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Abstract

We investigate a nonstandard phase field model of Cahn-Hilliard type. The model,
which was introduced in [16], describes two-species phase segregation and consists of
a system of two highly nonlinearly coupled PDEs. It has been studied recently in [5], [6] for
the case of homogeneous Neumann boundary conditions. In this paper, we investigate the
case that the boundary condition for one of the unknowns of the system is of third kind and
nonhomogeneous. For the resulting system, we show well-posedness, and we study opti-
mal boundary control problems. Existence of optimal controls is shown, and the first-order
necessary optimality conditions are derived. Owing to the strong nonlinear couplings in the
PDE system, standard arguments of optimal control theory do not apply directly, although
the control constraints and the cost functional will be of standard type.

1 Introduction

Let Q C IR® denote an open and bounded domain whose smooth boundary I' has outward
unit normal n, let 7" > 0 be a given final time, and let Q) := Q x (0,7), ¥ =1 x (0,7).
In this paper, we study the following initial-boundary value problem:

(e +2p)us + pp — App=0 a.e.in Q, (1.1)
opr —Ap+f'(p)=p aeinQ, (1.2)
dp o
8_n_0’ 8_n_a(u () a.e.ond, (1.3)
p(,0) = po(x), p(x,0)=po(z), forae x € (1.4)

The PDE system (1.1)—(1.2) constitutes a phase field model of Cahn-Hilliard type that describes
phase segregation of two species (atoms and vacancies, say) on a lattice in the presence of
diffusion. It has been introduced recently in [16] and [5]; for the general physical background,
we refer the reader to [16]. The unknown variables are the order parameter p, interpreted
as a volumetric density, and the chemical potential (.. For physical reasons, we must have
0 < p<1and p > 0 almost everywhere in (). The boundary (control) function u on the
right-hand side of (1.3) » plays the role of a microenergy source. Moreover, € and 9 are positive
constants, and the nonlinearity f is a double-well potential defined in (0, 1), whose derivative
f' is singular at the endpoints p = 0 and p = 1; a typical exampleis f = f; + fo, with f5
smooth and f1(p) = c(p log(p) + (1 — p) log(1 — p)), where c is a positive constant.

The PDE system (1.1)—(1.4) is singular, with highly nonlinear and nonstandard coupling. In
particular, unpleasant nonlinear couplings involving time derivatives occur in (1.1), and the ex-
pression f’(p) in (1.2) may become singular. In the recent papers [5], [6], well-posedness and
asymptotic behavior for ¢ — oo and € \, 0 of the system (1.1)—(1.4) were established for the



case when the second boundary condition in (1.3) is replaced by the homogeneous Neumann
boundary condition Op/0On = 0; a distributed optimal control problem for this situation was
analyzed in [7]. We also refer to the papers [3] and [4], where the corresponding Allen-Cahn
model was discussed.

The paper is organized as follows: in Section 2, we state the general assumptions and prove
the existence of a strong solution to the problem. Section 3 is concerned with the issues of
uniqueness and stability. Section 4 then brings the study of a boundary control problem for the
system (1.1)—(1.4). We show existence of a solution to the optimal control problem and derive
the first-order necessary optimality conditions, as usual given in terms of the adjoint system and
a variational inequality.

Throughout the paper, we make repeated use of Hélder’s inequality, of the elementary Young
inequality

1

ab§7a2+4—b2, for every a,b >0 and v > 0, (1.5)

Y

of the interpolation inequality
6 -6
vllzr@ < lvllzo@) Wlzaey Yo € LP(Q) N L),

0 1-46

where p,q,r € [1,+0], #€]0,1], and - =—- + —— | (1.6)
p q

S |

and, since dim {2 < 3, of the continuity of the embeddings HY(Q) C LYQ) for 1 < q <6,
where, with constants C, > 0 depending only on €2,

0]l Lag) < éq |ollgr) Yo e H'(Q), 1<¢<6, (1.7)

and where the embeddings are compact for 1 < ¢ < 6. We also use the Sobolev spaces
H?*(€2) of real order s > 0 and recall the compact embeddings H*({2) C HY(Q) and

H*(Q) C C(Q) for s > 1 and s > 3/2, respectively, and, e. g., the estimate, with a constant
C+ > 0 depending only on §2,

olle@ < Coolollize) Yo e HYQ). (1.8)

2 Problem statement and existence

Consider the initial-boundary value problem (1.1)—(1.4). For convenience, we introduce the ab-
breviated notation

H=L*Q), V=HY(Q), W={weH(Q): dw/On=00onT}.

We endow these spaces with their standard norms, for which we use self-explaining notation
like || - ||y ; for simplicity, we also write || - ||z for the norm in the space H x H x H . Recall
that the embeddings W C V' C H are compact. Moreover, since V' is dense in H, we can
identify H with a subspace of V* in the usual way, i.e., by setting (u, v)y«y = (u,v)y for
all w € H and v € V, where (-, )y« denotes the duality pairing between V* and V.
Then also the embedding H C V'* is compact.



We make the following assumptions on the data:
(A1) f = f1 + fo,where f; € C?(0,1) is convex, f» € C?[0,1], and

h{% fi(r) = —oo0, h}ri fi(r) = +oo. (2.1)

(A2) po € w, f/(p0> e H, Mo € V', and
0<po(z)<1l Ve, pu >0 ae.in Q. (2.2)
(A3) u € H*(0,T;L*(T")),and u > 0 a.e.on X.

(Ad) a € L*(I"), and a(z) > o > 0 for aimostevery x € I.

Notice that (A2) implies that pg € C'(€2) and, thanks to the convexity of f; , alsothat f(pg) €
H.

The following existence result resembles that of Theorem 2.1 in [5].

Theorem 2.1  Suppose that the hypotheses (A1)—(A4) are satisfied. Then the system (1.1)—
(1.4) has a solution (p, i) such that

pe W0, T; H)N H'(0,T; V)N L®(0,T; W), (2.3)
pe€ HY0,T; H)ynC°([0,T); V) N L0, T; H*(Q)), (2.4)
f'(p) € L=(0,T; H), (2.5)
O0<p<l aem@, p>0 a.e in@. (2.6)

Remark 2.2 The H?/? space regularity for 1 is optimal due to the L? space regularity of u
given by (A3). Nevertheless, both equation (1.1) and the boundary condition for 1 contained
in (1.3) can be understood a.e. in () and a.e. on X2, respectively, and the standard integration
by parts is correct, as we briefly explain (so that we can both refer to that formulation and use
integration by parts). In principle, one can replace the equation and the boundary condition by
the usual variational formulation, namely

/[(5+2p)ut+upt]vdx—l—/V,u-Vvdx—f—/oz(,u—u)vdazO
Q Q r

(where do stands for the surface measure) for every v € V', a.e.in (0,7'), or an integrated-
in-time version of it. This implies that (1.1) is satisfied in the sense of distributions, whence A
belongs to LQ(Q) by comparison, and the equation can be understood a.e. in (), a posteriori.
The last regularity (2.4) of x and the condition Au € L2(0,T; L?(Q)) just observed also
ensure that the trace g—ﬁ\g has a meaning in the space L*(0,T; L*(T")) due to the trace
theorem [15, Thm. 7.3] (we just observe that the space E_l/Q(Q) that enters such a result is
larger than LQ(Q) ), so that the boundary condition can be read a.e. on .

Proof of Theorem 2.1. The proof follows closely the lines of the proof of Theorem 2.1 in [5],
where a homogeneous Neumann boundary condition for p was investigated.



Step 1: Approximation. We employ an approximation scheme based on a time delay in the
right-hand side of (1.2). To this end, we introduce for 7 > 0 the translation operator 7. :
LY0,T;H) — L'Y(0,T; H), which for v € L'(0,T; H) and almost every t € (0,T) is
defined by

(7)) :==v(t—7) ift>7, and (7;)(t) :=po ft<7. (2.7)

Now, let N € IN be arbitrary, and 7 := T'/N . We seek functions (p”, ") satisfying (2.3)—
(2.6) (with (p, i) replaced by (p7, 1i7)), which solve the system

(e+2p )i + 1 p; —Ap™ =0 ae.in @, (2.8)
opy —Ap" + f'(p") =Tp”  aein Q, (2.9)
opT ou’ .
e 0, e alu—pu") aeonk, (2.10)
p (x,0) = po(z), p(x,0)=pue(x), fora.e. xze Q. (2.11)

We note that Remark 2.2 also applies to the approximating problem. To prove the existence of
a solution, we put t,, := n7, I, :== [0,t,], 1 <n < N, and consider for 1 < n < N the
problem

(e4+2p")uf +p"pf — Ap™ =0 ae.in QX I, (2.12)

1"(0) = po a.e.in Q, % =a(u—pu") aeonl x I, (2.13)
Spp— Ap" + f1(p") =T, aein Qx I, (2.14)

p"(0)=py a.e.inQ, %:0, aeonl xI,. (2.15)

Notice that the operator 7. acts on functions that are not defined on the entire interval (0,7").
However, its meaning is still given by (2.7) if n > 1, and for n = 1 we simply put Z, " ! =
Ho -

Clearly, we have (p7, u7) = (p™, u™) if (pV, u’Y) exists. We claim that the systems (2.12)—
(2.15) can be uniquely solved by induction for n = 1, ..., N, where,for 1 <n < N,

Pt € WhR(L; HYN HY(L,; V) N L (1,,; W), (2.16)
p' € H' (L H) N CO(L; V) N L (I HY2(€0)), (2.17)
0<pt<1l aeinQxI,, u'>0 aeinQxI,. (2.18)

To prove the claim, suppose that for some n € {1,..., N} the problem (2.12)—(2.15) has a
unique solution satisfying (2.16)—(2.18), where the index n is replaced by n— 1. Then it follows
with exactly the same argument as in the proof of Theorem 2.1 in [5] that the initial-boundary
value problem (2.14), (2.15) has a unique solution p" that satisfies (2.16) and the first inequality
in (2.18). Substituting p™ in (2.12), we infer that the linear initial-boundary value problem (2.12),
(2.13) has a unique solution p" satisfying (2.17). Notice here that the regularity of p™ follows
from the fact that w € H'(0,T; L*(T")).



It remains to show that p” is nonnegative almost everywhere. To this end, we test (2.12) by
—(u™)~, where (u™)~ denotes the negative part of p". Using integration by parts and the
boundary condition in (2.13), we obtain the identity

//dt (e +20") || dxds+//]v ? da ds
//a\ dads+//au “dods = 0.

From the fact that p", pg, o, a, u are all nonnegative, we infer that
P s Pos P

/ (") (1) de < /9(5—1-2/)”(25)) ) (0)] do
< /Q(a+2po> g |* dz = 0.

Hence, (1)~ =0,i.e.,, " >0 a.e.in 2 x I,,, and the claim is proved.

Step 2: A priori estimates. Now that the well-posedness of the problem (2.8)—(2.11) is estab-
lished, we perform a number of a priori estimates for its solution. For the sake of a better read-
ability, we will omit the index 7 in the calculations. In what follows, we denote by C' > 0 positive
constants that may depend on the data of the system but not on 7. The meaning of C' may
change from line to line and even in the same chain of inequalities.

First estimate. Since 9, ((c/2)p? + pp?) = ((€ + 2p)p + ppe) 1o, testing of (2.8) by 1
yields, for every t € [0, 77,

t /
/<5u2+pu2>(t)dx+//|V,u|2dxds—|—//ozu2dads
a\2 0Ja 0JT
. t
= /(—u8+poug>(z€)dﬂc + //ozu,udads,
Q\2 0JT

whence, using Young’s inequality and (A2)—(A4), we can conclude that

HMHL"O(O,T;H)OLZ(O,T;V) < C. (2.19)

Second estimate. Next, we test (2.9) by p; . Applying (2.19), recalling the fact that f(po) € H ,
and invoking Young’s inequality, we easily see that

|l a0 m)nne vy + L (P o)y < C. (2.20)

Third estimate. We rewrite Eq. (2.9) in the form

—Ap + filp) = =0p— folp) + Top



and observe that the right-hand side is bounded in L2(Q). Hence, applying a standard proce-
dure (e.g., testing by f1(p)), and invoking elliptic regularity, we find that

lpllzzrwy + 1102 < C- (2.21)

Fourth estimate. We differentiate Eq. (2.9) formally with respect to ¢ and test the resulting
equation with p, (this argument can be made rigorous, see [5]). Since, owing to the convexity
of fi, f{(p) is nonnegative almost everywhere, we find the estimate

5 t 5 ,
S0+ [ [ 19 drds < 31w~ Ao + ol

+0I£la<X1 |3 (p |//|Pt dxds—l—// w) pedxds

< C+ / /ut(s) pi(s+7)drds. (2.22)
o Jo

In order to estimate the last integral, we substitute for u, using Eq. (2.8). It follows, using
integration by parts:

t—T t—T 1
/ /utpt(-+7)d$d8 :/0 /QSJFQP(Au—upt)pt(-jLT)dxds

pr v pe(- + 7)} dx ds

8+2p

/ /F " 2p — ) pe(-+7)dods. (2.23)

Exactly as in the proof of Theorem 2.1 in [5], the domain integral in the second and third lines
of (2.23) can be estimated from above by an expression of the form

//WmdM&H7 t/m W o)l dwds) . (22

Observe that, owing to the inequality (2.19), the mapping s — ||u(s)||3- belongsto L'(0,T).
Finally, we estimate the boundary term in the last line of Eq. (2.23). To this end, recall that by the
trace theorem there is a constant co > 0 , independent of 7, such that ||v|| 2y < cq ||v||v
forall v € V. Moreover, we have p > 0 and « € L*°(I"). Therefore, we obtain that



‘/ /Fgmp ) pe(- +7) do ds

SCA lou(s + Dlzay (lu)llzay + lu(s)llzze) ds
SCAJMﬁ+ﬂMWMMm T s ds

1 t
<3 [ ds + . 2.25)
0

Now we may combine the estimates (2.22)—(2.25) and employ Gronwall’s inequality to conclude
that

HptHL°°(0,T;H)mL2(0,T;V) < C. (2.26)

The same argument as in the derivation of (2.22) then shows that also

| ptl Lo,y + L0 | 2oe 0,0y < C' (2.27)

Fifth estimate. We test equation (2.8) by p,. Formal integration by parts (this can be made
rigorous), using (A3), the trace theorem and Young’s inequality, yields:

¢ 1 «a
[ [l dzds + SIVHOI + [ 5 luto) do
0Ja 2 r 2
t t
< C’+//auutda—|—//mptutld9{;d$
C’+/ da—//autudads+//|uptut| dz ds

C
s atutelt + [ ds + [ [l ol e s

IN

IN

IN

C €
<o + [t ds + 5 [to)13 as
Y 0 0

t

¢ . HPt(S)HZB(Q) H/L(smi‘l(ﬁ) ds

IN

C e [
Ol + 5 [ (o) ds
Y 0

t

O @ ) IR ds 2



Hence, using (2.26), choosing v > 0 sufficiently small, and invoking Gronwall’s lemma, we can
conclude that

||M||H1(0,T;H)mLoo(o,T;V) < C. (2.29)

Sixth estimate. Since 0 < p < 1 a.e.in (), and using (2.26), (2.29) and the continuity of the
embedding V' C L*(Q), we can estimate as follows:
& + 20} + worll 2y < Cllullzz) + lallmoizsay lodl 2oy
< O (lmellzz@) + lelle=ry ol 202vy) < C- (2.30)

Comparison in (2.8) then shows the boundedness of Ay in L?*(Q), and it follows from (2.8),
(A3) and standard elliptic estimates that also

||N||L2(0,T;H3/2(Q)) < C. (2.31)

Step 3: Conclusion of the proof. Collecting all the above estimates, it turns out that there is
some sequence 7 \, 0 such that

Tk

— U weakly star in
HY0,T; H) N L>®(0,T; V) N L*0,T; H¥?(Q)),
p™ — p  weakly starin W'°(0,T; H) N H'(0,T; V)N L>(0,T; W),
fi(p™) — & weakly starin L=(0,T; H).

i

Thanks to the Aubin-Lions lemma (cf., [14, Thm. 5.1, p. 58]) and similar results to be found in
[17, Sect. 8, Cor. 4], we also deduce (recall that even H3/2(Q) is compactly embedded into 1)
the strong convergences

p™ — - stronglyin C°([0,T); H) N L*(0,T;V),
p™ — p  stronglyin C°([0,T];V)
and the Cauchy conditions (1.4) as a consequence. In particular, employing a standard mono-
tonicity argument (cf., e.g., [1, Lemma 1.3, p. 42]), we conclude that 0 < p < 1 and
¢ = fi(p) a.e.in Q. The strong convergence shown above also entails that f5(p™) —
f4(p) stronglyin C°([0,T]; H) (because fj is Lipschitz continuous), and that 7, ™ —
strongly in L?(Q).
Now notice that the above convergences imply, in particular, that
p™ —p  stonglyin C°([0,T]; L°(92)),
prt — py weaklyin L*(0,T; L*(9))
p™ — o stronglyin L*(0,T; L*(Q)),

urt — iy weakly in L*(Q).

Y



From this, it is easily verified that

upr — pwpr weaklyin L'(0,T; H),

Pt — ppy weaklyin L2(0, T L*2(Q)).
Now, we are ready to take the limit as & — oo in (2.8)—(2.10) (written for 7 = 7). Precisely,
we can do that as far as p is concerned, while it is easier to take the limit in the variational formu-

lation of (2.8) that accounts for the boundary condition (the same as mentioned in Remark 2.2),
or in the following integrated-in-time version of it

T T
//[(5+2p7),ut7+,u7p[]vd:z:dtJr//VM«Vvd:cdt
0 Ja 0 Jo
T
+/ /Oz(/f—u)vdadt:O for every v € L>(0,7;V).
o Jr

Then, we obtain the analogue for p, which implies (1.1) and (1.3) 2. -

3 Boundedness, uniqueness, and stability

In this section, we derive results concerning boundedness, uniqueness and stability of the so-
lutions to system (1.1)—(1.4). With respect to boundedness, we have the following result, which
resembles Theorem 2.3 in [5].

Theorem 3.1  Suppose that (A1)—(A4) are fulfilled, and suppose that the following conditions
are satisfied:
(A5)  po € L>®(Q2), inf po(x) >0, sup po(z) < 1.

ze €N

(A6) u € L®(X).

Then any solution (p, i) of (1.1)—(1.4) fulfilling (2.3)—(2.6) also satisfies
p<p, p=p., and p<p" aein@ (3.1)

for some constants p* > 0 and p,,p* € (0,1) that depend on the structure of the system
and T', on the initial data, and on an upper bound for the L> norm of w., only.

Proof.  Let us just show the boundedness of p and the first estimate (3.1); the results for p
then follow in exactly the same manner as in the proof of Theorem 2.3 in [5]. Also the result for
w follows — up to some changes that are necessary due to the different boundary condition for
1 — by the same chain of arguments as in the proof of Theorem 2.3 in [5]; but since this proof
does not seem to be standard, we provide it for the reader’s convenience. So let (p, 1) be any
solution to the system (1.1)—(1.4), (2.3)—(2.6). We set

dy = max {1, H,uoHLoo(Q) ) HUHL""(E)} g



choose any k € IR suchthat k£ > ®,, and introduce the auxiliary function x; € L>°(Q)
by putting, for almost every (z,t) € @,

Xe(z,t) =1 if pu(x,t) >k, and xg(x,t) =0 otherwise.

Then, we test (1.1) by (u — k)™ . We obtain, for any ¢t € [0, 7],
t
| G+oo)lww=07¢ + [ [ 19—ty Paras
// Y(pu— k)T dods
t
—//pt\w—k)ﬂ?d:cds—//ptum—k)*dxds
0Jo 0Ja
t
= —k//pt(u—k)+dxds.
0Ja

Now observe that & and p are nonnegative and that, by definition of &,

a(p—u)(p=k"=a((p-k)"+k-u)(p-k7*) >0 aeinQ.

Hence, using Hoélder’s inequality, we obtain from the above equality the estimate
€ t
SO =171+ [ [ 19—y Paeds
0

t
< k/ Xk () 720y loe($) [ 1oy (e = R) ()] 220 ds
0

whence, using the Gronwall-Bellman lemma as in [2, Lemma A.4, p. 156],

T 1/2
(= 0 Moo + [ [ 1900 = )P o)

k’ T
< — t t dt
<> / el o) oy
k
< NG 102l 7730 751073 ) Xkl L7730, 177202 - (3.2)

Next, we apply the continuity of the embedding V' C LG(Q) and the interpolation inequality
(1.8)with p =2, ¢q=6, r=14/3,and § = 1/7. It follows that

T 13 ) 3/7
loell 7730000730y < ( ; 1ol 2y e () 1760 dt)

T 3/7
1/7 6/7
< HptHL/oo 0,T;H Hpt(t)Hib‘(Q) dt < CHptHL/Q 0TV < Dy,
) 0 )

10



where D is a positive constant depending only on the data of the problem. Moreover, we have

T 772 1/2 14/7
Xkl L7r20Lr2)) = [/ (/Q!Xk(%,t)! dx) dt}
0

T A /2 748 8/7
B [/o </Q|Xk(x’t)| dm) dt} = Ixellz2 0,0 -

Hence, we can infer from (3.2) that for every k > ® it holds the inequality
8/7
||| (N’ - k)+||| S k Dl ||Xk||L/2(O7T;L4(Q)) 5 (33)

where D; = Do/ Min {e, 1}, and where the norm || - || is defined by

T
v == max [[v(®)|% + Vol*dedt Yve C°0,T); H)NL*(0,T;V).
" 0Ja

te[0,7)

Moreover, owing to the continuity of the embedding V' C L*(Q2), there is some constant
Dy > 0, which only depends on €2 and on 7', such that

lWllz20izs@) < Daflol Yo € C°([0,T]; H) N L*0,T; V). (3.4)

At this point, we select a strictly increasing sequence {kj} depending on a real parameter
m > 1 as follows:

kj:==M(2—-277) forj=0,1,..., with M :=m®,. (3.5)

Note that kg = M > ®y and lim;_, k; = 2M . Then, owing to (3.3) and (3.4), it is not
difficult to check that

(kj+1 - kj) HijH HL2(07T;L4(Q)) < [[(p— kj)+’|L2(0,T;L4(Q))

8/7

< Doll(u — k)"l < K; Dy Da [lxa, 15500 12400 (3.6)

Therefore, if we set
Sj = lIxm;lz20msz0)) for j=0,1,...,

then we have
k;

Sivy < — 9
j+1 = kj+1 —kj

Dy D, ST < 4D D2 Y7 for j=0,1,....

Using [12, Lemma 5.6, p. 95], we can conclude that S; — 0 as j — oo, provided that
So = lXkoll2(0.1:20(0)) < (4 Dy Do)™727%. (3.7)
Now recall that xx, = X and, owing to (3.5), M > &y and m = M /®,. Also,

p— Do

M if 4w > M, and xa =0 otherwise.

xmu =1<

11



Therefore, using (3.3) and (3.4) with k& = ky = M , we find that

1 D,
—_— — ®g)*t . < —
M — @, (e 0) " [lr20ma(0) < M — @, I

DDy s DDy is. s
< 1 ||X<I>o||L2(0,T;L4(Q)) < 1 Q7 T

S() S (/l - CI)0>+“|

N|=
oo

We are now in a position to choose m := 1+ Dy Do|Q*7T*7(4 Dy D5)7 2% . Then, m > 1
and (3.7) is satisfied. Consequently,

Ix2nell 220,504 02)) = ]11_{20 S; =0,

due to Beppo Levi’s Monotone Convergence Theorem. This implies that ¢ < 2 M a.e.in @,
and the boundedness of 1 is proved. m

Now that the boundedness condition (3.1) is shown, we can prove the following uniqueness and
stability result, which corresponds to Theorem 2.2 in [5].

Theorem 3.2

(i) Suppose that (A1)—(A6) are fulfilled. Then the system (1.1)—(1.4) has a unique solution
(p, ) satisfying (2.3)—(2.6).

(i) Suppose that (A1), (A2), (A4) and (A5) are fulfilled and that the functions w1, uy satisfy the
conditions (A3) and (A6). Moreover, let (p;, 11;) be the solutions to (1.1)—(1.4) corresponding to
ui, t=1,2,and u := uy; —ug, p:= p1 — p2 and p = p1 — We. Then we have, for every
t€[0,7],

0<s<t

max ([|u(s)l7 + lp(s)lIV) + /O/Q(““(S)”2V + ()5 + o)) ds

t
< K / ()12 ds 38)

with a constant K{ > 0 that only depends on the data of the system.

Proof.  Obviously, the assertion (i) follows directly from (ii). So we only need to show (ii). To
this end, observe that by Theorem 3.1 there are constants M/ > 0 and 0 < 7, < r* < 1
suchthat 0 < pu; < M and 7, < p; < 7" a.e.in @, for i = 1,2. Moreover, the function
r—r— f'(r), r. <r <r*, hasa Lipschitz constant L > 0. Next, we observe that the pair
(p, i) is a solution to the system

(e+2p0)p + 2ppos + ppre+pope —Ap=0 ae.in Q, (3.9)
dpr—Ap=p — (f'(p1) — f(p2) aein@, (3.10)
dp o
i - = — .€. A1
n 0, o alu—p) aeonX, (3.11)
p(x,0) = p(x,0) =0, fora.e. x €. (3.12)

12



Now observe that 2 py o p1y = (p1 u ) 2 p1,: - Hence, if we test (3.9) by 1« then we obtain,
using Young’s inequality, that for every ¢ € [0, T'] it holds

/(; + )) d$+//|Vu|2dxds—|—// \ul? do ds
=< C//\uPdadH// || do ds

y/:/nMA (21l ladl + Vol lpul) e ds. @.13)

We have, owing to the continuity of the embedding Hl(Q) C L4(Q) and to Young’s inequality,

t t
[ 2ol i dzds < € [ o) o) lo(6) o

t C t
< 7/0 ()5 ds + ;/0 22,6 (3) 17 o ()I[5 ds (3.14)

where, owing to (2.4), the mapping s — ||ua.4(5)||% belongs to L'(0,T"). Moreover, we also
have s € L(Q), and thus

t t
[ beal i dzas < ¢ [ il o)l s
0 0
' 2 ¢ ! 2
<7 [ oo)lds + < [ o)l ds. @19
0 0

Next, we add p on both sides of Eq. (3.10) and test the resulting equation by p;. Invoking
Young's inequality, it is easily seen that, for every ¢ € [0, 77,

t
54“M$%®+ﬂmm@

t C t
< 7/0 lpe(s)l7 ds + ;/0 ()l + L2 [lp(s)l7) ds . (3.16)

Now we can combine (3.13)—(3.16). Choosing v > 0 sufficiently small, and applying Gronwall’s
lemma, we see that (3.8) is satisfied. -

The stability estimate (3.8) can be improved if further regularity is assumed for f. The follow-
ing result is a counterpart of Lemma 3.1 in [7]. We remark at this place that (2.3) implies, in
particular, that p is weakly continuous as a mapping from [0, 7] into W, which justifies the
formulation of the estimate (3.17) below.

Theorem 3.3  Suppose that the assumptions of Theorem 3.2,(ii) are satisfied, and assume
that

(A7) feC?0,1).

13



Then we have, for every t € [0,T],

max (L)l + oI + lls)lliv)

+/O ()% + llpe()]1Z) ds

t
< 863 {10 + [ (WO + la@ln) a5} @17

with a constant I{; > 0 that only depends on the data of the system.

Remark 3.4 We note that ||u(0)]|2, < I(t)/ max{l,t} where I(t) denotes the last
L2(T)

integral of (3.17). It follows that ||u(0)||%2(r) can be dropped if one pretends (3.17) just for
t="1T.

Proof of Theorem 3.3. We closely follow the lines of the proof of Lemma 3.1 in [7]. Since the
proof given there carries over to our situation with minor changes, we can afford to be brief.
First, observe that by Theorem 3.1 there are constants M > 0 and 0 < r, < r* < 1 such
that 0 < p; < M and r, < p; <7r* a.e.in @, for i = 1,2. Next, we recall that the pair

(p, 1) is a solution to the system (3.9)—(3.12). We test Eq. (3.9) formally by 1, . It then follows,
with the use of Young’s inequality, that

! 1 1
[ I ds + SIVaOF; + 5 [ aluof do
0 r

t
g//au,utdads
0Jr

t
+/:/(%pHuu|+|MHm¢|+|uﬂVH)dewd8- (3.18)
0JQ

Now, by virtue of integration by parts with respect to ¢, and invoking (3.8), Young’s inequality
and the trace theorem,

t
‘//auutdads‘
0Jr

2 c 5 c [
<y [ alu@®)Pdo + = [ [u@)Pdo + = [ [ |usl|nldods
r Y Jr Y JoJr
2 C 2 c [ 2 2
<CH|lp®y + — [ [u(0)|*do + — (|u]® + |ue|?) dods. (3.19)
Y Jr Y JoJr

Employing almost exactly the same arguments as in the proof of Lemma 3.1 in [7] (the minor
necessary changes are left as an easy exercise to the reader), and taking advantage of (3.8),

14



we conclude the estimate (where v > 0 is arbitrary)

t
[ lolael + o =+ sl ol ] e s
0
! 2 Ct 2 2
<3y [ I lrds + = [ lona(o) I o)l ds
Ct 2 2 Ot 2
+ & ) 180 ds + & [ [ udods. (3.20)
Y Jo Y JoJr

Next, we test (3.10) formally by —Ap,. By the same token as in the proof of Lemma 3.1 in [7],
we deduce for arbitrary v > 0 the estimate

t 1 t
5/0 IV pe(s) |17 ds + 1 1Ap(®)]7 < 7/0 I12¢(5) 17 ds
C ! 2 2 ! 2
+; (1 + llp2e()IIF) 1Ap(s)|[Fds + C lul*do ds . (3.21)
0 0JD

Now observe that, owing to Theorem 2.1, the mappings s — ||p;+(s)||3, i =1,2,and s —
| 12.4(s)||3 all belong to L*(0,T'). Hence, combining the estimates (3.18)—(3.21), adjusting
v > 0 sufficiently small, and invoking Gronwall’s lemma, we can conclude that for every ¢ €
[0, T it holds

/ (IVpe(s)llz + Nea()7) ds + max ([u()F + lo(s)lly)

<C {Hu ey + // (Jul® + |ul?) dads} : (3.22)

Next, we formally differentiate (3.10) with respect to ¢, and obtain

Opue — Apr = g — f//(ﬂl) Pt — (f”(ﬂl) - f”(/)2)) P2t (3.23)

with zero initial and Neumann boundary conditions for p; . Hence, testing (3.23) by p;, invoking
Young’s inequality, and recalling (3.8) and (3.22), we find that

) t
SOl + [ 1901(5) 1 s

< {1, //hﬁ+W|mm%

+/Amﬂmm—ﬂ@mmmw. (3.24)
0

15



Moreover, using Hélder's and Young’s inequalities, (A7) and (3.8), we see that

// \poul | f" (p1) — " (p2)] |pe| d ds

< ¢ [ Ipadlosen 105l s
2 2 2
([ 1l ds + s 1) [ sl )

t
C//(\uP + |w?) do ds . (3.25)
0JT

Finally, we test (3.23) by —Ap; . Using Young’s inequality and (3.22), we find that

IA

IN

6 t
S0 + [ 18005 s

t C t
< / 1Ap(s)II ds + ;{Hu<o>\|%z<r)+ / [ + ) dads}

n / / o2l 1F7(p1) — £ (02)) || e s

C
<2fy/uApt Wds + < {1y + [ [ (7 + huf) do s

+ g )15 [ sl ds

<2 / 1Api(s) I ds
0

C t
+ = {Hu(o)\\%z(r) +// (Jul® + |ul?) dads}. (3.26)
Y 0JT
Choosing v > 0 appropriately small, we can infer that the estimate (3.17) is in fact true. This
concludes the proof. -

4 An optimal boundary control problem

In this section, we consider the following optimal boundary control problem:

(CP) Minimize the cost functional

J(u, p, 1 /]pgcT pr(x ]2d:c+—//|u:vt]2dadt
Pa 2
+—= lp(z,t) — pr(x,t)|* dedt (4.1)
2 Jo Ja
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subject to the state system (1.1)—(1.4) and to the control constraints
U € Upg :={v e H(0,T;L*T))NLX): U <v<Us ae.onl,

el 220,220y < R} - (4.2)

In this connection, we require that the hypotheses (A1)—(A7) be satisfied. In addition, we postu-
late:

(A8) R > 0, ﬁl > 0, ¢+ = 1,2, pr € LQ(Q), nr € LQ(Q), Ul,UQ €
L>(3), and there are constants 0 < u, < u* < +00 such that

U, <Up < U <u* a.e.on X. (4.3)

In what follows, we denote
X = H'(0,T; L2M) N LX), ulla = llulmoriry + lullee)

where || - ||1(0.7;22(r)) denotes the standard norm in H'(0,T’; L*(T)). Obviously, Uaq is
a nonempty, bounded, closed and convex subset of X', and U,q is contained in the open set
U C X given by

1 3
Z/{::{v eX: iu* < essinfv, esssupv < §u*, lvell L20,7;2(m)) < R+1}.

By Theorem 3.3, the control-to-state mapping u +— S(u) := (p, i) is Lipschitz continuous as
a mapping from the set &/ C X into the space

(HY(0,T; W) N CY([0,T); V) x (H'(0,T; H) N C*([0,T]; V) .

We may without loss of generality assume (by possibly taking a larger K3 ) that (3.17) is valid
on the whole set ¢/ with the same constant K35 > 0. It also follows from Theorem 3.1 that
there exist constants ©* > 0 and 0 < r, < r* < 1 such that for every u € U it holds

0<pu<p and0<r, <p<r <1 aein(Q, (4.4)

where (p, 1) = S(u). Moreover, a closer inspection of the proof of Theorem 2.1 reveals that
there is a constant K5 > 0 such that we have, forany v € U,

o]l Wleo(0,T;H)NH(0,T;V)NL>® (0,T;W)

+ 1 ll 2 0,0 )0 (0.7 L2 0,15 132 (@) Lo (@) S K - (4.5)

Remark 4.1 Thanks to (4.4) andto f € C3(0,1), it holds f'(p) € L*°(Q). Also, by the
embedding V' C L5(Q2), we have . € C°([0,T]; L5(£2)). Notice also that (2.3) implies, in
particular, that p is continuous from [0, 7] to H*(Q2) for all s < 2; thus, since H*({2) C
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C(2) for s > 3/2, we also have p € C(Q)). Therefore, possibly choosing a larger constant
K3, we may without loss of generality assume that

Iollc@) + llkllcoqomces) + lloellzors) < Ky Vuel. (4.6)

Remark 4.2 The mathematical literature on control problems for phase field systems is scarce
and usually restricted to the so-called Caginalp model of phase transitions (see, e.g., [11], [9],
[10], [18], and the references given there). More general, thermodynamically consistent phase
field models were the subject of [13]. In [7], the present authors investigated a control problem
for the system (1.1)—(1.4) with distributed controls. Since many of the arguments employed in
[7] carry over to the boundary control considered here, we can afford to be sketchy in some of
the proofs in the following exposition.

4.1 Existence

We begin our discussion of the control problem (CP) with the following existence result:

Theorem 4.3  Suppose that the conditions (A1)—(A8) are satisfied. Then the optimal control
problem (CP) has a solution @ € U, .

Proof. Let {u,} C Ua.q be a minimizing sequence for (CP), and let {(py, 1in)} be the se-
quence of the associated solutions to (1.1)—(1.4). We then can infer from (4.5) the existence of
atriple (u, p, i) such that, for a suitable subsequence again indexed by 7., we have

u, — @ weakly starin H'(0,T; L*(T")) N L>™(%),

pn — p weakly starin Wh(0,T; H) N H(0,T; V)N L>(0,T; W),

fin — i weakly starin H'(0,T; H) N L=([0,T); V)N L*(0, T; H**(Q)).
Clearly, we have that u € U,q. Moreover, by virtue of the Aubin-Lions lemma (cf. [14, Thm.

5.1, p. 58]) and similar compactness results (cf. [17, Sect. 8, Cor. 4]), we also have the strong
convergences

pn — p stronglyin C°([0,T]; H*(2)) forall s < 2,

ftn — @i strongly in C°([0,T]; H) N L*(0,T; V).
From this we infer, possibly selecting another subsequence again indexed by n, that p, — p
pointwise a. e. (actually, uniformly) in (). In particular, 7, < p < r* a.e.in () and, since f €

C?(0,1), also f'(pn) — f'(p) strongly in L?*(Q). Now notice that the above convergences
imply, in particular, that

pn — p strongly in C°([0, T]; L°(Q2)),
Oipn — Oip weakly in L*(0,T; L*(12)),
ftn — Ji strongly in L*(0, T; L*(2)),
Oty — Oifi weakly in L2(Q).
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From this, it is easily verified that

fin Oypn, — [ O0,p  weakly in L'(0,T; H),

P Oftn — pOJi weakly in L2(0,T; L3/*(Q)).
In summary, if we pass to the limit as n — o0 in the state equations (1.1)—(1.4) written for the
triple (wn, P, in ), we find that (p, @) = S(u), thatis, the triple (u, p, i) is admissible for the
control problem (CP). From the weak sequential lower semicontinuity of the cost functional J

it finally follows that u, together with (p, i) = S(@), is a solution to (CP). This concludes the
proof. n

Remark 4.4 It can be shown that this existence result holds for much more general cost func-
tionals. All we need is that .J enjoy appropriate weak sequential lower semicontinuity properties
that match the above weak convergences.

Remark 4.5 Since the state component p is continuous on @ the existence result remains
valid if suitable pointwise state constraints for p are added (provided the admissible set is not

empty).

4.2 Necessary optimality conditions

In this section, we derive the first-order necessary conditions of optimality for problem (CP). To
this end, we first show that the control-to-state operator S : u +— (p, ) is Fréchet differentiable
as a mapping from & C X into the Banach space (), || - ||y), where

Y = (H'(0,T; H)nC°([0,T]; V)N L*(0,T; W))
x (C°([0,T]; H)n L*(0,T;V)) .

4.2.1 The linearized system

Let w € U and h € X be given and (p, 1) = S(u). As a preparatory step, we consider the
following system, which is obtained by linearizing the system (1.1)—(1.4) at (p, i) :

(e+2p)m —An+2m &+ a&+pn=0 aeinQ, (4.7)
06 —AL=—f"(p)€ +n aein (4.8)
0 _ o 9 _
s 0, o alh—mn) a.e.onX, (4.9)
&(x,0) =n(x,0) =0 fora.e. x €. (4.10)

We expect for the Fréchet derivative DS(u) at @ (if it exists) that (£,71) = D.S(u)h, provided
that (4.7)—(4.10) admits a unique solution (£, 7). In view of (2.3), (2.4), and (3.1), we can guess
the regularity of £ and 7 :

£e HY(0,T; H)n C%([0,T]; V) N L*(0,T; W) N L>(Q), (4.11)
ne H'(0,T; H)nC%0,T]; V)N L*0,T; H*(Q)). (4.12)
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Notice that also in this case we cannot expect that 7(t) € H?(Q2) a.e.in (0,T) due to the
low space regularity of h, and we could repeat Remark 2.2 here. Nevertheless, if (4.11) and
(4.12) hold, then the collection of source terms in (4.7), i.e., the part —2 ;& — & — pe 1,
belongs to LQ(Q), whereas the regularity (4.12) for 7 allows us to conclude from (4.8) that

also £ € C(Q) (by applying maximal parabolic regularity theory, see, e.g., [8, Thm. 6.8] or [18,
Lemma 7.12]).

In fact, £ is even more regular: indeed, we may differentiate (4.8) with respect to ¢ to find that
06t — A& = —f"(p) pr & — f"(P) & + e, (4.13)

with zero initial and Neumann boundary conditions for &;. Since the right-hand side of (4.13)
belongs to L?(Q), we may test by any of the functions &;, &;,and —A&,, to obtain that even

£€ H*0,T; HYnC*([0,T); V)N H (0, T; W). (4.14)

Notice, however, that this fact has no bearing on the regularity of 77, since the coefficient i, in
(4.7) only belongs to L*(Q).

The following well-posedness result resembles Proposition 3.2 in [7].

Proposition 4.6 Suppose that (A1)—(A8) are fulfilled. Then the system (4.7)—(4.10) has a
unique solution (£, 1) satisfying (4.12), (4.14), and

HgHH2(07T;H)001([0:T];V)WH1(O,T;W) + H77HHl(o,T;H)mOO([o,T];V)mL?(o,T;H3/2(Q))
< Kj [Pl grosz2ry) 5 (4.15)
with a constant K > 0 that is independent of the choice of u € U and h € X .

Remark 4.7 It follows from Proposition 4.6, in particular, that the linear mapping h — (£, 1)
is continuous from X into V.

Proof. We follow the lines of the proof of our previous existence results and proceed in a series
of steps.

Step 1: Approximation.  As in the proof of Theorem 2.1, we use an approximation technique
based on a delay in the right-hand side of (4.8). To this end, for 7 > 0 we resume the def-
inition of the translation operator 7, : L'(0,7;H) — L'(0,T; H) by putting, for every
v € LY (0,T; H) and almost every ¢ € (0,T),

(To)(t) =v(t—7)ift>7, and (To)(t) =0if t <. (4.16)

Notice that, for any v € L?(Q) and any 7 > 0, we obviously have || 7:v||12(q) < ||v|lr2(0) -

Then, for any fixed 7 > 0, we look for functions ({7, 77), which satisfy (4.11) and (4.12) and
the system:

(e+2p)n; — AN + 20, + & +pn” =0 aein @, (4.17)
0§ — AT+ (P =T aein @, (4.18)
oEm on" .
on =0, o =a(h—n") ae.onX, (4.19)
£ (x,0) =n"(z,0) =0 fora.e. x € (4.20)
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Precisely, we choose for 7 > 0 the discrete values 7 = T'/N , where N € IN is arbitrary, and
putt, =n7,0<n<N,and I, = (0,t,).For 1 <n < N, we solve the problem

(e+20) Nt — Anp + 20 & + i + P =0 acein Q x I, (4.21)
% =alh—mn,) aeonl xI, n(zx,00=0 fora.e x€, (4.22)
80t — A&+ f7(p) & =T, ace.in Q x I, (4.23)

% =0 aeonlx1, &(z,00=0 forae =€, (4.24)

where the variables 7, and &, , defined on [,,, have obvious meaning. Here, 7, acts on
functions that are not defined on the entire interval (0, 7") ; however, for n > 1 it is still defined
by (4.16), while for n = 1 we simply put 7,7, = 0. Notice that whenever the pairs (&, 7x)
with

& € H' (I, HYNCV(Iy; VYN LA(L; W) N C(Q x 1), (4.25)
me € H' (I H) N C°(Ii; V) N L (I; HY?(9)), (4.26)

have been constructed for 1 < k& < n < N, then we look for the pair (&,.1,7,+1) that
coincides with (&,,,7,) in I,,, and note that the linear parabolic problem (4.23), (4.24) has a
unique solution &,,1 on Q x [, that satisfies (4.25) for k = n + 1. Inserting &, in
(4.21) (where n is replaced by n + 1), we then find that the linear parabolic problem (4.21),
(4.22) admits a unique solution 7,,.1 that fulfills (4.26) for £ = n + 1. Hence, we conclude that
(&7,n7) = (v, M) satisfies (4.17)—(4.20), and (4.11), (4.12).

Step 2: A priori estimates. We now prove a series of a priori estimates for the functions
(£7,m") . In the following, we denote by C; (i € IN) some generic positive constants, which
may depend on ¢, 9, p., p*, u*, T, K7, K5, K3, butnoton 7 (i.e.,, noton V). For the sake
of simplicity, we omit the superscript 7 and simply write (£,7).

First a priori estimate. ~ Observe that 2pnn, = (p T]Q)t — pym?. Hence, testing (4.17) by 7,
and invoking (4.19) and Young’s inequality, we have, for 0 <t < T',

/(— () dx+/ |Vn(s |\Hds+//om7 do ds

// ndcrderC'l//hdads

w2 [ [iatigmazas + [ [ 1l s 427
0Ja 0 Jo

For any v > 0, we have, by Young’s inequality and (4.4), that

t t
(AAWMMwﬁSMM@4M®M%@M®
! 2 Cy [ 2
Sv/HM@M®+~;/HMﬂm%- (4.28)
0 0
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Moreover,

| [mllelaldzds < [ o)l 666 sy (o) s s
0 JQ 0

t C t
< 7/0 In(s)II5 ds + 73/0 72 (s)II7 1€ ()1 ds - (4.29)

Notice that, by virtue of (4.5), the mapping s +— ||fi:(s)||% is bounded by a function in
LY(0,T).

Next, we add & on both sides of Eq. (4.18) and test the resulting equation by &;. On using
Young’s inequality again, we obtain:

7] Vol ds + 5 (eI + 1960)1E)

< o ([ It as + [ el as). (430

Combining the inequalities (4.27)—(4.30), and choosing v > 0 sufficiently small, we conclude
from Gronwall’s lemma that

/0 (I&@I + (V) dt + max (€O + lIn(t)])

<t<T

T
gcg,/ /Wdadt. (4.31)
0o JI

Thanks to (4.19), we may also infer (possibly by choosing a larger Cj) that

T
lE@Ia < 05(|\Ag(t>||§,+/0 /F!h|2dadt) forall t € [0,7]. (4.32)

Second a priori estimate.  We test (4.17) by 7, and apply Young’s inequality in order to obtain

t 1 a t
: / I ()3 ds + S [va@l2 + / &) do < / / o g do ds
0 2 T 2 0oJr

t
n / / @17l €] + 1l & + 12 1nl) Il de . 433)

By (4.4), we can infer from Young’s inequality that

t t C t
/ / il |6 el dr ds < ~ / In(s)1% ds + £ / ()| ds. @34
0 JQ 0 Y Jo

Moreover, by virtue of H6lder’s and Young'’s inequalities,

t
/ / el Il ) e dis
0 Q

t C t -
<9 [ ds+ [ 1) o 106 s
' 2 CS ' 2 2
<5 [ Insds + S [ 1nE Il ds. (439
0 0

22



Observe that by (4.5) the mapping s — ||¢(s)||?, is bounded by a functionin L'(0,T’).
Also, we have, owing to the continuity of the embedding W C L°°(Q2) and (4.32),

t
| [ 2lallelnl azas
0 JQ

t C t -
<~ / ()% ds + 2 / ()1 1ECS) 2 e s

! OIO 2
v ()l ds + — yh| do dt
0

¥ / a5 A6 B ds) . 438

IN

where, owing to (4.5), the mapping s +— ||fis(s)||% is bounded by a functionin L(0,T).
Finally, we employ integration by parts, Young’s inequality, (4.31), and the trace theorem to

obtain
t
‘//ahntdads < /a|h(t)||n(t)|da+//oz|ht||77|dads
0JID

< / () do + Coy [ omase) - .37)

Next, we formally test (4.18) by —A&; to obtain, for every ¢t € [0, 77,

t 1 t
[ I19s) i ds + 518600 = [ [ (=@ =0 Agdrds. @0

Now, by virtue of (4.31) and invoking Young’s inequality, we have
)// (Ton) Aftda:ds)
t
< [imn @ iasolds + [ [ o) 18 deds
Q 0
1 2 g 2
< SIACO + Cuo | [ b doat
0 Jr

t 1 t
e [Inds + o [18go) s (439
0 7 Jo

Moreover, it turns out that

\//f” eagdeds| < [ 1001160 do

+/O/Q|f (P) pr & + f(p) & |AE] dx ds. (4.40)
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We have, owing to (4.4) and (4.31),

ﬁﬂ |mu&mm<wam+%//WMm (@.41)

Also the second integral on the right-hand side of (4.40) is bounded, since (4.4), (4.5), and
(4.31) imply that

/O/Q|f"'(P)/)t€+f”(p)gt| AE| dx ds
< 014/0(H/5t(8)H%4(Q) 1€ Za) + N1€(s)I17) dH/HAs(s)H%,ds

< Cuo( gy 1O [ 11 ds+ [ lelas) + [ IacolE i

o<t<T

scg//mwww+/m«w@w, 4.42)
0 I 0

thanks to the continuity of the embedding V' C L*(2). Thus, combining the estimates (4.33)—
(4.42), choosing v > 0 sufficiently small, and invoking Gronwall’s inequality, we can infer that

T
Ammm@+mmmjﬁ+mwuwn@+mwm)
< Cir IllFn o, 22ary) (4.43)

Next, we compare terms in (4.17) and, arguing as in the derivation of (4.33)—(4.37), we readily
find that

T
/“nAnuM§dtscnummp@ﬂp@».
0

Thus, by owing to elliptic regularity (cf. (4.19) and Remark 2.2), we conclude that

T
/nmmw Jdt < Cro B2 orizamy - (4.4
0

Finally, we differentiate Eq. (4.18) with respect to ¢. We obtain:
65,525 — Agt = at<7;-77) - f///( )pt€ f ( )ét a.e.in Q (445)

From (4.4)-(4.6), (4.43) and (4.44), we can infer that we may test (4.45) by any of the functions
&, —AE&,and &, in order to find that

T
(1t + 18618 ) dt + o 1601 < Can Wil - (@46)
0 U

Step 3: Passage to the limit.  Let (£7,7") denote the solution to the system (4.17)—(4.20)
associated with 7 = T'//N , for N € IN. In Step 2, we have shown that there is some C' > 0,
which does not depend on 7, such that

1€ HH?(o,T;H)mCl([o,T];V)mHl(o,T;W)mc@)

+ 0" o, mynco o, vynczormsz@) < C Bl a2 m) - (4.47)
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Hence, there is a subsequence 7 \, 0 such that
£ — & weakly starin  H*(0,T; H) N Wh=(0,T; V)N HY(0,T; W),

n™ — n weakly starin  H'(0,T; H) N L>(0,T; V) N L*(0,T; H*(Q)).
(4.48)

From the trace theorem we can infer that £ satisfies the boundary condition given in (4.9), while
the boundary condition for 1 will be satisfied (either in the variational sense or in the sense of
the appropriate trace theorem, see Remark 2.2) once we prove that we can pass to the limit in
the products of (4.7), as shown below. Moreover, it is easily seen that also (4.10) is fulfilled. By
compact embedding, we also have, in particular,

§™ — ¢ strongly in C(Q), n™ —n stronglyin L*(Q), (4.49)

sothat prf* — pm and & — fi&, both weakly in L2(Q), f"(p)&™ — f(p)&
strongly in L?*(Q), as well as ji; & — [i; & and pyn™ — p;n, both strongly in L'(Q).
Finally, it is easily verified that {7, ™} converges strongly in L*(Q) to 7. In conclusion, we
may pass to the limit as £ — oo in the system (4.17)—(4.20) (written for 7, ) to find that the pair
(&,m) is in fact a solution to the linearized system (4.7)—(4.10).

We now show the uniqueness. If (£1,71), (&2,72) are two solutions having the above prop-
erties, then the pair (£,7), where §& = & — & and 7 = 1 — 1), satisfies (4.7)—(4.10) with
h = 0. We thus may repeat the first a priori estimate in Step 2 to conclude that £ =n = 0.
Finally, taking the limit as 7 ™\, 0 in (4.47) and invoking the lower semicontinuity of norms, we
obtain the inequality (4.15). This concludes the proof. m

4.2.2 Fréchet differentiability of the control-to-state mapping
In this section, we prove the following result.

Proposition 4.8  Suppose that the assumptions (A1)—(A8) are satisfied. Then the solution
operator S, viewed as a mapping from X to ), is Fréchet differentiable on U . For any u € U
the Fréchet derivative DS (u) is for h € X' given by DS(u)h = (£,1n), where (£,n) is the
unique solution to the linearized system (4.7)—(4.10).

Proof. Let u € U be given and (p, i) = S(u). Since U is an open subset of X', there is
some A\ > 0 suchthat @ + h € U whenever h € X satisfies ||h|lx < A. In the following,
we consider such perturbations h € X, and we define (p", u") := S(@ + h) and put

So=ph -t =0 = (4.50)

where (fh, nh) denotes the unique solution to the linearized system (4.7)—(4.10) associated
with k. Since the linear mapping h — (£, ") is by Proposition 4.6 continuous from X’ into
), it obviously suffices to show that there is an increasing function g : [0, \] — [0, +00)
which satisfies lim,~ o g(r)/r* =0 and

HyhH%{1(O,T;H)OCO([O,T];V)ﬁL2(0,T;W) + HZhH2CO([0,T];H)mL2(0,T;V)

<y (“hHHl(O,T;LQ(F))) . (4.51)
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Using the state system (1.2)—(1.4) and the linearized system (4.7)—(4.10), we easily verify that
for h € X with ||h||x < A the pair (y", 2") is a strong solution to the system

(e+2p) 2 + pe 2" + iy + 20 y" — A"

= =2 — ) (0" —p) = (pf — ) (W — ) aeinQ, (4.52)

oyf — Ay" + f1(0") = f'(p) — f(p)€h = 2", aein Q, (4.53)
oy oz N

a—n = 0, 8_n = -z, a.e.on E, (4.54)

y"(2,0) = 2"(2,0) =0 fora.e. z € Q. (4.55)

Notice that
y" € H'(0,T; H)n C°([0,T}; V) N L*(0, T; W) N C(Q),
e HY0,T; H)nC°([0,T]; V) N L*0,T; H*(Q)).

For the sake of a better readability, in the following estimates we omit the superscript h of
yh and 2" . Also, we denote by C; (i € IN) certain positive constants that only depend on
£,0, p, p5 105, T, KT, K5, K3, K, butnoton h.

We now add y on both sides of Eq. (4.53) and test the resulting equation by v, . Using Young’s
inequality, we find that for all £ € [0, T it holds

3 | o) ds 5 (190l + ol < 5 [ 1) s
<0 [ Ilds + G [ 106 = £ = PG s ws6)

In order to handle the third term on the right-hand side of (4.56), we note that the stability
estimate (3.17) implies, in particular, that

10" = pll7eoi) < K5 o rem) » (4.57)

thatis, p" — p uniformly on Q as |2l #r10,m02¢ry) — 0. Since f € C3(0,1), we can infer
from Taylor’s theorem and (4.4) that

76~ 1) - PG < max TG4 @) ) on Q. wase

T <<o<r*

It then follows from the estimates (3.17) and (4.56)—(4.57) that

3 [ s + @ < 3 [ ds + s [Tl o

+Ca HhHHl(o,T;L2(r)) : (4.59)
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Next, observe that 2pz z = (pz?), — p 2°. Therefore, testing (4.52) by z yields for every
t € [0,T] that

/(E ( d:c+/ V(s ||Hds—|—// |2|? do dt
// (Ly: + 2 y) zdr ds — 2 // —,ut p —p) zdxds
—//(P?—ﬁt) (1" — p) zdxds. (4.60)

0Ja

We estimate the terms on the right-hand side of (4.60) individually. At first, using (4.4) and
Young’s inequality, we find that

t ~ t C t
//WWMWM%Sf/M&WMHUE/W@%%- @61
0JQ 0 7 Jo

Moreover, using the continuity of the embedding H'(2) C L*(€2), as well as Hélder’s and
Young’s inequalities, we have

t t
2 [ [ lllol e dods < 2 [ i)l 1206 s o) o ds
0 0
! 2 Cs ' 2 2
<o [l as + S [laER IR d. e
0 0

Observe that by (2.4) the mapping s — ||fi:(s)||%; belongsto L!(0,T).
At this point, we can conclude from (3.17) and (4.57), invoking Young’s inequality, that

//2 = | |p" = p| 12| dx ds
/‘” )l 16" = 2 ()| oy 12(5)] 2z ds
t t
< C ||ph —ﬁHL“’(Q)/O ||(M? —ﬁt)(s)HiI ds + /0 12(3)||2 ds

t
< [ =(6)Brds + Gl omaacey- 59
0

Finally, we invoke (3.17) and Holder’s and Young’s inequalities, as well as the continuity of the
embedding H'(Q2) C L*(€2), to obtain that

t
|Vt | = ] 21 dzas
0JQ

< g 1= [ 6= PO 16 = )
< 5 max ()l + /H =l as [ ot i)l o
< 7 max =) + Cuo Il orieey (4.64)
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Combining the estimates (4.59)—(4.64), taking the maximum with respect to ¢ € [0, T, adjust-
ing v > 0 appropriately small, and invoking Gronwall’s lemma, we arrive at the conclusion that
(y", 2") = (y, 2) satisfies the inequality
h2 h2
19" 22 0,700 0.1y + 127 co o120, 711

< Cn ”h”;l'{l(O,T;L?(F)) : (4.65)
Finally, testing (4.53) by —Ay", and using (4.58), we find that also
Hth%Q(O,T;W) S 012 ||h||}1{1(0,T;L2(F)) . (466)

Therefore, the function g(r) := (Cy; + Ci5) r* has the requested properties. This concludes
the proof of the assertion. -

Corollary 4.9 Let the assumptions (A1)—(A8) be fulfilled, and let u« € U,q be an optimal
control for the problem (CP) with associated state (p, ji) = S(u). Then, for every v € Uyq,

/OT/Fﬁl u(v—1) det-l-/(SP(T)_PT)f(T) d:c+/OT/Qﬁg (i—pr)ndrdt > 0, (4.67)

where (£, 1) is the unique solution to the linearized system (4.7)—(4.10) associated with h =
Vv —1U.
Proof. Let v € U,q be arbitrary and h = v — @w. Then @ + A\h € Uyq for 0 < A < 1. For
any such \, we have

J(u+ Ah, S(u+ Ah)) — J(u, S(a))
- A
< J(u+ Ah, S(u+ Ah)) — J(a, S(a+ \h))
- A
J(u, S(u+ Ah)) — J(a, S(u))

3 .

It follows immediately from the definition of the cost functional J that the first summand on the
. . L . T _ _

right-hand side of this inequality converges to [ [ 614 (v — @) dodt as X\, 0. For the
second summand, we obtain from Proposition 4.8 that

+

J(u,S(a+ Ah)) — J(u, S(a))

i )
T
~ [ple.1) = pre) (e Ty do + [ [ 52— pr) et
Q 0 Ja
whence the assertion follows. -
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4.2.3 The optimality system

Let u € U,q be an optimal control for (CP) with associated state (p, i) = S(u). Then, for
every v € U,q, (4.67) holds. We now aim to eliminate (£,7) by introducing the adjoint state
variables. To this end, we consider the adjoint system:

—(e+20) ¢ —prqg—ADq=p+Ga(i—pr) aeinQ, (4.68)
g—i = —aq a.e.in X, q(z,T)=0 fora.e z €, (4.69)
—0pe —Ap+ f'(P)p=Hag—f:q inQ, (4.70)

g—fl =0 onX, p(T)=p(T)—pr inQ, (4.71)

which is a linear backward-in-time parabolic system for the adjoint state variables p and q.

It must be expected that the adjoint state variables (p, ¢) be less regular than the state variables
(p, j1) . Indeed, we only have p(T') € L*(f), and thus (4.70) and (4.71) should be interpreted
in the ususal weak sense. That is, we look for a vector-valued function p &€ Hl(O, T;V* )N
CY([0,T]; H) N L2(0,T; V) that, in addition to the final time condition (4.71), satisfies

(=5n(t)hvey + [ Vole)-Fode+ [ 7o) pie) v
= [ @O0 - ey ate) vs. @72

forevery v € V and almostevery t € (0, 7). Notice thatif ¢ € H*(0,T; H)NC°([0,T]; V),
then it is easily seen that fiq, — ji, ¢ € L*?(Q), so that the integral on the right-hand side
of (4.72) makes sense. On the other hand, if p has the expected regularity then the solution to
(4.68), (4.69) should belong to H'(0,T; H) N C°([0,T]; V) N L*(0,T; H*()).

The following result is an analogue of Theorem 3.7 in [7].

Theorem 4.10  Suppose that u € U,q is an optimal control for (CP) with associated state
(p,i1) = S(u). Then the adjoint system (4.68)—(4.71) has a unique weak solution (p, q) with
p € HY(0,T;V*)nC%[0,T]; H) N L*(0,T;V), ¢ € H'0,T; H) N C°([0,T); V) N
L*(0,T; H*(2)) ; moreover, for any v € Usq , we have the inequality

T T
//[ﬁu(v—u)dadt + / /aq(v—u)dadt > 0. (4.73)
0 JI 0 JIT

Proof.  The existence and uniqueness result for the adjoint state variables p and ¢ follows
using the same line of arguments as in the proof of Proposition 3.6 in [7], with only minor and
straightforward changes that are due to the different boundary condition for ¢g. Now let v € U,q
be given. A standard calculation (which can be left as an easy exercise to the reader), using
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the linearized system (4.7)—(4.10) with h = v — u, repeated integration by parts, and the
well-known integration by parts formula

/0 (0n(t), () + (we(8), v(E))ye) di = /Q (o(T)(T) — v(0)w(0)) da

(which holds for all functions v, w € H*(0,T;V*) N L*(0,T;V)), yields the identity

[ e i+ [ bt pmaea

T
://aq(v—ﬁ)dadt. (4.74)
0 N

The variational inequality (4.73) is thus a direct consequence of Corollary 4.9. m
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