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Abstract

We consider the problem of poor mass conservation in mixed finite element algorithms for
flow problems with large rotation-free forcing in the momentum equation. We provide analysis that
suggests for such problems, obtaining accurate solutions necessitates either the use of pointwise
divergence-free finite elements (such as Scott-Vogelius), or heavy grad-div stabilization of weakly
divergence-free elements. The theory is demonstrated in numerical experiments for a benchmark
natural convection problem, where large irrotational forcing occurs with high Rayleigh numbers.

1 Introduction

In recent years, mixed finite element methods for the incompressible Stokes and Navier-Stokes equa-
tions (NSE) have seen great success in numerical mathematics [4, 11, 21, 9]. In part, this is due to
their elegant and compact theory, but also because they deliver rather simple recipes for the con-
struction of convergent numerical schemes with easily predictable convergence rates and other dis-
tinctive properties. The great flexibility of mixed finite elements is mainly indebted to the introduction
of a space of discretely divergence-free functions circumventing the problematic construction of a
divergence-free basis. There is a price to pay for this flexibility, however, since discretely divergence-
free functions are in most cases not divergence-free; these discrete schemes lose two - in fact equiv-
alent - fundamental properties of the original continuous problem (assuming homogeneous Dirichlet
boundary conditions): 1) the orthogonality of discretely divergence-free functions and rotation-free
functions in the L2-scalar product, and 2) a change of the forcing f → f +∇ψ changes the solution
(u, p) → (u, p + ψ), which leaves the velocity solution invariant. The consequences of this are
well-known [11, 21], and for nearly all mixed finite element methods, rather simple flow problems with
rotation-free right hand sides can be constructed such that approximate discrete solutions suffer from
dramatically large divergence errors which are visible by large spurious oscillations in the discrete
velocities [18, 14, 2, 10]. This observation has led to the introduction of stabilization operators aug-
menting the pure mixed finite element formulation, e.g., the grad-div stabilization and similar methods
[18, 21, 19].

But despite this, it has appeared to be quite difficult to find simple, non-academic, physically-relevant
flow problems where poor mass conservation is the main difficulty in accurate velocity field predic-
tion(in the eyeball or H1 error sense). Although the theoretical need for stabilizing poor mass con-
servation in Stokes and NSE computations is obvious, techniques like grad-div stabilization are often
neglected in practice. This may be explained by the fact that it often does not ‘improve’ the solution
(in the eyeball norm), and additionally, grad-div stabilization can make the iterative solution of the
underlying linear systems more difficult [18].

It is well known, however, that poor mass conservation will cause error in problems where velocity is
coupled to transport [16, 6], but the difficulty here is generally not with the accuracy of the velocity field
prediction (again, in the eyeball orH1 error sense). It is also known that in problems with complicated
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pressures (e.g. Bernoulli pressure in rotational form NSE or related models), poor discrete mass con-
servation does create numerical problems, and stabilization of grad-div type can dramatically improve
the solution [13, 17]. Here, it is revealed that the coupling of poor mass conservation and a large
complicated pressure cause numerical instability, however in practice, an alternative ‘fix’ would be to
use the convective formulation instead.

The purpose of this paper is to communicate that in flow problems where the forcing of the momentum
equation has a large rotation-free part, poor mass conservation in Stokes and NSE simulations can
be a serious problem that is not sufficiently accounted for with standard techniques such as local
mass conservation and grad-div stabilization with γ ∼ O(1) parameter (recall grad-div stabilization
is done by adding 0 = −γ∇(∇ · u) to the momentum equation, then discretizing, which yields the
term γ(∇ · uh,∇ · vh) in a finite element method) . We provide analysis in Section 2 that suggests
in these types of problems, the size of the grad-div parameter may need to be significantly larger than
O(1), and depends on both the size of the forcing and the ratio of the rotation-free part of the forcing
to the divergence-free part. In Section 3, we test the theory on the physically-relevant application
problem of natural convection with large Rayleigh number. This problem has a large rotation-free
forcing of the momentum equation caused by buoyancy, and our numerical tests show that to get
accurate answers (without excessively refining the mesh - which is of course another way to improve
discrete mass conservation), heavy grad-div stabilization is necessary if standard elements such as
((P2)d, P1) Taylor-Hood or ((P2)d, P0) mixed finite elements are used to approximate velocity and
pressure. However, accurate answers are also obtained with ((P2)d, P disc

1 ) Scott-Vogelius elements,
which is consistent with our theory since these elements provide pointwise mass conservation in their
velocity solutions and thus the velocity error decouples from rotation-free effects in the momentum
equation.

2 Decomposition of momentum forcing and the effect of the ir-
rotational part on velocity error

In this section, we provide an analysis which shows that the standard parameter choice for the grad-
div stabilization parameter γ ∼ O(1), presented, e.g., in [18, 21], is not always adequate, and can
be far from optimal. This standard choice is justified in a paradigmatic way in the excellent article
[18], by deriving an optimal a-priori estimate for a Stokes model problem with homogeneous Dirichlet
boundary conditions: find (u, p) ∈ H1

0 (Ω)d × L2
0(Ω) in a Lipschitz domain Ω in two or three space

dimensions such that, for all (v, q) ∈ H1
0 (Ω)d × L2

0(Ω) hold

ν(∇u,∇v)− (p,∇ · v) = (f ,v),

(q,∇ · u) = 0,
(1)

assuming f ∈ L2(Ω)d. This model problem is approximated by the conforming LBB-stable mixed
finite-element P1isoP2/P0 with grad-div stabilization parameter γ = 1. For this stabilized discretiza-
tion of (1), the authors of [18] derive rigorously for this stabilized discretization in (4.13) of [18] the
estimate

ν
1
2 ‖∇u−∇uh‖0 + ‖∇ · (u− uh)‖0 + ‖p− ph‖ ≤ Ch (‖u‖2 + ‖p‖1) .

The point that we want to make in this article is the role of the pressure in this estimate. Suppose that
the right hand side f of the above model problem would be rotation-free, i.e., f = ∇ϕ ∈ L2

0(Ω) for
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some scalar potential ϕ ∈ H1(Ω). Then, the solution of the above model problem is (u, p) = (0, ϕ).
With such a simple velocity solution, one might expect a stable and convergent discretization of the
Stokes equation to find an accurate approximation, but if mixed finite elements are used, only very
special element choices which provide pointwise divergence free velocity solution (such as Scott-
Vogelius elements) will find a discrete velocity solution uh = 0. But for mixed finite elements whose
discrete solutions are only discretely divergence-free, the approximation error of the discrete solution
uh of the above model problem will scale in the H1-norm with ‖∇ϕ‖0. In this case, the grad-div
stabilization parameter γ = 1 only helps to mitigate the negative effect of a small parameter ν. This
mitigation can be seen in the estimate (4.12) of [18] for the P1isoP2/P0 element without grad-div
stabilization

ν
1
2 ‖∇u−∇uh‖0 + ‖p− ph‖ ≤ Ch

(
‖u‖2 + ν−

1
2 ‖p‖1

)
.

This discussion leads to (at least) two important questions: 1) How can we bridge the gap between
the perfect results for the Scott-Vogelius element and other mixed finite elements, and 2) How relevant
is the above example with a rotation-free right hand side f = ϕ in practice? For the first question,
we answer that indeed there is a possibility to bridge the gap: using a very large stabilization γ will
enforce the discrete velocity solution be nearly zero. We want to show in this article that a choice
of the stabilization parameter like γ � 1 can be a good choice, whenever the rotation-free part
of the right hand side f is stronger than the divergence-free part of f . In other words, we argue
that for an adequate choice of the grad-div stabilization we have to consider the Helmholtz-Hodge
decomposition of f . For the second question, we will present a simple, but physically relevant example:
natural convection in a differentially heated cavity, which shows that in practice grad-div stabilization
parameters of γ � 1 can be sometimes possible and necessary at the same time. Last but not least,
we want to remark that our analysis for the choice of the grad-div stabilization parameter is not so
much based on an a-priori error estimate, but on a-priori stability estimates, where the importance of
the Helmholtz decomposition for the choice of γ becomes much clearer.

2.1 Helmholtz-Hodge decomposition

In order to make plausible our arguments, we introduce the orthogonal Helmholtz-Hodge decomposi-
tion of a vector field f ∈ L2(Ω)d. This decomposition provides

f = ∇ϕ+ w,

where (∇ϕ,w) = 0, ϕ is the only solution ϕ ∈ H1(Ω)/R of

(∇ϕ,∇µ) = (f ,∇µ)

for all µ ∈ H1(Ω)/R, and w ∈ L2(Ω)d satisfying∇·w = 0. The vector w is called the divergence-
free part of f , and ∇ϕ is called the rotation-free part of f . Using this decomposition, we obtain the
following a-priori stability estimate for the velocity,

‖∇u‖0 ≤
CF
ν
‖w‖0 ,

where CF denotes the Poincaré-Friedrichs constant. We remark that only the L2-norm ‖w‖0 of the
divergence-free part of f enters the velocity stability estimate, since rotation-free functions ∇ϕ are
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L2(Ω)d-orthogonal to divergence-free functions. In fact, the velocity solution is not affected at all by
the rotation free part of f. Denoting the solution of the above Stokes problem for a given f ∈ L2(Ω)d

by (u0, p0), it is easy to see that the corresponding Stokes solution (uϕ, pϕ) for the right hand side
f +∇ψ with ψ ∈ H1(Ω)/R will be given by (uψ, pψ) = (u0, p0 + ψ).

2.2 The discrete setting

For the finite element discretization, we use LBB-stable mixed finite elements with grad-div stabiliza-
tion in order to mitigate problems with poor mass conservation. We choose pairs of conforming finite
element spaces Vh ⊂ H1

0 (Ω)d and Qh ⊂ L2
0(Ω) that satisfy the LBB condition (see, e.g. [3, 12]).

The stabilized finite element discretization reads: For fixed γ ≥ 0, find (uh, ph) ∈ Vh×Qh such that
for all (vh, qh) ∈ Vh ×Qh,

ν(∇uh,∇vh) + γ(∇ · uh,∇ · vh)− (ph,∇ · vh) = (f ,vh),

(qh,∇ · uh) = 0.
(2)

For the stabilization parameter γ we can choose any non-negative real value, and finding good
choices for this parameter is the goal of the following analysis. We introduce now the spaces of
weakly differentiable divergence-free functions, and discretely divergence-free functions

V0 ={v ∈ H1
0 (Ω)d : ∇ · v = 0},

V0,h = {vh ∈ Vh : (∇ · vh, qh) = 0 for all qh ∈ Qh} .
In general, V0,h 6⊂ V0, i.e., discretely divergence-free functions need not to be divergence-free, except
for only a very few element pair choices. The space of divergence-free discretely-divergence-free
functions

V00,h := V0,h ∩ V0,

also becomes important for the numerical approximation of the Stokes problem. Further, we introduce
the orthogonal complement of V00,h in V0,h with respect to the scalar product (∇u,∇v) via

Rh := {rh ∈ V0,h : (∇rh,∇vh) = 0 for all vh ∈ V00,h} .
Note that ‖∇ · sh‖0 for s ∈ Rh defines a norm on the space Rh. The reason for this is that Rh is
an orthogonal complement to V00,h in V0,h. Therefore, the only divergence-free function in Rh is the
velocity 0. Now, in the finite dimensional space Rh there exists

Mh := max
vh∈Rh,‖∇vh‖0=1

1

‖∇ · vh‖0

,

and for all 0 6= s ∈ Rh holds

‖∇sh‖0 =
‖∇sh‖0

‖∇ · s‖0

‖∇ · s‖0 =
1∥∥∥∇ · s
‖∇s‖0

∥∥∥
0

‖∇ · s‖0 ≤Mh ‖∇ · sh‖0 . (3)

The constant Mh depends on the mesh, and the chosen mixed finite element. We remark that for
a conforming LBB-stable mixed finite element whose velocity converges in the H1-norm with order
k, the constant Mh scales with order h−k, in general. This can be derived easily by the following
argument: imagine that the space V00,h contains only the velocity 0. Then, any smooth divergence-
free velocity u can be approximated by non-divergence-free velocities vh ∈ Rh with optimal order
hk in the H1-norm. Then, also∇ · u converges with order hk to zero, and Mh must grow with order
h−k. Finally, we note that a sharper estimate of the size of Mh in (3) may be possible.
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2.3 Stabilizing for poor discrete mass conservation based on the forcing

We begin our analysis by decomposing the discrete solution uh and the test functions vh by

uh = u00,h + rh,

vh = v00,h + sh

with u00,h, v00,h ∈ V00,h and rh, sh ∈ Rh. From Galerkin orthogonality and the orthogonality of the
decomposition, we obtain from (2) the following two equations for u00,h and rh

(∇(u00,h − u),∇v00,h) = 0,

ν(∇rh,∇sh) + γ(∇ · rh,∇ · sh) = (f , sh)
(4)

for all v00,h ∈ V00,h and sh ∈ Rh. Therefore, u00,h is the projection of u into the space V00,h with
respect to the scalar product (∇u,∇v). We remark that in some cases, already the approximation
u00,h of u does converge with optimal convergence order, for example if Scott-Vogelius elements are
used on an appropriate mesh.

For u00,h with general mixed element choice, we obtain the same stability estimate as in the continu-
ous case, since it is the H1-projection of u onto V00,h, i.e.

‖∇u00,h‖0 ≤ ‖∇u‖0 ≤
CF
ν
‖w‖0 .

We now investigate in detail the non-divergence-free part of the discrete velocity solution, rh ∈ Rh.
Using Galerkin orthogonality in (4) for rh we obtain

ν(∇(rh − u),∇sh) + γ(∇ · rh,∇ · sh) = −(p,∇ · sh)

for all sh ∈ Rh. Obviously, we would obtain the best possible approximation for rh, if

γ(∇ · rh,∇ · sh) = −(p,∇ · sh)

for all sh ∈ Rh, since then rh would be the H1-projection of u onto Rh. But we want that this relation
holds at least approximately, and we estimate possible values for γ. We remark since (∇· rh,∇· sh)
is a scalar product on Rh, for a fixed γ > 0, exactly one rh ∈ Rh solves

γ(∇ · rh,∇ · sh) = −(p,∇ · sh) for all sh ∈ Rh.

From (4) we derive the estimate

γ ‖∇ · rh‖2
0 ≤ CF ‖f‖0 ‖∇rh‖0 ,

which combined with (3), delivers

‖∇ · rh‖0 ≤
CFMh

γ
‖f‖0 (5)

with the mesh-dependent constant Mh. Further, if Rh is nonempty, the relation

ν(∇(rh − u),∇sh) ≈ 0 for all sh ∈ Rh
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can only hold when the norms of ‖∇u‖0 and ‖∇rh‖0 are comparable. Therefore, the relation∇rh ∼
∇u requires ‖∇ · rh‖0 . ‖∇u‖0 to hold. This is approximately fulfilled if

CFMh

γ
‖f‖0 .

CF
ν
‖w‖0 ⇔ γ &Mhν

‖f‖0

‖w‖0

= Mhν
‖w‖0 + ‖∇ϕ‖0

‖w‖0

. (6)

From (5), we learn that a reasonable choice of γ should scale proportionally to ‖f‖0, and from (6) we
see that the choice of γ depends also on the ratio

‖w‖0 + ‖∇ϕ‖0

‖w‖0

.

We remark that for finer and finer mesh sizes h, the estimate (5) becomes more and more pessimistic,
and loses its value for a sensible determination of γ. The important point of the above estimates is
that we can predict that a good γ should scale with ‖w‖0+‖∇ϕ‖0

‖w‖0
.

A last remark is that for very large stabilization parameters γ the above derivations tell us that then
rh ∈ Rh is determined by

(∇ · rh,∇ · sh) =
1

γ
(f , sh)

for all sh ∈ Rh, since ν(∇rh,∇sh) converges to zero for a fixed sh ∈ Rh.

3 The natural convection problem in a differentially heated cav-
ity

We investigate natural convection in a differentially heated cavity, which can be modeled by the fol-
lowing incompressible Navier-Stokes-Boussinesq system in Ω = (0, 1)2:

1

Pr
(ut + (u · ∇)u)−∆u +∇p = RaTey, (7)

∇ · u = 0, (8)

Tt −∆T + u · ∇T = 0, (9)

with boundary conditions corresponding to internal flow with the top and bottom insulated, and heat-
ing/cooling applied to the left and right side:

T = 1, x ∈ Γ1 := {0} × (0, 1), (10)

T = 0, x ∈ Γ2 := {1} × (0, 1), (11)

∇T · n = 0, x ∈ Γ3 := (0, 1)× {0, 1}. (12)

u = 0, x ∈ ∂Ω = Γ1 ∪ Γ2 ∪ Γ3. (13)

A diagram of the domain and boundary conditions is shown in Figure 1.
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Figure 1: The domain and boundary condi-

tions for the natural convection problem.

This flow is driven by buoyancy caused by thermal expan-
sion. Using the so-called Boussinesq approximation for
small temperature differences, this flow is modeled with
the incompressible NSE to account for the thermal ex-
pansion of the fluid in the momentum equations via the
force field RaTey[1, 7, 8], where the (non-dimensional)
Rayleigh number Ra measures the relative strength of
buoyancy with respect to thermal and momentum diffu-
sivities. This problem admits stable steady solutions up
to very large Rayleigh numbers, as high as Ra = 107

[1, 7], and is interesting for this study because such large
Ra will cause a large forcing in the momentum equation.
Moreover, since only the divergence-free part of RaTey
is physically relevant for the fluid motion, the remaining rotation-free part of the force is completely
absorbed by the pressure gradient. Thus, this large rotation-free part of the force field RaTey makes
this fit in the class of problems we describe in the previous sections.

We test several mixed finite element methods, and with varying grad-div stabilization parameters
γ, for the natural convection problem and compare their accuracy. Of particular importance for this
comparison is the use of the Scott-Vogelius (SV) elements, which is one of the rare mixed finite
element methods whose space of discretely divergence-free functions contains only divergence-free
functions. Therefore, the SV element never suffers from the problem of poor mass conservation. We
will compare this element with classical mixed finite elements like the Taylor-Hood (TH) element, and
will show how the grad-div stabilization improves the numerical results, and moreover, that for this
problem, large γ give better results (which agrees with our theory).

We approximate solutions to the system (7)-(9) using the finite element method. Some notation is
necessary to define the numerical algorithm, and we begin with the function spaces

X :={v ∈ H1(Ω)d, v = 0 on ∂Ω},

Q :={q ∈ L2(Ω),

∫
Ω

q = 0},

W :={S ∈ H1(Ω), S(0, y) = 0 on Γ2}.
W 0 :={S ∈ H1(Ω), S(0, y) = 0 on Γ2 ∪ Γ3}.

For a given regular mesh τh, the finite dimensional subspaces Xh ⊂ X , Qh ⊂ Q, Wh ⊂ W , and
W 0
h ⊂ W 0 will be defined as polynomials on each element of the mesh. We will use four different

choices of element triplets (Xh, Qh,Wh) in our computations, but in all cases temperatures are ap-
proximated with continuous element-wise quadratics:

1. Scott-Vogelius (SV): (Xh, Qh,Wh) := (P2, P
disc
1 , P2)

2. Taylor-Hood (TH) : (Xh, Qh,Wh) := (P2, P1, P2)

3. P2P0: (Xh, Qh,Wh) := (P2, P0, P2)
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4. P1bubble-P1 (P1B): (Xh, Qh,Wh) := (Pbub
1 , P1, P2)

While the TH, P2P0 and P1B choices are known to be LBB stable on any regular triangular mesh [3],
the LBB stability of SV elements requires the mesh to have a specific macro-element structure, which
is satisfied, for example, if the mesh is created as a barycenter refinement of a regular triangular mesh
[20]. We consider this a mild mesh restriction, and for a fair comparison of solutions between the ele-
ment choices, we will use such a barycenter refined mesh for all element choices in our computations,
and for the non-SV elements, we will also compute on a non barycenter refined mesh yielding roughly
the same number of degrees of freedom.

Taking Ra=106, the test problem we consider is known to have a stable steady solution, so we will
solve the steady problem directly with the algorithm: Find (uh, ph, Th) ∈ (Xh, Qh,Wh) satisfying
∀(vh, qh, Sh) ∈ (Xh, Qh,W

0
h ),

1

Pr

(
1

2
(uh · ∇uh,vh)−

1

2
(uh · ∇vh,uh)

)
− (ph,∇ · vh)

+γ(∇ · uh,∇ · vh) + (∇uh,∇vh) = Ra(Tey,vh), (14)

(∇ · uh, qh) = 0, (15)
1

2
(uh · ∇Th, Sh)−

1

2
(uh · ∇Sh, Th) + (∇Th,∇Sh) = 0, (16)

Th(0, y) = 1. (17)

The skew-symmetrization of the nonlinear terms and grad-div stabilization is used because∇·uh 6= 0
for most of our choices of elements. With SV elements, neither of these is necessary, although their
use will not change the solution since the divergence error will be on the order of machine error (in
this case one can choose qh = ∇ · uh in (15) and so ‖∇ · uh‖ = 0). However, the use of grad-
div stabilization does increase the condition number of the resulting linear systems, and so we set
γ = 0 when using SV elements. We also note that the nonlinearity of the problem is resolved with
the standard Newton method.

Recent work in [5, 15] has established a strong connection between finite element solutions of Stokes
and Navier-Stokes problems, computed with SV elements, and with grad-div stabilized TH or P2P0
elements. This result essentially states that on a mesh where SV elements are LBB stable and if
a unique SV solution exists, solutions found using TH or P2P0 corresponding to chosen grad-div
parameter γ, will converge to the SV solution as γ → 0 with rate O(γ−1). This result can be easily
extended to (14)-(17), assuming uniqueness conditions on the data similar to those in [7], as follows.

Lemma 3.1. Suppose τh be a barycenter refinement of a regular triangular mesh, and let the problem
data be such that the SV solution to (14)-(17) is unique. Then as γ →∞,

‖uTHh − uSVh ‖ = O(γ−1), ‖uP2P0
h − uSVh ‖ = O(γ−1)

‖(pTHh − γ(∇ · uTHh ))− pSVh ‖ = O(γ−1), ‖(pP2P0
h − γ(∇ · uP2P0

h ))− pSVh ‖ = O(γ−1)

‖T THh − T SVh ‖ = O(γ−1), ‖T P2P0
h − T SVh ‖ = O(γ−1).

(18)

Proof. The proof of this lemma is an easy extension of the NSE case, proven in [15].
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Remark 3.1. This result relies on Scott-Vogelius solutions existing uniquely, which is only true in the
case when LBB holds and (it seems) for small data. For general meshes, large grad-div parameters
can cause solution inaccuracy, as demonstrated in [5], and there is no guarantee that the divergence-
free subspace of Xh has optimal approximation properties.

3.1 Comparison of solutions for natural convection in air (Pr=0.71)

We now consider solving the natural convection problem that models air flow, and we take Pr = 0.71
and Ra = 106. We first compute a reference solution, using SV and a mesh that provides 36,962
velocity degrees of freedom (dof), 27,360 pressure dof, and 18,481 dof for the temperature. The mesh
used, and the velocity streamlines, and temperature and pressure contours for the reference solution
are shown in Figure 2. These plots of the solution agree with those found in the literature, e.g. [7].
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Figure 2: The mesh, velocity streamlines, and temperature contours of the reference solution.

We now approximate solutions on coarser meshes. On fine enough meshes, most element choices
can be expected to find similar good answers that enforce mass conservation well, but on coarser
meshes where only marginal resolution is possible, large differences in their solutions may be present.
Due to the large number of dof necessary to compute approximations to most fluid flow problems,
the comparison on the coarser meshes is quite relevant to practical computations, since marginal
resolution is often the best one can get.

First, we compute solutions for SV, TH, and P2P0 on the barycenter refined mesh shown in Figure
3, which is created by a 7 x 7 uniform mesh that is refined once around the boundary, then given
a barycenter refinement over the entire mesh; this mesh provides 2,538 and 1,269 dof for velocity
and temperature, and for pressure, 1,746, 582, and 344 for SV, TH, and P2P0, respectively. Next, we
repeat the calculations for TH and P2P0 on a non-barycenter refined mesh (SV is not LBB stable on
this mesh) that provides roughly the same number of degrees of freedom: 2,778 and 1,389 dof for
velocity and temperature, and 1,998, 666, and 362 pressure dof for SV, TH, and P2P0 respectively.
Lastly, we compute with P1B and varying γ, on a finer mesh that provides 6,802, 745, 2,073 dof for
velocity, pressure and temperature, respectively.

Results are shown as velocity streamlines and temperature contours in Figures 4-6. The divergence
errors are shown in Table 1, and are as expected, with SV providing much better mass conserva-
tion than the other methods, and the other methods’ mass conservation improving as γ increases.
Note that SV does not provide ‘exact’ mass conservation due to roundoff error, and since the size of
‖∇u‖ ≈ 103; however, it is still 10 orders of magnitude better than the TH, P2P0 and P1B solutions
when γ = 0 was used.
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Figure 4 shows results of computations on the barycenter refined mesh for SV, TH and P2P0 with
varying γ. We observe that SV finds a good solution that matches the reference solution, while both
TH and P2P0 need heavy grad-div stabilization to find good solutions. With γ small, both TH and
P2P0 have poor accuracy in their velocity streamlines, and oscillations in their temperature contours.
When γ = 0, no TH solution was obtained as the Newton iteration failed. Figure 5 shows results
of computations on the non-barycenter refined mesh for TH and P2P0 with varying γ. We observe
similar results as those on the barycenter refined mesh, in that both TH and P2P0 need heavy grad-div
stabilization to find good solutions.

Figure 6 shows the results of the P1B element on a finer, non barycenter refined mesh, with varying
γ. Here we observe that with small γ, the velocity streamlines are inaccurate and the temperature
contours show slight oscillations and also some deviation from the reference solution. The solution
improves as γ increases to 10 and 100, but by γ = 1, 000, the improvement stops as the veloc-
ity streamlines and temperature contours become distorted. This suggests that with this low order
element, stronger enforcement of mass conservation harms the solution. This is not particularly sur-
prising, since the P1B element has less local degrees of freedom than higher order elements, and
therefore cannot absorb ‘extra’ constraints.

Figure 3: The meshes used in the numerical experiments to compare solutions using different element
choices and grad-div parameters. The meshes on the left and middle are used for SV, TH and P2P0,
and the mesh on the right is used for P1B.
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element mesh γ ‖∇ · uh‖
SV barycenter 0 1.04953e-7

P2P0 barycenter 0 1399.25
P2P0 barycenter 1 1018.89
P2P0 barycenter 10 (Newton failed)
P2P0 barycenter 100 73.9032
P2P0 barycenter 1k 7.77961
P2P0 barycenter 10k 0.781539

TH barycenter 0 (Newton failed)
TH barycenter 1 216.276
TH barycenter 10 56.3198
TH barycenter 100 7.51701
TH barycenter 1,000 0.780873
TH barycenter 10,000 0.078395

P2P0 coarser non-bary 0 1690.67
P2P0 coarser non-bary 1 1133.34
P2P0 coarser non-bary 10 428.596
P2P0 coarser non-bary 100 60.8438
P2P0 coarser non-bary 1,000 6.29827
P2P0 coarser non-bary 10,000 0.632025

TH coarser non-bary 0 91.4042
TH coarser non-bary 1 54.8908
TH coarser non-bary 10 21.2521
TH coarser non-bary 100 4.44583
TH coarser non-bary 1,000 0.550115
TH coarser non-bary 10,000 0.0569602

(P1b,P1) finer non-bary 0 290.136
(P1b,P1) finer non-bary 1 181.024
(P1b,P1) finer non-bary 10 73.256
(P1b,P1) finer non-bary 100 40.757
(P1b,P1) finer non-bary 1,000 25.987
(P1b,P1) finer non-bary 10,000 8.011

Table 1: Mass conservation of the different solutions for Ra=106 and Pr=0.71.
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Figure 4: Solution plots of SV, TH, and P2P0 with varying γ on the barycenter refined mesh for Pr=0.71
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Figure 5: Solution plots of SV, TH, and P2P0 with varying γ on the non-barycenter refined mesh for
Pr=0.71
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Figure 6: Solution plots of P1B with varying γ on the finer non-barycenter refined mesh for Pr=0.71
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3.2 Comparison of solutions for natural convection in silicon oil (Pr=∞)

We now consider the same test problem, but for natural convection in silicon oil instead of air. Here,
Pr =∞, and so the NSE momentum equation reduces to the Stokes equation. Thus, here, the NSE
nonlinearity is not playing a role in creating instability. The same meshes and algorithms are used as
in the above test problem, and again we take Ra = 106.

We first compute a reference solution on the fine mesh, and display the solution’s velocity and tem-
perature in Figure 7.
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Figure 7: The velocity streamlines, and temperature contours of the reference solution for Pr=∞ and
Ra=106.

Results on the coarser meshes are shown as velocity streamlines and temperature contours in Fig-
ures 8-10, and divergence errors are shown in Table 2. The divergence errors are as expected, with
SV providing much better mass conservation than the other methods, and the other methods’ mass
conservation improving as γ increases.

Figure 8 shows results of the Pr=∞ computations on the barycenter refined mesh for SV, TH and
P2P0 with varying γ. Here, SV finds a good solution that matches the reference solution, while finding
good solutions for both TH and P2P0 requires heavy grad-div stabilization. Figure 9 shows results
of computations on the non-barycenter refined mesh for TH and P2P0 with varying γ. We observe
similar results as those on the barycenter refined mesh, in that both TH and P2P0 need heavy grad-
div stabilization to find good solutions. For the P1B results in Figure 10, we observe that with small γ,
the velocity streamlines and temperature contours are inaccurate compared to the reference solution
when γ = 0. As γ increases to 100, some improvement in the velocity streamlines is observed, but
just as in the Pr=0.71 case, further increasing γ destroys the solution.

4 Conclusions

We have provided theory and numerical experiments that suggest when there is a large forcing in the
momentum equation, and when the irrotational part of the forcing is large relative to the divergence-
free part, large stabilization parameters are necessary if grad-div stabilization is used with mixed finite
elements. This was verified for two test problems where such phenomena arise, which validated our
theory. Here, we saw with the TH and P2P0 element choices that heavy grad-div stabilization was
necessary. Note that P2P0 elements conserve mass locally, which reveals that local mass conserva-
tion may also not be sufficient for such problems. For low order elements such as P1B, stabilization
of the divergence error is necessary, but grad-div stabilization can ‘over-stabilize’ and destroy the so-
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element mesh γ ‖∇ · uh‖
SV barycenter 0 1.46457e-7

P2P0 barycenter 0 (Newton failed)
P2P0 barycenter 1 (Newton failed)
P2P0 barycenter 10 561.362
P2P0 barycenter 100 100.167
P2P0 barycenter 1k 10.647
P2P0 barycenter 10k 1.07046

TH barycenter 0 322.845
TH barycenter 1 199.753
TH barycenter 10 59.8523
TH barycenter 100 8.53961
TH barycenter 1,000 0.89697
TH barycenter 10,000 0.0901575

P2P0 coarser non-bary 0 1915.31
P2P0 coarser non-bary 1 1413.69
P2P0 coarser non-bary 10 550.21
P2P0 coarser non-bary 100 82.5121
P2P0 coarser non-bary 1,000 8.59894
P2P0 coarser non-bary 10,000 0.863363

TH coarser non-bary 0 78.3519
TH coarser non-bary 1 51.8061
TH coarser non-bary 10 21.1296
TH coarser non-bary 100 4.36193
TH coarser non-bary 1,000 0.529689
TH coarser non-bary 10,000 0.0546587

(P1b,P1) finer non-bary 0 285.469
(P1b,P1) finer non-bary 1 193.811
(P1b,P1) finer non-bary 10 77.838
(P1b,P1) finer non-bary 100 42.993
(P1b,P1) finer non-bary 1,000 28.076
(P1b,P1) finer non-bary 10,000 9.321

Table 2: Mass conservation of the different solutions for Ra=106 and Pr =∞.

16



lution. A good alternative for these problems is to use divergence-free mixed finite elements, such as
Scott-Vogelius.
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Figure 8: Solution plots of SV, TH, and P2P0 with varying γ on the barycenter refined mesh for Pr=∞
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Figure 9: Solution plots of SV, TH, and P2P0 with varying γ on the non-barycenter refined mesh for
Pr=∞
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Figure 10: Solution plots of P1B with varying γ on the finer non-barycenter refined mesh for Pr=∞
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