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Abstract

As previous theoretical results recently revealed, a Kramers-Kronig transform of multi-

photon absorption rates allows for a precise prediction on the dispersion of the nonlinear

refractive index n2 in the near IR. It was shown that this method allows to reproduce

recent experimental results on the importance of the higher-order Kerr effect. Extending

these results, the current manuscript provides the dispersion of n2 for all noble gases in

excellent agreement with reference data. It is furthermore established that the saturation

and inversion of the nonlinear refractive index is highly dispersive with wavelength, which

indicates the existence of different filamentation regimes. While shorter laser wavelengths

favor the well-established plasma clamping regime, the influence of the higher-order Kerr

effect dominates in the long wavelength regime.

1 Introduction

The optical nonlinearity of atomic and molecular gases is of paramount importance in high-field
physics [1], for high-harmonic generation [2], attosecond pulse generation [3], hollow-fiber com-
pression [4], and the formation of filaments [5]. The nonlinear optical effect of self-phase modu-
lation is the key mechanism for obtaining spectral broadening in optical compression schemes
[6]. Using noble gases in hollow fibers or filaments [7], such schemes have been the only way
for generating sub-10 fs pulses with hundreds of microjoule pulse energy as required for sub-
sequent attosecond pulse generation. Only recently, this approach was challenged by chirped
pulse optical parametric amplification [8]. In this light, it is remarkable that our knowledge of nu-
merical values of the nonlinear refractive index n2 rests on only few direct measurements (see
[10, 9] and references therein), most of which have been conducted in the 800 - 1000 nm range.
Even for the relatively well established and technologically highly important case of argon, one
can find a two-order-of-magnitude spread of quoted values for n2 in literature, reaching from
0.12 to 19 × 10−19 cm2/W [11, 9]. Moreover, recent advances in laser technology enable the
use of gas-based compression, filamentation, and supercontinuum generation schemes also in
the mid-infrared [12] as well as in the ultraviolet [13]. Traditionally, wavelength scaling of n2 has
utilized variants of Miller’s formulae [14]. Again, differing scaling laws are suggested in literature
[15, 10], and the reliability of such extrapolations is disputable [16], in particular for predicting
dependable n2 values in the ultraviolet.

Here we extend the alternative approach of Ref. [17] for computing refractive index values of
noble gases. Our approach is based on a Kramers-Kronig (KK) transform [18, 19] of multiphoton
absorption rates [20]. Requiring only knowledge of the ionization energy of the gas, the full
spectral dependence n2(ω) can be computed, including the expected sign change of n2 beyond
the two-photon resonance. Moreover, our formalism also allows for computation of higher-order
contributions n4I

2, n6I
3 etc. to the refractive index

n(I) =
∑

k≥0

n2kI
k, (1)
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and enables a comparison of our theoretical results on the intensity dependent refractive index
(IDRI) to recent measurements [21]. In addition, we investigate the IDRI of all noble gases as
well as the wavelength dependence of the Kerr saturation. In the light of new applications in
previously inaccessible wavelength ranges, this gives rise to important conclusions concerning
the formation of filaments in the absence of dissipative ionization effects.

2 Kramers-Kronig relations in nonlinear optics

Nonlinear optical Kramers-Kronig relations [22] are a straightforward generalization of the well-
examined linear optical case [23, 24]. In the time domain, any order P (n)(t) of the electric-field
induced polarization

P (t) = P (1)(t) + P (2)(t) + P (3)(t) + . . . (2)

is assumed to be mediated by temporal response kernels R(n)(τ1, . . . , τn). Thus, causality
requires R(n)(τ1, . . . , τn) = R(n)(τ1, . . . , τn)θ(τi) to hold for any i = 1, . . . , n, where θ(τ)
is the Heaviside step function. In the frequency domain, this requirement immediately yields the
KK relation for the complex nonlinear optical susceptibilities χ(n),

ℜχ(n)(−ωσ; ω1, ω2, ..., ωi, ..., ωn) =

2

π
P

∞�
0

Ωℑχ(n)(−ωσ; ω1, ω2, ..., Ω, ..., ωn)

Ω2 − ω2
i

dΩ , (3)

and the inverse KK relation

ℑχ(n)(−ωσ; ω1, ω2, ..., ωi, ..., ωn) =

− 2ωi

π
P

∞�
0

ℜχ(n)(−ωσ; ω1, ω2, ..., Ω, ..., ωn)

Ω2 − ω2
i

dΩ . (4)

An alternative, yet equivalent form of the KK relation was introduced by Van Stryland et al. to
compute the nonlinear refractive index ∼ ℜχ(3) from the two-photon absorption (TPA) coeffi-
cients for wide-bandgap semiconductors [18, 19]. This formulation resembles that of the linear
optical KK relations and relates refractive index changes ∆n(ω; ξ) induced by some perturba-
tion to the corresponding change of absorption ∆α(ω; ξ) in the following way

∆n(ω; ξ) =
c

π
P

∞�
0

∆α(Ω; ξ)

Ω2 − ω2
dΩ. (5)

Here, the parameter ξ quantifies the physical cause of the refractive index change. For example,
the cause may be given by an intense pump beam of frequency ω2. In this case, setting ω =
ω1 and ξ = ω2 in Eq. (5) yields the index change ∆n(ω1; ω2) responsible for cross-phase
modulation (XPM). From the KK relations, one concludes that this index change is related to
an absorption change ∆α(ω1; ω2) from nondegenerate TPA of photons with frequencies ω1

and ω2. For a pump beam of intensity I2 and frequency ω2, this quantity scales linearly with I2

according to
∆α(ω1; ω2) = β2(ω1; ω2)I2 (6)

2



as does the nonlinear index change

∆n(ω1; ω2) = n2(ω1; ω2)I2. (7)

The coefficient β2 relates to the TPA cross section σ2, and Eq. (6) can be rewritten as
w = σ2(ω1, ω2)I1I2. The absorption rate w describes optical field-induced two-photon tran-
sition from the valence to the conduction band of the optical medium. Analytical expressions
for the nondegenerate TPA coefficient β2(ω1; ω2) were derived in Refs. [19, 25]. A reasonable
approximation [18, 17] of the nondegenerate TPA coefficient used in Eq. (5) is provided by the
expression

β2(ω1; ω2) = β2

(

ω1 + ω2

2

)

, (8)

where β2(ω) is the 2PA coefficient for simultaneous absorption of photons of equal frequencies.

3 Application to nonlinear susceptibilities of noble gases

The very successful formalism developed by Sheik-Bahae et al. [18, 19, 22] encourages the ex-
amination of a possible generalization towards higher-order susceptibilities. In the perturbative
regime of nonlinear optics, both the nonlinearly induced index change ∆n and the absorption
change ∆α can be expressed as a power series, i.e.,

∆n =

∞
∑

k>0

n2kI
k, ∆α =

∞
∑

K>1

βKIK−1 (9)

For the degenerate case, we can set ∆n ≡ ∆n(ω) and ∆α ≡ ∆α(ω). Then the Kerr coeffi-
cients n2k and the K-photon absorption coefficients βK are related to the real and imaginary
parts of the nonlinear optical susceptibilities χ(n) according to

n2k =
2k−1C(k)

n0(n0ǫ0c)k
ℜχ(2k+1) , (10)

βK =
ω0

c

2K−1C(K−1)

n0(n0ǫ0c)(K−1)
ℑχ(2K−1). (11)

with a combinatorial factor

C(k) =
(2k + 1)!

22kk!(k + 1)!
. (12)

Generalizing the results of Sheik-Bahae et al. to self-refraction in noble gases, we now seek
for an appropriate KK relation that relates Kerr coefficients of any given order K to multiphoton
absorption (MPA) coefficients βK . These coefficients are related to ionization cross-sections
σK via

βK = Kρ0~ωσK , (13)

where ρ0 is the number density of neutral atoms. The cross-section σK governs the ionization
rate at a given optical intensity I according to w(I) = σKIK . In general, a power-law depen-
dence of the ionization rate in an intense optical field is justified only for large values of the
Keldysh parameter γ =

√

Ui/2Up [26, 27], which is conveniently written in terms of the ratio
of the ionization potential Ui of the gas species and the ponderomotive potential of the ionized
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electrons Up in the laser field. In the opposite case γ ≪ 1, a perturbative description of multi-
photon absorption ceases to exist. Instead, tunneling ionization prevails in this regime, which, to
exponential accuracy, is governed by the non-perturbative expression w(I) = exp (−θ/3E).
Here, θ is the characteristic internal atomic field strength of the gas species, and the electric
field E is related to the intensity according to I = ǫ0n0c|E|2/2. It follows that throughout this
work, special care has to be taken to assure validity of a perturbative description of the relevant
nonlinear optical processes.

Analytical expressions for the required multiphoton cross sections are extracted from the pertur-
bative limit γ ≫ 1 of a recently published refined Keldysh theory [20], which provides excellent
results for the ionization rate w both, in the perturbative and the tunneling regime. For the K-
photon cross sections, this model yields

σK(ω) =
2
√

2C2

π
(2e)2n∗

(

e

2

)2K

ω−3K+1
p

(

q2
e

~meǫ0c

)K

×
(

ωp

ω

)2n∗+2K−
3

2

exp
(

−ωp

ω

)

w0

[
√

2K − 2
ωp

ω
,

]

(14)

where ωp = Ui/~, ω is the optical frequency, qe, and me denote electron charge and mass,
respectively and ǫ0 is the vacuum permittivity.

Similar to the approximation introduced in Eq. (8), we now set

βK(ω1, . . . , ωK) = βK

(

ω1 + · · ·+ ωK

K

)

. (15)

This relation approximates the nondegenerate absorption coefficient βk in terms of the degen-
erate coefficient β, evaluated at the mean frequency. With this approximation, we obtain the
generalized KK relation

n2k(ω) =
ρ0~c

π
P

∞�
0

(Ω + kω)
σk+1

(

Ω+kω
k+1

)

Ω2 − ω2
dΩ (16)

for the computation of the Kerr coefficients n2k to any order.

4 Benchmarking the model: second order Kerr effect

In the following, let us first consider the case of unsaturated nonlinear refraction, i.e., k = 1.
Given that there are approximations in our treatment, we first provide proof for the validity of
our approach to compute the nonlinear refractive index. For the noble gases considered here,
a wide variety of independent experimental and theoretical reference data on the second order
Kerr coefficient n2(ω) exist. Theoretical models mostly calculate the hyperpolarizability in the
static limit ω → 0 and interpolate the various related χ(3) effects from there. According to
Ref. [15], for small ω, the dispersion of n2 follows a series expansion in ω2

L = νω2,

n2(ω) = n2(0)(1 + Aω2
L + Bω4

L + . . . ), (17)

where ν assumes the values 12, 6, and 4 for third harmonic generation (THG), electric field
induced second harmonic generation (ESHG) and degenerate four-wave mixing (DFWM), re-
spectively. Furthermore, the far-infrared limit n2 ∼ χ(3)(0; 0, 0, 0) and the coefficient A do
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not depend on the nonlinear optical process under consideration. The above series is usually
truncated after the fourth-order term, permitting reliable extrapolation throughout the infrared,
yet with decreasing accuracy in the visible. Given that Eq. (17) is always positive, this scaling
law is expected to fail in the vicinity of the two-photon resonance. For our benchmark, we will
therefore concentrate on the very precise theoretical values in the infrared. We also compute
the Kerr coefficients in the vicinity of K-photon edges, which we discuss in the conclusion of
this section.

Using Eq. (16) with k = 1 for the noble gases helium, neon, argon, krypton and xenon, the
solid lines Fig. 1 depict the resulting behavior of n2 as a function of wavelength λ = 2πc/ω
below the TPA resonance. With ionization potentials Ui = 24.59, 21.56, 15.76, 14.00, and
12.13 eV for helium, neon, argon, krypton and xenon, the TPA edges for these gases are lo-
cated at wavelengths λTPA = 4πc/ωp = 101, 115, 157, 177, and 204 nm, respectively. For
comparison, the figures contain independent experimental data of Refs. [28, 10, 29]. The mea-
sured data of Ref. [28] was scaled to the considered λ-range by fitting the data to a power
series in νλ−2, choosing ν = 4 corresponding to DFWM. The theoretical data [30, 31, 32] in

0

5

10
x 10

−9

n 2 (
cm

2 /T
W

)

0

1

2

x 10
−8

0

1

2

3

4
x 10

−7

n 2 (
cm

2 /T
W

)

100 500 1000 5000

0

2

4

x 10
−7

Wavelength (nm)

100 500 1000 5000

0

5

10

x 10
−7

Wavelength (nm)

n 2 (
cm

2 /T
W

)

Wavelength(nm)

n 2(1
0−

8 cm
2 /T

W
)

 

 

Kramers−Kronig, Eq. (16)
Lehmeier, exp. [10]
Lehmeier, scaling law
Hooker, exp. [29]
Shelton, exp. [28]
Rice theo. [31]
Rice theo., scaling law
Lundeen et al., exp. [32]
Bishop&Pipin, theo. [30]

(a) (b)

(d)(c)

n
2

n
2

n
2 n

2

n
2

0.1*n
2

0.1*n
2

0.1*n
2

0.1*n
2

0.1*n
2

Figure 1: Off-resonant dispersion off n2 for the noble gases (a) helium, (b) neon, (c) argon, (d)
krypton, and (e) xenon. Solid lines: theoretical results derived from Kramers-Kronig transform
Eq. (16). Dashed lines: Experimental data of Ref. [28], scaled according to Eq. (17). Dotted
lines: Scaled Lehmeier data [10].

the chemical reference literature is obtained by a quantum mechanical sum-over-states ansatz.
In the considered wavelength regime, our Eq. (16) deviates from the reference data by no more
than 20%. Although our model calculations tend to slightly overestimate the reference data, the
Kramers-Kronig approach yields excellement agreement with the reference data for argon and
krypton, deviating by less than 10% from the reference data in the entire wavelength regime
from 0.2− 6 µm. Equation (3) in Ref. [10] represents an alternative wavelength scaling law and
was used to scale the data obtained at 1.055 µm to the considered wavelength, cf. the dashed
line in the subplots of Fig. 1. In addition, Table 1 shows n2 values of the considered noble gases
for characteristic laser frequencies of important laser-active materials. In the chemical reference
literature, data on the χ(3) nonlinearity mostly refers to microscopic polarizabilities rather than to
macroscopic polarizations. Therefore, we convert the macroscopic quantity n2 to the third-order
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Helium Neon Argon Krypton Xenon

193nm (ArF Excimer) 7.8e-9 2.2e-8 3.1e-7 1.0e-6 4.2e-6
248nm (KrF Excimer) 6.8e-9 1.8e-8 2.1e-7 5.9e-7 2.2e-6
400nm (Ti:sapph, SHG) 5.8e-9 1.5e-8 1.5e-7 3.9e-7 1.2e-6
800nm (Ti:sapph) 5.2e-9 1.3e-8 1.3e-7 3.1e-7 9.2e-7
2000nm (OPA) 4.9e-9 1.2e-8 1.1e-7 2.7e.7 8.0e-7

Table 1: n2 values in cm2/TW for characteristic wavelength emitted by various laser materials.

hyperpolarizability using the Lorentz-Lorenz law. In the far-infrared limit, this yields the relation

γ(3)(0) =
8ǫ2

0c

ρ0
n2(0). (18)

Our equation (16) predicts that for ω → 0, the value of n2 is solely determined by the ionization
potential Ui according to

γ(3)(0) =
64e4

~
2ǫ2

0

ω4
Hm3

e

F (n∗). (19)

Here the function F (n∗) describes scaling of n2 with the effective principal quantum number
n∗ =

√

ωH/ωp of the gas species and is given by the integral representation

F (n∗) =
(8e)2n∗

Γ2(n∗ + 1)
n10
∗

1�
0

dx x2n∗+3/2e−2xw0

[

2
√

1 − x

]

. (20)

The variation of γ(3)(0) with the atomic ionization potential is shown as a dashed line in Fig. 2.
The figure is supplemented with independent measurements and calculations for various atomic
species as performed in Refs. [28, 34, 33, 35, 36]. While our theory again yields excellent
predictions for the noble gases, except for the atomic species K, Li, B and O, the predictions
of our model for the LWL of the third order atomic hyperpolarizability of all considered atomic
species coincides with independent calculations within one order of magnitude. Given that our
theory is essentially a one-parameter theory, governed by the ionization potential, it disregards
details in the atomic structure. Therefore, this general order-of-magnitude agreement has to be
considered as quite remarkable.

5 Kerr saturation and inversion

It has recently been shown both, experimentally and theoretically [21, 37, 17] that the Kerr refrac-
tive index of molecular and atomic gases may exhibit a saturation behavior. Given that a smooth
transition from perturbative low-order harmonic generation to non-perturbative high-harmonic
generation (HHG, [2]) with harmonic orders of hundred and above is experimentally observed,
the very fact that χ(5), χ(7) effects etc. play a role in nonlinear refraction at some elevated inten-
sities may not appear overly surprising at first sight. Nevertheless, as plasma generation also
results in a negative contribution to the refractive index, there is a debate on which of these two
effects sets in first, in particular in the generation of filaments [5]. Interestingly, high-harmonic
generation has recently been observed during filamentary propagation [38], which provides fur-
ther evidence that nonlinear susceptibilities of high order may play a long underestimated role
in filamentary propagation.
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Figure 2: Static limit of hyperpolarizability γ(3)(0) according to Eq. (19) versus ionization
potential (dashed line). Theoretical reference data for various atomic species is taken from
Refs. [28, 34, 33, 35, 36].

In order to observe saturation and inversion of the intensity dependent refractive index, it is
clearly a necessary condition that at least one of the higher-order Kerr coefficients n2k be nega-
tive. Inspecting the well-understood scenario of two-photon induced nonlinear refraction, nega-
tive index contributions appear above the two-photon resonance ωp/2, analogous to the disper-
sion of linear refraction that turns to index values below 1 above the single-photon resonance
ωp. Therefore, quite generally, at a given wavelength λ one must expect that negative index
contributions appear for orders k above 2πcωp/λ, which, for argon, implies a sign change to
occur at n16 for λ = 800 nm. This behavior is exemplified by the dispersion of n2, n4, and n6 for
argon shown in Fig. 3, as calculated by the generalized Kramers-Kronig relation with k = 1, 2,
and 3, respectively. As already exemplified for n2 in the vicinity of the TPA resonance [Fig. 1],
the higher order coefficients n4 and n6 indeed show the expected behavior, yet with the reso-
nance shifted towards lower frequencies ωp/3 and ωp/4, respectively. In fact, for arbitrary order
and coefficients n2k, the resonance is located at ω = ωp/(k + 1). Negative n2 is observed for
ω > ωp/(k +1). Conversely, for a fixed frequency ω0, it follows that for k > ωp/ω−1, all Kerr
coefficients n2k(ω0) are negative. By numerical evaluation of ∆n(I) for different noble gases,
we now demonstrate our formalism. In particular, we relate the occurrence of negative nonlinear
refraction to the presence of the MPA resonances, which, in turn, give rise to the experimentally
observed Kerr saturation and inversion. For the air constituents argon, N2 and O2, this proce-
dure was already successfully applied [17] to reproduce experimental results of Ref. [21]. We
now extend this procedure to predict the onset of Kerr saturation for all other noble gases. The
intensity dependent refractive index for He, Ne, Kr, and Xe is plotted in Fig. 4. For comparison,
the dashed lines represent the nonlinear refractive index according to the intensity clamping
model of filamentation, ∆n = n2I + ρ/2ρc. The inversion intensities Iinv for the considered
noble gases, defined as the nontrivial root of

∑

n2kI
k
inv = 0 (21)

are contrasted to the clamping intensity satisfying

n2I = ρ/2ρc (22)
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in Table 2. Both intensities have been evaluated for a center wavelength of 800 nm. The plasma
density entering the definition of the clamping intensity is evaluated using a Gaussian temporal
profile with FWHM duration of 90 fs, as was used in Ref. [21]. It is evident that saturation and
inversion of the nonlinear refractive index occur at lower intensities than in the classical clamp-
ing model. Furthermore, this difference appears more pronounced with increasing ionization
potential, as is especially obvious for helium, Fig. 4a). In fact, a similar trend was previously
reported theoretical in Ref. [39] with the help of numerical calculations of the time dependent
Schrödinger equation (TDSE). This finding already implies one important conclusion: the im-
portance of the higher-order Kerr effect increases with the number of photons required to drive
ionization. Therefore, filamentation in helium is more prone to Kerr-only filamentation than in
xenon.

The intensity dependent refractice index (IDRI) extracted from these calculations are shown as
dash-dotted lines in Fig. 4.

Helium Neon Argon Krypton Xenon O2 N2

Iinv(TW/cm2) 113 89 49 40 30 36 50
Ic(TW/cm2) 301 204 81 57 37 44 82

Table 2: Inversion intensity Iinv from saturation of the nonlinear refractive index versus clamping
intensity Ic in the classical model of filamentation at 800 nm.

The results discussed so far only apply for a center wavelength of 800 nm. However, as our
model clearly shows, the n2k coefficients exhibit a pronounced dispersion (Fig. 3), which is
increasing with order. Therefore, the inversion intensity Iinv, i.e., the point ∆n(Isat) = 0 at
which higher-order Kerr effects neutralize the low-order contributions n2I etc. to the refractive
index should equally well show dispersion. Solving Eq. (21) for wavelengths in the range 350−
1200 nm, the solid red curve in Fig. 5 depicts the solution Iinv(λ) for the case of argon. The
resulting trend is that the inversion intensity grows towards shorter wavelengths, with some
local modulation on top. Those local peaks are observed at λ = (k + 1)2πc/ωp, matching a
(k + 1)-photon resonance.

Comparing the results on Iinv obtained from Eq. (16) with effects from ionization, we solve
Eq. (22) in the wavelength range considered above. This allows us to obtain the wavelength
dependence of the clamping intensity. In order to clarify the impact of pulse duration on the
clamping intensity, the plasma density was evaluated for two different pulse durations. The re-
sults are represented by the blue solid (90 fs pulse) and the blue dashed (45 fs) curves in Fig. 5.

Figure 5 strongly suggest that, depending on the center wavelength of the employed laser sys-
tem, there exist two different regimes of filamentation: The red and the blue solid lines repre-
senting Iinv(λ) respectively Ic(λ) intersect at roughly 560 nm. For shorter wavelengths, the
clamping intensity is much smaller than the inversion intensity, which means that plasma forma-
tion prevails as the arresting mechanism in filament formation. For wavelengths above 600 nm,
however, Kerr saturation appears to prevail, indicating the possibility of plasma-less formation
of filaments. While it may be disputed where exactly this transition between plasma saturation
and Kerr saturation will appear, our analysis clearly indicates the following important trends.
Plasma-induced arrest of the beam collapse will always prevail in the ultraviolet, whereas Kerr-
only-based filamentation scenarios are expected to prevail in the infrared. Moreover, there is a
strong dependence on pulse duration. Few-cycle pulse are actually predicted to favor a higher-
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order Kerr arrest whereas longer pulses favor the standard plasma scenario. In fact, concerning
the dependence on wavelength and pulse duration, our results provide independent theoretical
proof of the heuristic arguments of Ref. [40].
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Figure 3: Dispersion of (a) n2, (b) n4, and (c) n6 for argon versus ω/ωp in the vicinity of the 2,3
and 4 photon resonance, respectively, as obtained from Eq. (16).

6 Large k-asymptotics and radius of convergence

Our discussion of the higher-order Kerr effects depends on a perturbative expansion of multi-
photon laws. Quite clearly, we therefore expect that our formalism will eventually collapse above
a certain intensity. For this purpose, In order to investigate the limits of validity of our formalism,
we investigate the limit of convergence of Eq. (9) as given by

Iconv(ω) = lim
k→∞

∣

∣

∣

∣

n2k(ω)

n2k+2(ω)

∣

∣

∣

∣

. (23)

This expression directly implies the maximum intensity limit for which a perturbative description
of nonlinear refraction does make sense. In fact, the asymptotic behavior of the Kerr coefficients
for large k is given by the following completely analytic formula

n2k(ω) ∼ −Dk(ωp)

(

ωp

ω

)2n∗+2k+1/2

exp

(

− ωp

ω

)

. (24)
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higher order Kerr terms [Eq. (16) and Eq. (9), solid lines], classical filamentation model due to
plasma clamping (dashed line), and TDSE results of [39] (dash-dotted lines).

Therefore, the coefficient Dk(ωp), depending only on the ionization potential, is given by

Dk(ωp) = M
ρ0~c

π2

√
kC2

n∗(2e)2n∗

ω−3k−2
p

(

e

2

)2k+2(
q2
e

~meǫ0c

)k+1

(25)

with a numerical constant

M =
1

2
(Ei(2) − e4Ei(−2)) ≈ 3.812, (26)

and Ei(x) denoting the well-known exponential integral [41]. With Eq. (25), it is straightforward
to obtain the following expression for the radius of convergence,

Iconv =
4

e2

~ωpmeǫ0c

q2
ω2. (27)

Interestingly, this equation may be recast into a condition on the Keldysh parameter γ, i.e., the
series representation of the IDRI converges whenever

γ > e/2. (28)

In the intensity-wavelength plane, the latter condition is represented by the dashed line shown
in Fig. 5. Quite clearly, this condition is fulfilled in the entire near-infrared and visible wave-
length range. Therefore, we may conclude that our model holds for a relevant decision on the
prevalence on plasma-based arrest vs. Kerr saturation in this wavelength region.
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Figure 5: Inversion intensity due to higher-order Kerr effect versus wavelength (red solid line).
Clamping intensity vs. λ for 45 fs (solid blue) and 90 fs (dashed blue line) Gaussian pulse. Black
solid line: radius of convergence of series Eq. (9). Black dashed line corresponds to γ = 1,
seperating the perturbative multiphoton regime from the nonperturbative tunneling regime.

Let us exemplify these considerations for argon. Our rigorous analysis clearly reveals that the
infinite series for the nonlinear refractive index given by Eq. (1) converges. Yet, the series con-
verges slowly, i.e., strictly speaking, we have to include some 100 terms in the series before
the addition of even higher order terms did not give further noticeable changes of the IDRI.
Therefore a pure series representation of the intensity dependence appears rather impractical.
However, we observe that the series of n2k behaves like a geometrical series for k > 15. There-
fore, we can exploit the geometric series property to estimate the contribution of the higher-order
terms. This yields

∆n(I) =

k0−1
∑

k=1

n2kI
k +

n2k0
Ik0

1 − I/Iconv
. (29)

These results are visualized in Fig. 6. The red line represents the series ∆n, truncated at k0 =
100, while truncating at k0 = 15 yields the blue dashed line. While the latter may be suitable for
most practical purposes, the curves start to deviate from each other above 45 TW/cm2. Adding a
geometric series correction term to Eq. (29) yields the yellow dashed curve, which is in excellent
agreement with the full series representation (red line) in the depicted intensity range. Despite
of the slow convergence of the series for the nonlinear refractive index, it is therefore possible
to consider only the first k0 coefficients n2k and adding an appropriate error correction as done
in Eq. (29). We have checked that this works equally well for the other noble gases, and a table
containing n2 to n32 of the considered gases can be found in [17, 42].
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Figure 6: Comparison of truncated series representations of Eq. (1) and the geometric series
representation. Red solid line: series truncated at k = 100. Blue dashed line: truncated at
k = 15. Yellow dashed line: series truncated at k = 15, but augmented by correction term
according to geometric series assumption, Eq. (29)

7 Conclusions

We employed Kramers-Kronig theory to compute nonlinear refraction for all noble gases. Our
theory is inherently simple, requiring only knowledge of a single parameter for prediction of n2

and its dispersion for the entire transparency range of the gas. A detailed benchmark indicated
excellent agreement of 10% to 20% with chemical reference data. Other than previous the-
oretical modeling, our method does not rely on any simplistic wavelength scaling arguments.
Correctly predicting the expected sign change above the two-photon resonance, we therefore
predict more reliable n2 data in the ultraviolet. Moreover, extending the formalism for compu-
tation of the higher-order Kerr effect, we can model the recently observed saturation of the
Kerr effect [21]. Again, our model calculations agree within reasonable accuracy with measured
data. Going significantly beyond previous publications [17, 43], we investigated the full disper-
sion of the saturation behavior and proved the convergence of our perturbational treatment
down to Keldysh parameters close to unity. The wavelength dependence of the Kerr saturation
corroborates the existence of two different filamentation scenarios. In the visible and ultraviolet,
plasma formation is expected to arrest the collapse of the beam profile induced by self-focusing.
However, this long-standing conceptual picture makes way for a novel scenario at longer wave-
lengths. Here the arrest of the collapse is induced by HOKE. We predict that these effects
become particularly pronounced with the powerful new chirped-pulse optical parametric am-
plifier sources currently emerging. Given that there is no dissipative mechanism necessary to
confine the light in a small beam area, HOKE-based filaments open a completely new avenue
of nonlinear optics with unprecedented nonlinear interaction lengths.
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