3.22) depend
on the lattice temperature.

5 This iterative procedure is performed until the terminal currents converge to the elec-
trothermal steady-state values.

3.3 Variance-reduced electrothermal Monte Carlo

We modify Step 2 of the algorithm described in Section 3.2. The heat generation rate is approx-
imated using the individual optical scattering rates (3.21), (3.22). Instead of (3.24), we use

g(x) = 〈H〉(x) , (3.26)

where (cf. (3.15))

〈H〉(x) =
1

Nobs

Nobs
∑

j=1

[

n

Np

Np
∑

l=1

G(ε(kl(tj)))

]

(3.27)

and

G(ε) =
6

∑

i=1

~ωi

[

λ+
i (ε)− λ−

i (ε)
]

. (3.28)

Here n is the electron density, Np is the number of particles in the x-cell and Nobs is the total
number of observation times tj .

The introduction of the function (3.28) reduces the evaluation of heat generation to the usual
calculation of functionals, in analogy with mean velocity or mean energy. Moreover, the func-
tional (3.27) indicates which system of kinetic equations is actually solved by the electrothermal
Monte Carlo algorithm. Namely, the steady state heat diffusion equation (3.25) is coupled to the
steady state version of the Boltzmann transport equation (2.1) via

g(x) =

∫

R3

G(ε(k)) f(∞, x, k) dk . (3.29)

In order to illustrate the connection between the expressions (3.23) and (3.27), we introduce
the quantities

hC(s, t) =
6

∑

i=1

~ωi

[

C+
i (s, t)− C−

i (s, t)
]

, (3.30)

where C+
i (s, t) , C

−
i (s, t) are the numbers of i-th phonons emitted and absorbed on the time

interval [s, t] . Expression (3.23) takes the form

〈HC〉(x) =
n

Np tsim
hC(t0, t0 + tsim) =

nNobs

Np tsim

1

Nobs

Nobs
∑

j=1

hC(tj−1, tj)

=
1

Nobs

Nobs
∑

j=1

n

Np

hC(tj−1, tj)

∆tobs
, (3.31)
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where t0 denotes the starting point for time averaging and ∆tobs is the observation time step.
The connection between the expressions (3.31) and (3.27) is based on the fact that the average
number of jumps on some time interval is approximately given by the product of the jump rate
and the length of the interval.

It turns out that the variance of the estimator (3.23) is always bigger than the variance of the
estimator (3.27). This is a consequence of the formula

V(ξ) = V(E(ξ|η)) + EV(ξ|η) , (3.32)

which says that the variance of any scalar random variable ξ can be represented as the sum of
the variance of the conditional expectation and the expectation of the conditional variance. The
conditional expectation can be taken with respect to an arbitrary random variable η with a rather
general state space (e.g., a random vector). Formula (3.32), which is sometimes called “law of
total variance”, is a direct consequence of the corresponding definitions,

V(ξ) = E(ξ − Eξ)2 = Eξ2 − (Eξ)2

V(E(ξ|η)) = E(E(ξ|η))2 − (EE(ξ|η))2 = E(E(ξ|η))2 − (Eξ)2

V(ξ|η) = E([ξ − E(ξ|η)]2|η) = E(ξ2|η)− (E(ξ|η))2 .

In the present situation, η is the whole particle system (3.15), while ξ is the estimator (3.23).
According to (3.31), the estimator (3.27) has the form E(ξ|η) .

4 Numerical experiments

In this section we illustrate the two different ways (3.23) and (3.27) of evaluating the heat gener-
ation rate. First the spatially homogeneous situation (bulk case) is considered. Then a spatially
one-dimensional test case (diode) is studied. In both cases we use the parabolic band approx-
imation (cf. (2.5)) and periodic boundary conditions. The algorithm described in Section 3.2 is
applied with 4 iterations.

Confidence intervals are calculated as

1

Nr

Nr
∑

α=1

ξα ± 3

√

√

√

√

√

1

Nr





1

Nr

Nr
∑

α=1

ξ2α −

[

1

Nr

Nr
∑

α=1

ξα

]2


, (4.33)

where ξα , α = 1, ..., Nr , denote the values of some quantity ξ obtained with independent runs
(repetitions). In our situation, we have ξ = 〈H〉 and ξ = 〈HC〉 . The discretization parameters
∆t and ∆x are chosen in such a way that the corresponding systematic error is smaller than
the bounds for the statistical error provided by confidence intervals.

4.1 Bulk case

Here the number of particles is N = 11000 and the number of repetitions is Nr= 10.
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Field (V/cm) 〈H〉 (1011 meV/sec)
〈

HC
〉

(1011 meV/sec)

0 -0.12 ± 0.26 -0.04 ± 0.47

10 -0.51 ± 0.51 -0.88 ± 0.85
100 -0.46 ± 0.36 -0.23 ± 0.75

1k 7.7 ± 0.3 7.9 ± 0.8

10k 544.1 ± 0.6 543.7 ± 1.3

100k 10875 ± 3 10874 ± 5

Table 3: Heat generation rate calculated via (3.23) and (3.27), with TL = 300K and various
electric fields

Field (V/cm) 〈H〉 (1011 meV/sec)
〈

HC
〉

(1011 meV/sec)

0 -0.001 ± 0.018 -0.001 ± 0.044

10 0.746 ± 0.014 0.737 ± 0.046
100 0.752 ± 0.015 0.750 ± 0.037

1k 43.0 ± 0.12 42.9 ± 0.23

10k 1083 ± 0.3 1083 ± 0.7
100k 21652 ± 1.6 21653 ± 2.5

Table 4: Heat generation rate calculated via (3.23) and (3.27), with TL = 77K and various
electric fields

Results for the lattice temperature TL = 300K and various electric fields are shown in
Table 3. The statistical error bounds (cf. (4.33)) are about two times smaller for the estimator
(3.27) compared to those for the estimator (3.23). Moreover, some “cooling effect” (negative
heat production) is observed for certain electric fields. In order to check this more precisely for
the field 100 V/cm, the number of repetitions has been increased to Nr = 40. The corresponding
values are

〈H〉 = −0.49± 0.16 (1011meV/sec) , (4.34)

〈HC〉 = −0.57± 0.38 (1011meV/sec) .

Analogous results for the lattice temperature TL = 77K are shown in Table 4. The relation-
ship between the statistical error bounds for both estimators is roughly the same, but no cooling
is observed. The different behaviour dependent on the temperature is formally explained by the
corresponding graphs of the function (3.28) provided in Figure 1.
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Figure 2: Heat generation rate versus position in the diode, evaluated by means of the counting
estimator (3.23) and the integrated probability estimator (3.27)

4.2 Diode

We consider a silicon n+−n−n+ diode, which consists of two highly doped regions n+ (called
cathode and anode) connected by a less doped region n (called channel). The n+ regions are
100 nm-long and doped to a density ND =1019cm−3 , while the channel is 100 nm-long and
doped to a density ND =1016cm−3 . The applied bias is Vb = 1.2 V.

Here the total number of particles is N = 201000 and the number of repetitions is Nr =
10 .

The results are shown in Figure 2. The integrated probability estimator (3.27) has signifi-
cantly lower fluctuations compared to the counting estimator (3.23). The absolute values of the
variances are displayed in Figure 3. At the left contact a “cooling effect” (negative heat produc-
tion) is observed, while at the right contact there is a peak in the heat production.

11



0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

x (nm)

V
ar

ia
nc

e 
(1

010
 W

/c
m

3 )

 

 

counting
integr. probab.

Figure 3: Variances of the counting estimator (3.23) and the integrated probability estimator
(3.27) versus position in the diode
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5 Comments

A comparison between Monte Carlo and hydrodynamic simulations of heat generation and
transport has been performed in [12]. This study illustrates the limitations of the hydrodynamic
approach. An extension of the Monte Carlo algorithm for the treatment of the coupled system
of kinetic equations for electrons and phonons has been used in [13], [14]. The main drawback
of this approach is the huge computational effort. The electrothermal Monte Carlo algorithm
provides a rather efficient tool for studying heat generation and transport.

The modification proposed in this paper always leads to some variance reduction, which
may be quite significant as illustrated in Section 4.2. In addition to this practically important ef-
fect, there are some other advantages of the new method. The estimator based on the function
(3.28) reduces the evaluation of heat generation to the usual calculation of functionals, in anal-
ogy with mean velocity or mean energy. Moreover, it indicates that the electrothermal Monte
Carlo algorithm solves the steady state Boltzmann transport equation coupled with a steady
state heat diffusion equation.

The possible occurrence of negative heat production has been observed as a side effect of
the numerical experiments illustrating the variance reduction. We do not have any convincing
physical explanation for the bulk case. However, in the case of the diode, this observation might
be related to the Peltier effect, which occurs at the junction of two different materials, where heat
may be either generated or absorbed.
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