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ABSTRACT. This paper deals with the computation of regular coderivatives of solution maps associated
with a frequently arising class of generalized equations. The constraint sets are given by (not necessar-
ily convex) inequalities, and we do not assume linear independence of gradients to active constraints.
The achieved results enable us to state several versions of sharp necessary optimality conditions in
optimization problems with equilibria governed by such generalized equations. The advantages are
illustrated by means of examples.

1. INTRODUCTION

The main object of this study is local analysis of solutions to the parameter-dependent generalized
equation (GE)

(1) 0 ∈ F (x, y) + N̂Γ(y),

where x ∈ Rn is the parameter, y ∈ Rm is the decision variable, F : Rn × Rm → Rm is
a continuously differentiable mapping and N̂Γ(y) stands for the regular normal cone to a closed,
not necessarily convex set Γ ⊆ Rm at y, cf. Definition 2.1. If Γ is convex, then (1) amounts to a
standard variational inequality of the first kind. In the form of GE (1), one can model a large variety of
parameter-dependent equilibrium problems ranging from parametric optimization over Nash equilibria,
second-order cone programs up to discretized contact problems from continuum mechanics.

We denote throughout the text by S the solution map to (1) defined by

(2) S(x) := {y|0 ∈ F (x, y) + N̂Γ(y)},

which assigns the corresponding set of equilibria to each value of the parameter x. Our main aim
in this paper is to analyze the local behavior of S around a certain reference point (x̄, ȳ) from the
graph of S. Such analysis is useful both in the so-called post-optimal analysis, where one examines
the dependence of an equilibrium on (a part of) problem data, as well as in mathematical programs
with equilibrium constraints (MPECs), where (1) arises as a part of the constraint system. It may be
useful also in numerical analysis, where the parameter could express, e.g., the accuracy with which
the Karush-Kuhn-Tucker (KKT) condition is used as the stopping criterion in a numerical method.

Local analysis of solution maps belongs to the core of problems of modern variational analysis and has
been studied in connection with similar models in a large amount of papers and many monographs
since 1968 ([4]). From the recently published advanced monographs, we highlight the monographs
[21, 12, 3]. Further results can be found in [11], [17] and [1], where the motivation comes from the
mentioned MPECs. In this paper, our main tool is the notion of regular coderivative (Def. 2.3). This is
the main difference with respect to the papers [10], [13] in which similar models are analyzed with the
help of limiting coderivatives (Def. 2.4). We place a special amount of emphasis on the case in which
Γ is given via inequalities and the formula for NΓ(·) involves non-unique multipliers.

The paper is structured as follows. The preliminary Section 2 contains definitions and some basic
auxiliary results used throughout the following sections. Section 3 contains our main results. Under the
Mangasarian-Fromowitz constraint qualification (MFCQ), constant rank qualification condition (CRCQ)
and the Strong Second-Order Sufficient Condition, we compute the desired regular coderivative of S
either exactly or we provide a tight upper estimate of it in dependence on the properties of F and Γ.
These results enable us, among other things, to obtain new sharp optimality conditions for a class of
MPECs.

In Section 4, the Strong Second-Order Sufficient Condition is omitted, but one has to require the
surjectivity of ∇xF (x̄, ȳ). The resulting formula could again be applied to a class of MPECs where,
however, no other conditions on x and y can be imposed. Both sections depend heavily on a conse-
quence of [18, Theorem 2] which is our main reference and will be stated in the next section.
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Our notation is basically standard. Gr Φ is the graph of a multifunction Φ, f ′ (x;h) denotes the direc-
tional derivative of a single-valued mapping f at x in direction h and K0 stands for the negative polar
to a cone K . For a finite set I , #I denotes its cardinality.

2. DEFINITIONS AND PRELIMINARIES

In order to proceed with the statement of some necessary preliminary results we will need to define
a few standard notions from variational analysis. Let C ⊆ Rm be a nonempty closed subset and
x ∈ C . Then we define the contingent or Bouligand cone by

TC(x) := {d ∈ Rm |∃tk ↓ 0, dk → d : x+ tkdk ∈ C, ∀k} .
Analogously to similar constructions in classical convex analysis, we use the contingent cone TC(x)
to define the so-called regular or Fréchet normal cone.

Definition 2.1. For C ⊆ Rm be a nonempty closed subset and x ∈ C , the regular or Fréchet normal
cone is defined by

N̂C(x) := TC(x)0,

i.e., the regular normal cone to C at x is defined as the polar cone of the contingent cone TC(x).

Note that one can also define the regular normal cone by

N̂C(x) :=

v ∈ Rm

∣∣∣∣∣∣lim sup
x′→x
x′∈C

〈v, x′ − x〉
||x′ − x||

≤ 0

 .

The regular normal cone is then used to introduce another important normal cone.

Definition 2.2. Let C ⊆ Rm be a nonempty closed subset and x̄ ∈ C , then the so-called limiting or
Mordukhovich normal cone is defined by

NC(x̄) := Lim sup
x→x̄
x∈C

N̂C(x).

where “ Lim sup” represents the Painlevé-Kuratowski upper-limit, cf. [12, formula (1.1)].

We mention that both these cones coincide with the normal cone from convex analysis when C is
convex.

The two notions of normal cones are often used to define two types of generalized (co)derivatives of
special interest in this paper.

Definition 2.3. Let Φ : Rn ⇒ Rm be an arbitrary multifunction and suppose (x, y) ∈ Gr Φ. Then
we define the regular coderivative of Φ at (x, y) in direction y∗ by

D̂∗Φ(x, y)(y∗) :=
{
x∗ ∈ Rn

∣∣∣(x∗,−y∗) ∈ N̂Gr Φ(x, y)
}
.

Similar to the above, we have a limiting concept for coderivatives as well.

Definition 2.4. Let Φ : Rn ⇒ Rm be an arbitrary multifunction and suppose (x, y) ∈ Gr Φ. The
limiting coderivative of Φ can then be defined by

D∗Φ(x̄, ȳ)(ȳ∗) := Lim sup
(x,y)→(x̄,ȳ)
(x,y)∈Gr Φ
y∗→ȳ∗

D̂∗Φ(x, y)(y∗)

or equivalently by using the limiting normal cone to Gr Φ:

D∗Φ(x̄, ȳ)(ȳ∗) := {x̄∗ ∈ Rn |(x̄∗,−ȳ∗) ∈ NGr Φ(x̄, ȳ)} .
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If Φ is single-valued, we write simply D̂∗Φ(x)(y∗), D∗Φ(x)(y∗). We refer the reader to the mono-
graphs [21] and [12] for more on these concepts.

The following theorem recalls a basic transformation formula for coderivatives ([12, Theorem 1.127]):

Theorem 2.1. Let C = g−1(Ξ), where g : Rk → Rl is twice continuously differentiable and Ξ ⊆ Rl

is some closed subset. Consider points z̄ ∈ C and v̄ ∈ NC(z̄). If the Jacobian ∇g(z̄) is surjective,
then

(3) D∗NC(z̄, v̄)(v∗) =

(
l∑

i=1

µ̄i∇2gi(z̄)

)
v∗ + (∇g (z̄))T D∗NΞ (g(z̄), µ̄) (∇g (z̄) v∗) .

Here, µ̄ is the unique solution of the equation∇Tg(z̄)µ = v̄.

In the special case, when Ξ := {0}t × Rl−t
− (t ≤ l) serves to model a finite set of smooth equality

and inequality constraints, (3) reduces to

(4) D∗NC(z̄, v̄)(v∗) =

(
l∑

i=1

µ̄i∇2gi(z̄)

)
v∗ + (∇g (z̄))T (A1 × · · · × Al),

where the sets Ai ⊆ R are given by

Ai = D∗N{0} (0, µ̄i) (∇gi (z̄) v∗) =

{
R if∇gi (z̄) v∗ = 0
∅ else

(i = 1, . . . t),

Ai = D∗NR− (gi(z̄), µ̄i) (∇gi (z̄) v∗) =
{0} if gi (z̄) < 0
R if gi (z̄) = 0, µ̄i ≥ 0 and∇gi (z̄) v∗ = 0
∅ if gi (z̄) = 0, µ̄i > 0 and∇gi (z̄) v∗ 6= 0
{0} if gi (z̄) = µ̄i = 0 and∇gi (z̄) v∗ < 0
R+ if gi (z̄) = µ̄i = 0 and∇gi (z̄) v∗ > 0.

(i = t+ 1, . . . l)

In this special structure for Ξ, we can replace the surjectivity condition required in Theorem 2.1 by the
weaker Linear Independence Constraint Qualification (LICQ) at z̄. In this condition, one requires that
the gradients∇gi (z̄) are linearly independent for all i such that gi (z̄) = 0.

Throughout the whole paper, we will specify the set Γ in (1) as

(5) Γ = {y ∈ Rm|q(y) ∈ Rs
−},

where the mapping q : Rm → Rs is twice continuously differentiable. Let ȳ ∈ Γ. We say that Γ fulfills
the MFCQ at ȳ, provided

(∇q(ȳ))Tλ = 0

λ ≥ 0

〈q(ȳ), λ〉 = 0

⇒ λ = 0.

It is well known (cf., e.g., [21, Exercise 10.26]) that under MFCQ there is a neighborhoodN of ȳ such
that

NΓ(y) = (∇q(y))TNRs
−

(q(y))

for all y ∈ N . Since NΓ(y) ⊃ N̂Γ(y) by the definition,

N̂Γ(y) ⊃ (∇q(y))T N̂Rs
−

(q(y))

by virtue of [21, Theorem 6.14] and N̂Rs
−

(q(y)) = NRs
−

(q(y)), it follows that

N̂Γ(y) = (∇q(y))TNRs
−

(q(y)) =
{

(∇q(y))Tλ|q(y) ≤ 0, λ ≥ 0, 〈q(y), λ〉 = 0
}



4

for all y ∈ N . This enables us to replace the GE (1) for our purposes by the GE

(6) 0 ∈ F (x, y) + (∇q(y))TNRs
−

(q(y)),

or by the KKT system

(7) 0 = L(x, y, λ), q(y) ≤ 0, λ ≥ 0, 〈q(y), λ〉 = 0,

where

L(x, y, λ) := F (x, y) + (∇q(y))Tλ

is the Lagrangian, associated with the GE (1).

The critical cone to Γ at y with respect to a vector v ∈ Rm is given by

C(y, v) := TΓ(y) ∩ (v)⊥.(8)

Assume that the MFCQ is fulfilled at ȳ, y is sufficiently close to ȳ, and let (x, y, λ) be a feasible triple
with respect to (7). In the usual way we associate with (y, λ) the index sets

I(y) := {i ∈ {1, 2, . . . , s}|qi(y) = 0},
I+(y, λ) := {i ∈ I(y)|λi > 0},
I0(y, λ) := I(y) \ I+(y, λ)

of active, strongly active and weakly active inequalities, respectively. Then it can easily be shown that
the critical cone to Γ at y with respect to F (x, y), denoted henceforth by K(x, y), amounts to

K(x, y) = C(y, F (x, y)) = TΓ(y) ∩ {F (x, y)}⊥ =

{v ∈ Rm|∇q(y)v ∈ TRs
−

(q(y)) ∩ {λ}⊥} =(9)

{v|〈∇qi(y), v〉 = 0 for i ∈ I+(y, λ), 〈∇qi(y), v〉 ≤ 0 for i ∈ I0(y, λ)}.

By the definition, this cone is independent of a concrete choice of the multiplier λ and, in this situation,
it also does not depend on x.

In Theorem 2.2 below we will employ also another constraint qualification. We say that the constant
rank qualification condition (CRCQ) holds at ȳ, provided there is a neighborhoodM of ȳ such that for
any subsets I of I(ȳ), the family of gradients {∇qi(y)|i ∈ I} has the same rank for all y ∈M.

Note that (MFCQ) and (CRCQ) are independent in the sense that they do not imply each other.

Theorem 2.2. Consider the GE (1) with Γ given by (5) around a reference point (x̄, ȳ) ∈ GrS.
Assume that

: (i) Γ fulfills MFCQ and CRCQ at ȳ;
: (ii) For each λ satisfying (7) with (x, y) = (x̄, ȳ), and each v 6= 0 such that 〈∇qi(ȳ), v〉 = 0 if
i ∈ I+(ȳ, λ),

〈v,∇yL(x̄, ȳ, λ)v〉 > 0.

: (iii) either all functions qi are convex or F (x, y) amounts to the partial gradient with respect to
the second variable of a function ϕ : Rn × Rm → R.

Then the following statements hold.

: (1) S admits a single-valued Lipschitz localization at (x̄, ȳ), i.e., there are neighborhoods U of
x̄, V of ȳ and a Lipschitz function σ : U → V such that

σ(x̄) = ȳ and S(x) ∩ V = {σ(x)} for x ∈ U .
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: (2) For each x ∈ U , d ∈ Rn, σ is directionally differentiable at x in the direction d, and
σ′(x; d) = v, the unique solution of the GE

(10) 0 ∈ ∇xF (x, y)d+∇yL(x, y, µ)v +NK(x,y)(v),

where y = σ(x) and µ is an associated multiplier in the sense of (7).

Proof. Consider first the case when the functions qi are convex. Statement (1) then follows from [11,
Theorem 4.2.16], because (ii) implies the so-called strong coherent orientation condition (used in that
result). Statement (2) follows from [11, Theorem 4.2.25], because q does not depend on x and (ii)
implies the uniqueness of solutions to (10) for all d ∈ Rn. In the nonconvex case the statement goes
back to [18, Theorem 2 and Corollary 4]. �

Remark 2.1. According to the assumption (iii) one can distinguish between two cases. If the functions
qi are convex, then (1) amounts to the standard parameter-dependent VI of the first kind. Otherwise,
(1) is a stationarity condition of the parametric nonlinear program (NLP)

(11)
minimize ϕ(x, y)
subject to
y ∈ Γ,

and for x ∈ U , σ(x) is an isolated minimizer of (11).

Condition (ii) is the already mentioned strong second-order sufficient condition used extensively in the
literature in connection with parametric problems.

3. WHEN S IS DIRECTIONALLY DIFFERENTIABLE

We start with the following simple statement:

Proposition 3.1. Consider a mappingH : Rp → Rq which is Lipschitz and directionally differentiable
on a neighborhood U of ū. Then,

D̂∗H(u)(y∗) = D̂∗Hu(0)(y∗) ∀y∗ ∈ Rq ∀u ∈ U ,

whereHu(·) = H ′(u; ·).

Proof. It suffices to observe that, under the imposed assumptions, for ũ ∈ U and ṽ = H (ũ) one has
TGrH (ũ, ṽ) = GrHũ . Consequently,

N̂GrH (ũ, ṽ) = (TGrH (ũ, ṽ))0

= {(u∗, v∗)| 〈u∗, d〉+ 〈v∗, h〉 ≤ 0 ∀(d, h) ∈ TGrH (ũ, ṽ)}
= {(u∗, v∗)| 〈u∗, d〉+ 〈v∗,Hũ(d)〉 ≤ 0 ∀d} .

On the other hand,

N̂GrHũ
(0, 0) = {(u∗, v∗)| 〈u∗, d〉+ 〈v∗, h〉 ≤ o(‖(d, h)‖) ∀(d, h) ∈ GrHũ}

= {(u∗, v∗)| 〈u∗, d〉+ 〈v∗,Hũ(d)〉 ≤ õ(‖d‖) ∀d}



6

by virtue of the Lipschitz continuity ofHũ. It follows, due to the positive homogeneity ofHũ, that

N̂GrHũ
(0, 0) =

{
(u∗, v∗)

∣∣∣∣lim sup
d→0,d6=0

[〈
u∗,

d

‖d‖

〉
+

〈
v∗,Hũ(

d

‖d‖
)

〉]
≤ 0

}
=

{
(u∗, v∗)

∣∣∣∣∣lim sup
‖z‖=1

[〈u∗, z〉+ 〈v∗,Hũ(z)〉] ≤ 0

}
= {(u∗, v∗)| 〈u∗, z〉+ 〈v∗,Hũ(z)〉 ≤ 0 ∀z} .

This proves the assertion. �

Corollary 3.1. For all ȳ∗ ∈ Rq

D∗H(ū)(ȳ∗) = Limsup
u→ū,y∗→ȳ∗

D̂∗Hu(0)(y∗).

Thus in some situations, the statement above enables us to replace a difficult single-valued mapping
by a simpler one when computing coderivatives. In this section we exploit this idea for the solution
mapping S on the basis of Theorem 2.2.

Theorem 3.1. Under the assumptions of Theorem 2.2 let λ̄ be an arbitrary multiplier satisfying condi-
tions (7) with (x, y) = (x̄, ȳ). Then for all y∗ ∈ Rm one has that

D̂∗S(x̄, ȳ)(y∗) ⊇(12) {
(∇xF (x̄, ȳ))T b|0 ∈ y∗ +

(
∇yL(x̄, ȳ, λ̄)

)T
b+K0(x̄, ȳ), −b ∈ K(x̄, ȳ)

}
,

where

K(x̄, ȳ) =
{
v ∈ Rm| 〈∇qi(ȳ), v〉 = 0 for i ∈ I+(ȳ, λ̄), 〈∇qi(ȳ), v〉 ≤ 0 for i ∈ I0(ȳ, λ̄)

}
.

If in addition the inclusion

(13) ∇yL(x̄, ȳ, λ̄)K(x̄, ȳ) ⊆ Im∇xF (x̄, ȳ)

is satisfied, then (12) holds as an equality.

Proof. Referring back to the single-valued Lipschitz localization σ of S in statement (1) of Theo-
rem 2.2, we observe that N̂GrS = N̂Grσ locally around (x̄, ȳ). By Proposition 3.1, N̂Grσ(x̄, ȳ) =

N̂Grσ′(x̄;·)(0, 0) and so it remains to compute N̂Grσ′(x̄;·)(0, 0). According to (10), we have that

(14) Grσ′(x̄; ·) = G−1GrNK(x̄,ȳ),

where G is the linear mapping defined by

(15) G(d, v) :=

[
0 I

−∇xF (x̄, ȳ) −∇yL(x̄, ȳ, λ̄)

](
d
v

)
.

Moreover, since K(x̄, ȳ) is a polyhedral cone, it holds that (see [2, Proof of Th. 2])

N̂GrNK(x̄,ȳ)
(0, 0) = K0(x̄, ȳ)×K(x̄, ȳ).

We now invoke [21, Theorem 6.14], according to which

N̂Grσ′(x̄;·)(0, 0) ⊇ [∇G (0, 0)]T N̂GrNK(x̄,ȳ)
(0, 0)

=

[
0 − (∇xF (x̄, ȳ))T

I −
(
∇yL(x̄, ȳ, λ̄)

)T ] (K0(x̄, ȳ)×K(x̄, ȳ)
)

= {(− (∇xF (x̄, ȳ))T b, s)|b ∈ K(x̄, ȳ),

s ∈ −
(
∇yL(x̄, ȳ, λ̄)

)T
b+K0(x̄, ȳ)}.

This shows inclusion (12).
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To verify the reverse inclusion under the additional condition (13), let x∗ ∈ D̂∗S(x̄, ȳ)(y∗) be arbitrary.
By definition,

(16) 〈x∗, d〉 − 〈y∗, v〉 ≤ 0 ∀ (d, v) ∈ TGrS(x̄, ȳ).

Since TGrS = TGrσ locally around (x̄, ȳ) and TGrσ(x̄, ȳ) = Grσ′(x̄; ·), as already stated in the
beginning of the proof of Proposition 3.1, (14) provides that TGrS(x̄, ȳ) = G−1GrNK(x̄,ȳ). Recalling
that

GrNK(x̄,ȳ) = {(r, s) ∈ K(x̄, ȳ)×K0(x̄, ȳ)| 〈r, s〉 = 0}
because K(x̄, ȳ) is a convex cone, we derive that

(17) TGrS(x̄, ȳ) =

(d, v)

∣∣∣∣∣∣
v ∈ K(x̄, ȳ)
−∇xF (x̄, ȳ)d−∇yL(x̄, ȳ, λ̄)v ∈ K0(x̄, ȳ)〈
v,∇xF (x̄, ȳ)d+∇yL(x̄, ȳ, λ̄)v

〉
= 0

 .

Clearly, 0 ∈ K(x̄, ȳ), hence (16) and (17) entail that

〈x∗, d〉 ≤ 0 ∀d : −∇xF (x̄, ȳ)d ∈ K0(x̄, ȳ).

As a consequence,

x∗ ∈
[
−(∇xF (x̄, ȳ))−1K0(x̄, ȳ)

]0
= − (∇xF (x̄, ȳ))T K(x̄, ȳ).

Therefore,

(18) x∗ = − (∇xF (x̄, ȳ))T ū

for some ū ∈ K(x̄, ȳ). This allows us to write (16) as

(19)
〈
− (∇xF (x̄, ȳ))T ū, d

〉
− 〈y∗, v〉 ≤ 0 ∀ (d, v) ∈ TGrS(x̄, ȳ).

Now, fixing an arbitrary v ∈ K(x̄, ȳ), condition (13) yields the existence of some dv such that
−∇yL(x̄, ȳ, λ̄)v = ∇xF (x̄, ȳ)dv. It follows from (17) that (dv, v) ∈ TGrS(x̄, ȳ), whence (19) yields
that

0 ≥
〈
− (∇xF (x̄, ȳ))T ū, dv

〉
− 〈y∗, v〉 = 〈−ū,∇xF (x̄, ȳ)dv〉 − 〈y∗, v〉

=
〈
ū,∇yL(x̄, ȳ, λ̄)v

〉
− 〈y∗, v〉 =

〈(
∇yL(x̄, ȳ, λ̄)

)T
ū− y∗, v

〉
.

As v ∈ K(x̄, ȳ) was arbitrary, we get that
(
∇yL(x̄, ȳ, λ̄)

)T
ū− y∗ ∈ K0(x̄, ȳ). Along with (18) this

last relation yields that x∗ belongs to the set on the right-hand side of inclusion (12). �

Corollary 3.2. Consider the setting of Theorem 2.2 and let λ̄ be an arbitrary multiplier satisfying
conditions (7) with (x, y) = (x̄, ȳ). If∇xF (x̄, ȳ) is surjective, then one has for all y∗ ∈ Rm that

D̂∗S(x̄, ȳ)(y∗) =(20) {
(∇xF (x̄, ȳ))T b|0 ∈ y∗ +

(
∇yL(x̄, ȳ, λ̄)

)T
b+K0(x̄, ȳ), −b ∈ K(x̄, ȳ)

}
.

We emphasize that condition (13) allows us via Theorem 3.1 to relax the surjectivity of∇xF (x̄, ȳ) as
required in Corollary 3.2. This is illustrated in the following example:

Example 3.1. Consider the solution mapping S of the following parametric convex optimization prob-
lem

min
{
y2

1 + y2
2 + xy1|y2 ≥ 1

}
.

Clearly, S can be equivalently described by the GE (1), where

F (x, y1, y2) =

(
2y1 + x

2y2

)
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and Γ is of the form (5) with q(y1, y2) = 1− y2. Let us consider the reference point

(x̄, ȳ1, ȳ2) = (0, 0, 1) ∈ GrS.

Note that all assumptions of Theorem 2.2 are fulfilled. One easily checks that K (x̄, ȳ1, ȳ2) = R ×
{0}. Moreover,

∇yF (x̄, ȳ1, ȳ2) = 2I, ∇xF (x̄, ȳ1, ȳ2) =
(

1
0

)
.

It follows that condition (13) is satisfied no matter what the choice of λ̄ is:

∇yL(x̄, ȳ, λ̄)K(x̄, ȳ) = ∇yF (x̄, ȳ1, ȳ2)K(x̄, ȳ) = R× {0} = Im∇xF (x̄, ȳ).

On the other hand,∇xF (x̄, ȳ1, ȳ2) fails to be surjective.

Now, from the last statement of Theorem 3.1, it follows that

D̂∗S(x̄, ȳ)(y∗) =

{
−y
∗
1

2

}
.

If condition (13) is violated, we have to confine ourselves to the following upper estimate of D̂∗S(x̄, ȳ):

Theorem 3.2. Consider the setting of Theorem 2.2 with λ̄ being an arbitrary multiplier satisfying (7)
for (x, y) = (x̄, ȳ). Then, for all y∗ ∈ Rm,

D̂∗S(x̄, ȳ)(y∗) ⊆(21) {
(∇xF (x̄, ȳ))T b|0 ∈ y∗ +

(
∇yL(x̄, ȳ, λ̄)

)T
b+D∗NK(x̄,ȳ)(0, 0)(b)

}
.

Proof. Using the same arguments as in the beginning of the proof of Theorem 3.1 we have that

N̂GrS(x̄, ȳ) = N̂Grσ′(x̄;·)(0, 0).

In order to estimate the right-hand side of the last equation, we apply a calculus rule from [6, Th. 4.1]
yielding

N̂Grσ′(x̄;·)(0, 0) ⊆

[
0 − (∇xF (x̄, ȳ))T

I −
(
∇yL(x̄, ȳ, λ̄)

)T ]NGrNK(x̄,ȳ)
(0, 0)

and we are done. Note that the mentioned calculus rule requires the so-called calmness property (see,
e.g., [21] p.399) of the multifunction

M(p) :={
(d, v) ∈ Rn × Rm

∣∣∣∣( v
−∇xF (x̄, ȳ)d−∇yL(x̄, ȳ, λ̄)v

)
− p ∈ GrNK(x̄,ȳ)

}
.

This property is satisfied because NK(x̄,ȳ) is a polyhedral mapping (cf. [19]). �

Due to the polyhedrality of K(x̄, ȳ) an exact computation of D∗NK(x̄,ȳ)(0, 0) is possible even if the
inequalities defining K(x̄, ȳ) are linearly dependent. We return to this question at the end of this
section.

For some applications it is convenient to extend the preceding result to the mapping S̃ : Rn ⇒ Rm

defined by

(22) S̃ (x) :=

{
S(x) if x ∈ ω
∅ otherwise,

where ω ⊆ Rn is a nonempty closed set. Clearly, Gr S̃ =Gr S ∩ (ω × Rm).
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Theorem 3.3. Consider the setting of Theorem 3.2 and the mapping S̃ given by (22). Then, for all
y∗ ∈ Rm,

D̂∗S̃(x̄, ȳ)(y∗) ⊆(23) {
(∇xF (x̄, ȳ))T b+Nω(x̄)|0 ∈ y∗ +

(
∇yL(x̄, ȳ, λ̄)

)T
b+D∗NK(x̄,ȳ)(0, 0)(b)

}
.

Proof. Let y∗ be arbitrary and x∗ ∈ D̂∗S̃(x̄, ȳ)(−y∗). By virtue of [21, Th. 6.11], there is a smooth
function ϕ : Rn × Rm → R such that ϕ attains its global minimum over Gr S̃ at (x̄, ȳ) and
∇ϕ(x̄, ȳ) = − (x∗, y∗). By virtue of the standard optimality condition one has thus(

x∗

y∗

)
∈ N̂GrS̃(x̄, ȳ).

This is equivalent to stating that

〈−x∗, d〉+ 〈−y∗, v 〉≥ 0 for all (d, v) ∈ TGr S̃(x̄, ȳ),

i.e., (0, 0) is a solution to the optimization problem

(24) min {〈−x∗, d〉+ 〈−y∗, v〉 | (d, v) ∈ TGr S̃(x̄, ȳ)} .

From the properties of S stated in Theorem 2.2 one can easily infer that

TGr S̃(x̄, ȳ) = {(d, v) ∈ TGrS(x̄, ȳ) | d ∈ Tω(x̄)},
cf., e.g., [15]. Further recall that TGrS(x̄, ȳ) = TGrσ(x̄, ȳ) = Grσ′(x̄; ·) so that, on the basis of
Theorem 2.2, problem (24) amounts to the (linearized) MPEC

(25)
minimize 〈−x∗, d〉+ 〈−y∗, v〉
subject to

0 ∈ ∇xF (x̄, ȳ)d+∇yL(x̄, ȳ, λ̄)v +NK(x̄,ȳ)(v), d ∈ Tω(x̄).

It remains to write down the standard M-stationarity conditions for (25) at (0, 0). To this end, observe
that K(x̄, ȳ) is a polyhedral cone with vertex at 0 and the critical cone to K(x̄, ȳ) at 0 with respect
to 0 is again K(x̄, ȳ). Since∇yL(x̄, ȳ, λ̄) is strictly copositive with respect to K(x̄, ȳ)−K(x̄, ȳ) by
virtue of assumption (ii) in Theorem 2.2, it follows e.g. from [17, Theorem 5.4] that the GE in (25) is
strongly regular at (0, 0) ([20]). One can thus invoke [14, Proposition 3.2] ensuring that the standard
qualification condition

(∇xF (x̄, ȳ))T c ∈ −NTω(x)(0)

0 ∈ (∇yL(x̄, ȳ, λ̄))T c+D∗NK(x̄,ȳ)(0, 0)(c)

}
⇒ c = 0

is fulfilled. Thus, by [14, Theorem 3.1], there is an MPEC multiplier b ∈ Rm such that

x∗ ∈ (∇xF (x̄, ȳ))T b+NTω(x̄) (0)

y∗ ∈
(
∇yL(x̄, ȳ, λ̄)

)T
b+D∗NK(x̄,ȳ)(0, 0)(b).

Since NTω(x̄) (0) ⊆ Nω(x̄) (see [21, Prop. 6.27]), the statement has been proved. �

Based on the previous result, we are now able to state the following new necessary optimality condi-
tions for the MPEC

(26) min
{
f(x, y)|0 ∈ F (x, y) + N̂Γ(y), x ∈ ω

}
,

where f : Rn × Rm → R is continuously differentiable, ω ⊆ Rn is closed and the generalized
equation in (26) satisfies all assumptions of Theorem 2.2.
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Theorem 3.4. Consider the MPEC (26) under the assumptions listed above and assume that (x̄, ȳ)
is its (local) solution. Then there exists an MPEC multiplier b̄ ∈ Rm, such that

0 ∈ ∇xf(x̄, ȳ) + (∇xF (x̄, ȳ))T b̄+Nω (x̄)(27)

0 ∈ ∇yf(x̄, ȳ) +
(
∇yL(x̄, ȳ, λ̄)

)T
b̄+D∗NK(x̄,ȳ)(0, 0)(b̄),(28)

where λ̄ is an arbitrary multiplier satisfying the KKT conditions (7) with (x, y) = (x̄, ȳ).

Proof. The assertion follows immediately from the standard optimality condition

0 ∈ ∇f(x̄, ȳ) + N̂Gr S̃(x̄, ȳ)

by invoking the inclusion (23). �

In the MPEC theory there are several stationarity concepts among which the M - and S-stationarity
play a prominent role. When equilibria governed by (1) are considered, M -stationarity conditions
involve the limiting coderivative of the multi-valued part (D∗NΓ(ȳ,−F (x̄, ȳ))) whereas in the S-
stationary conditions the respective regular coderivative arises. Both conditions differ substantially
also in the imposed qualification conditions which are typically stronger in the case of S-stationarity.
We refer the reader to [22], [12] and [5] for a deeper discussion on this subject.

In theM -stationarity conditions for MPEC (26) (which hold under weaker assumptions compared with
Theorem 3.4), the inclusion (28) in the statement of Theorem 3.4 is replaced by

(29) 0 ∈ ∇yf(x̄, ȳ) + (∇yF (x̄, ȳ))T d̄+D∗NΓ(ȳ,−F (x̄, ȳ))(d̄),

where d̄ ∈ Rm is a counterpart of the MPEC multiplier b̄. The following Proposition shows that (29)
and (28) are equivalent in case that Γ satisfies LICQ. In the absence of LICQ - which is not required
in Theorem 3.4, the coderivative D∗NK(x̄,ȳ)(0, 0) can be still evaluated exactly in (28), whereas the
coderivative D∗NΓ(ȳ,−F (x̄, ȳ)) in (29) may be hard to evaluate at least exactly. An instance of this
situation will be illustrated in Example 3.2 following this proposition.

Proposition 3.2. Consider the setting of Theorem 3.4 and assume that the constraint system defining
Γ fulfills LICQ at ȳ. Then, for any b ∈ Rm one has

D∗NΓ(ȳ,−F (x̄, ȳ))(b) =
s∑
i=1

λ̄i∇2qi(ȳ)b+D∗NK(x̄,ȳ)(0, 0)(b),

where λ̄ is the unique solution of the equation (∇q(ȳ))T λ = −F (x̄, ȳ).

Proof. Note first that the local structure of Γ and, hence,D∗NΓ(ȳ,−F (x̄, ȳ)) do not depend on com-
ponents qi which are inactive at ȳ. Similarly, K(x̄, ȳ) and, hence, D∗NK(x̄,ȳ)(0, 0) are only defined
via the components qi which are active at ȳ (see (9)). Therefore, we may assume without loss of
generality that q(ȳ) = 0. Due to LICQ, one has by (4) (with l = s, t = 0 and g = q),

(30) D∗NΓ(ȳ,−F (x̄, ȳ))(b) =
s∑
i=1

λ̄i∇2qi(ȳ)b+ (∇q(ȳ))T (A1 × · · · × As),

where, for i = 1, . . . , s,

Ai = D∗NR−
(
0, λ̄i

)
(∇qi(ȳ)b) =


R if λ̄i ≥ 0 and∇qi (ȳ) b = 0
∅ if λ̄i > 0 and∇qi (ȳ) b 6= 0
{0} if λ̄i = 0 and∇qi (ȳ) b < 0
R+ if λ̄i = 0 and∇qi (ȳ) b > 0.

On the other hand, since Γ fulfills LICQ at ȳ, the same holds true for K(x̄, ȳ) in its description (9).
Hence, we may apply the same formula (4) with l = s, t = #I+(ȳ, λ̄) and g (·) = ∇q (ȳ) (·).
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Observing, that ∇g ≡ ∇q (ȳ), it follows that ∇2g ≡ 0. Moreover, g (0) = 0, and the uniquely
defined (by LICQ) multiplier µ̄ satisfying

∇Tg(0)µ = ∇T q(ȳ)µ = 0

is µ̄ = 0 due to LICQ. Therefore,

(31) D∗NK(x̄,ȳ)(0, 0)(b) = (∇q(ȳ))T (B1 × · · · ×Bs),

where, for i = 1, . . . ,#I+(ȳ, λ̄) (so that λ̄i > 0),

Bi = D∗N{0} (0, 0) (∇qi(ȳ)b) =

{
R if∇qi (ȳ) b = 0
∅ else

,

and, for i = #I+(ȳ, λ̄) + 1, . . . , s (so that λ̄i = 0),

Bi = D∗NR− (0, 0) (∇qi(ȳ)b) =

 {0} if∇qi (ȳ) b < 0
R+ if∇qi (ȳ) b > 0
R if∇qi (ȳ) b = 0

.

By comparison, it follows thatAi = Bi for all i. Now, combining (30) and (31) yields the assertion. �

The following example illustrates some advantages of the conditions in Theorem 3.4.

Example 3.2. Consider the MPEC

(32)

minimize −x+ 4y3

subject to

0 ∈ y −

 1
0
x

+NΓ(y), x ∈ R, y ∈ R3,

where

(33) Γ =

y ∈ R3

∣∣∣∣∣∣∣∣


y2
1 + y1 − y3

y2
1 − y1 − y3

y2
2 + y2 − y3

y2
2 − y2 − y3

 ∈ R4
−

 ,

Out[1]=

FIGURE 1. Illustration of the feasible set Γ defined by (33) and of the critical cone K(x̄, ȳ).

(see Fig. 1). It can easily be seen that (x̄, ȳ) = (−1, 0, 0, 0) is a solution of (32). This problem
satisfies all assumptions imposed in Theorem 3.4. In particular, MFCQ and CRCQ are fulfilled for Γ.
Since, however, LICQ is violated, a straightforward application of the standard M-stationarity condition
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(29) is not possible because the coderivativeD∗NΓ(ȳ,−F (x̄, ȳ)) in (29) is hard to evaluate exactly.
Note that also condition (13) is violated so that Theorem 3.1 cannot be applied. Clearly, the KKT
conditions (7) are fulfilled, e.g., with λ̄ = (1, 0, 0, 0),

∇xF (x̄, ȳ) =

 0
0
−1

 , ∇yL(x̄, ȳ, λ̄) =

 3 0 0
0 1 0
0 0 1

 ,

and

(34) K(x̄, ȳ) = {v ∈ R3|v1 = v3, v2 ≤ v3, −v2 ≤ v3}.
Since the equalities and inequalities in (34) fulfill the LICQ at (0, 0, 0), we can invoke (4) and deduce
that for all b ∈ R3

D∗NK(x̄,ȳ)(0, 0)(b) =

 1 0 0
0 1 −1
−1 −1 −1

 (A1 × A2 × A3),

where

A1 =

{
R if b1 = b3

∅ else
A2 =

{
R+ if b2 ≥ b3

{0} else
A3 =

{
R+ if b2 + b3 ≤ 0
{0} else.

.

Conditions (27) take the form

b3 = −1, 0 ∈

 0
0
4

+

 3 0 0
0 1 0
0 0 1

 b1

b2

b3

+

 d1

d2 − d3

−d1 − d2 − d3


with di ∈ Ai (i = 1, 2, 3). These conditions are fulfilled, e.g., with

b̄ = (−1, 0,−1)T , d̄ = (3, 0, 0)T .

Alternatively, one might be tempted to apply [14, Theorem 3.1] to the associated “enhanced” MPEC

(35)

minimize −x+ 4y3

subject to

0 ∈ y −

 1
0
x

+ (∇q (y))T λ, (λ, q (y)) ∈ GrNR4
+
,

at the “enhanced” solution (x̄, ȳ, λ̄) (where q is specified in (33)). It turns out, however, that the qual-
ification condition of this statement is violated. Another option would be to apply the upper estimate of
D∗S(x̄, ȳ) along the lines of [13, Theorem 3.1]. Since in that result one has to consider all multipliers
satisfying the respective condition (7), this way would result in a substantially weaker condition than
the one proposed here.

We note that in the previous example one could easily calculate the coderivative D∗NK(x̄,ȳ)(0, 0)
because the small dimension of m = 3 led to LICQ being satisfied for the critical cone K(x̄, ȳ) at
0 even if LICQ was violated for Γ. This can no longer be expected in larger dimension. In that case,
LICQ may be violated for K(x̄, ȳ) too, thus prohibiting the application of transformation formula (4).
Nonetheless, one may fall back on a transformation formula for coderivatives working in the polyhedral
case without any constraint qualification ([9, Proposition 3.2]). Specifying this formula to the case of
the polyhedral critical cone K(x̄, ȳ), one would arrive at the following formula:

D∗NK(x̄,ȳ)(0, 0)(b) =

d
∣∣∣∣∣∣∣(d,−b) ∈

⋃
I+(ȳ,λ̄)⊆I1⊆I2⊆I(ȳ),CI2

6=∅

AI1,I2 × A0
I1,I2

 ,



13

where

AI1,I2 : =

{∑
i∈I2

µi∇T qi(ȳ)

∣∣∣∣∣µi ≥ 0 (i ∈ I2\I1)

}
CI2 : = {v|∇qi(ȳ)v = 0 (i ∈ I2), ∇qi(ȳ)v < 0 (i ∈ I (ȳ) \I2)} .

4. WHEN S IS NOT DIRECTIONALLY DIFFERENTIABLE

Consider again Γ given by (5) and assume that all functions qi are convex. Our first aim in this section
is the computation of N̂GrNΓ

at a pair (ȳ, v̄) ∈ GrNΓ. Let K denote the critical cone to Γ at ȳ with
respect to v̄, i.e.,

K = TΓ(ȳ) ∩ {v̄}⊥.

Proposition 4.1. Let v̄ ∈ NΓ(ȳ) and assume that both MFCQ and CRCQ hold at ȳ. Further, let λ be
an arbitrary multiplier satisfying conditions

(36) v̄ =
s∑
i=1

λi∇qi(ȳ), λ ≥ 0, 〈q(ȳ), λ〉 = 0.

Then

(37) N̂GrNΓ
(ȳ, v̄) =

{
(y∗, v∗) ∈ Rm × Rm|y∗ +

(∑s

i=1
λi∇2qi (ȳ)

)
v∗ ∈ K0, v∗ ∈ K

}
.

Proof. Put x̄ = ȳ+ v̄ and consider the graph of the projection mapping on Γ denoted by PΓ, at (x̄, ȳ).
A straightforward application of Corollary 3.2 to the GE

x ∈ y +NΓ(y)

yields the formula

N̂GrPΓ
(x̄, ȳ) =

{
(x∗, y∗) ∈ Rm × Rm|x∗ ∈ K, y∗ + ATx∗ ∈ K0

}
,

where A = I +
∑s

i=1 λi∇2qi (ȳ). Next we observe that

(y, v) ∈ GrNΓ ⇐⇒ (y + v, y) ∈ GrPΓ.

This allows us to invoke [12, Theorem 1.66], according to which

N̂GrNΓ
(ȳ, v̄) =

[
I I
I 0

]
N̂GrPΓ

(ȳ + v̄, ȳ)

=
{

(y∗, v∗) ∈ Rm × Rm|y∗ − v∗ + ATv∗ ∈ K0, v∗ ∈ K
}
,

which leads directly to (37). The statement has been established. �

By invoking [12, Theorem 1.66] once more, we can now compute the desired regular coderivative of
the solution mapping to (1) without assuming condition (ii) of Theorem 2.2.

Theorem 4.1. Consider the GE (1) with Γ given by (5), where all functions qi are convex. Let (x̄, ȳ) ∈
GrS and assume that Γ fulfills MFCQ and CRCQ at ȳ. Furthermore, suppose that ∇xF (x̄, ȳ) is
surjective. Then, formula (20) holds true.

Proof. Clearly, by the surjectivity of∇xF (x̄, ȳ), one has for all y∗ ∈ Rm

D̂∗S(x̄, ȳ)(y∗) =
{

(∇xF (x̄, ȳ))T b
∣∣∣

0 = y∗ + a+ (∇yF (x̄, ȳ))T b, (a,−b) ∈ N̂GrNΓ
(ȳ,−F (x̄, ȳ))

}
.
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The rest follows from (37) by putting v̄ = −F (x̄, ȳ) and from the fact that K = K(x̄, ȳ), given by
(9). �

Let us point out the difference in the assumptions of Theorems 3.1 and 4.1. While in the latter the
Strong Second-Order Sufficient Condition is not imposed, one has to pay the price of requiring the
convexity of all functions qi independently of F . Moreover, the surjectivity of ∇xF (x̄, ȳ) cannot be
replaced by the weaker condition (13) as imposed in Theorem 3.1. When (1) amounts to KKT condi-
tions of a parametric nonlinear program, then, roughly speaking, Theorem 3.1 requires a kind of strong
convexity of the objective, whereas Theorem 4.1 needs a convex constraint set.

On the basis of Theorem 4.1 we immediately obtain necessary optimality conditions for the MPEC

(38) min{f(x, y) | 0 ∈ F (x, y) +NΓ(y)},
where one does not have any non-equilibrium constraints.

Theorem 4.2. Let (x̄, ȳ) be a (local) solution of the MPEC (38), where f : Rn × Rm → R is
continuously differentiable near (x̄, ȳ) and the GE fulfills all assumptions made in Theorem 4.1. Then,
there is an MPEC multiplier b̄ ∈ −K(x̄, ȳ) such that

0 = ∇xf(x̄, ȳ) + (∇xF (x̄, ȳ))T b̄(39)

0 ∈ ∇yf(x̄, ȳ) +
(
∇yL(x̄, ȳ, λ̄)

)T
b̄+K0(x̄, ȳ),(40)

where λ̄ is an arbitrary multiplier satisfying conditions (7) with (x, y) = (x̄, ȳ).

Proof. The statement follows immediately from the standard optimality condition

0 ∈ ∇f(x̄, ȳ) + N̂GrS(x̄, ȳ)

by virtue of Theorem 4.1. �

These conditions correspond to the notion of S-stationarity as introduced in [22]. Their nature is illus-
trated by the next example.

Example 4.1. Consider the bilevel program

(41)
minimize y3 − 0.5x3

x1

subject to
0 ∈ x+NΓ(y), x, y ∈ R3,

where Γ is given in Example 3.2. Observe that the GE in (41) represents the necessary and sufficient
optimality conditions of the NLP

min{〈x, y〉 |y ∈ Γ}.
It can be easily verified that x̄ = (−1, 0, 1), ȳ = 0 is a local solution to (41). Note that the results of
Section 3 are not applicable because assumption (ii) of Theorem 2.2 is violated. On the other hand,
all assumptions of Theorem 4.2 are fulfilled. Clearly, the equality

0 = x̄+
∑4

i=1
λi∇qi (ȳ)

holds, for instance, with λ̄1 = 1, λ̄2 = λ̄3 = λ̄4 = 0. Conditions (39), (40) attain the form

(42) 0 =

 0.5
0

0.5

+ b̄; 0 ∈

 0
0
1

+

 2 0 0
0 0 0
0 0 0

 b̄+K0(x̄, ȳ).

Since b̄ := (−0.5, 0,−0.5)T belongs to −K(x̄, ȳ) and the second condition in (42) is fulfilled as
well, the pair (x̄, ȳ) satisfies the optimality condition of Theorem 4.2.
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5. CONCLUSIONS

We have considered a class of generalized equations with non-polyhedral constraint sets given by
inequalities under MFCQ, CRCQ and various additional conditions. In this setting we have provided
an exact formula for the regular coderivative of the respective solution map and, under weakened
assumptions, a tight upper estimate of it. These results have been utilized in various types of MPECs
and lead to various new sharp necessary optimality conditions. Some of them (e.g., Theorem 4.2)
are related to the notion of S-stationarity and extend thus the available results for equilibria governed
by complementarity problems. The conditions of Theorem 3.4, however, are closer to the notion of
M-stationarity and eliminate possible problems with qualification conditions arising in the standard
approach (cf., e.g., [14], [23]) in the absence of LICQ. Finally, we would like to stress the fact that many
of the previous results concerning formulae for the coderivative of the solution mapping to generalized
equations of the type considered here are formulated as inclusions in which the larger set is expressed
as the union over all (Lagrange) multipliers, which in the absence of LICQ can result in a poor estimate
of the true expression. The advantage of the results here is then evident, as only one multiplier is
required.
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and S. Scholtes who have motivated his interest in MPECs with non-unique lower-level multipliers.
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