
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 0946 – 8633

MAC schemes on triangular Delaunay meshes

Robert Eymard1, Jürgen Fuhrmann 2, Alexander Linke2

1 Université Paris-Est Marne La Vallée
5, boulevard Descartes
Champs-sur-Marne
77454 Marne La Vallée CEDEX 2
France
robert.eymard@univ-mlv.fr

2 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
juergen.fuhrmann@wias-berlin.de
alexander.linke@wias-berlin.de

submitted: October 18, 2011

No. 1654
Berlin 2011

2010 Mathematics Subject Classification. 76D05,65N08.

Key words and phrases. incompressible Navier-Stokes equations, generalized MAC discretization, un-
structured Delaunay grid, finite volume method, coupled flow problem, convergence proof.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 2044975
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract. We study two classical generalized MAC schemes on unstructured trian-
gular Delaunay meshes for the incompressible Stokes and Navier-Stokes equations and
prove their convergence for the first time. These generalizations use the duality between
Voronoi boxes and triangles of Delaunay meshes, in order to construct two staggered
discretization schemes. Both schemes are especially interesting in coupled flow prob-
lems, since compatible finite volume discretizations for coupled convection-diffusion
equations can be constructed which preserve discrete maximum principles. In the first
scheme, called tangential velocity scheme, the pressures are defined at the vertices of
the mesh, and the discrete velocities are tangential to the edges of the triangles. In the
second scheme, called normal velocity scheme, the pressures are defined in the triangles,
and the discrete velocities are normal to the edges of the triangles. For both schemes,
we prove the strong convergence in L2 for the velocities and the discrete rotations of
the velocities for the Stokes and the Navier-Stokes problem. Further, for the normal
velocity scheme we also prove the strong convergence of the pressure in L2. Linear and
nonlinear numerical examples illustrate the theoretical predictions.

1. Introduction

We consider in this paper two different generalizations [2, 14, 17, 13, 20] of the classical MAC
scheme [15, 21] for the incompressible Stokes and Navier-Stokes equations in two space dimensions
and prove their convergence for the first time. In the Stokes problem, we look for the unique weak
solution (v, p) ∈ H1

0 (Ω)2 × L2(Ω) of the system

−∆v +∇p = f x ∈ Ω,(1.1)

∇ · v = 0 x ∈ Ω,(1.2)
∫

Ω
p dx = 0(1.3)

v = 0 x ∈ ∂Ω,(1.4)

where f is assumed to be in L2(Ω)2. In the nonlinear case, we investigate the Navier-Stokes equations
in the so-called rotation form, where we have to use the Bernoulli pressure P = p+ 1

2v2. Then, these
equations read

−∆v + (rot v) v⊥ +∇P = f x ∈ Ω,
∇ · v = 0 x ∈ Ω,

∫

Ω
P dx = 0

v = 0 x ∈ ∂Ω,

where (v1, v2)⊥ is defined as (−v2, v1). We assume that the following hypotheses are fulfilled:

Ω ⊂ R2 is an polygonal bounded and connected domain without holes,

with the boundary ∂Ω,(1.5)

f ∈ L2(Ω)2.(1.6)

Numerous discretization schemes have been developed in the recent past for the approximation of the
incompressible Stokes and Navier-Stokes equations. Among them, the classical MAC scheme [15, 21]
is one of the best-known. It is based on a staggered approach on structured grids, where the velocity
and the pressure control volumes are dual to each other and have square or rectangular shape. Since
the scheme is staggered, the pressure is not prone to instabilities. In this situation, convergence
proofs for the linear Stokes and the nonlinear Navier–Stokes problems (with small data assumption)
have been presented by Nicolaides and coauthors [20, 18, 19]. But in spite of its success, this
scheme has the main drawback that complex geometries cannot be well approximated by rectangular
grids. Therefore, several attempts have been made to generalize it for unstructured grids, see e.g.,
[16, 2, 14, 17, 13, 20]. While the extension by Kanschat [16] is in the spirit of discontinuous
Galerkin methods, the extensions given in Refs. [2, 14, 17, 13, 20] are more in the spirit of finite
volume methods where the unstructured simplex grid possesses the Delaunay property. Then the dual
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Voronoi grid can be defined in a simple geometrical way (see Figure 1), and two different staggered
approaches are possible:

(1) in the first scheme, called the tangential velocity scheme, the velocity is approximated by its
tangential values along the edges of the triangles, whereas the pressures are approximated at
the vertices of the triangles;

(2) in the second scheme, called the normal velocity scheme, the velocity is approximated by its
normal values to the edges of the triangles, whereas the pressures are approximated at the
center of the triangles.

These generalized MAC schemes on Delaunay-Voronoi meshes are especially interesting for coupled
flow problems. For the tangential velocity scheme, the proposed discretization of ∇ · u = 0 exactly
coincides with the discrete solenoidal condition allowing to prove a discrete maximum principle for
the Voronoi finite volume method for convective transport of a dissolved species in the velocity field
u [9, 10]. Hence it is particularly interesting to study the convergence of these schemes.

Let us notice that the convergence proofs for the MAC scheme have been given by Nicolaides and
his coauthors for the case of rectangular meshes and may not easily be extended to general triangular
meshes. Indeed, in the case of the tangential velocity scheme, a consistent discrete rotation operator
is obtained if the discrete velocity degrees of freedom are located at the midpoint of the triangle edges,
but a consistent divergence operator demands that the discrete velocity degrees of freedom are at the
midpoint of the Voronoi edges (see Figure 1, which shows that these two points are different in the
general case).

Figure 1. Triangular and Voronoi meshes, midpoints of triangle edges and Voronoi edges.

In the case of the normal velocity scheme, the points used for the definition of the discrete rota-
tion and divergence are exchanged in comparison to the tangential scheme. It results that for both
schemes, the discrete divergence and discrete rotation operators cannot be simultaneously consistent,
and standard convergence proofs based on error estimates fail. In order to overcome this difficulty,
we apply discrete Helmholtz decompositions which lead to the study of two nonconforming discrete
schemes for the biharmonic problem. The convergence of these schemes has been proven in two recent
papers [6, 7], yielding the convergence of the velocity / pressure schemes to the continuous weak
formulation of the Stokes problem.

The main results of the paper are the following: For both schemes, we show the strong convergence
in L2 of some reconstructions of the velocities, and we prove the strong convergence of their discrete
rotation in L2. We only prove the convergence of the pressure (in L2) in the case of the normal velocity
scheme, which allows a simple discrete Nečas lifting. After that, using a strong reconstruction of the
velocity, we prove the convergence of the corresponding schemes for the Navier-Stokes equation in the
Bernoulli pressure formulation. Finally, numerical results for both schemes are presented at the end
of the paper. Remark that they also show the numerical convergence of the pressure for the tangential
velocity scheme.

2. Definition of the schemes

Definition 2.1 (Acute triangular mesh of Ω). Under hypothesis (1.5), an acute triangular mesh
of the domain Ω is defined by M = (V, E , T ), such that:
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(1) The set T is the finite set of disjoint triangles (considered as open subsets of R2) such that⋃
T∈T T = Ω. We denote by hM the largest diameter of all triangles. For all T ∈ T , the

point xT , defined as the center of the circumcircle of T , is such that xT ∈ T .
(2) The set V consists of the vertices of all the triangles. For all y ∈ V, we denote by Vy the

Voronoi box around the vertex y ∈ V, defined as Vy = {x ∈ Ω, |x− y| < |x− y′| for all y′ ∈
V,y′ 6= y}.

(3) The set E consists of all the edges of the triangles, and is such that, for all σ ∈ E , either σ is
located on the boundary of Ω (we denote by Ebnd the set of these boundary edges), or σ is
common to two neighboring triangles (we denote by Eint the set of these interior edges). We
then denote by xσ the midpoint of σ and by θM the infimum of all quantities |xσ −xT |/hT ,
for all triangles T , and hT /hT ′ , for any pair of neighbouring triangles T and T ′.

Remark 2.2. The acuteness assumption which is equivalent to the conditioon that the circum-
centers xT of all triangles T ∈ T are inside their triangles can be weakened. We are convinced that
it would be sufficient that the triangulation is boundary conforming Delaunay [25], which means that
it is Delaunay, and all triangle circumcenters are contained in the domain Ω. In fact, we will use
such meshes for our numerical computations. For the sake of simplicity in the proofs, we restrict our
theoretical results to acute meshes.

For every edge σ ∈ E , we define a fixed orientation, which is given by an unit vector tσ parallel
to σ, and we define nσ as the normal vector to σ, obtained from tσ by a rotation with angle π/2 in
the counterclockwise sense (this rotation operator will be denoted as ρπ

2
, see Figure 2). We further

assume that the edges σ ∈ Ebnd at the border of Ω build a counterclockwise path around Ω. Then, for
any edge σ ∈ Ebnd, the exterior of Ω is located to the right of σ.

xT

T

T ′

xT ′

σ⊥

Vy

ty,σ

ny,σ

y

xT

nσ

nT,σ

tT,σ

tσ

Dσ

T

T ′

xT ′

σ

y

Figure 2. Notations for the mesh: Left: the Voronoi box associated to a vertex.
Right: Zoom into a diamond.

For every T ∈ T , we denote by ET the set of edges of the triangle T , and we denote, for any
σ ∈ ET , by tT,σ the unit vector parallel to σ oriented in the counterclockwise sense around T , by nT,σ
the unit vector normal to σ and outward to T , and by DT,σ the cone with basis σ and vertex xT .

For any σ ∈ Eint, let T and T ′ be the two neighboring triangles such that σ is an edge of T and
T ′. We denote by σ⊥ the segment (Voronoi face) [xT ,xT ′ ], by xσ⊥ = 1

2(xT + xT ′) the midpoint of
the Voronoi face σ⊥, and by Dσ = DT,σ ∪DT ′,σ. For any σ ∈ Ebnd, let T be the triangle such that σ
is an edge of T . We then denote by σ⊥ the segment [xT ,xσ] and by Dσ = DT,σ.

For any y ∈ V, we denote by Ey the set of all the edges which have y as a vertex, and we denote,
for any σ ∈ Ey, by ty,σ the unit vector parallel to σ oriented from y to the other vertex of σ and by
ny,σ the unit vector normal to σ and in the counterclockwise sense around y.
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Definition 2.3. By curl: H1(Ω)→ L2(Ω)2 and rot: H1(Ω)2 → L2(Ω) we denote the following two
differential operators

curl ξ =
(
∂yξ
−∂xξ

)
∀ξ ∈ H1(Ω),

and

rot
(
p
q

)
= ∂xq − ∂yp ∀p, q ∈ H1(Ω).

Note that rot curl ξ = −∆ξ holds for all ξ ∈ H2(Ω).

2.1. Tangential velocity scheme. Let us now define the tangential velocity scheme, where the
space of degrees of freedom for the velocities and the pressures will be respectively denoted by

XE = RE ,(2.1)

XV = RV .(2.2)

The degrees of freedom for the velocity represent the velocity components v · tσ at the midpoint of the
edges σ ∈ E , which are oriented in the direction tσ. The degrees of freedom for the pressure represent
the pressure at the vertices of the triangulation. The space

(2.3) ẊE = {v ∈ XE , vσ = 0,∀σ ∈ Eext}
represents the degrees of freedom for the velocity, when homogeneous Dirichlet boundary conditions
are prescribed at the boundary edges.

Let us introduce the discrete differential operators which are needed for the tangential velocity
scheme

rotT v =
1
|T |

∑

σ∈ET
|σ|vσtσ · tT,σ ∀v ∈ XE , ∀T ∈ T ,(2.4)

divy v =
1
|Vy|

∑

σ∈Ey
|σ⊥|vσtσ · ty,σ ∀v ∈ XE , ∀y ∈ V,(2.5)

see Figure 2 for the notations used here. Then the scheme reads:

find (v, pV) ∈ ẊE ×XV such that
∑

T∈T
|T | rotT v rotT w −

∑

y∈V
|Vy|py divy w =

∑

σ∈E
2wσ

∫

Dσ

f · tσdx, ∀w ∈ ẊE(2.6)

∑

y∈V
|Vy|py = 0,(2.7)

divy v = 0, ∀y ∈ V.(2.8)

It is possible to write the above scheme, using functions defined on the spatial domain Ω by

rotT v(x) = rotT v ∀v ∈ XE , ∀T ∈ T , for a.e. x ∈ T,(2.9)

divV v(x) = divy v ∀v ∈ XE ,∀y ∈ V, for a.e. x ∈ Vy,(2.10)

R‖Ew(x) = 2wσtσ ∀w ∈ XE , ∀σ ∈ E , for a.e. x ∈ Dσ,(2.11)

RVpV(x) = py ∀p ∈ XV , ∀y ∈ V, for a.e. x ∈ Vy.(2.12)

We can then rewrite (2.6)-(2.7)-(2.8) in the following way:

find (v, pV) ∈ ẊE ×XV such that
∫

Ω
rotT v(x) rotT w(x)dx

−
∫

Ω
RVpV(x) divV w(x)dx =

∫

Ω
f(x) · R‖Ew(x)dx, ∀w ∈ ẊE ,(2.13)

∫

Ω
RVpV(x)dx = 0,(2.14)

divV v(x) = 0 for a.e. x ∈ Ω.(2.15)
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Further, it is possible to write Problem (2.13)-(2.14)-(2.15) without using the pressure. We denote by

V
‖
E = {v ∈ ẊE ,divV v = 0}.(2.16)

We then notice that a solution of Problem (2.13)-(2.14)-(2.15) also satisfies

v ∈ V ‖E ,
∫

Ω
rotT v(x) rotT w(x)dx =

∫

Ω
f(x) · R‖Ew(x)dx, ∀w ∈ V ‖E .(2.17)

Last, but not least we introduce a strong reconstruction operator R̂T : ẊE → L2(Ω)2 which is defined
for all w ∈ ẊE on every triangle T ∈ T by

(
R̂T w

)
|T

=
1
|T |

∑

σ∈ET
|σ|wσtσ · tT,σ (xσ − xT )⊥ .

This strong reconstruction operator reconstructs constant vector fields exactly, as can be seen by
applying Stokes’ theorem ∫

T
rot wdx =

∑

σ∈ET
tσ · tT,σ

∫

σ
w · tσdx

to w =
(
c1x
c2y

)⊥
. Due to this fact, the reconstructed discrete velocities R̂T v converge strongly in

L2(Ω)2 to the continuous solution v of the incompressible (Navier-)Stokes problem above, see the
Rellich-like compactness statement in Lemma 3.5 for this.

u

2.2. Normal velocity scheme. Let us now define the normal velocity scheme. The discrete
pressure space is denoted by

XT = RT .
It represents the pressures at the circumcenters of the elements. For the velocity space we use the
same notations XE and ẊE as in the tangential velocity scheme, since the discrete spaces in both
schemes are indeed equal. But the interpretation of the discrete velocity space is now a different one.
In the tangential velocity scheme the degrees of freedom for the velocities represent the tangential
velocity components at the midpoint of all the edges σ ∈ E . Instead, in the normal velocity scheme
the discrete velocities represent the corresponding normal components, now located at the midpoints
of all the Voronoi faces σ⊥.

Then, the normal velocity scheme reads as follows. We define

roty v =
1
|Vy|

∑

σ∈Ey
|σ⊥|vσnσ · nyσ ∀v ∈ XE , ∀y ∈ V,(2.18)

divT v =
1
|T |

∑

σ∈ET
|σ|vσnσ · nTσ ∀v ∈ XE , ∀T ∈ T ,(2.19)

see again Figure 2 for the notations, and write:

find (v, pT ) ∈ ẊE ×XT such that
∑

y∈V
|Vy| roty v roty w −

∑

T∈T
|T |pT divT w =

∑

σ∈E
2wσ

∫

Dσ

f · nσdx, ∀w ∈ ẊE(2.20)

∑

T∈T
|T |pT = 0,(2.21)

divT v = 0, ∀T ∈ T .(2.22)

It is again possible to write the above scheme, using functions defined on the spatial domain Ω by

rotV v(x) = roty v ∀v ∈ XE , ∀y ∈ V, for a.e. x ∈ Vy,(2.23)

divT v(x) = divT v ∀v ∈ XE ,∀T ∈ T , for a.e. x ∈ T,(2.24)

R⊥E w(x) = 2wσnσ ∀w ∈ XE , ∀σ ∈ E , for a.e. x ∈ Dσ,(2.25)

RT pT (x) = pT ∀p ∈ XT , ∀T ∈ T , for a.e. x ∈ Vy.(2.26)



6

We can then rewrite (2.20)-(2.21)-(2.22) in the following way:

find (v, pT ) ∈ ẊE ×XT such that
∫

Ω
rotV v(x) rotV w(x)dx

−
∫

Ω
RT pT (x) divT w(x)dx =

∫

Ω
f(x) · R⊥E w(x)dx, ∀w ∈ ẊE ,(2.27)

∫

Ω
RT pT (x)dx = 0,(2.28)

divT v(x) = 0 for a.e. x ∈ Ω.(2.29)

It is again possible to write Problem (2.13)-(2.14)-(2.15) without using the pressure. We denote by

V ⊥E = {v ∈ ẊE ,divT v = 0}.(2.30)

We then notice that a solution of Problem (2.27)-(2.28)-(2.29) also satisfies

v ∈ V ⊥E ,
∫

Ω
rotV v(x) rotV w(x)dx =

∫

Ω
f(x) · R⊥E w(x)dx, ∀w ∈ V ⊥E .(2.31)

Similar to the tangential velocity scheme, we introduce also a strong reconstruction operator R̂V :
ẊE → L2(Ω)2 for the normal velocity scheme which is defined for all w ∈ ẊE at every interior node
y ∈ V by (

R̂Vw
)
|Vy =

1
|Vy|

∑

σ∈Ey
|σ⊥|wσnσ · nyσ (xσ⊥ − xT )⊥ .

Similar to the tangential velocity scheme, also this strong reconstruction operator reconstructs constant
vector fields exactly.

3. Mathematical analysis of the tangential velocity scheme

In order to write a discrete equivalent of the continuous Helmholtz decomposition, which will be
applied to scheme (2.6)-(2.7)-(2.8), we introduce the following additional notations.

xσ,left

nσ

σ

tσ

xσ,right

Tσ,left

Tσ,right

yσ,2

yσ,1

σ⊥

Figure 3. Tangential velocity scheme: notations for the discrete Helmholtz decomposition

For a given edge σ ∈ E connecting the two vertices yσ,1 and yσ,2, the unit vector tσ is directed
along the edge and points from the former vertex to the latter, see Figure 3. We denote, for an interior
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edge σ by xσ,left and xσ,right the circumcenters of the triangles Tσ,left and Tσ,right adjacent to the edge
σ, and we set uTσ,right

= 0 for a boundary edge σ. Here, the definition of left and right is chosen
according to the orientation tσ of the edge.

For a given triangle T ∈ T and σ ∈ ET , xT,σ, denotes the circumcenter of the triangle adjacent to
T through σ, and uT,σ denotes the corresponding value of a function u.

Similarly, for a Voronoi box Vy around y ∈ V and an edge σ ∈ Ey, yσ denotes the vertex at the
end of σ opposite to y, and qy,σ the corresponding value of a function q.

We then define

curl‖σ u =
uTσ,left − uTσ,right

|σ⊥| ∀u ∈ XT , ∀σ ∈ E ,(3.1)

∆Tu =
1
|T |

∑

σ∈ET
|σ|uT,σ − uT|σ⊥| ∀u ∈ XT , ∀T ∈ T ,(3.2)

grad‖σ q =
qyσ,2 − qyσ,1
|σ| ∀q ∈ XV , ∀σ ∈ E ,(3.3)

∆yq =
1
Vy

∑

σ∈Ey
|σ⊥|qy,σ − qy|σ| ∀q ∈ XV , ∀y ∈ V.(3.4)

Remark 3.1. The discrete operators grad‖σ q and curl‖σ u deliver approximations of the directional
gradient ∇q · tσ along the edge σ, and the corresponding directional curl operator curlu · tσ = ∇u ·nσ.

We then have the following lemma.

Lemma 3.2 (Helmholtz decomposition, tangential velocity scheme). Under hypothesis (1.5), let
M = (V, E , T ) be a mesh of the domain Ω in the sense of Definition 2.1. Then for all v ∈ XE , there
exists one and only one (u, q) ∈ XT ×XV such that

vσ = curl‖σ u+ grad‖σ q, ∀σ ∈ E ,(3.5)
∑

y∈V
|Vy|qy = 0.(3.6)

We then denote u = U‖(v) and q = Q‖(v). Moreover, if v ∈ V ‖E , we have q = 0 and u ∈ XT ,0, where
we define

XT ,0 = {u ∈ XT , uT = 0, for all T ∈ T with ET ∩ Ebnd 6= ∅}.(3.7)

Proof. Let us first remark that, thanks to Euler’s relation, we have

#V + #T = #E + 1.

Since the linear system (3.5)-(3.6) contains #E + 1 equations, it suffices to prove the uniqueness of
(u, q) for proving at the same time the existence. We then remark that, plugging (3.5) into (2.4), the
terms in q vanish, and we get

−∆Tu = rotT v, ∀T ∈ T .
Setting v = 0, multiplying by uT and summing on T ∈ T leads to

∑

σ∈Eint

|σ|
|σ⊥|(uTσ,left − uTσ,right

)2 +
∑

σ∈Ebnd

|σ|
|σ⊥|(uTσ,left)

2 = 0,

which shows that u = 0 (hence we recover the standard result of the uniqueness of the solution of
the discrete finite volume Laplace operator with homogeneous Dirichlet boundary condition on T , as
given in [4]). This proves that u ∈ XT is uniquely defined. We then introduce (3.5) into (2.5), and
we observe that the terms in u vanish, leading to

∆yq = divy v, ∀y ∈ V.
Setting v = 0, multiplying by qy and summing on y ∈ V leads to

∑

σ∈E

|σ⊥|
|σ| (qyσ,2 − qyσ,1)2 = 0,

showing that q takes a constant value for all y ∈ V. Thanks to the condition (3.6), we get that
this constant value is zero (hence we recover the standard result of the uniqueness of the solution
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whose mean value is equal to zero, to the discrete finite volume Laplace operator with homogeneous
Neumann boundary condition on the finite volume mesh {Vy,y ∈ V}, see [4]). This proves that
q ∈ XV is uniquely defined. Taking v ∈ V

‖
E , we have divV v = 0, and therefore Q‖(v) = 0. Since

V
‖
E ⊂ ẊE , we have vσ = 0 for all σ ∈ Ebnd. Therefore, since

vσ =
uTσ,left − uTσ,right

|σ⊥| ,

and uTσ,right
= 0 for all σ ∈ Ebnd, we get uTσ,left = 0, which proves that u ∈ XT ,0. �

We now have the following property.

Lemma 3.3 (Streamline potential formulation, tangential velocity scheme). Under hypothesis
(1.5), let M = (V, E , T ) be a mesh of the domain Ω in the sense of Definition 2.1. Then v ∈ V ‖E is a
solution of (2.17) if and only if u = U‖(v), as defined by Lemma 3.2 is a solution to

u ∈ XT ,0, ∀w ∈ XT ,0,
∫

Ω
∆T u(x)∆T w(x)dx =

∫

Ω
ρπ

2
f(x) · ∇Ew(x)dx,(3.8)

where

∆T u(x) = ∆Tu, for a.e. x ∈ VT , ∀T ∈ T ,(3.9)

∇Ew(x) = 2
wTσ,left − wTσ,right

|σ⊥| nσ, for a.e. x ∈ Dσ, ∀σ ∈ E , ∀w ∈ XE .(3.10)

As a consequence, there exists one and only one solution v ∈ V ‖E to (2.17), defined by v = curl‖E u.

Proof. It suffices to take curl‖E w as test function in (2.17).
Since divV curl‖E w = 0, and since nσ = ρπ

2
tσ, we get (3.8). Reciprocally, assuming that u is

solution to (3.8), we get, since Q‖(w) = 0 for all elements of V ‖E , that v = curl‖E u is solution to (2.17).
We then apply the discrete existence and uniqueness result for a discrete biharmonic problem given
in [6], which provides that Problem (3.8) with Definition (3.10) has one and only one solution. �

Let us now state two direct consequences of the results proven in [6].

Lemma 3.4. Under hypothesis (1.5), let w ∈ C∞c (Ω)2 be given with ∇·w = 0 (where we denote by
C∞c (Ω) the set of infinitely differentiable functions with compact support in Ω) and let M = (V, E , T )
be a given discretization in the sense of Definition 2.1. Then there exists a quasi-interpolation operator
Î‖M : C∞c (Ω)2 → V

‖
E such that

‖R̂T Î‖Mw −w‖L2(Ω)2 ≤ CwhM(3.11)

‖rotT Î‖Mw − rot w‖L2(Ω) ≤ CwhM,(3.12)

where Cw only depends on w and on any θ > 0 such that θ ≤ θM. Moreover, R‖E Î
‖
Mw converges

weakly to w in L2(Ω)2 as hM → 0 under the condition θ ≤ θM.

Proof. We consider the discrete stream function v defined by Lemma 3.3 of [6] for f = rotw and
define (I‖Mw)|σ := curlσ v. Equation (31) of [6] gives (3.12). Estimate (3.11) is obtained using the
result on the strong discrete reconstruction of the gradient of the discrete stream function, provided
in [5]. �

We prove weak compactness for discretely divergence-free velocities, with bounded discrete rota-
tion.

Lemma 3.5. Under hypothesis (1.5), let us denote

(3.13) ‖vn‖X‖En
:=
√
‖rotTn vn‖2L2(Ω)

+ ‖divVn vn‖2L2(Ω)
.

We assume that (Mn)n∈N is a sequence such that:
• Mn = (Vn, En, Tn) is a discretization in the sense of Definition 2.1,
• hMn tends to 0 as n tends to ∞ and θMn ≥ θ > 0,
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• for all n ∈ N, there exists vn ∈ V
‖
En, such that there exists C > 0, independent of n, with

‖vn‖XEn = ‖rotTn vn‖L2(Ω) ≤ C.

Then there exists v ∈ H1
0 (Ω)2 with ∇ · v = 0 and a subsequence of (Mn)n∈N, again denoted by

(Mn)n∈N, such that
• rotTn vn ⇀ rot v weakly in L2(Ω),
• R‖Envn ⇀ v weakly in L2(Ω)2,
• R̂Tnvn −→ v strongly in L2(Ω)2.

Proof. The proof of this lemma is obtained by using the discrete stream function given by Lemma
3.2, and then to apply Lemma 3.2 of [6], where the corresponding compactness properties for a discrete
biharmonic problem are proven. Note that the weak convergence of the Laplacian there corresponds
to the weak convergence of the rotation here, due to v = curl ξ and rot curl ξ = −∆ξ. �

Now, we can state the convergence theorem.

Theorem 3.6. Let M = (V, E , T ) be a discretization in the sense of Definition 2.1, and let
f ∈ L2(Ω)2. Then there exists one and only one v ∈ V ‖E such that (2.17) holds. Moreover, assuming
that hM tends to 0 while θM ≥ θ for some θ > 0, then v ∈ H1

0 (Ω)2 denoting the weak solution of
Problem (1.1)-(1.4) converges in the following sense

• rotT v −→ rot v in L2(Ω),
• R‖Ev ⇀ v weakly in L2(Ω)2,
• R̂T v −→ v strongly in L2(Ω)2.

Proof. Let us first write an a-priori estimate on the approximate solution. We let w = v in
(2.17). We get

∫

Ω
(rotT v)2dx =

∫

Ω
f · R‖Evdx.(3.14)

We now apply the Cauchy-Schwarz inequality to the right hand side of the above equation. Recalling
the definition (3.13), we get

‖v‖2
X
‖
E
≤ ‖f‖L2(Ω)2‖R‖Ev‖L2(Ω)2 ≤ C1‖f‖L2(Ω)2‖v‖X‖E .

This provides

‖v‖
X
‖
E
≤ C1‖f‖L2(Ω)2

and shows that scheme (2.17) has one and only one solution, since it is equivalent to a square linear
system whose unknowns are the degrees of freedom in the vector space V ‖E . Indeed, it suffices to take
f = 0. Then, the previous inequality shows that v = 0 holds. We now remark that the previous
inequality allows to apply Lemma 3.5. Therefore, taking a sequence of discretizations (Mn)n∈N such
that hMn tends to 0 as n tends to∞ and θMn ≥ θ > 0, we get the existence of a subsequence (denoted
by the same notation) and of v ∈ H1

0 (Ω)2 such that the conclusions of Lemma 3.5 hold.
Let w ∈ C∞c (Ω)2 be given with ∇ · w = 0, and let us apply the quasi-interpolation operator

Î‖Mn
w ∈ V ‖E from Lemma 3.4 to (2.17). We get

∫

Ω
rotTn vn rotTn ÎMnwdx =

∫

Ω
f · R‖En ÎMnwdx.

Thanks to Lemmas 3.4 and 3.5, we may pass to the limit n → ∞ in the above equation, since the
use of both lemmas provides standard weak/strong convergence in the left hand side, and the weak
convergence result of Lemma 3.4. We then get

∫

Ω
rot v rot wdx =

∫

Ω
f ·wdx.

According to a density theorem given by Temam [26], the smooth divergence-free functions functions
are dense in the set of all divergence-free H1

0 (Ω)2 functions, which proves that v is the unique weak
solution of Problem (1.1)-(1.4). A standard reasoning then shows that the entire sequence converges,
which leads to the convergence of the scheme. It now remains to prove the convergence of rotT v to
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rot v in L2(Ω). Passing to the limit in (2.17), with v = w = vn, we get that the limit of ‖vn‖2
X
‖
En

is

equal to
∫

Ω f · vdx = ‖rot v‖2L2(Ω). This, in addition to the weak convergence result given by Lemma
3.5, proves the strong convergence of rotT v. �

4. Mathematical analysis of the normal velocity scheme

Let us write the following discrete equivalent of Helmholtz decomposition, which will be applied
to scheme (2.20)-(2.21)-(2.22). Using the same notations as above, we define

curl⊥σ u = − grad‖σ u ∀u ∈ XV , ∀σ ∈ E ,(4.1)

grad⊥σ q = curl‖σ q ∀q ∈ XT , ∀σ ∈ E .(4.2)

Remark 4.1. Similar to the tangential velocity scheme, the discrete operators grad⊥σ q and curl⊥σ u
deliver approximations of the directional gradient ∇q · nσ, and the corresponding directional curl
operator curlu · nσ = −∇u · tσ.

We then have the following lemma:

Lemma 4.2 (Discrete Helmholtz decomposition, normal velocity scheme). Under hypothesis (1.5),
let M = (V, E , T ) be a mesh of the domain Ω in the sense of Definition 2.1. Then for all v ∈ XE ,
there exists one and only one (u, q) ∈ XV ×XT such that

vσ = curl⊥σ u+ grad⊥σ q, ∀σ ∈ E ,(4.3)
∑

σ∈Ebnd

∑

y∈Vσ
|σ|uy = 0.(4.4)

We then denote u = U⊥(v) and q = Q⊥(v). Moreover, if v ∈ V ⊥E , q = 0 and u ∈ XV,0, where we
define

XV,0 = {u ∈ XV , uy = 0, for all y ∈ Vbnd 6= ∅}.(4.5)

Proof. Following the same ideas as in Lemma 3.2, exchanging the roles of u and q, two Laplace
problems must be considered. The Laplace problem in q happens to be a standard finite volume
discretization of a homogeneous Dirichlet problem (the unknowns are cell-centered). On the contrary,
the Laplace problem for u is a homogeneous Neumann problem, where the constant is fixed by condition
(4.4) instead of condition (3.6). In the case v ∈ V ⊥E , we get that uy is constant on ∂Ω. Thanks to the
condition (4.4), we get that, for v ∈ V ⊥E , then the average value of uy on ∂Ω is equal to zero. and
therefore this constant is equal to zero.

Note that ∆yu is identical to the P1-Laplacian, since |σ⊥|/|σ| = −
∫

Ω ξyσ,1 · ξyσ,2dx, the term of
the stiffness matrix issued from the use of the piecewise affine basis functions ξy, equal to 1 at vertex
y and to 0 at all other vertices, see also [4, 12]. This will allow us for applying the results given in
[7]. �

We now have the following property.

Lemma 4.3 (Formulation in streamline potential, normal velocity scheme). Under hypothesis
(1.5), let M = (V, E , T ) be a mesh of the domain Ω in the sense of Definition 2.1. Then v ∈ V ⊥E is a
solution of (2.31) if and only if u = U⊥(v), as defined by Lemma 4.2 is solution to

u ∈ XV,0, ∀w ∈ XV,0,
∫

Ω
∆Vu(x)∆Vw(x)dx =

∫

Ω
ρπ

2
f(x) · ∇Ew(x)dx,(4.6)

where

XV,0 := {u ∈ XV , uy = 0 for all y ∈ Vbnd},(4.7)

∆Vu(x) = ∆yu, for a.e. x ∈ Vy, ∀y ∈ V,(4.8)

∇Ew(x) = 2
wyσ,2 − wyσ,1

|σ| tσ, for a.e. x ∈ Dσ, ∀σ ∈ E , ∀w ∈ XE .(4.9)

As a consequence, there exists one and only one solution v ∈ V ⊥E to (2.31), defined by v = curl⊥E u.
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Proof. It suffices to take curl⊥E w as test function in (2.31).
Since divV curl⊥E w = 0, and since nσ = ρπ

2
tσ, we get (4.6). Reciprocally, assuming that u is

solution to (4.6), we get, since Q(w) = 0 for all elements of VE , that v = curl⊥E u is solution to (2.31).
We then apply the result given in [7], which provides that Problem (4.6) with Definition (4.9) has one
and only one solution. �

For the normal velocity scheme we can prove a discrete inf-sup stability, which we will formulate
as a discrete variant of divergence-stability. For that, we introduce the following discrete H1-norm for
v ∈ ẊE
(4.10) ‖v‖X⊥E :=

√
‖rotV v‖2L2(Ω)

+ ‖divT v‖2L2(Ω)
,

and we apply the following technical lemma:

Lemma 4.4. For a given triangle T , and a weakly differentiable function g ∈ H1(T ), we define for
every edge σ of the triangle, its face average

ḡσ :=
1
|σ|

∫

σ
g(x)dγ(x).

Then, we can estimate the difference of the face averages of two of its faces by

(ḡσ1 − ḡσ2)2 ≤ Cgeom
diam(T )
|σ1|+ |σ2|

∫

T
|∇g(x)|2.

Proof. We introduce the volume average

ḡT :=
1
|T |

∫

T
g(x)d(x),

and estimate
(ḡσ1 − ḡσ2)2 ≤ 2 (ḡσ1 − ḡT )2 + 2 (ḡσ2 − ḡT )2 .

Then, the estimate follows directly from the proof of lemma 9.4 in [4]. �

Lemma 4.5 (Discrete inf-sup stability of the normal velocity scheme). For a given discrete pressure
q ∈ XT with

∫
ΩRT q(x)dx = 0, we find a discrete velocity wq ∈ ẊE such that

divT wq = q,(4.11)

‖wq‖X⊥E ≤ CN‖q‖L2(Ω)(4.12)

hold. Here, CN is independent of the mesh size and can be interpreted as the inverse of a discrete
inf-sup constant.

Proof. The discrete pressure q is piecewise constant, has zero average and is square-integrable.
Therefore, we find a continuous Nečas lifting wq ∈ H1

0 (Ω)2 such that

∇ ·wq = q

and

‖∇wq‖L2(Ω)2⊗2 ≤ 1
β
‖q‖L2(Ω)

hold, where β is the continuous inf-sup constant of the domain Ω. Now the average of wq on every
edge is defined, since wq ∈ H1

0 (Ω)2 has a well-defined trace in L2(σ)2 and we denote it by

w̄qσ :=
1
|σ|

∫

σ
wqdγ(x).

The discrete Nečas lifting wq ∈ ẊE on every edge σ ∈ E is then simply defined by

wqσ = w̄qσ · nσ.
We remark that for all boundary edges σ ∈ Ebnd indeed wqσ = 0 and wq ∈ ẊE hold. We then have the
property

divT wq =
1
|T |

∫

T
RT q(x)dx = qT
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due to the Gauss theorem for the continuous divergence, and we see that (4.11) holds for wq. We now
have to show (4.12) for wq. Using

‖wq‖2X⊥E = ‖divT wq‖2L2(Ω) + ‖rotV wq‖2L2(Ω) = ‖q‖2L2(Ω) + ‖rotV wq‖2L2(Ω),

we see that we have to estimate the discrete rotation of wq.
First, we regard the discrete rotation around an interior point y ∈ Vy. Therefore, we define a

(vector-valued) average of all the w̄qσ around y by

w̄qy :=

∑
σ′∈Ey |σ′|w̄qσ′∑
σ′∈Ey |σ′|

.

Now we write the rotation around an interior point y as

roty wq =
1
|Vy|

∑

σ∈Eσ
|σ⊥|wqσnσ · nyσ

=
1
|Vy|

∑

σ∈Eσ
|σ⊥|w̄qσ · nyσ −

1
|Vy|

∑

σ∈Eσ
|σ⊥|w̄qy · nyσ,

since the rotation of the constant vector w̄qy is zero. This expression can further be transformed into

roty wq =
1
|Vy|

∑

σ∈Eσ

|σ⊥|∑
σ′∈Ey |σ′|


∑

σ′∈Ey
|σ′|(w̄qσ − w̄q′σ) · nyσ


 .

We now assume that the edges of the set Ey are indexed by 1, 2, . . . , |Ey| and that they are oriented in
a counterclockwise manner around y. Further, we assume that there are mappings σy(i) and σy(i+1)
which map the indices onto Ey. Here, σy(i+ 1) maps the index i onto the edge which is the neighbor
edge of σy(i) in counterclockwise orientation. Now we apply the modulus to roty wq, use a telescope
sum and a triangle inequality, in order to obtain

| roty wq| ≤
1
|Vy|

∑

σ∈Eσ

|σ⊥|∑
σ′∈Ey |σ′|


∑

σ′∈Ey
|σ′|

|Ey |∑

i=1

∣∣w̄σy(i) − w̄σy(i+1)

∣∣



=
1
|Vy|

(∑

σ∈Eσ
|σ⊥|

)

|Ey |∑

i=1

∣∣w̄σy(i) − w̄σy(i+1)

∣∣

 .

Here, |v| for v ∈ R2 is the Euclidean vector norm. For boundary nodes y ∈ Vbnd we obtain the same
estimate by a similar argument accounting for the zero boundary conditions of wq ∈ H1

0 (Ω)2. Now,
for all y ∈ V we want to estimate the term

|Vy|(roty wq)2 ≤ 1
|Vy|

(∑

σ∈Eσ
|σ⊥|

)2


|Ey |∑

i=1

∣∣w̄σy(i) − w̄σy(i+1)

∣∣



2

≤ |Ey||Vy|

(∑

σ∈Eσ
|σ⊥|

)2 |Ey |∑

i=1

∣∣w̄σy(i) − w̄σy(i+1)

∣∣2 ,

where the index set {Ty,i} denotes the triangles around the vertex y. Using Lemma 4.4 we arrive at

|Vy|(roty wq)2 ≤ Cgeom,1|Ey| · Cgeom,2

|Ey |∑

i=1

∫

Ty,i

|∇wq(x)|2dx.

Last but not least, we recognize that

‖rotV wq‖2L2(Ω) ≤ 3Cgeom|Ey|2‖∇wq‖2L2(Ω)2 ≤
3Cgeom|Ey|2

β2
‖q‖2L2(Ω)

holds, because every triangle has three vertices and is therefore met three times in the summation
over all vertices. �

Let us now state that Problem (2.27)-(2.28)-(2.29) is well-posed.
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Lemma 4.6 (Existence and uniqueness of the discrete solution to the normal velocity scheme).
Under hypothesis (1.5), let M = (V, E , T ) be a mesh of the domain Ω in the sense of Definition 2.1
and let θ > 0 such that θM ≥ θ. Then the following inequality holds

(4.13) ‖RT pT ‖L2(Ω) ≤ C‖f‖L2(Ω)2 ,

where C only depends on θ and Ω. As a consequence, there exists one and only one (v, pT ) solution
to Problem (2.27)-(2.28)-(2.29). Moreover, v is the solution of Problem (2.31).

Proof. We already noticed that any solution (v, pT ) to Problem (2.27)-(2.28)-(2.29) is solution to
Problem (2.31). Applying Lemma 4.3, we get that v is unique. Since

∫
ΩRT pT (x)dx = 0, let wq ∈ ẊE

be the discrete Nečas lifting of the pressure from Lemma 4.5 satisfying

divT wq = q,

‖wq‖X⊥E ≤ CN‖q‖L2(Ω)

where CN only depends on Ω. This leads to

‖RT pT ‖2L2(Ω) =
∫

Ω
rotV v(x) rotV wq(x)dx +

∫

Ω
f(x) · R⊥E wq(x)dx

≤ 2CCN‖f‖L2(Ω)d‖RT pT ‖L2(Ω).

Therefore we conclude (4.13). This inequality is then sufficient to prove the existence and uniqueness
of (v, pT ), solution to Problem (2.27)-(2.28)-(2.29). �

Let us now state two direct consequences of results proven in [7].

Lemma 4.7. Under hypothesis (1.5), let w ∈ C∞c (Ω)2 with ∇·w = 0 be given and letM = (V, E , T )
be a given discretization in the sense of Definition 2.1. Then there exists a quasi-interpolation operator
Î⊥M : C∞c (Ω)2 → V ⊥E such that

‖R̂V Î⊥Mw −w‖L2(Ω)2 ≤ CwhM

‖rotV Î⊥Mw − rot w‖L2(Ω) ≤ CwhM,

where Cw only depends on w and on any θ > 0 such that θ ≤ θM. Moreover, R⊥E Î⊥Mw converges
weakly to w in L2(Ω)2 as hM → 0 under the condition θ ≤ θM.

Proof. Similar to the tangential velocity scheme, it again suffices to consider the discrete stream
function defined by Lemma 3.3 of [6], for getting the second inequality, and to use the result on the
strong discrete reconstruction of the gradient of the discrete stream function, provided in [5]. �

We prove weak compactness for discretely divergence-free velocities, with bounded discrete rota-
tion.

Lemma 4.8. Under hypothesis (1.5), let (Mn)n∈N be a sequence such that:
• Mn = (Vn, En, Tn) is a discretization in the sense of Definition 2.1,
• hMn tends to 0 as n tends to ∞ and θMn ≥ θ > 0,
• for all n ∈ N, there exists (vn, pn) ∈ V ⊥En ×XTn with

∫
ΩRTnpndx = 0, such that there exists

C > 0, independent of n, with ‖vn‖X⊥En = ‖rotVn vn‖L2(Ω) ≤ C and ‖RTnpn‖L2(Ω) ≤ C.

Then there exists (v, p) ∈ H1
0 (Ω)2×L2

0(Ω) with ∇·v = 0 and a subsequence of (Mn)n∈N, again denoted
by (Mn)n∈N, such that

• rotVn vn ⇀ rot v weakly in L2(Ω),
• R⊥Envn ⇀ v weakly in L2(Ω)2,
• R̂Vnvn −→ v strongly in L2(Ω)2,
• RTnpn ⇀ p weakly in L2(Ω).

Proof. Concerning the convergence of the discrete velocities, the proof of this lemma is obtained
by using the discrete stream function given by Lemma 4.2, and then to apply Lemma 3.2 of [6]. The
weak convergence of the pressure in the above sense is obvious. �

Before we state the convergence theorem, we introduce now another quasi-interpolation operator,
which is needed for the proof of the convergence of the pressure.
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Lemma 4.9. Under hypothesis (1.5), let (Mn)n∈N be a sequence such that

• Mn = (Vn, En, Tn) is a discretization in the sense of Definition 2.1,
• hMn tends to 0 as n tends to ∞ and θMn ≥ θ > 0.

Then, we can construct a quasi-interpolation operator Ĵ⊥Mn
: H1

0 (Ω)2 → ẊEn, fulfilling, for any
w ∈ H1

0 (Ω)2, that

• the weak reconstruction R⊥E Ĵ⊥Mn
w converges weakly in L2(Ω)2 to w,

• the strong reconstruction R̂V Ĵ⊥Mn
w converges strongly in L2(Ω)2 to w,

• the discrete divergence of Ĵ⊥Mn
w converges strongly in L2(Ω) to ∇ ·w,

• the discrete rotation of Ĵ⊥Mn
w converges weakly in L2(Ω) to rot w.

Proof. The operator can be constructed by computing the following averages of the trace of w
(also denoted for simplicity by w) on the faces

(
Ĵ⊥Mn

w
)
σ

:=
1
|σ|

∫

σ
w · nσdγ(x),

for all edges σ ∈ E . Obviously, we have the strong convergence of the divergence by the Gauss
theorem. �

Eventually, we can show now the desired convergence of the scheme:

Theorem 4.10. Under hypothesis (1.5), let (Mn)n∈N be a sequence such that

• Mn = (Vn, En, Tn) is a discretization in the sense of Definition 2.1,
• hMn tends to 0 as n tends to ∞ and θMn ≥ θ > 0,

and let f ∈ L2(Ω)2. Then, for every n ∈ N there exists one and only one (vn, pn) ∈ V ⊥En × XTn
such that (2.20)-(2.21)-(2.22) hold. Moreover, assuming that hM tends to 0 while θM ≥ θ for some
θ > 0, then, denoting by (v, p) ∈ H1

0 (Ω)2 × L2
0(Ω) the weak solution of Problem (1.1)-(1.4), we have

convergence in the following sense

• rotVn vn −→ rot v in L2(Ω),
• R⊥Envn ⇀ v weakly in L2(Ω)2,
• R̂Vnvn −→ v in L2(Ω)2.
• RTnpn −→ p in L2(Ω).

Proof. Let us first write an a-priori estimate on the approximate solution. We let w = v in
(2.31). We get

∫

Ω
(rotVn vn)2dx =

∫

Ω
f · R⊥Envndx.(4.14)

We now apply the Cauchy-Schwarz inequality to the right hand side of the above equation. We get

‖vn‖2X⊥En ≤ ‖f‖L2(Ω)2‖R⊥Envn‖L2(Ω)2 ≤ C1‖f‖L2(Ω)2‖v‖X⊥En .

This provides

‖vn‖X⊥En ≤ C1‖f‖L2(Ω)2 ,

which shows that scheme (2.31), which leads to a square linear system whose unknowns are the degrees
of freedom in vector space VEn , has one and only one solution. Indeed, it suffices to take f = 0; then
the previous inequality shows that vn = 0. We now remark that the previous inequality allows to
apply Lemma 4.8. Therefore, taking a sequence of discretizations (Mn)n∈N such that hMn tends to
0 as n tends to ∞ and θMn ≥ θ > 0, we get the existence of a subsequence (denoted by the same
notation) and of v ∈ H1

0 (Ω)2 such that the conclusions of Lemma 4.8 hold.
Let w ∈ C∞c (Ω)2 with ∇ · w be given, and let us apply the above quasi-interpolation operator

Î⊥Mn
w ∈ V ⊥E in (2.20). We get

∫

Ω
rotVn vn rotVn Î⊥Mn

wdx =
∫

Ω
f · R⊥En Î⊥Mn

wdx.
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Thanks to Lemmas 4.7 and 4.8, we may pass to the limit n→∞ in the above equation, since the use
of both lemmas provides standard weak/strong convergence in the left hand side. We then get

(4.15)
∫

Ω
rot v rot wdx =

∫

Ω
f ·wdx.

According to a density theorem given by Temam [26], the smooth divergence-free functions functions
are dense in the set of all divergence-free H1

0 (Ω)2 functions, which proves that v is the unique weak
solution of Problem (1.1)-(1.4). A standard reasoning then shows that the entire sequence converges,
which leads to the convergence of the scheme. Let us now prove the convergence of rotVn vn to rot v
in L2(Ω). Passing to the limit in (2.31), with v = w = vn, we get that the limit of ‖vn‖2X⊥En is equal

to
∫

Ω f · vdx = ‖rot v‖2L2(Ω). This, in addition to the weak convergence result given by Lemma 4.8,
proves the strong convergence of rotV vn.

Turning now to the strong convergence of the reconstructed pressure, we first note that due to the
inequality (4.13) and Lemma 4.8 we have weak convergence of the discrete pressures RTnpn in L2(Ω)
to some q ∈ L2

0(Ω). In order to show that this pressure is indeed the solution of the continuous Stokes
problem, we first apply the above quasi-interpolation operator from Lemma 4.9 to any w ∈ C∞c (Ω)2.
Using the discrete test function Ĵ⊥Mn

w, there holds according to (2.27):

∫

Ω
RTnpn divTn Ĵ

⊥
Mn

wdx =
∫

Ω
rotVn vn rotVn Ĵ

⊥
Mn

wdx−
∫

Ω
f · R⊥En Ĵ⊥Mn

wdx.

In the first term we get, thanks to weak/strong convergence,

lim
n→∞

∫

Ω
RTnpn divTn Ĵ

⊥
Mn

wdx =
∫

Ω
q∇ ·wdx,

using strong convergence property for divTn Ĵ⊥Mn
w. In the third term we get, thanks to weak conver-

gence,

lim
n→∞

∫

Ω
f · R⊥En Ĵ⊥Mn

wdx =
∫

Ω
f ·wdx.

Also in the second term we again get, using weak/strong convergence,

lim
n→∞

∫

Ω
rotVn vn rotVn Ĵ

⊥
Mn

wdx =
∫

Ω
rot v rot wdx,

(recall that we only obtain a weak convergence property for rotVn Ĵ⊥Mn
w, but we have previously

proved the strong convergence of rotVn vn). Therefore, the pressure q is indeed the pressure solution
p of the continuous Stokes equations.

Let us now show that RTnpn also strongly converges in L2. To this aim, we use a sequence of
continuous Nečas liftings qn ∈ H1

0 (Ω)2 such that∇·qn = pn holds, and we define from these continuous
liftings the corresponding discrete Nečas liftings wn = Ĵ⊥Mn

qn. For the continuous Nečas liftings we
extract a subsequence such that we can use Rellich’s theorem, and we may pass to the limit n → ∞
(thanks to the strong convergence result on rotTn vn and to the weak convergence of rotTn wn to rot q).
We then get

∫

Ω
rot v rot qdx− lim

n→∞

∫

Ω
(RTnpn)2dx =

∫

Ω
f · qdx.

Since ∇ · q = p, we get, introducing q as test function that

lim
n→∞

∫

Ω
(RTnp)2dx =

∫

Ω
p2dx,

hence showing the strong convergence of the pressure in L2(Ω). �
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5. The Navier-Stokes problem

In this section, all the considerations hold for both the tangential and the normal velocity scheme.
Therefore we introduce the following unifying notations: LetM = (V, E , T ) be a discretization in the
sense of Definition 2.1. For the tangential velocity scheme, we write RE := R‖E , R̂M := R̂T , rotM :=
rotT ,VE := V‖E , IM := I‖M. In the case of the normal velocity scheme, we use RE := R⊥E , R̂M :=
R̂V , rotM := rotV ,VE := V⊥E , IM := I⊥M.

We now consider the Navier-Stokes problem, which can be formulated as: find v ∈ H1
0 (Ω)2 with

div v = 0 and ∫

Ω
rot v rot wdx +

∫

Ω
rot v(v(1)w(2) − v(2)w(1))dx =

∫

Ω
f ·wdx,

∀w ∈ H1
0 (Ω)2 with div w = 0.(5.1)

We consider the following numerical scheme: find v ∈ VE such that∫

Ω
rotM v rotMwdx +

∫

Ω
rotM v (R̂(1)

MvR̂(2)
Mw − R̂(2)

MvR̂(1)
Mw)dx

=
∫

Ω
f · REwdx, ∀w ∈ VE .(5.2)

We then have the following result.

Theorem 5.1. Let (Mn)n∈N be a sequence such that:
• Mn = (Vn, En, Tn) is a discretization in the sense of Definition 2.1,
• hMn tends to 0 as n tends to ∞ and θMn ≥ θ > 0.

Then, for all n ∈ N, there exists at least one vn ∈ VEn such that (5.2) holds, and there exists
v ∈ H1

0 (Ω)2 and a subsequence of (Mn)n∈N, again denoted by (Mn)n∈N, such that
• v is a solution to (5.1),
• rotMn vn −→ rot v in L2(Ω),
• REnvn ⇀ v weakly in L2(Ω)2,
• R̂Mnvn −→ v in L2(Ω)2.

Proof. In order to show the existence of a discrete solution, we consider the function Ψ : VE →
VE , such that v = Ψ(ṽ) is the solution of∫

Ω
rotM v rotMwdx +

∫

Ω
rotM ṽ (R̂(1)

MvR̂(2)
Mw − R̂(2)

MvR̂(1)
Mw)dx

=
∫

Ω
f · REwdx, ∀w ∈ VE .

Indeed, we prove, setting w = v, since the term containing ṽ vanishes, that

‖v‖XE ≤ C1‖f‖L2(Ω)2 .(5.3)

Hence the function Ψ is uniquely defined, it is continuous, and maps a bounded ball into itself. Hence,
thanks to Brouwer’s theorem, it admits a fixed point, which proves that the scheme has at least
one solution. This solution satisfies the estimate (5.3), which allows to apply, as in the linear case,
the compactness Lemma 3.5. Hence, for w ∈ C∞c (Ω)2 with ∇ · w = 0, considering the provided
subsequence, we pass to the limit on the scheme setting w = ÎMnw ∈ VE . Remark that, at this time,
we only know that rotMn vn converges weakly to rot v in L2(Ω). Nevertheless, this is sufficient to
write that the term ∫

Ω
rotMn vn (R̂(1)

Mn
vnR̂(2)

Mn
ÎMnw − R̂(2)

Mn
vR̂(1)
Mn
ÎMnw)dx

converges to ∫

Ω
rot v(v(1)w(2) − v(2)w(1))dx.

Therefore we get that v is a solution to (5.1), and by setting w = v, that
∫

Ω f · vdx = ‖rot v‖2L2(Ω).
Setting w = v in the scheme, we get as in the linear case that the limit of ‖vn‖2XEn is equal to∫

Ω f · vdx = ‖rot v‖2L2(Ω), which proves the strong convergence of rotMn vn to rot v in L2(Ω). �
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6. Numerical results

6.1. Linear example. In order to investigate numerically the convergence rate that can be
achieved with the extended MAC scheme above, we compute an academic Stokes problem on two
sequences of meshes. We remark that we achieved the same experimental convergence rates for the
full nonlinear Navier-Stokes equations. The problem is posed on Ω = [0, 1]2, has homogeneous Dirichlet
boundary conditions and reads

ξ = x2(x− 1)2y2(y − 1)2,

v =
(

2(x− 1)2x2(y − 1)y(2y − 1)
−2(2x− 1)(x− 1)x(y − 1)2y2

)
,

p = x3 + y3 − 1
2
.

The force vector f is computed such that v and p fulfill the incompressible Stokes equations.
In the first sequence of meshes, every mesh is built up from small squares, where the side length

of such a square defines the mesh size. Every square in the mesh is split into two triangles. Then,
the mesh is not admissible in the strict sense of the above definition, since the circumcenters of
these two triangles coincide. But this does not pose any problem, since in this degenerated case, the
discrete method is equivalent to a method where the squares take over the role of triangles, and the
diagonals of the squares can be removed from the above considerations. Indeed, the measure of their
corresponding Voronoi faces are zero. At the same time, on these meshes, triangle edge midpoints
and Voronoi face midpoints coincide. This fact will result in superior convergence behavior on these
meshes in comparison to “purely” triangular meshes.

In Table 1 we show some information about the degrees of freedom in these square meshes. The last
two columns of this table show some quite interesting information. The penultimate column reveals
that the tangential velocity scheme is quite efficient in terms of degrees of freedom, since the ratio
between the number of degrees of freedom corresponding to discretely divergence-free velocities and
the total number of degrees of freedom is about 0.5. For the normal velocity scheme, the corresponding
ratio is only 0.20.

mesh size |E| |V | |T | |E|−|V |
|E|+|V |

|E|−|T |
|E|+|T |

1
32 2945 1024 1922 0.484 0.210
1
64 12033 4096 7938 0.492 0.205
1

128 48641 16384 32258 0.496 0.203
1

256 195585 65536 130050 0.498 0.201
1

512 784385 262144 522242 0.499 0.201
1

1024 3141633 1048576 2093058 0.500 0.200

Table 1. Number of edges, vertices and triangles in different square meshes. The
penultimate column shows the ratio between discretely divergence-free degrees of free-
dom and the total number of degrees of freedom for the tangential velocity scheme.
The last column shows the ratio between discretely divergence-free degrees of freedom
and the total number of degrees of freedom for the normal velocity scheme.

The second sequence of meshes are made up of isotropic, unstructured boundary conforming
Delaunay meshes. They have been generated by the mesh generator triangle [24]. We remark,
that this approach does not guarantee that the triangulation is acute. In Table 2 we show some
information about the degrees of freedom in these triangle meshes. An approximate mesh size was
defined according to the largest triangle area that the mesh generator was allowed to generate within
a mesh. From Tables 1 and 2 we recognize that the degrees of freedom of corresponding meshes in the
two mesh families are quite similar, such that the definition of the mesh size for unstructured meshes
seems to be reasonable.

The two schemes are implemented within the framework of the software package Pdelib2 [8]. All
the discrete linear systems are solved with the direct solver Pardiso [22, 23].
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mesh size |E| |V | |T | |E|−|V |
|E|+|V |

|E|−|T |
|E|+|T |

1
32 3121 1084 2038 0.484 0.210
1
64 12326 4195 8132 0.492 0.205
1

128 48664 16393 32272 0.496 0.203
1

256 194879 65302 129578 0.498 0.201
1

512 779506 260519 518988 0.499 0.201
1

1024 3114404 1039501 2074904 0.500 0.200

Table 2. Number of edges, vertices and triangles in different Delaunay meshes gener-
ated by the mesh generator Triangle [24]. The penultimate column shows the ratio
between discretely divergence-free degrees of freedom and the total number of degrees
of freedom for the tangential velocity scheme. The last column shows the ratio be-
tween discretely divergence-free degrees of freedom and the total number of degrees of
freedom for the normal velocity scheme.

In Figures 4 and 5, for both schemes and series of meshes, we plot various measures of the error
between the discrete solution and a projection of the exact solution onto the grid. We used two
different projections for both schemes. For the tangential velocity scheme, we evaluate the tangential
velocities at the edge midpoints and assign them to the corresponding velocity degrees of freedom.
For the normal velocity scheme, we evaluate the normal velocities at the Voronoi face midpoints and
assign them to the corresponding velocity degrees of freedom, likewise.
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Figure 4. Discrete L2-norm of the error between the projected exact solution and the
discrete solution. Left: velocity, right: pressure.

We start the discussion with the approximation of the velocity, see Fig. 4, left. We observe similar
behavior for the two discretization schemes proposed. On triangular meshes the convergence order is
approximately O(h). On square meshes, we gain an order of magnitude in the convergence rate in
comparison to the triangular meshes.

Also, concerning the approximation orders of the pressure, both schemes behave in a similar way,
including second order convergence on square meshes, see Fig. 4, right. We observe that on triangular
meshes, the convergence order drops to O(h

1
2 ). At the same time, the accuracy of the normal velocity

scheme on triangular meshes is better by a factor of ≈ 10 in comparison to the tangential velocity
scheme.

The discrete rotation is convergent for both schemes. This is confirmed by Fig. 5 (left), where we
observe the convergence of the difference between the discrete rotation of the discrete solution and the
discrete rotation of the projected exact solution. On square meshes, for the normal velocity scheme, the
L2 norm of this difference exhibits O(h

3
2 )-convergence, while the convergence order of the tangential

velocity scheme is only O(h). On triangular meshes, both schemes exhibit O(h
1
2 ) convergence with an

advantage for the normal velocity scheme concerning the constants.
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Figure 5. Discrete L2-norm of the discrete vector calculus operators applied to the
difference between the projected exact velocity and the velocity component of the
discrete solution. Left: rotational, right: divergence.

By construction, for both schemes, the discrete divergence of the velocity component of the discrete
solution is zero. Therefore, the error shown in Fig. 5 (right) coincides with the discrete divergence
of the projected exact velocity. On square meshes, for both schemes, the discrete divergence operator
is consistent, since midpoints of an edge coincide with midpoints of the orthogonal Voronoi faces.
Therefore, the discrete divergence converges on square meshes to zero with order O(h1.5) for the
tangential velocity scheme and O(h) for the normal velocity scheme. On the triangular meshes, edge
midpoints and Voronoi face midpoints do not coincide and the discrete divergence operator is not
consistent resulting in no convergence at all if it is applied to the projection of the velocity component
of the exact solution.

We note that the convergence behavior on the boundary conforming Delaunay meshes, which
are not acute, is consistent with the theoretical considerations which for technical reasons had been
constrained to acute triangulations.

6.2. Nonlinear driven cavity. Besides delivering experimental orders of convergence for some
academic flow problem, we want to show that the presented generalized MAC scheme can indeed solve
non-trivial nonlinear flow problems. The following results are produced by the tangential velocity
scheme.

6.2.1. Driven cavity in a square. First, we show results for a driven cavity problem in a square
[11] with Ω = [0, 1]2, inhomogeneous Dirichlet boundary conditions and a right hand side f = 0.
The inhomogeneous Dirichlet boundary conditions are given by v = (1, 0)T for x ∈ [0, 1] × {1} and
v = 0 for ∂Ω \ [0, 1]×{1}. This problem does not fit into our framework in the strict sense, since due
to the discontinuous Dirichlet boundary conditions, the solution of this driven cavity problem is not
contained in the Sobolev space H1(Ω)2.

We used an unstructured Delaunay triangulation generated by the mesh generator Triangle
[24]. We emphasize that though the driven cavity problem can be simulated by the classical MAC
scheme, it would not be possible to use an unstructured grid for this. As a result, we confirm that the
generalized MAC scheme is indeed much more flexible than the classical one.

We solve the problem at the rather moderate Reynolds number 400 using a Picard iteration to
resolve the nonlinearity. On a mesh with 16,028 vertices we needed 69 iteration steps to reduce the
nonlinear residual to the size of the residual of the direct solver Pardiso [22, 23].

We recover the classical results for this problem [11], i.e., the flow is made up from three vortices,
a large central vortex, a smaller vortex in the right bottom corner, and finally an even smaller vortex
in the left bottom corner, see Figures 6 and 7.

For higher Reynolds numbers like 1,000, it was very difficult to solve the nonlinear system. This
problem is well-known for the rotational form of the Navier-Stokes equations, and may be attributed
to the complex structure of the Bernoulli pressure [1].

6.2.2. Driven cavity in an equilateral triangle. Our last numerical example, the driven cavity flow
in the equilateral triangle with corners (0, 1)T , (1, 1)T (1

2 , 1 −
√

3
2 )T [3], demonstrates that the gen-

eralized MAC scheme allows to compute flows in geometries which cannot be handled well by the
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Figure 6. Driven cavity in a square, Reynolds number 400. Left: the equal length
arrows show the interpolated velocity directions on a coarse raster. The three vortices
in the central part of the cavity, and in the right and left bottom corners are well
resolved. Right: The arrows show direction and modulus of interpolated velocities on
a coarse raster.

Figure 7. Driven cavity in a square, Reynolds number 400. The arrows show direction
and modulus of interpolated velocities at vertices of the mesh. Left: Zoom into the
vortex in the left bottom corner. Right: Zoom into the vortex in the right bottom
corner.

classical MAC scheme as they cannot be approximated exactly by rectangular elements. We use the
right hand side f = 0. At the top of the cavity, we prescribe the velocity v = (0, 1)T . At the rest
of the boundary we assume no-slip boundary conditions v = 0. We solve the problem for the rather
moderate Reynolds number 100, [3]. On an unstructured Delaunay grid generated by Triangle [24]
with 7,000 vertices, we needed 83 Picard iterations in order to reduce the size of the nonlinear residual
to that of the direct solver Pardiso [22, 23]. We recover the classical results for this problem [3].
We find three vortices, a large one in the upper part of the cavity, and two smaller ones in the bottom
part of the cavity, see Figures 8 and 9.
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[22] O. Schenk, K. Gärtner, and W. Fichtner. Efficient sparse LU factorization with left-right looking strategy on shared
memory multiprocessors. BIT, 40(1):158–176, 1999.
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