
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 0946 – 8633

Primal-dual linear Monte Carlo algorithm for multiple stopping –

an application to flexible caps

Sven Balder,1 Antje Mahayni,1 John G. M. Schoenmakers,2

submitted: November 23, 2011

1 Duisburg-Essen University
Mercator School of Management
Lotharstr. 65
47057 Duisburg
Germany
E-Mail: antje.mahayni@uni-due.de

sven.balder@uni-due.de

2 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: John.Schoenmakers@wias-berlin.de

No. 1666

Berlin 2011

2000 Mathematics Subject Classification. 91G30, 91G60, 60G51.

Key words and phrases. Multiple stopping, dual representation, flexible caps, linear regression, Monte Carlo simulation.

J. S. acknowledges support by DFG Research Center MATHEON “Mathematics for Key Technologies” in Berlin .

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

https://core.ac.uk/display/289298596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 2044975
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract

In this paper we consider the valuation of Bermudan callable derivatives with multiple exercise rights.
We present in this context a new primal-dual linear Monte Carlo algorithm that allows for efficient simulation
of lower and upper price bounds without using nested simulations (hence the terminology). The algorithm is
essentially an extension of a primal–dual Monte Carlo algorithm for standard Bermudan options proposed
in Schoenmakers et al. (2011), to the case of multiple exercise rights. In particular, the algorithm constructs
upwardly a system of dual martingales to be plugged into the dual representation of Schoenmakers (2010).
At each level the respective martingale is constructed via a backward regression procedure starting at the
last exercise date. The thus constructed martingales are finally used to compute an upper price bound.
At the same time, the algorithm also provides approximate continuation functions which may be used to
construct a price lower bound. The algorithm is applied to the pricing of flexible caps in a Hull and White
(1990) model setup. The simple model choice allows for comparison of the computed price bounds with the
exact price which is obtained by means of a trinomial tree implementation. As a result, we obtain tight price
bounds for the considered application. Moreover, the algorithm is generically designed for multi-dimensional
problems and is tractable to implement.

1 Introduction

The goal of the paper is an efficient Monte Carlo algorithm for the pricing of Bermudan callable derivatives with
multiple exercise rights. Such derivatives give the right to exercise a certain claim at a specific number of times
within a given set of discrete exercise dates. These products are nowadays quite popular and frequently occur
in various financial sectors, for example as flexible caps (also called chooser caps) in interest rate markets, or as
swing options in energy markets. Further they can be found in the context of life insurance contracts, for instance
as surrender and prepayment options embedded in mortgage backed securities and insurance contracts. From
a mathematical point of view, pricing of a multiple exercise option comes down to solving a multiple stopping
problem. Because in general a multiple exercise option may be specified with respect to a multi-dimensional
underlying, we aim at developing an effective and generic Monte Carlo procedure, thus avoiding the curse of
dimensionality typically connected with deterministic PDE solutions.

Monte Carlo procedures for single exercise Bermudan options may be somehow categorized in two groups.
On the one hand there are the so called “primal” algorithms which aim at constructing a “good” stopping time
leading to a lower biased price estimate. As some of the most popular methods in this category may be con-
sidered the regression based procedures in Carriere (1996), Longstaff and Schwartz (2001), and Tsitsiklis and
Van Roy (2001). On the other hand there is the category of “dual” methods relying on the dual representation
for the (standard) stopping problem developed by Rogers (2002) and independently Haugh and Kogan (2004),
which involves an infimum over a set of martingales. In a dual method the goal is to find a “good” martingale
which leads to an upper biased price estimate. A generic and popular Monte Carlo solution for the Bermudan
pricing problem is proposed by Andersen and Broadie (2004). A drawback of this method is that it requires
usually time consuming nested Monte Carlo simulations. In this respect Belomestny et al. (2009) propose a
non-nested (linear) dual Monte Carlo algorithm in a Wiener environment based on the construction of a dual
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martingale via a regression estimate of a discretized Clark-Ocone derivative. Recently, as a particular result, in
Schoenmakers et al. (2011) a new non-nested dual regression based algorithm is developed which is based
on the idea of constructing “nearly optimal” or “low variance” dual martingales. As an additional feature, by this
method one also obtains lower price bounds at the same time and one doesn’t need a certain given “input”
approximation to the Snell envelope.

The above mentioned primal regression based Monte Carlo procedures may be extended in a rather straightfor-
ward way to the multiple exercise case, using the reduction principle for multiple stopping. Further in Bender and
Schoenmakers (2006) the iterative procedure of Kolodko and Schoenmakers (2006) is extended to the multiple
stopping problem and analyzed regarding numerical stability. As a first extension of the dual representation for
single exercise options, Meinshausen and Hambly (2004) developed a dual representation for multi exercise op-
tions in terms of an infimum over a family of martingales and a family of stopping times. Later on, Schoenmakers
(2010) found an alternative dual representation for the multiple stopping problem in terms of an infimum over
martingales only. The latter representation is recently generalized in Bender et al. (2011) to multiple stopping
problems with respect to far more general pay-off structures, which may include volume constraints and refrac-
tion periods for example.

The main achievement in this paper is a linear, or non-nested (hence potentially efficient) Monte Carlo pro-
cedure for multiple exercise options that provides both price upper bounds and price lower bounds at the same
time. Our new algorithm can be considered as a generalization of the particular regression based approach
presented in Schoenmakers et al. (2011) using essentially the pure martingale dual representation in Schoen-
makers (2010).

The proposed algorithm is implemented and tested for pricing flexible caps within a Hull and White (1990) model
setup. This simple model is chosen in order to compare the price bounds computed by the new algorithm with
the exact price obtained by means of a trinomial tree implementation along the lines of Hull and White (2000).
In addition, we introduce the notion “ε−relevance of the algorithm for solving the stopping problem” in order to
assess whether a particular product under consideration involves a “real” stopping problem in the sense that the
option price differs in a way measured by ε with respect to suitably specified lower and upper benchmark price
bounds. To be more precise, the lower benchmark bound is due to the optimal deterministic exercise policy and
the upper benchmark bound is due to the price in the view of a visionary. As a result, the proposed dual linear
Monte Carlo algorithm gives tight price bounds for various versions of the flexible cap considered.

The outline of the paper is as follows. Section 2 states the pricing problem and gives a brief review of known
prerequisites. The new linear Monte Carlo algorithm is developed in Section 3. In Section 4 we consider the
payoff structure of flexible caps and introduce the notion of ε−relevance of the algorithm, whereas in Section 5
we implement the new Monte Carlo algorithm and compare the simulated upper and lower price bounds with
“exact” prices obtained from a trinomial tree implementation.

2 Multiple stopping problem, recap of former results

2.1 The problem of multiple stopping

The key problem is given by the multiple stopping problem which is implied a Bermudan Option with L exercise
rights. A Bermudan option gives the right to exercise an option a specified number of times within a given
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discrete set of exercise dates 0 = t0 < t1 < · · · < tJ =: T, identified henceforth with their respective
indices i ∈ {0, 1, . . . ,J }. In the case that the option is exercised at time i, the buyer of the Bermudan option
instantaneously receives the payoff Zi. In general, (Zi : i = 0, 1, . . . ,J ) denotes a non–negative stochastic
process in discrete time. Z is defined on a filtered probability space (Ω,F , P ) and is adapted to some filtration
F := (Fi : 0 ≤ i ≤ J ) and satisfies

J∑
i=1

E|Zi| <∞.

Throughout the following, we interpret Z as the discounted cash–flow, i.e. w.l.o.g. we set the interest rate equal
to zero. The pricing of a Bermudan option with L exercise rights boils down to an optimal stopping problem w.r.t.
Z . Let Si(L) denote the set of F–stopping vectors τ :=

(
τ (1), . . . , τ (L)

)
such that i ≤ τ (1) and, for all l,

1 < l ≤ L, τ (l−1) + 1 ≤ τ (l). Then, the (discounted) price Y ∗Li of the Bermudan option at i is given by

Y ∗Li = supτ∈SiEi

L∑
l=1

Zτ (l)

where Ei := EFi denotes the conditional expectation with respect to the σ–algebra Fi and Zi :≡ 0 and
Fi :≡ FJ for i > J .

It is worth to emphasize that the multiple stopping problem can be reduced to L nested stopping problems
with one exercise right, cf. for example Bender and Schoenmakers (2006). However, in the following, we derive
a Monte Carlo simulation method which requires only one degree of nesting. First, we review some well known
results which are needed to derive the regression based algorithm.

2.2 Review of former results

From Rogers (2002), Haugh and Kogan (2004) it is well known that

Y ∗i := Y ∗1i = inf
M∈M

Ei max
i≤j≤J

(Zj +Mi −Mj) (2.1)

= max
i≤j≤J

(Zj +M∗i −M∗j ) a.s. (2.2)

whereM is the set of all F–martingales, and where M∗ is the Doob martingale of the Snell envelope Y ∗ for
one exercise right, which satisfies

Y ∗i = Y ∗0 +M∗i −A∗i ,

where A∗i is predictable and nondecreasing, and M∗0 = A∗0 = 0. In particular, the price of a single exercise
Bermudan option at time i = 0 is given by the pathwise maximum of the cash-flow minus the Doob martingale
of the Snell envelope. Intuitively, a meaningful upper bound should now be obtained by replacing the Doob mar-
tingale by a good approximation to it.

As one corner stone of the method developed in this paper we consider the recently developed regression
based non-nested Monte Carlo algorithm for solving the dual problem in the single exercise case (see Schoen-
makers et al. (2011)). This algorithm is essentially based on minimizing the expected conditional variances

E Variϑi(M), i = 0, ...,J (2.3)
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of the path-wise functional
ϑi(M) := max

i≤j≤J
(Zj −Mj +Mi)

in a backward recursive way, by constructing a ’nearly optimal’ martingale backwardly from i = J down to i =
0, cf. Theorem 12 in Schoenmakers et al. (2011). An ’optimal’ dual martingale in the sense of Schoenmakers et
al. (2011) is a martingale M◦ for which

ϑi(M
◦) = max

i≤j≤J
(Zj −M◦j +M◦i ) ∈ Fi, i = 0, ...,J ,

and due to Schoenmakers et al. (2011), Theorem 10, it then holds Y ∗i = ϑ
(M◦)
i , i = 0, ...,J . By observing

that for i < J ,
ϑi := ϑi(M) = max (Zi, Mi −Mi+1 + ϑi+1) ,

and that trivially Zi ∈ Fi, Schoenmakers et al. (2011) point out a particular backward regression based ap-
proach to achieve minimization of (2.3) by (more strongly) minimizing

E Vari (Mi −Mi+1 + ϑi+1) (2.4)

over a class of martingale increments Mi+1 −Mi represented by linear combinations of a suitable family of
elementary martingales, assuming that the increments Mj −Mi+1 for j ≥ i+ 1, and thus ϑi+1, are already
constructed. Further details will be clear from the description of the multiple exercise version of the Schoenmak-
ers et al. (2011) algorithm later on. For developing the latter algorithm we will need a next corner stone, namely
a recently developed martingale representation for multiple stopping (Schoenmakers (2010)).
The dual martingale representation in the case of L exercise rights derived in Schoenmakers (2010), cf. Theo-
rem 2.5, states that for L = 1, 2, ...

Y ∗Li = inf
M(1),...,M(L)∈M

max
i≤j1<···<jL

L∑
k=1

(
Zjk +M

(k)
jk−1
−M (k)

jk

)
,

Y ∗Li = max
i≤j1<···<jL

L∑
k=1

(
Zjk +M∗L−k+1

jk−1
−M∗L−k+1

jk

)
, (2.5)

EiY
∗L
i+1 = max

i<j1<···<jL

L∑
k=1

(
Zjk +M∗L−k+1

jk−1
−M∗L−k+1

jk

)
(2.6)

almost surely with j0 := i, and where M∗k is the Doob martingale of the Snell envelope Y ∗k for k exercise
rights.

Remark 1 For formal reasons (in order to avoid maxima over empty domains in case the number of remaining
exercise possibilities at time i is larger than J − i+ 1) we allow exercising beyond J yielding zero cash. Thus,
since trivially Y ∗kj = 0 for j > J , we have M∗kj+1 −M∗kj = Y ∗kj+1 − EjY ∗kj+1 = 0 for j ≥ J , i.e. M∗kj =

M∗kJ for j ≥ J .

At a first glance (2.5) requires the evaluation of a maximum that involves about 2J arguments in the case
where L ≈ J /2. However, as we will show later on (Remark 2), due to the very structure of the object to be
maximized, it can be computed in a recursive way at a costs of O(LJ ), so O(J 2) in the worse case.

4



3 Primal-dual linear MC algorithm for multiple stopping

We are now ready for constructing a multiple exercise version of the regression based primal-dual algorithm for
one exercise right proposed in Schoenmakers et al. (2011).

3.1 Backward procedure for multiple stopping

Let us fix L and consider 1 ≤ l < L. As a well known fact, the Snell envelope Y ∗l+1
i due to l + 1 exercise

rights may be equivalently considered as the Snell envelope under one exercise right due to the generalized
cash-flow

Z∗l+1
j := Zj + EjY

∗l
j+1. (3.1)

From (2.5) and (2.6) we observe that with j̃0 := i+ 1,

EiY
∗l
i+1 = max

i<j1<···<jL

l∑
k=1

(
Zjk +M∗l−k+1

jk−1
−M∗l−k+1

jk

)
= M∗li −M∗li+1 + max

i+1≤j̃1<···<j̃L

l∑
k=1

(
Zjk +M∗l−k+1

j̃k−1
−M∗l−k+1

j̃k

)
= M∗li −M∗li+1 + Y ∗li+1, (3.2)

hence (3.1) may be written as
Z∗l+1
j := Zj +M∗li −M∗li+1 + Y ∗li+1. (3.3)

Now consider a given set of martingales M (k) satisfying M
(k)
j = M

(k)
J , j ≥ J , k = 1, ...,L (cf. Remark 1)

and define for l < L in view of (2.5),

Y ∗l+1
i ≈ ϑ(l+1)

i := max
i≤j1<···<jl+1

l+1∑
k=1

(
Zjk +M

(l+1−k+1)
jk−1

−M (l+1−k+1)
jk

)
(3.4)

with j0 := i. It then holds with j̃0 := ĵ0 := i+ 1,

ϑ
(l+1)
i = max

(
Zi + max

i<j2···<jl+1

l+1∑
k=2

(
Zjk +M

(l+1−k+1)
jk−1

−M (l+1−k+1)
jk

)
, max
i<j1<···<jl+1

l+1∑
k=1

(
Zjk +M

(l+1−k+1)
jk−1

−M (l+1−k+1)
jk

))

= max

(
Zi +M

(l)
i −M

(l)
i+1 + max

i<j̃1···<j̃l

l∑
k=1

(
Zj̃k +M

(l−k+1)

j̃k−1
−M (l−k+1)

j̃k

)
,

M
(l+1)
i −M (l+1)

i+1 + max
i<ĵ1<···<ĵl+1

l+1∑
k=1

(
Zjk +M

(l+1−k+1)

ĵk−1
−M (l+1−k+1)

ĵk

))
= max

(
Zi +M

(l)
i −M

(l)
i+1 + ϑ

(l)
i+1, M

(l+1)
i −M (l+1)

i+1 + ϑ
(l+1)
i+1

)
=: max

(
Z

(l+1)
i , M

(l+1)
i −M (l+1)

i+1 + ϑ
(l+1)
i+1

)
(3.5)
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in view of (3.3). Hence Z
(l+1)
i may be considered an approximation to virtual cash-flow Z∗l+1

i in (3.1). We
are now going to apply for l = 0, 1, 2 upwardly the regression method in Schoenmakers et al. (2011) to the

approximation Z
(l+1)
i of the virtual cash-flow process Z∗l+1 in (3.1). Formally, in this upward construction

it is assumed that at each step 1 ≤ l < L, a martingale M (l), being an approximation to M∗l, and an
approximation ϑ(l) to Y ∗l is constructed. Following Schoenmakers et al. (2011) we then construct a martingale
M (l+1) and a process ϑ(l+1) as approximations to M∗l+1 and Y ∗l+1, respectively, as explained in the next
section. The upward construction may be naturally initialized with M (0) := ϑ(0) := 0, and after L upward
steps we end up with a set of martingales M (1), ...,M (L) and approximations ϑ(1), ..., ϑ(L) to the respective
Snell envelopes Y ∗1, ..., Y ∗L.

Remark 2 (Complexity of the maximization problem (2.5)) Let us suppose that a family of martingales
(
M (k)

)
as above is available and that we are faced with the maximization problem (3.4) for i = 0 and l + 1 = L.
We may initialize M (0) := ϑ(0) := 0 and then obtain ϑ(l+1) from ϑ(l), M (l), hence Z

(l+1)
i , and M (l+1),

via (3.5) by backward induction. Indeed, after initializing ϑ
(l+1)
J = ZJ we can obtain for j < J inductively

ϑ
(l+1)
j from ϑ

(l+1)
j+1 by (3.5) and thus ϑ

(l+1)
0 in J steps. We thus arrive at ϑ

(L)
0 after LJ operations (rather than

J !/ (L! (J − L)!) ).

3.2 Primal-dual linear MC algorithm

For the algorithm spelled out below we assume as in Schoenmakers et al. (2011) an underlying D-dimensional
Markovian structure X with respect to a filtration generated by an m-dimensional Brownian motion W. More-
over, we assume that for 0 ≤ j ≤ J and 0 ≤ l ≤ L the martingales M (l) are of the form

M
(l)
j =

K∑
q=1

ξl,qEq,j ,

for certain suitably chosen “elementary” martingales Eq,·, q = 1, ...,K. For example,

Eq,j =

∫ tj

0
ϕT
q (u,Xu)dWu (3.6)

for a set of basis functions (ϕq(t, x))1≤q≤Kwith ϕq acting from R× RD → Rm, or, Eq,j , q = 1, ...,K, may
represent any set of discounted tradables at time j (hence tj ) available in a particular situation.

Let us initialize M (0) = ϑ(0) = 0. Then, inductively, we are going to construct M (l+1) and ϑ(l+1), as-
suming that M (l) and ϑ(l) are constructed for l, 0 ≤ l < L. The construction will be carried out on a sample

of trajectories X
(n)
J , n = 1, ..., N.

At i = J we trivially set ϑ
(l+1,n)
J = ZJ (X

(n)
J ), n = 1, ..., N . Suppose we have constructed for fixed

i < J the martingale increments
(
M

(l+1)
j −M (l+1)

i+1

)
i+1≤j≤J

(for i = J − 1 this is trivially zero), and

ϑ
(l+1,n)
i+1 , n = 1, ..., N (as approximations to Y ∗l+1), respectively, on each trajectory. We will then determine
β1, ..., βK such that for

M
(l+1)
i+1 −M (l+1)

i =
K∑
q=1

βq (Eq,i+1 − Eq,i)
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the sample estimate of the expected conditional variance

E Vari(M
(l+1)
i −M (l+1)

i+1 + ϑl+1
i+1)

(cf. (2.4)) is minimized. This will be carried out by a regression procedure. As a candidate predictor for the
Fi-measurable conditional expectation

Ei(M
(l+1)
i −M (l+1)

i+1 + ϑl+1
i+1)

we will take an Fi-measurable random variable of the form

K∑
q=1

γqψq(i,Xi),

where, for instance, (ψq(t, x))1≤q≤K , with ψq acting from RD → R, is a second set of basis functions, or
any other set of explanatory Fi-measurable random variables suggested by the problem under consideration.
We next consider the regression problem

(β
(l+1)
i , γ

(l+1)
i ) := arg min

β,γ
E

 K∑
q=1

βq (Eq,i − Eq,i+1) + ϑ
(l+1)
i+1 −

K∑
q=1

γqψq(i,Xi)

2

which comes down to the following regression procedure on the Monte Carlo trajectories (X
(n)
j , 0 ≤ j ≤ J ,

n = 1, ..., N),

(β
(l+1)
i , γ

(l+1)
i ) := arg min

β,γ∈RK

N∑
n=1

[
βq

(
E(n)q,i − E

(n)
q,i+1

)
+ ϑ

(l+1,n)
i+1

−
K∑
q=1

γqψq(i,X
(n)
i )

2

. (3.7)

Next, we set

M
(l+1)
i+1 −M (l+1)

i =
K∑
q=1

β
(l+1)
i,q (Eq,i+1 − Eq,i) , (3.8)

and then in view of (3.5) we proceed by setting

ϑ
(l+1,n)
i = max

(
Z

(n)
i +M

(l,n)
i −M (l,n)

i+1 + ϑ
(l,n)
i+1 ,M

(l+1,n)
i −M (l+1,n)

i+1 + ϑ
(l+1,n)
i+1

)
= max

(
Z

(n)
i +M

(l,n)
i −M (l,n)

i+1 + ϑ
(l,n)
i+1 ,

K∑
q=1

β
(l+1)
i,q

(
E(n)q,i − E

(n)
q,i+1

)
+ ϑ

(l+1,n)
i+1

 ,

where we note that the quantities indexed with level l are already determined at the previous level. For ele-
mentary martingales of the form (3.6), the respective Wiener integrals in (3.7) may be approximated as usual
by ∫ ti+1

ti

ϕT
q (u,X(n)

u )dW (n)
u ≈

L−1∑
l=0

ϕT
q (ti + lδ), X

(n)
ti+lδ

)
(
W

(n)
ti+(l+1)δ −W

(n)
ti+lδ

)
, (3.9)
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with δ := (ti+1 − ti)/L for a large enough integer L. By working backward from i = J down to i = 0, the
above regression procedure yields a martingale

M
(l+1)
j =

j−1∑
p=0

K∑
q=1

β(l+1)
p,q (Eq,p+1 − Eq,p)

and, as a by-product, an additional system of approximations to the continuation value functions,[
EiY

∗l+1
i+1

]
(x) = C(l+1)

i (x) ≈
K∑
q=1

γ
(l+1)
i,q ψq(i, x), i = 0, ...,J − 1. (3.10)

Finally, the martingales M (1), ...,M (L) may be used to compute a dual upper bound at i = 0, by starting a

new simulation of trajectories X̃
(ñ)
i , ñ = 1, ..., Ñ , and computing

Y up,L
0 ≈ 1

Ñ

Ñ∑
ñ=1

max
0≤j1<···<jL≤T

L∑
k=1

(
Zjk(X̃

(ñ)
jk

) (3.11)

+

jk−1∑
p=jk−1

K∑
q=1

β(L−k+1)
p,q

(
Ẽ(ñ)q,p − Ẽ

(ñ)
q,p+1

))
.

Notice that the upper bound is “true” in the sense that it is always an upper biased estimate, regardless the
quality of the martingales M (l). Further note that the maximum in (3.11) may be computed efficiently along the
lines explained in Remark 2.

On the other side, based on the approximate continuation functions (3.10), we may define an exercise policy
(τp,L0 : 1 ≤ p ≤ L) as follows. Define τ0,L0 := −1 and for 0 < p ≤ L

τp,L0 := inf{j : τp−1,L0 < j ≤ J , Zj(Xj) + C(L−p)j (Xj) ≥ C(L−p+1)
j (Xj)},

and simulate a lower biased price estimate,

Y low,L
0 ≈ 1

Ñ

Ñ∑
ñ=1

L∑
p=1

Z
τp,L,ñ0

(X̃
(ñ)

τp,L,ñ0

). (3.12)

4 Application to Flexible Caps

Throughout the following, D(t, T ) denotes the t– price of a zero coupon bond with maturity T . In addition, r
denotes the simple compounded spot rate and L is the market LIBOR rate (EURIBOR rate, respectively), i.e.

L(t, T ) =
1

τ(t, T )

(
1

D(t, T )
− 1

)
, (4.1)

where τ(t, T ) = T − t is the time difference expressed in years.1 For notational convenience, we consider an
equidistant set of tenor dates

T = {T0 = 0 < T1 < · · · < TJ < TJ+1},
1Actual/360 day-count convention, respectively.
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where Ti = Ti−1 + δ for i = 1, ...,J + 1 and T0 = 0. In addition, we set

Li(Ti) :=
1

δ

(
1

D(Ti, Ti+1)
− 1

)
.

Definition 3 (Payoff structure of caplets, caps, and flexible caps)

(i) The payoff of a caplet with settlement date Ti (i ∈ {1, . . .J + 1}) is given by the positive difference
between the reference rate L (LIBOR rate) prevailing at Ti−1 and the level κ, i.e.

δ[Li−1(Ti−1)− κ]+. (4.2)

(ii) The payoff structure of a cap with tenor structure T is given by the payoff of a portfolio of caplets with
settlement dates T1, . . . , TJ+1.

(iii) A flexible cap with L exercise rights implies the right to exercise at most L ≤ J + 1 of the caplets with
payoffs at T1, . . . , TJ+1.

Obviously, the value of the flexible cap is increasing in the number of exercise rights L. In particular, for
L ≤ J + 1, a trivial upper bound for the flexible cap is given by the value of a flexible cap with L = J + 1, i.e.
the value of the cap over the whole tenor structure.

For option pricing we consider a risk-neutral valuation framework with numeraire

Bt := e
∫ t
0 rsds

and corresponding pricing measure P , i.e. for any T > 0, the discounted zero coupon bonds D(t, T )/Bt,
0 ≤ t ≤ T, are P -martingales.

Thus, a caplet with settlement date Ti+1, and expiry Ti has at time t, t ≤ Ti the value

Ci(t) := BtEt
[
δ (Li(Ti)− κ)+ /BTi+1

]
.

The price of a cap starting at Tp and ranging over [Tp, Tq+1] is for t < Tp,

Capp,q(t) :=

q∑
i=p

Ci(t).

In order to specify the (discounted) cash flow which is relevant for the multiple stopping problem posed by a
flexible cap, we observe that

Ci(Ti) = BTiETi
[
δ (Li(Ti)− κ)+ /BTi+1

]
= δ (Li(Ti)− κ)+D(Ti, Ti+1). (4.3)

In particular, Equation (4.3) specifies the cashflow at Ti which is equivalent to a caplet with settlement date
Ti+1. Thus, the multiple stopping problem corresponding to the flexible cap will be considered with respect to
the discounted cash flow

Zi :=
Ci(Ti)

BTi
= δ (Li(Ti)− κ)+D(Ti, Ti+1)/BTi =

1

BTi
(1 + δκ)

[
1

1 + δκ
−D(Ti, Ti+1)

]+
,

9



at the exercise dates T0 . . . , TJ . Notice that Zi can also be interpreted the (discounted) payoff of 1 + δκ put
options with maturity Ti and strike 1

1+δκ which are written on a zero coupon bond with maturity Ti+1.

Recall that Si(L) denotes the set of F–stopping vectors τ :=
(
τ (1), . . . , τ (L)

)
such that Ti ≤ τ (1) and, for

all l, 1 < l ≤ L, τ (l−1) +δ ≤ τ (l). Then, the price of the flexible cap with L exercise rights with exercise dates
T0, ..., TJ (corresponding to indices 0, ...,J ) is given by

FlCap(L)(T0) = supτ∈S0E
L∑
l=1

Zτ (l)

= (1 + δκ) supτ∈S0 E
L∑
l=1

1

Bτ (l)

(
1

1 + δκ
−D(τ (l), τ (l) + δ)

)+

(4.4)

where Zj := 0 for j > J . The Snell envelope due to L exercise rights is given by

Y ∗Li = supτ∈SiEi

L∑
l=1

Zτ (l) .

We now consider the question if the determination of the optimal stopping strategy has a substantial impact on
the price of a Bermudan option. More precisely, we compare the (exact) price of the product based on an optimal
stopping strategy with trivial benchmark price bounds which can be inferred from deterministic optimization
procedures specified below. For a lower trivial benchmark price bound, we consider the following deterministic
optimization problem. Let Ti(L) denote the set of vectors t :=

(
t(1), . . . , t(L)

)
such that Ti ≤ t(1) and, for

all l, 1 < l ≤ L, t(l−1) + δ ≤ t(l). Then, the trivial lower Tj–price bound Y triv, low, L
j of a flexible cap with L

exercise rights is given by

Y triv, low, L
j = supt∈Tj Ej

L∑
l=1

Zt(l) (4.5)

For an upper trivial benchmark price bound, we rely on a visionary, i.e. we consider the tj−upper bound

Y triv, up, L
j of the flexible cap with L remaining exercise rights, which is given by is

Y triv, up, L
j = Ej supt∈Tj

L∑
l=1

Zt(l) . (4.6)

Loosely speaking we will asses the optimal stopping problem as relevant if there is a substantial difference of
the exact price and the benchmark price bounds. In this respect we will exclude pricing scenarios where the
exact price is equal (or close) to one of the above stated trivial price bounds. The motivation stems from the
observation that, in both extreme cases, the exact price can be calculated without using a backward regression
procedure, i.e. either by means of a Monte Carlo simulation of the look back price achieved by a visionary or
by means of a simple optimization stemming from an optimal deterministic set of stopping times. Therefore we
formulate a notion that expresses the relevance of the proposed dual linear Monte Carlo algorithm:

Definition 4 (ε–relevance of the algorithm for the stopping problem) The algorithm is called ε–relevant for
the stopping problem iff

min

{
Y triv, up, L
j

Y ∗Lj
,

Y ∗Lj

Y triv, low, L
j

}
≥ 1 + ε.
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3M-EURIBOR-forward rates

Figure 5.1: The initial term structure of interest rates along the lines of the Euro area yield curve from January
31, 2011. The 3M-EURIBOR-forward rates are obtained along the lines of Svensson (1994).

In particular, notice that the algorithm is, for example, not relevant (zero–relevant) in the case that the number
of exercise rights coincides with the number of caplets, i.e. L = J . Obviously, we also have zero–relevance if
the interest rate dynamics is deterministic.

5 Performance Test–Price Comparison (Hull White Model)

Throughout the following, we illustrate the prices and price bounds of flexible caps with a notional of 10, 000
EUR and where the reference rate is the 3–month–EURIBOR. If not mentioned otherwise, the caps range over
15 years, i.e. J = 60, and the cap level is equal to κ = 2%.2 We consider exercise rights which vary from
one to fifty, i.e. L ∈ {1, . . . , 50}. The initial term structure of interest rates is given by the Euro area yield curve
from January 31, 2011.3 The corresponding 3–month-forward rates are illustrated in Figure 5.

5.1 Hull White Model – Basics

The benchmark price values are obtained by assuming a Hull and White (1990) interest rate model which is
calibrated to the initial term structure from January 31, 2011. For the sake of completeness, we review the Hull-
White interest rate dynamics, and some well known results which are needed in further. However, the proofs
are omitted. These can, for example, be found in the textbook of Brigo and Mercurio (2006). The Hull and White
(1990) short rate dynamics are given by

d rt = (θ(t)− a rt) dt+ σ dWt, (5.1)

where a denotes the speed of mean reversion, θ(t)a is the mean reversion level, and σ is the spot rate volatility.
The time dependent variable θ allows to calibrate the model to the initial interest rate curve which is observed

2It is worth mentioning that all results can also be computed for other cap levels. In particular, one can apply the same basis functions
as the ones which are used in the following.

3C.f. http://www.ecb.int/stats/money/yc/html/index.en.html.
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at the market.
The model implies closed–form solutions for the zero coupon bond and option prices. The t–price of a zero
coupon bond with maturity T is given by

D(t, T ) = exp{A(t, T )− B(t, T )rt} (5.2)

where

B(t, T ) =
1

a
(1− exp{−a(T − t)})

andA(t, T ) = ln
D(0, T )

D(0, t)

(
B(t, T )f(0, t)− σ2

4a
(1− exp{−2at})B(t, T )2

)
. (5.3)

Let f(0, t) = −∂ lnD(0,t)
∂t be the initial instantaneous forward rate prevailing at time t. Then for arbitrary

parameters a and σ the model is calibrated to this initial forward rate curve by choosing

θ(t) = −∂f(0,t)
∂t + af(0, t) +

σ2

2a
(1− e−2at). (5.4)

Throughout the following, we set a = 0.1 for the the speed of mean reversion and σ = 0.02 for the volatility.
This can be viewed as consistent with swaption data.

Further, we recall the closed–form solution for the time t–price of a European put option with maturity T and
strike κ on a zero coupon bond with maturity S (S ≥ T ) which is given by

Put(t, T, S, κ) = κD(t, T )N

− ln D(t,S)
κD(t,T ) + 1

2v
2

v
+ v

−D(t, S)N

− ln D(t,S)
κD(t,T ) + 1

2v
2

v

 ,

(5.5)

where v = σ

√
1− exp{−2a(T − t)}

2a
B(T, S).

For Monte Carlo simulations later on, it is convenient to use the joined distribution of the spot rate and the
interest rate integral. Let

ν(t) = fM (0, t) +
σ2

2a
(1− e−at)2

V (t, T ) =
σ2

a2

[
T − t+

2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a

]
.

Then, the joined distribution of rt and
∫ t
s rudu conditioned on the information at time s is given by[

rt rs∫ t
s ru du

∫ s
0 ru du

]
∼ N

(
µ1
µ2

∣∣∣∣( c11 c12
c21 c22

))
, (5.6)
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where

µ1 = rse
−a(t−s) + ν(t)− ν(s)e−a(t−s)

µ2 = B(s, t)(rs − ν(s)) + ln
DM (0, s)

DM (0, t)
+

1

2
(V (0, t)− V (0, s))

c11 =
σ2

2a

(
1− e−2a(t−s)

)
c12 = c21 =

σ2

a2

(
1− e−a(t−s)

)
− σ2

2a2

(
1− e−2a(t−s)

)
c22 = V (s, t).

5.2 Exact pricing and relevance of the algorithm for the stopping problems

We approximate the exact price of the flexible caps by means of a trinomial tree. The trinomial interest rate tree
is implemented along the lines of Hull and White (2000). In particular, equidistant time steps with length 1

52 are
used, cf. for example Hull White (1996) or Brigo and Mercurio (2006). As such the tree is sufficiently high refined
to consider the resulting prices as the “exact” ones. Recall (cf. Equation (4.4)) that the T0–price of a flexible cap
with L exercise rights is given by

FlCap(L)(T0) = supτ∈S0E
L∑
l=1

Zτ (l)

= (1 + δκ) supτ∈S0 E
L∑
l=1

1

Bτ (l)

(
1

1 + δκ
−D(τ (l), τ (l) + δ)

)+

.

We will compute “exact” prices of flexible caps on the tree by means of the Bellman principle. Notice in this
respect that the discounted cash–flows

Zi = (1 + δκ)
1

BTi

(
1

1 + δκ
−D(Ti, Ti+1)

)+

are path–dependent in fact. However, this issue is easily avoided by considering the Bellman principle in terms
of the un-discounted objects Z̃i := BTiZi and Ỹi := YiBTi , which reads as follows.

Set Ỹ ∗,0i = 0 for i = 1, . . . ,J . At time J , we have

Ỹ ∗,lJ = Z̃J for all l ≥ 1,

and at J − i (i = 1, . . . ,J ), we then have backwardly

Ỹ ∗,lJ−i = max

{
Z̃J−i + EJ−i e

−
∫ TJ−i+1
TJ−i

ru du
Ỹ ∗,l−1J−i+1, EJ−i e

−
∫ J−i+1
TJ−i

ru du
Ỹ ∗lJ−i+1

}
.

In view of Definition 4, we can now asses the relevance of the algorithm for the multiple stopping problems. We
compare the trivial upper and lower bounds of Equation (4.6) and (4.5) with the trinomial tree prices obtained
by the Bellmann principle applied to the trinomial tree setup. Notice that the trivial lower bound (linked to the
optimal deterministic exercise policy) can be calculated according to the closed–form put–pricing formula, cf.
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Relevance of the algorithm for the multiple stopping problems

trivial price bounds exact price percentage mispricing
ex. rights lower upper tri. tree triv. lower triv. upper

L Y triv,low,L
0 Y triv,up,L

0 Y ∗L0

(
Y ∗L0

Y triv,low,L
0

− 1

)
· 100

(
Y triv,up,L
0

Y ∗L0
− 1

)
· 100

1 61.9212 124.897 93.582 33.8321 33.4624
2 123.842 241.967 185.871 33.3720 30.1799
3 185.674 353.302 276.780 32.9165 27.6472
4 247.498 459.925 366.253 32.4242 25.5757
5 309.159 562.499 454.258 31.9420 23.8281
6 370.782 661.425 540.764 31.4337 22.3131
7 432.198 756.929 625.758 30.9322 20.9619
8 493.505 849.280 709.201 30.4139 19.7516
9 554.608 938.611 791.078 29.8921 18.6496

10 615.478 1025.15 871.409 29.3697 17.6423

Table 5.1: The table summarizes the trivial upper Y triv,up,L
0 and lower bounds Y triv,low,L

0 given by Equation
(4.6) and (4.5), the exact price Y ∗L0 derived by means of the trinomial tree, and the percentage differences
between the trivial price bounds and the trinomial prices

Equation (5.5). The trivial upper price bound is obtained by means of a Monte Carlo simulation with 10,000
paths. Observe that, for L ∈ {1, . . . 10}, the exact price is at least 29.36% (L = 10) above the trivial lower
price bound derived by the optimal deterministic exercise policy. The maximal deviation is 33.83% for L = 1.
With respect to the upper price bound implied by a visionary, the highest (lowest) percentage value of the upper
price bound and the exact prices is 33.46% for L = 1 (17.64 for L = 10). Thus, we conclude that, in view of
Definition 4, the relevance of the algorithm for the stopping problems is at least ε = 17% .

5.3 Upper and lower pricing by the dual MC algorithm

Due to the stochastic interest rates, we need to consider pathwise discounted cash flow values Zi. Recall that
the zero coupon prices only depend on the spot rate r, cf. Equation (5.2). In particular, we have

Zi = Zi(rTi , BTi) =
1

BTi
(1 + δκ)

[
1

1 + δκ
−D(Ti, Ti+1)

]+
.

For each Ti (i ∈ {0, . . . ,J }), we simulate the short rate rTi and the accumulated short rate lnBTi =∫ Ti
0 rsds according to the joined (conditional) distribution as given in Equation (5.6). The equidistant time grid

is congruent to the exercise dates, i.e. δ = Ti+1 − Ti = 1
4 . In particular, the problem setup implies a two–

dimensional Markovian structure Xu = (ru, Bu) with respect to the one–dimensional Brownian motion W . In
view of the closed–form solutions for the zero bond and put option prices, cf. Equation (5.2) and (5.5), we use
the martingale property of the discounted price processes of traded assets. We denote the discounted price of
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Products used for the Monte carlo algorithm

q Product q maturity/settlement date T level κ
1 Zerobond 15 years
2 3M–caplet 15 years 2%
3 3M–caplet 7.5 years 2%
4 3M–caplet 3.75 years 2%
5 3M–caplet 1 year 2%

Table 5.2: The table summarizes the products which are used for the Monte Carlo algorithm, i.e. in terms of their
discounted price processes.

the traded assets q by Eq and set

M
(l+1)
i+1 −M (l+1)

i =
K∑
q=1

β
(l+1)
i,q

(
Eq(Ti+1, rTi+1 , BTi+1)− Eq(Ti, rTi , BTi)

)
.

In particular, we use K = 5 and refer to the discounted prices of a zerobond with maturity in 15 years and
3M-caplets with settlement dates in 1, 3.75, 7.5, and 15 years such that

Eq(Ti, rTi , BTi) :=
D(Ti, T )

BTi
for q = 1

Eq(Ti, rTi , BTi) :=
1 + δκ

BTi
Put(Ti, T, T + δ,

1

1 + δκ
) for q = 2, 3, 4, 5.,

where Put(·) is given by Equation (5.5). The maturities (settlement dates, respectively) and cap levels are
summarized in Table 5.2. In addition, we also use the prices of these products for the approximation of the
continuation value, i.e. ψq = Eq . The optimal weights γq and βq (q = 1, . . . , 5) are estimated by the backward
regression along the lines of Equation (3.7). Since we work in a Markovian environment we can approximate
the conditional expectations (continuation values with l exercise rights left) by

C(l+1)
i =

K∑
q=1

γ
(l+1)
i,q Eq(Ti, rTi , BTi).

The martingales, i.e. the weights γq and βq (q = 1, . . . , 5), are determined using a a relatively small number
of 1,000 paths. By an additional larger simulation of 9,000 paths the upper and lower price bounds according
to (3.11) and (3.12) are computed.

For L ∈ {1, . . . , 10}, the resulting upper and lower prices obtained by the primal–dual Monte Carlo algo-
rithm are summarized in Table 5.3. It is worth to emphasize that the maximal percentage difference of the upper
price bound derived by our algorithm to the exact (trinomial tree) price is 0.56%.4 In particular, the percentage
differences vary only between 0.2% and 0.56%. The lower price bounds, which are actually obtained as by
products, are also pretty good. Here, the percentage price differences to the exact price vary between 1.15%
and 1.92%. The performance of the dual MC algorithm with regard to the price bounds is also illustrated in

4For the exact prices, we refer to Table 5.1.
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Prices and price bounds of flexible caps

Figure 5.2: The figures illustrate the trivial price bounds (outer lines) and the price bounds given by the dual
Monte Carlo algorithm (inner lines) for L = 1 up to L = 50 exercise rights. While the right figure gives a plot of
the nominal prices, the right figure relates the price bounds to the number of exercise rights L.

Figure 5.3, where the number of exercise rights varies from L = 1 to L = 50. In addition, the prices are plot-

ted in relation to the number of exercise rights, i.e. we plot
Y ∗L0
L (

Y up,L
0
L and

Y down,L
0
L , respectively). Obviously,

we have for any L ≥ 1, Y ∗L+1 − Y ∗L ≤ Y ∗L − Y ∗L−1 (with Y ∗0 = 0). From this we have immediately
Y ∗L ≤ LY ∗1, and we may prove by induction that Y

∗L+1

L+1 ≤
Y ∗L

L . Notice that the latter inequality is also true

for the upper price bound Y up,L
0 which is implied by the dual Monte Carlo algorithm. However, this feature may

be violated in the case of a non–dual price approximation, in particular an approximation which relies on some
reasonable but suboptimal exercise policy.

6 Conclusion

We propose a primal–dual Monte Carlo algorithm which gives an upper as well as a lower price bound. We
implement the algorithm for the pricing of flexible caps. In order to compare the prices provided by our Monte
Carlo algorithm with exact prices, we use a simple Hull and White model setup. We calibrate the model to
market data and calculate the exact prices by means of a trinomial tree. In addition, we asses that the algorithm
is relevant for solving the stopping problems under consideration. The relevance of the algorithm is captured by
the differences of exact prices and some (trivial) price bounds which can be computed by a simple optimization
(a simple Monte–Carlo simulation, respectively). The lower price bound is obtained by the optimal deterministic
exercise policy, the upper price bound is linked to a visionary. Finally, we consider a set of multiple stopping
problems (flexible cap products) where the mispricing caused by the trivial price bounds is at least 17% such that
a sophisticated algorithm is essential. We illustrate that the proposed primal–dual linear Monte Carlo algorithm
is not only tractable to implement but also gives tight price bounds. In particular, it turns out that for 15 year
flexible caps, the upper MC price bound is less than 0.56% above the exact price. Finally, last but not least,
we underline that the algorithm presented is designed for generic application to any, possibly high dimensional
multiple stopping problem.
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Prices from primal-dual Monte Carlo algorithm

ex. rights upper MC bound perc. diff.

L Y upL
0 confidence interval

(
Y up,L
0

Y ∗L0
− 1

)
· 100

1 94.104 [93.767,94.440] 0.557
2 186.669 [186.027,187.311] 0.429
3 277.751 [276.820,278.682] 0.351
4 367.366 [366.194,368.539] 0.304
5 455.491 [454.108,456.874] 0.271
6 542.120 [540.553,543.687] 0.251
7 627.215 [625.492,628.938] 0.233
8 710.766 [708.921,712.612] 0.221
9 792.753 [790.829,794.677] 0.212

10 873.142 [871.185,875.100] 0.199

ex. rights lower MC bound perc. diff.

L Y downL
0 confidence interval

(
Y ∗L0

Y low,L
0

− 1

)
· 100

1 91.781 [90.690,92.872] 1.925
2 183.105 [181.029,185.181] 1.488
3 272.737 [269.689,275.784] 1.461
4 361.102 [357.099,365.105] 1.406
5 448.308 [443.361,453.255] 1.310
6 533.872 [528.000,539.744] 1.275
7 618.189 [611.405,624.973] 1.210
8 701.070 [693.390,708.751] 1.146
9 782.091 [773.527,790.655] 1.136

10 861.428 [851.994,870.862] 1.145

Table 5.3: The upper table summarizes the upper bound Y upL
0 for L = 1 up to L = 10 exercise rights and

gives margin
Y up,L
0

Y ∗L0
− 100 compared to the exact price Y ∗L0 (computed by a trinomial tree procedure). The

lower table gives the analogous results for the lower price bound Y lowL
0 of the Monte Carlo algorithm.
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