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Abstract

We investigate a distributed optimal control problem for a phase field model of Cahn-Hilliard
type. The model describes two-species phase segregation on an atomic lattice under the
presence of diffusion; it has been introduced recently in [4], on the basis of the theory
developed in [15], and consists of a system of two highly nonlinearly coupled PDEs. For
this reason, standard arguments of optimal control theory do not apply directly, although
the control constraints and the cost functional are of standard type. We show that the
problem admits a solution, and we derive the first-order necessary conditions of optimality.

1 Introduction

Let Ω ⊂ IR3 denote an open and bounded domain whose smooth boundary Γ has outward
unit normal n , let T > 0 be a given final time, and let Q := Ω × (0, T ) , Σ := Γ × (0, T ) .
In this paper, we study distributed optimal control problems of the following form:

(CP) Minimize the cost functional

J(u, ρ, µ) =
1

2

∫
Ω

|ρ(x, T )− ρT (x)|2 dx+
β1

2

∫ T

0

∫
Ω

|µ(x, t)− µT (x, t)|2 dx dt

+
β2

2

∫ T

0

∫
Ω

|u(x, t)|2 dx dt (1.1)

subject to the state system

(ε+ 2 ρ)µt + µρt −∆µ = u a. e. in Q, (1.2)

δρt −∆ρ+ f ′(ρ) = µ a. e. in Q, (1.3)
∂ρ

∂n
=
∂µ

∂n
= 0 a. e. on Σ, (1.4)

ρ(x, 0) = ρ0(x) , µ(x, 0) = µ0(x) , a. e. in Ω, (1.5)

and to the box control constraints

u ∈ Uad = {u ∈ L∞(Q) ; 0 ≤ u ≤ U a. e. in Q} . (1.6)

Here, β1 ≥ 0 , β2 ≥ 0 , ε > 0 , and δ > 0 are constants; U ∈ L∞(Q) denotes a given
bound, and ρT ∈ L2(Ω) and µT ∈ L2(Q) represent prescribed target functions of the
tracking-type functional J . Although for large parts of the subsequent analysis much more
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general cost functionals could be admitted, we restrict ourselves to the above situation for the
sake of a simpler exposition.

The state system (1.2)–(1.5) constitutes a phase field model of Cahn-Hilliard type that describes
phase segregation of two species (atoms and vacancies, say) on a lattice in the presence of
diffusion; it has been introduced recently in [15, 4]. The state variables are the order parameter
ρ , interpreted as a volumetric density, and the chemical potential µ . For physical reasons,
we must have 0 ≤ ρ ≤ 1 and µ > 0 almost everywhere in Q . The control function u
on the right-hand side of (1.2) plays the role of a microenergy source (see below). Moreover,
the nonlinearity f is a double-well potential defined in (0,1), whose derivative f ′ is singular
at the endpoints ρ = 0 and ρ = 1 : e. g., f = f1 + f2 , with f2 smooth and f1(ρ) =
c (ρ log(ρ) + (1− ρ) log(1− ρ)) , with c a positive constant.

System (1.2)–(1.5) is singular, with highly nonlinear and nonstandard coupling. In particular,
nasty nonlinear terms involving time derivatives occur in (1.2), and the expression f ′(ρ) in
(1.3) may become singular. For the case u = 0 (no control), this system was analyzed in a
recent paper [4]; the case ε ↘ 0 was studied in [5]. We also refer to the papers [2] and [3],
where the corresponding Allen-Cahn model was discussed.

The mathematical literature on control problems for phase field systems is scarce and usually
restricted to the so-called Caginalp model of phase transitions (see, e. g., [11], [9], [10], [17], and
the references given there). More general, thermodynamically consistent phase field models
were the subject of [13]. Control problems for the system (1.2)–(1.5) have never been studied
before. We remark at this place that it would be a challenging task to study boundary control
problems for the PDE system (1.2), (1.3) in place of distributed ones as in this paper; notice,
however, that this would require to first establish appropriate well-posedness results for non-
homogeneous Neumann boundary conditions or for non-homogeneous boundary conditions of
third kind. Such results are presently not available.

The paper is organized as follows: below, we briefly recall the thermodynamic background of
the state system (1.2)–(1.5). In Section 2, we establish the existence of a solution to the optimal
control problem. First-order necessary optimality conditions, as usual given in terms of the ad-
joint system and a variational inequality, are derived in Section 3. A large part of this analysis is
devoted to proving that the control-to-state mapping is directionally differentiable in appropriate
function spaces.

1.1 Some thermodynamic background

The state equations (1.2), (1.3) result from the balances of microenergies and microforces pos-
tulated in a model for phase segregation and diffusion of atomic species on a lattice introduced
in [15], a paper we refer the reader to for details. That model is a variation of the Cahn-Hilliard
system

ρt − κ∆µ = 0, µ = −∆ρ+ f ′(ρ), (1.7)

when, for the sake of simplicity, the mobility coefficient κ > 0 is taken equal to one. Customarily,
the equations in (1.7) are combined so as to get the well-known Cahn-Hilliard equation

ρt = κ∆(−∆ρ+ f ′(ρ)), (1.8)
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which describes diffusive phase separation processes in a two-phase material body.

A generalization of (1.8) was introduced by Fried and Gurtin in the papers [6] and [8]. Here is
their line of reasoning:

(i) to regard the second equation in (1.7) as a balance of microforces :

div ξ + π + γ = 0, (1.9)

where the distance microforce per unit volume is split into an internal part π and an external
part γ , and where the contact microforce per unit area of a surface oriented by its normal n is
measured by ξ · n in terms of the microstress vector ξ ;

(ii) to interpret the first equation in (1.7) as a balance law for the order parameter :

ρt = −div h + σ, (1.10)

where the pair (h, σ) is the inflow of ρ ;

(iii) to restrict the admissible constitutive choices for π, ξ,h , and the free energy density ψ ,
to those consistent in the sense of Coleman and Noll [1], with an ad hoc version of the Sec-
ond Law of Thermodynamics – namely, a postulated “dissipation inequality that accommodates
diffusion” – given in the form

ψt + (π − µ) ρt − ξ · ∇ρt + h · ∇µ ≤ 0 (1.11)

(cf., in particular, Eq. (3.6) of [8]). Within this framework, an admissible set of constitutive pre-
scriptions turns out to be:

ψ = ψ̂(ρ,∇ρ), π̂(ρ,∇ρ, µ) = µ− ∂ρψ̂(ρ,∇ρ), ξ̂(ρ,∇ρ) = ∂∇ρψ̂(ρ,∇ρ), (1.12)

together with
h = −M∇µ, where M = M̂(ρ,∇ρ, µ,∇µ). (1.13)

Moreover, it follows that the tensor-valued mobility mapping M must obey the inequality

∇µ · M̂(ρ,∇ρ, µ,∇µ)∇µ ≥ 0.

It follows from (1.9), (1.10), (1.12), and (1.13) 1 that

ρt = div
(
M∇

(
∂ρψ̂(ρ,∇ρ)− div

(
∂∇ρψ̂(ρ,∇ρ)

)
− γ

))
+ σ ;

the Cahn-Hilliard equation (1.8) results for the special choice

ψ̂(ρ,∇ρ) = f(ρ) +
1

2
|∇ρ|2, M = κ1, (1.14)

provided that the external distance microforce γ and the order parameter source term σ are
taken identically zero.

In contrast to the theory developed by Fried and Gurtin, the approach taken in [15] was the
following: while step (i) was retained, the order parameter balance (1.10) and the dissipation
inequality (1.11) were replaced, respectively, by the microenergy balance

εt = e+ w, e := −div h + σ, w := −π ρt + ξ · ∇ρt, (1.15)
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and the microentropy imbalance

ηt ≥ −div h + σ, h := µh, σ := µσ. (1.16)

The salient new feature of this approach to phase segregation modeling is that the microentropy
inflow (h, σ) is deemed proportional to the microenergy inflow (h, σ) through the chemical
potential µ ; consistently, the free energy is defined to be

ψ := ε− µ−1η, (1.17)

where the chemical potential plays the same role as the coldness in the deduction of the heat
equation. Just as the absolute temperature is a macroscopic measure of microscopic agitation,
its inverse – the coldness – measures microscopic quiet. Likewise, as argued in [15], the chem-
ical potential can be seen as a macroscopic measure of microscopic organization; and, just as
is always done for coldness, one can provisionally assume that µ is positive almost everywhere
in Q . This assumption, which is important to proving that the resulting system of field equations
does have solutions, must be justified a posteriori. The requirement that µ be positive is also
the reason why we cannot admit negative controls u in the control problem (1.1)–(1.6).

Combining (1.15)-(1.17), and assuming that µ > 0 , one finds that

ψt ≤ −η ∂t(µ
−1) + µ−1 h · ∇µ− π ρt + ξ · ∇ρt ; (1.18)

this reduced dissipation inequality replaces (1.11) in filtering out à la Coleman-Noll the inadmis-
sible constitutive choices.

On taking all of the constitutive mappings delivering π, ξ, η , and h , to depend in principle on
the list of variables ρ,∇ρ, µ,∇µ , and on choosing

ψ = ψ̂(ρ,∇ρ, µ) = −µ ρ+ f(ρ) +
1

2
|∇ρ|2, (1.19)

one sees that compatibility with (1.18) implies that

π̂(ρ,∇ρ, µ) = −∂ρψ̂(ρ,∇ρ, µ) = µ− f ′(ρ),

ξ̂(ρ,∇ρ, µ) = ∂∇ρψ̂(ρ,∇ρ, µ) = ∇ρ,

η̂(ρ,∇ρ, µ) = µ2∂µψ̂(ρ,∇ρ, µ) = −µ2ρ, (1.20)

together with

ĥ(ρ,∇ρ, µ,∇µ) = Ĥ(ρ,∇ρ, µ,∇µ)∇µ, ∇µ · Ĥ(ρ,∇ρ, µ,∇µ)∇µ ≥ 0.

If we now choose for Ĥ the simplest expression H = κ1 , implying a constant and isotropic
mobility, and if we once again assume that the external distance microforce γ and the source
σ are null, then we can infer from (1.20) and (1.17) that the microforce balance (1.9) and the
energy balance (1.15) become, respectively,

div(∇ρ) + µ− f ′(ρ) = 0, (1.21)
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2ρ µt + µ ρt − κ∆µ = 0. (1.22)

This is a nonlinear system for the unknowns ρ and µ , to be compared with system (1.7): while
equations (1.21) and (1.7) 2 coincide, equation (1.22) is considerably more difficult to handle
than (1.7) 1 . Indeed, the latter is linear while the former is not; moreover, the time derivatives of
ρ and µ are both present in (1.22), and there are nonconstant factors in front of both µt and
ρt that should remain positive during the entire evolution. Note that, for nonzero microenergy
source σ̄ , Eq. (1.22) becomes:

2 ρ µt + µ ρt − κ∆µ = −σ̄. (1.23)

In this sense, the control variable u in (1.2) is nothing but −σ̄ .

So far, it has not been possible to tackle the system (1.21), (1.22) (nor (1.21), (1.23)) mathe-
matically. Not so for system (1.2), (1.3), a regularized version of (1.21), (1.23) (with u = −σ̄ )
obtained by introducing the extra terms ε ∂tµ in (1.23) and δ ∂tρ in (1.21), with small posi-
tive coefficients ε and δ (our motivations for including such terms have been proposed and
emphasized in [4]).

2 Problem statement and existence

Consider the optimal control problem (1.2)–(1.6). For convenience, we introduce the abbreviated
notation H = L2(Ω) , V = H1(Ω) , W = {w ∈ H2(Ω) ; ∂w/∂n = 0 on Γ} . We endow
these spaces with their standard norms, for which we use self-explaining notation like ‖ · ‖V ;
for simplicity, we also write ‖ · ‖H for the norm in the space H × H × H . Recall that the
embeddings W ⊂ V ⊂ H are compact. Moreover, since V is dense in H , we can identify
H with a subspace of V ∗ in the usual way, i. e., by setting 〈u, v〉V ∗,V = (u, v)H for all
u ∈ H and v ∈ V , where 〈· , ·〉V ∗,V denotes the duality pairing between V ∗ and V . Then
also the embedding H ⊂ V ∗ is compact, and since N ≤ 3 , we have the continuous Sobolev
embeddings W ⊂ C(Ω) and V ⊂ L6(Ω) .

We make the following assumptions on the data:

(A1) f = f1 + f2 , where f1 ∈ C2(0, 1) is convex, f2 ∈ C2[0, 1] , and

lim
r↘0

f ′1(r) = −∞, lim
r↗1

f ′1(r) = +∞. (2.1)

(A2) ρ0 ∈ W , f ′(ρ0) ∈ H , µ0 ∈ V ∩ L∞(Ω) , and

inf {ρ0(x); x ∈ Ω} > 0, sup {ρ0(x); x ∈ Ω} < 1, µ0 ≥ 0 a. e. in Ω. (2.2)

Notice that (A2) implies that ρ0 ∈ C(Ω) , and that the convexity of f1 implies that f(ρ0) ∈ H .

An argumentation that parallels (and thus needs no repetition) the lines of the proofs of Theorem
2.2 and Theorem 2.3 of [4] (where we had u = 0 ) shows that the following well-posedness
result holds for the state system (1.2)–(1.5):
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Theorem 2.1 Suppose that the hypotheses (A1) and (A2) are satisfied. Then we have:

(i) For every u ∈ Uad the state system (1.2)–(1.5) has a unique solution (ρ, µ) such that

ρ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (2.3)

µ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ) ∩ L∞(Q). (2.4)

(ii) There are constants 0 < ρ∗ < ρ∗ < 1 , µ∗ > 0 , and K∗
1 > 0 , depending only on the

data, such that for every u ∈ Uad the corresponding solution (ρ, µ) satisfies

0 < ρ∗ ≤ ρ ≤ ρ∗ < 1, 0 ≤ µ ≤ µ∗, a. e. in Q, (2.5)

‖ρ‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W ) + ‖µ‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W )∩L∞(Q) ≤ K∗
1 .

(2.6)

(iii) Let u1, u2 ∈ Uad , and let (ρ1, µ1), (ρ2, µ2) be the corresponding solutions to (1.2)–(1.5).
Moreover, let u = u1 − u2 , ρ = ρ1 − ρ2 , µ = µ1 − µ2 . Then, for all t ∈ [0, T ] ,

max
0≤s≤t

(
‖µ(s)‖2

H + ‖ρ(s)‖2
V

)
+

∫ t

0

(
‖µ(s)‖2

V + ‖ρt(s)‖2
H

)
ds ≤ K∗

2

∫ t

0

‖u(s)‖2
H ds ,

(2.7)
with a constant K∗

2 > 0 that may depend on the data, but not on u1 , u2 .

Remarks: 1. Owing to (2.7), the solution operator S : u 7→ (ρ, µ) is Lipschitz continuous as
a mapping from Uad (viewed as a subset of L2(Q) ) into (H1(0, T ;H) ∩ C0([0, T ];V )) ×
(L2(0, T ;V ) ∩ C0([0, T ];H)) .

2. Thanks to (2.5) and to f ∈ C2(0, 1) , we have f ′(ρ) ∈ L∞(Q) . Moreover, owing to (2.4)
and to the embedding V ⊂ L6(Ω) , we have µ ∈ C0([0, T ];L6(Ω)) . Note that (2.3) implies,
in particular, that ρ is continuous from [0, T ] to Hs(Ω) for all s < 2 . Now, provided that s is
sufficiently large, we have Hs(Ω) ⊂ C(Ω) ; consequently, ρ ∈ C(Q) . Hence, without loss of
generality (by possibly choosing a larger K∗

1 ), we may assume that also

‖ρ‖C(Q) + ‖µ‖C0([0,T ];L6(Ω)) + ‖ρt‖L2(0,T ;L6(Ω)) ≤ K∗
1 . (2.8)

We are now prepared to prove existence for the control problem (CP):

Theorem 2.2 Suppose that the conditions (A1) and (A2) are satisfied. Then the problem (CP)
has a solution u ∈ Uad .

Proof. Let {un} ⊂ Uad be a minimizing sequence for (CP), and let {(ρn, µn)} be the se-
quence of the associated solutions to (1.2)–(1.5). We then can infer from (2.6) the existence of
a triple (ū, ρ̄, µ̄) such that, for a suitable subsequence again indexed by n , we have

un → ū weakly star in L∞(Q),

ρn → ρ̄ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ),

µn → µ̄ weakly star in H1(0, T ;H) ∩ L∞([0, T ];V ) ∩ L2(0, T ;W ).
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Clearly, we have that ū ∈ Uad . Moreover, by virtue of the Aubin-Lions lemma (cf. [14, Thm.
5.1, p. 58]) and similar compactness results (cf. [16, Sect. 8, Cor. 4]), we also have the strong
convergences

ρn → ρ̄ strongly in C0([0, T ];Hs(Ω)) for all s < 2, (2.9)

µn → µ̄ strongly in C0([0, T ];H) ∩ L2(0, T ;V ). (2.10)

From this we infer, possibly selecting another subsequence again indexed by n , that ρn →
ρ̄ pointwise a. e. in Q . In particular, ρ∗ ≤ ρ̄ ≤ ρ∗ a. e. in Q and, since f ∈ C2(0, 1) ,
also f ′(ρn) → f ′(ρ̄) strongly in L2(Q) . Now notice that the above convergences imply, in
particular, that

ρn → ρ̄ strongly in C0([0, T ];L6(Ω), ∂tρn → ∂tρ̄ weakly in L2(0, T ;L4(Ω)),

µn → µ̄ strongly in L2(0, T ;L4(Ω)), ∂tµn → ∂tµ̄ weakly in L2(Q).

From this, it is easily verified that

µn ∂tρn → µ̄ ∂tρ̄ weakly in L1(0, T ;H),

ρn ∂tµn → ρ̄ ∂tµ̄ weakly in L2(0, T ;L3/2(Ω)).

In summary, if we pass to the limit as n→∞ in the state equations (1.2)–(1.5) written for the
triple (un, ρn, µn) , we find that (ρ̄, µ̄) = S(ū) , that is, the triple (ū, ρ̄, µ̄) is admissible for the
control problem (CP). From the weak sequential lower semicontinuity of the cost functional J
it finally follows that ū , together with (ρ̄, µ̄) = S(ū) , is a solution to (CP). This concludes the
proof.

Remarks: 3. It can be shown that this existence result holds for much more general cost func-
tionals. All we need is that J enjoy appropriate weak sequential lower semicontinuity properties
that match the above weak convergences.

4. Since the state component ρ is continuous on Q , the existence result remains valid if suitable
pointwise state constraints for ρ are added (provided the admissible set is not empty). For
instance, consider the case when the state has to obey the one-sided obstacle condition

ρ(x∗, t) ≥ 1

2
∀ t ∈ [0, T ] (2.11)

for some fixed x∗ ∈ Ω (which of course requires that ρ0(x
∗) ≥ 1/2 ). If the set of admissible

controls in Uad is not empty, i. e., if there is at least one û ∈ Uad such that the corresponding
state component ρ̂ satisfies (2.11), then an optimal control exists. Indeed, we pick a minimiz-
ing sequence of admissible controls {un} ⊂ Uad with associated states (ρn, µn) obeying
(2.11). Since Ω is a bounded three-dimensional domain, we can infer from (2.9) and Sobolev
embeddings that ρn → ρ̄ uniformly in Q , whence it follows that ρ̄ satisfies (2.11).

3 Necessary optimality conditions

In this section, we derive the first-order necessary conditions of optimality for problem (CP). In
this whole section, we generally assume that the hypotheses (A1) and (A2) are satisfied and that
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ū ∈ Uad is an optimal control with associated state (ρ̄, µ̄) , which has the properties (2.3)–(2.6)
and (2.8); in particular, we have ρ̄ ∈ C(Q) . For technical reasons, we need to take a slightly
smoother nonlinear term f ; precisely, we take

(A3) f ∈ C3(0, 1) .

With this assumption, we can improve the stability estimate (2.7). Before stating the result, let
us observe that (2.3) implies, in particular, that the solution component ρ is weakly continuous
from [0, T ] into W , which justifies the formulation of the next estimate (3.1).

Lemma 3.1 Suppose that (A1)–(A3) are satisfied, and let u1, u2 ∈ Uad be given and
(ρ1, µ1), (ρ2, µ2) be the corresponding solutions to (1.2)–(1.5). Moreover, let u = u1 − u2 ,
ρ = ρ1 − ρ2 , µ = µ1 − µ2 . Then, for all t ∈ [0, T ] ,

max
0≤s≤t

(
‖ρt(s)‖2

V + ‖µ(s)‖2
V + ‖ρ(s)‖2

W

)
+

∫ t

0

(
‖µt(s)‖2

H + ‖ρt(s)‖2
W

)
ds

≤ K∗
3

∫ t

0

‖u(s)‖2
H ds , (3.1)

with a constant K∗
3 > 0 that may depend on the data, but not on u1 , u2 .

Proof. Obviously, the pair (ρ, µ) is a solution to the system

(ε+ 2ρ1)µt + 2 ρ µ2,t + µ ρ1,t + µ2 ρt −∆µ = u a. e. in Q, (3.2)

δ ρt −∆ρ = µ − (f ′(ρ1)− f ′(ρ2)) a. e. in Q, (3.3)

∂ρ

∂n
=
∂µ

∂n
= 0 a. e. on Σ, (3.4)

ρ(x, 0) = µ(x, 0) = 0 , a. e. in Ω. (3.5)

We test Eq. (3.2) by µt . It then follows, with the use of Young’s inequality, that

ε

2

∫ t

0

‖µt(s)‖2
H ds +

1

2
‖∇µ(t)‖2

H ≤ 1

2

∫ t

0

‖u(s)‖2
H ds

+

∫ t

0

∫
Ω

(2|ρ| |µ2,t| + |µ| |ρ1,t| + |µ2| |ρt|) |µt| dx ds . (3.6)

We estimate the terms on the right-hand side individually. In this process, Ci ( i ∈ IN ) denote
positive constants that only depend on the constants ε, δ, ρ∗, ρ

∗, µ∗, T,K∗
1 , K

∗
2 . On using

Hölder’s and Young’s inequalities, as well as the continuity of the embedding H1(Ω) ⊂ L4(Ω) ,
we have that∫ t

0

∫
Ω

|µ| |ρ1,t| |µt| dx ds ≤
∫ t

0

‖µt(s)‖H ‖µ(s)‖L4(Ω) ‖ρ1,t(s)‖L4(Ω) ds

≤ γ

∫ t

0

‖µt(s)‖2
H ds +

C1

γ

∫ t

0

‖ρ1,t(s)‖2
V ‖µ(s)‖2

V ds . (3.7)
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Observe that, owing to (2.6), the function s 7→ ‖ρ1,t(s)‖2
V belongs to L1(0, T ) . Moreover, by

(2.5) and Young’s inequality,∫ t

0

∫
Ω

|µ2| |ρt| |µt| dx ds ≤ γ

∫ t

0

‖µt(s)‖2
H ds +

C2

γ

∫ t

0

‖ρt(s)|2H ds , (3.8)

where the second integral on the right-hand side can be estimated using (2.7). In addition, we
have

I1 :=

∫ t

0

∫
Ω

2 |ρ| |µ2,t| |µt| dx ds ≤ γ

∫ t

0

‖µt(s)‖2
H ds+

C3

γ

∫ t

0

‖µ2,t(s)‖2
H ‖ρ(s)‖2

L∞(Ω) ds .

(3.9)
Now, observe that the embedding W ⊂ L∞(Ω) , in combination with standard elliptic estimates
and (2.7), implies that

‖ρ(s)‖2
L∞(Ω) ≤ C4

∫ s

0

‖u(τ)‖2
H dτ + C5 ‖∆ρ(s)‖2

H , (3.10)

whence

I1 ≤ γ

∫ t

0

‖µt(s)‖2
H ds +

C6

γ

(∫ t

0

‖u(s)‖2
H ds +

∫ t

0

‖µ2,t(s)‖2
H ‖∆ρ(s)‖2

H ds
)
, (3.11)

where the mapping s 7→ ‖µ2,t(s)‖2
H belongs to L1(0, T ) .

Next, we formally test Eq. (3.3) by −∆ρt . On integrating by parts, we find that

δ

∫ t

0

‖∇ρt(s)‖2
H ds +

1

2
‖∆ρ(t)‖2

H ≤
∫ t

0

∫
Ω

(−µ+ (f ′(ρ1)− f ′(ρ2)) ∆ρt dx ds .

(3.12)
After a further integration by parts, this time with respect to t , and invoking Young’s inequality
and (2.7), we find that

−
∫ t

0

∫
Ω

µ∆ρt dx ds = −
∫

Ω

µ(t) ∆ρ(t) dx +

∫ t

0

∫
Ω

µt ∆ρ dx ds ≤ 1

8
‖∆ρ(t)‖2

H

+ γ

∫ t

0

‖µt(s)‖2
H ds+

C7

γ

∫ t

0

‖∆ρ(s)‖2
H ds + C8

∫ t

0

‖u(s)‖2
H ds . (3.13)

Moreover, integration by parts with respect to t , with the help of Young’s inequality, (2.6), and
(2.7), yields:∫ t

0

∫
Ω

(f ′(ρ1)− f ′(ρ2)) ∆ρt dx ds ≤
∫

Ω

|f ′(ρ1(t))− f ′(ρ2(t))| |∆ρ(t)| dx

+

∫ t

0

∫
Ω

(|f ′′(ρ1)| |ρt| + |f ′′(ρ1)− f ′′(ρ2)| |ρ2,t|) |∆ρ| dx ds

≤ 1

8
‖∆ρ(t)‖2

H +

∫ t

0

‖∆ρ(s)‖2
H ds + C9

∫ t

0

‖u(s)‖2
H ds + I2 , (3.14)

9



where

I2 :=

∫ t

0

∫
Ω

|f ′′(ρ1)− f ′′(ρ2)| |ρ2,t| |∆ρ| dx ds .

From this inequality, on applying the mean value theorem, (2.6), (2.7), Young’s inequality, and
the continuity of the embedding H1(Ω) ⊂ L4(Ω) , we deduce the following estimate:

I2 ≤ C10

∫ t

0

‖∆ρ(s)‖H ‖ρ(s)‖L4(Ω) ‖ρ2,t(s)‖L4(Ω) ds

≤ C11 max
0≤s≤t

‖ρ(s)‖V

∫ t

0

‖ρ2,t(s)‖V ‖∆ρ(s)‖H ds

≤ C12

(∫ t

0

‖ρ2,t(s)‖2
V ‖∆ρ(s)‖2

H ds +

∫ t

0

‖u(s)‖2
H ds

)
. (3.15)

Observe that by (2.6) the mapping s 7→ ‖ρ2,t(s)‖2
V belongs to L1(0, T ) .

At this point, we may combine the estimates (3.6)–(3.15): in fact, choosing γ > 0 appropriately
small, and invoking Gronwall’s lemma, we find the estimate:∫ t

0

(
‖µt(s)‖2

H + ‖∇ρt(s)‖2
H

)
ds + max

0≤s≤t

(
‖µ(s)‖2

V + ‖ρ(s)‖2
W

)
≤ C13

∫ t

0

‖u(s)‖2
H ds , (3.16)

for all t ∈ [0, T ] . Next, we formally differentiate Eq. (3.3) with respect to t , and obtain

δρtt −∆ρt = µt − f ′′(ρ1) ρt − (f ′′(ρ1)− f ′′(ρ2)) ρ2,t , (3.17)

with zero initial and Neumann boundary conditions for ρt (cf. (3.4), (3.5), and (1.5)). Hence,
testing (3.17) by ρt , invoking Young’s inequality, and recalling (2.7), and (3.16), we find that

δ

2
‖ρt(t)‖2

H +

∫ t

0

‖∇ρt(s)‖2
H ds ≤ C14

∫ t

0

‖u(s)‖2
H ds

+

∫ t

0

∫
Ω

|ρ2,t| |f ′′(ρ1)− f ′′(ρ2)| |ρt| dx ds . (3.18)

Moreover, using Hölder’s and Young’s inequalities, (A3), (2.6), and (2.7), we see that

∫ t

0

∫
Ω

|ρ2,t| |f ′′(ρ1)− f ′′(ρ2)| |ρt| dx ds

≤ C15

∫ t

0

‖ρ2,t(s)‖L4(Ω) ‖ρ(s)‖L4(Ω)‖ρt(s)‖H ds

≤ C16

(∫ t

0

‖ρt(s)‖2
H ds + max

0≤s≤t
‖ρ(s)‖2

V

∫ t

0

‖ρ2,t(s)‖2
V ds

)
≤ C17

∫ t

0

‖u(s)‖2
H ds . (3.19)
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Finally, we test (3.17) by −∆ρt . Using Young’s inequality and (3.16), we find that

δ

2
‖∇ρt(t)‖2

H +

∫ t

0

‖∆ρt(s)‖2
H ds ≤ γ

∫ t

0

‖∆ρt(s)‖2
H ds

+
C18

γ

∫ t

0

‖u(s)‖2
H ds +

∫ t

0

∫
Ω

|ρ2,t| |f ′′(ρ1)− f ′′(ρ2)| |∆ρt| dx ds

≤ 2γ

∫ t

0

‖∆ρt(s)‖2
H ds +

C19

γ

(∫ t

0

‖u(s)‖2
H ds + max

0≤s≤t
‖ρ(s)‖2

V

∫ t

0

‖ρ2,t(s)‖2
V ds

)
≤ 2γ

∫ t

0

‖∆ρt(s)‖2
H ds +

C20

γ

∫ t

0

‖u(s)‖2
H ds . (3.20)

Choosing γ > 0 appropriately small, we can infer that the estimate (3.1) is in fact true. This
concludes the proof.

3.1 The linearized system

Suppose that h ∈ L∞(Q) is an admissible variation with respect to ū , i. e., that there exists
λ̄ > 0 such that ū + λh ∈ Uad whenever 0 < λ ≤ λ̄ . We have to determine the directional
derivative DJred(ū)h of the “reduced” cost functional Jred(u) := J(u, Su) at ū in the direc-
tion h . This requires to find the directional derivative DS(ū)h of the solution operator S at ū
in the direction h . To this end, we consider the following system, which is obtained by linearizing
the system (1.2)–(1.5) at (ρ̄, µ̄) :

(ε+ 2ρ̄) ηt −∆η + 2 µ̄t ξ + µ̄ ξt + ρ̄t η = h a. e. in Q, (3.21)

δ ξt −∆ξ = −f ′′(ρ̄) ξ + η a. e. in Q, (3.22)

∂ξ

∂n
=
∂η

∂n
= 0 a. e. on Σ, (3.23)

ξ(x, 0) = η(x, 0) = 0 a. e. in Ω. (3.24)

We expect that (ξ, η) = DS(ū)h , provided that (3.21)–(3.24) admits a unique solution (ξ, η) .
In view of (2.3) and (2.4), we can guess the regularity of ξ and η :

ξ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ) ∩ L∞(Q), (3.25)

η ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ). (3.26)

Indeed, if (3.25) and (3.26) hold then the collection of source terms in (3.21), i. e., the part
h − 2 µ̄t ξ − µ̄ ξt − ρ̄t η , belongs to L2(Q) (as it should for a solution η satisfying (3.26)),
whereas the regularity (3.26) for η allows us to conclude from (3.22) that also ξ ∈ C(Q) (by
applying maximal parabolic regularity theory, see, e. g., [7, Thm. 6.8] or [17, Lemma 7.12]).

In fact, as to ξ , we can count on an even better regularity. Indeed, we may differentiate (3.22)
with respect to t to find that

δξtt −∆ξt = −f ′′′(ρ̄) ρ̄t ξ − f ′′(ρ̄) ξt + ηt , (3.27)
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with zero initial and Neumann boundary conditions for ξt . Since the right-hand side of (3.27)
belongs to L2(Q) , we may test by any of the functions ξt , ξtt , and −∆ξt , to obtain that even

ξ ∈ H2(0, T ;H) ∩ C1([0, T ];V ) ∩H1(0, T ;W ) . (3.28)

Notice, however, that this fact has no bearing on the regularity of η , since the coefficient µ̄t in
(3.21) only belongs to L2(Q) .

We first prove the well-posedness of the linear system (3.21)–(3.24).

Proposition 3.2 Suppose that (A1)–(A3) are fulfilled. Then the system (3.21)–(3.24) has a
unique solution (ξ, η) satisfying (3.26) and (3.28).

Proof. We proceed in series of steps.

Step 1: Approximation. Following the lines of our approach in [4], we use an approximation
technique based on a delay in the right-hand side of (3.22). To this end, we define for τ > 0 the
translation operator Tτ : L1(0, T ;H) → L1(0, T ;H) by putting, for every v ∈ L1(0, T ;H)
and almost every t ∈ (0, T ) ,

(Tτv)(t) = v(t− τ) if t ≥ τ, and (Tτv)(t) = 0 if t < τ. (3.29)

Notice that, for any v ∈ L2(Q) and any τ > 0 , we obviously have ‖Tτv‖L2(Q) ≤ ‖v‖L2(Q) .

Then, for any fixed τ > 0 , we look for functions (ξτ , ητ ) , which satisfy (3.25) and (3.26) and
the system:

(ε+ 2ρ̄) ητ
t −∆ητ + 2 µ̄t ξ

τ + µ̄ ξτ
t + ρ̄t η

τ = h a. e. in Q, (3.30)

δ ξτ
t −∆ξτ + f ′′(ρ̄) ξτ = Tτη

τ a. e. in Q, (3.31)

∂ξτ

∂n
=
∂ητ

∂n
= 0 a. e. on Σ, (3.32)

ξτ (x, 0) = ητ (x, 0) = 0 a. e. in Ω. (3.33)

Precisely, we choose for τ > 0 the discrete values τ = T/N , where N ∈ IN is arbitrary, and
put tn = n τ , 0 ≤ n ≤ N , and In = (0, tn) . For 1 ≤ n ≤ N , we solve the problem

(ε+ 2ρ̄) ηn,t −∆ηn + 2 µ̄t ξn + µ̄ ξn,t + ρ̄t ηn = h a. e. in Ω× In, (3.34)

∂ηn

∂n
= 0 a. e. on Γ× In, ηn(x, 0) = 0 a. e. in Ω, (3.35)

δ ξn,t −∆ξn + f ′′(ρ̄) ξn = Tτηn a. e. in Ω× In, (3.36)

∂ξn
∂n

= 0 a. e. on Γ× In, ξn(x, 0) = 0 a. e. in Ω, (3.37)

where the variables ηn and ξn , defined on In , have obvious meaning. Here, Tτ acts on
functions that are not defined on the entire interval (0, T ) ; however, for n > 1 it is still defined
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by (3.29), while for n = 1 we simply put Tτηn = 0 . Notice that whenever the pairs (ξk, ηk)
with

ξk ∈ H1(Ik;H) ∩ C0(Īk;V ) ∩ L2(Ik;W ) ∩ C(Ω× Ik), (3.38)

ηk ∈ H1(Ik;H) ∩ C0(Īk;V ) ∩ L2(Ik;W ), (3.39)

have been constructed for 1 ≤ k ≤ n < N , then we look for the pair (ξn+1, ηn+1) that
coincides with (ξn, ηn) in In , and note that the linear parabolic problem (3.36), (3.37) has a
unique solution ξn+1 on Ω × In+1 that satisfies (3.38) for k = n + 1 . Inserting ξn+1 in
(3.34) (where n is replaced by n + 1 ), we then find that the linear parabolic problem (3.34),
(3.35) admits a unique solution ηn+1 that fulfills (3.39) for k = n+1 . Hence, we conclude that
(ξτ , ητ ) = (ξN , ηN) satisfies (3.30)–(3.33), and (3.25), (3.26).

Step 2: A priori estimates. We now prove a series of a priori estimates for the functions
(ξτ , ητ ) . In the following, we denote by Ci ( i ∈ IN ) some generic positive constants, which
may depend on ε, δ, ρ∗, ρ

∗, µ∗, T,K∗
1 , K

∗
2 , but not on τ (i. e., not on N ). For the sake of

simplicity, we omit the superscript τ and simply write (ξ, η) . We recall the continuity of the
embedding H1(Ω) ⊂ L6(Ω) .

First a priori estimate. Observe that 2 ρ̄ η ηt = (ρ̄ η2)t − ρ̄t η
2 . Hence, testing (3.30) by η ,

we have, for 0 ≤ t ≤ T ,∫
Ω

(ε
2

+ ρ̄
)
η(t)2 dx+

∫ t

0

‖∇η(s)‖2
H ds ≤

1

2

∫ t

0

(
‖η(s)‖2

H + ‖h(s)‖2
H

)
ds

+ 2

∫ t

0

∫
Ω

|µ̄t| |ξ| |η| dx ds +

∫ t

0

∫
Ω

|µ̄| |ξt| |η| dx ds . (3.40)

For any γ > 0 , we have by Young’s inequality that∫ t

0

∫
Ω

|µ̄| |ξt| |η| dx ds ≤ ‖µ̄‖L∞(Q)

∫ t

0

‖η(s)‖H ‖ξt(s)‖H ds

≤ γ

∫ t

0

‖ξt(s)‖2
H ds +

C1

γ

∫ t

0

‖η(s)‖2
H ds . (3.41)

Moreover, ∫ t

0

∫
Ω

|µ̄t| |ξ| |η| dx ds ≤
∫ t

0

‖µ̄t(s)‖H ‖ξ(s)‖L4(Ω) ‖η(s)‖L4(Ω) ds

≤ γ

∫ t

0

‖η(s)‖2
V ds +

C2

γ

∫ t

0

‖µ̄t(s)‖2
H ‖ξ(s)‖2

V ds . (3.42)

Notice that, by virtue of (2.6), the mapping s 7→ ‖µ̄t(s)‖2
H belongs to L1(0, T ) .

Next, we add ξ on both sides of Eq. (3.31) and test the resulting equation by ξt . On using
Young’s inequality again, we obtain:

δ

4

∫ t

0

‖ξt(s)‖2
H ds +

1

2

(
‖ξ(t)‖2

H + ‖∇ξ(t)‖2
H

)
≤ C3

(∫ t

0

‖η(s)‖2
H ds +

∫ t

0

‖ξ(s)‖2
H ds

)
. (3.43)
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Adding the inequalities (3.40) and (3.43), and choosing γ > 0 sufficiently small, we conclude
from the above estimates and Gronwall’s lemma that∫ T

0

(
‖ξt(t)‖2

H + ‖η(t)‖2
V

)
dt + max

0≤t≤T

(
‖ξ(t)‖2

V + ‖η(t)‖2
H

)
≤ C4

∫ T

0

‖h(t)‖2
H dt. (3.44)

By comparison in (3.31), and thanks to (3.32), we may also infer (possibly by choosing a larger
C4 ) that ∫ T

0

‖ξ(t)‖2
W dt ≤ C4

∫ T

0

‖h(t)‖2
H dt . (3.45)

Second a priori estimate. We test (3.30) by ηt and apply Young’s inequality in order to obtain

ε

2

∫ t

0

‖ηt(s)‖2
H ds +

1

2
‖∇η(t)‖2

H

≤ 1

2ε

∫ t

0

‖h(s)‖2
H ds +

∫ t

0

∫
Ω

(2 |µ̄t| |ξ| + |µ̄| |ξt| + |ρ̄t| |η| ) |ηt| dx ds . (3.46)

Since µ̄ ∈ L∞(Q) , we can infer from Young’s inequality that∫ t

0

∫
Ω

|µ̄| |ξt| |ηt| dx ds ≤ γ

∫ t

0

‖ηt(s)‖2
H ds +

C5

γ

∫ t

0

‖ξt(s)‖2
H ds . (3.47)

Moreover, by virtue of Hölder’s and Young’s inequalities,∫ t

0

∫
Ω

|ρ̄t| |η| |ηt| dx ds ≤ γ

∫ t

0

‖ηt(s)‖2
H ds +

C6

γ

∫ t

0

‖ρ̄t(s)‖2
L4(Ω) ‖η(s)‖2

L4(Ω) ds

≤ γ

∫ t

0

‖ηt(s)‖2
H ds +

C7

γ

∫ t

0

‖ρ̄t(s)‖2
V ‖η(s)‖2

V ds . (3.48)

Observe that by (2.6) the mapping s 7→ ‖ρ̄t(s)‖2
V belongs to L1(0, T ) .

Finally, we have, owing to the continuity of the embedding W ⊂ L∞(Ω) and (3.44),∫ t

0

∫
Ω

2 |µ̄t| |ξ| |ηt| dx ds ≤ γ

∫ t

0

‖ηt(s)‖2
H ds +

C8

γ

∫ t

0

‖µ̄t(s)‖2
H ‖ξ(s)‖2

L∞(Ω)ds

≤ γ

∫ t

0

‖ηt(s)‖2
H ds +

C9

γ

(∫ T

0

‖h(s)‖2
H ds +

∫ t

0

‖µ̄t(s)‖2
H ‖∆ξ(s)‖2

H ds
)
, (3.49)

where, owing to (2.6), the mapping s 7→ ‖µ̄t(s)‖2
H belongs to L1(0, T ) .

Next, we test (3.31) by −∆ξt to obtain, for every t ∈ [0, T ] ,

δ

∫ t

0

‖∇ξt(s)‖2
H ds +

1

2
‖∆ξ(t)‖2

H =

∫ t

0

∫
Ω

(− (Tτη) + f ′′(ρ̄) ξ) ∆ξt dx ds . (3.50)
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Now, by virtue of (3.44) and (3.45), and invoking Young’s inequality, we have∣∣∣∫ t

0

∫
Ω

(Tτη) ∆ξt dx ds
∣∣∣ ≤ ∫

Ω

|(Tτη) (t)| |∆ξ(t)| dx +

∫ t

0

∫
Ω

|∂t (Tτη)| |∆ξ| dx ds

≤ 1

8
‖∆ξ(t)‖2

H + γ

∫ t

0

‖ηt(s)‖2
H ds + C10

(
1 +

1

γ

) ∫ T

0

‖h(s)‖2
H ds. (3.51)

Moreover, it turns out that∣∣∣∫ t

0

∫
Ω

f ′′(ρ̄) ξ∆ξt dx ds
∣∣∣ ≤ ∫

Ω

|f ′′(ρ̄(t))| |ξ(t)| |∆ξ(t)| dx

+

∫ t

0

∫
Ω

|f ′′′(ρ̄) ρ̄t ξ + f ′′(ρ̄) ξt| |∆ξ| dx ds . (3.52)

We have, owing to (2.5) and (3.44),∫
Ω

|f ′′(ρ̄(t))| |ξ(t)| |∆ξ(t)| dx ≤ 1

8
‖∆ξ(t)‖2

H + C11

∫ T

0

‖h(s)‖2
H ds . (3.53)

Also the second integral on the right-hand side of (3.52) is bounded, since (2.5), (2.6), (3.44),
and (3.45) imply that∫ t

0

∫
Ω

|f ′′′(ρ̄) ρ̄t ξ + f ′′(ρ̄) ξt| |∆ξ| dx ds

≤ C12

∫ t

0

‖ρ̄t(s)‖2
L4(Ω) ‖ξ(s)‖2

L4(Ω)ds +

∫ t

0

‖∆ξ(s)‖2
H ds

≤ C13 max
0≤t≤T

‖ξ(t)‖2
V

∫ t

0

‖ρ̄t(s)‖2
V ds +

∫ t

0

‖∆ξ(s)‖2
H ds

≤ C14

∫ T

0

‖h(s)‖2
H ds , (3.54)

thanks to the continuity of the embedding V ⊂ L4(Ω) . Thus, combining the estimates (3.46)
–(3.54), choosing γ > 0 sufficiently small, and invoking Gronwall’s inequality, we can infer that∫ T

0

(
‖ηt(t)‖2

H + ‖ξt(t)‖2
V

)
dt + max

0≤t≤T

(
‖η(t)‖2

V + ‖ξ(t)‖2
W

)
≤ C15

∫ T

0

‖h(t)‖2
H dt .

(3.55)

Now, testing (3.30) by −∆η , and arguing as for (3.46)–(3.49), we find that∫ T

0

‖η(t)‖2
W dt ≤ C16

∫ T

0

‖h(t)‖2
H dt .

Next, we differentiate Eq. (3.31) with respect to t . We obtain:

δ ξtt −∆ξt = ∂t(Tτη)− f ′′′(ρ̄) ρ̄t ξ − f ′′(ρ̄) ξt a. e. in Q. (3.56)
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From (2.5), (2.6), (3.44), and (3.55), we can infer that the expression on the right-hand side of
(3.56) is bounded in L2(Q) . Therefore, we may test (3.56) by any of the functions ξt , −∆ξt ,
and ξtt , in order to find that∫ T

0

(
‖ξtt(t)‖2

H + ‖∆ξt(t)‖2
H

)
dt + max

0≤t≤T
‖ξt(t)‖2

V ≤ C17

∫ T

0

‖h(t)‖2
H dt . (3.57)

Step 3: Passage to the limit. Let (ξN , ηN) denote the solution to the system (3.30)–(3.33)
associated with τN = T/N , for N ∈ IN . In Step 2, we have shown that there is some C > 0 ,
which does not depend on N , such that

‖ξN‖H2(0,T ;H)∩C1([0,T ];V )∩H1(0,T ;W )∩C(Q) + ‖ηN‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W ) ≤ C.
(3.58)

Hence, there is a subsequence, which is again indexed by N , such that

ξN → ξ weakly star in H2(0, T ;H) ∩W 1,∞(0, T ;V ) ∩H1(0, T ;W ),

ηN → η weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ). (3.59)

By compact embedding, we also have, in particular,

ξN → ξ strongly in C(Q), ηN → η strongly in L2(Q), (3.60)

so that ρ̄ ηN,t → ρ̄ ηt and µ̄ ξN,t → µ̄ ξt , both weakly in L2(Q) , f ′′(ρ̄) ξN → f ′′(ρ̄) ξ
strongly in L2(Q) , as well as µ̄t ξN,t → µ̄t ξt and ρ̄t ηN → ρ̄t η , both strongly in L1(Q) .
Finally, it is easily verified that {TT/NηN} converges strongly in L2(Q) to η . In conclusion,
we may pass to the limit as N →∞ in the system (3.30)–(3.33) (written for τ = T/N ) to find
that the pair (ξ, η) is in fact a strong solution to the linearized system (3.21)–(3.24).

It remains to show the uniqueness. But if (ξ1, η1) , (ξ2, η2) are two solutions having the above
properties, then the pair (ξ, η) , where ξ = ξ1 − ξ2 and η = η1 − η2 , satisfies (3.21)–(3.24)
with h = 0 . We thus may repeat the first a priori estimate in Step 2 to conclude that ξ = η = 0 .
This concludes the proof.

3.2 Directional differentiability of the control-to-state mapping

In this section, we prove the following result.

Proposition 3.3 Suppose that the assumptions (A1)–(A3) are satisfied. Then the solution
operator S , viewed as a mapping from Uad , subset of L2(Q) , into(

H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W )
)
×

(
C0([0, T ];H) ∩ L2(0, T ;V )

)
,

is directionally differentiable at ū in the direction h . The directional derivative (ξ, η) = DS(ū)h
is given by the unique solution (ξ, η) to the linearized system (3.21)–(3.24).

Proof. Let λ̄ > 0 be such that ū+ λh ∈ Uad for 0 < λ ≤ λ̄ . We put

uλ = ū+ λh, (ρλ, µλ) = S(uλ), yλ = ρλ − ρ̄− λξ, zλ = µλ − µ̄− λη.
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We have to show that there is a function Z : [0, λ̄] → [0,+∞) with limλ↘0 Z(λ)/λ2 = 0
such that

‖yλ‖2
H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W ) + ‖zλ‖2

C0([0,T ];H)∩L2(0,T ;V ) ≤ Z(λ). (3.61)

Using the state system (1.2)–(1.5) and the linearized system (3.21)–(3.24), we easily verify that
for 0 < λ ≤ λ̄ the pair (yλ, zλ) is a strong solution to the system

(ε+ 2ρ̄) zλ
t + ρ̄t z

λ + µ̄ yλ
t + 2µ̄t y

λ −∆zλ

= −2
(
µλ

t − µ̄t

) (
ρλ − ρ̄

)
−

(
ρλ

t − ρ̄t

) (
µλ − µ̄

)
a. e. in Q, (3.62)

δyλ
t −∆yλ + f ′(ρλ)− f ′(ρ̄)− λ f ′′(ρ̄) ξ = zλ, a. e. in Q, (3.63)

∂yλ

∂n
=
∂zλ

∂n
= 0, a. e. on Σ, (3.64)

yλ(x, 0) = zλ(x, 0) = 0 a. e. in Ω. (3.65)

Notice that

yλ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ) ∩ C(Q̄),

zλ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ).

For the sake of a better readability, in the following estimates we omit the superscript λ of yλ

and zλ . As before, we denote by Ci ( i ∈ IN ) certain positive constants that only depend on
ε, δ, ρ∗, ρ

∗, µ∗, T,K∗
1 , K

∗
2 , K

∗
3 , but not on λ .

We now add y on both sides of Eq. (3.63) and test the resulting equation by yt . Using Young’s
inequality, we find that for all t ∈ [0, T ] it holds

δ

2

∫ t

0

‖yt(s)‖2
H ds+

1

2

(
‖∇y(t)‖2

H + ‖y(t)‖2
H

)
≤ 2

δ

∫ t

0

‖z(s)‖2
H ds

+C1

∫ t

0

‖y(s)‖2
H ds + C2

∫ t

0

‖(f ′(ρλ)− f ′(ρ̄)− λf ′′(ρ̄) ξ)(s)‖2
H ds . (3.66)

In order to handle the third term on the right-hand side of (3.66), we note that the stability
estimate (3.1) implies, in particular, that

‖ρλ − ρ̄‖2
L∞(Q) ≤ K∗

3 λ
2 ‖h‖2

L2(Q) , (3.67)

that is, ρλ → ρ̄ uniformly on Q as λ ↘ 0 . Since f ∈ C3(0, 1) , we can infer from Taylor’s
theorem that∣∣f ′(ρλ)− f ′(ρ̄)− λ f ′′(ρ̄) ξ

∣∣ ≤ 1

2
max

ρ∗≤σ≤ρ∗
|f ′′′(σ)|

∣∣ρλ − ρ̄
∣∣2 + |f ′′(ρ̄)| |y| on Q.

(3.68)
It then follows from the estimates (3.1) and (3.66) that

δ

2

∫ t

0

‖yt(s)‖2
H ds+

1

2
‖y(t)‖2

V ≤ 2

δ

∫ t

0

‖z(s)‖2
H ds + C3

∫ t

0

‖y(s)‖2
H ds + C4λ

4, (3.69)
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since we can assume that ‖h‖L2(Q) ≤ 1 . Next, observe that 2 ρ̄ z zt = (ρ̄ z2)t − ρ̄t z
2 .

Therefore, testing (3.62) by z yields for every t ∈ [0, T ] that∫
Ω

(ε
2

+ ρ̄(t)
)
z2(t) dx +

∫ t

0

‖∇z(s)‖2
H ds = −

∫ t

0

∫
Ω

(µ̄ yt + 2 µ̄t y) z dx ds

− 2

∫ t

0

∫
Ω

(
µλ

t − µ̄t

) (
ρλ − ρ̄

)
z dx ds−

∫ t

0

∫
Ω

(
ρλ

t − ρ̄t

) (
µλ − µ̄

)
z dx ds . (3.70)

We estimate the terms on the right-hand side of (3.70) individually. At first, using (2.6) and
Young’s inequality, we find that∫ t

0

∫
Ω

|µ̄| |yt| |z| dx ds ≤ γ

∫ t

0

‖yt(s)‖2
H ds +

C5

γ

∫ t

0

‖z(s)‖2
H ds. (3.71)

Moreover, using the continuity of the embedding H1(Ω) ⊂ L4(Ω) , as well as Hölder’s and
Young’s inequalities,∫ t

0

∫
Ω

|µ̄t| |y| |z| dx ds ≤
∫ t

0

‖µ̄t(s)‖H ‖z(s)‖L4(Ω) ‖y(s)‖L4(Ω) ds

≤ γ

∫ t

0

‖z(s)‖2
V ds +

C6

γ

∫ t

0

‖µ̄t(s)‖2
H ‖y(s)‖2

V ds . (3.72)

Observe that by (2.6) the mapping s 7→ ‖µ̄t(s)‖2
H belongs to L1(0, T ) .

At this point, we can conclude from (3.1) and (3.67), invoking Young’s inequality, that∫ t

0

∫
Ω

2
∣∣µλ

t − µ̄t

∣∣ ∣∣ρλ − ρ̄
∣∣ |z| dx ds

≤ 2

∫ t

0

∥∥(µλ
t − µ̄t)(s)

∥∥
H

∥∥(ρλ − ρ̄)(s)
∥∥

L∞(Q)
‖z(s)‖H ds

≤ C7

∥∥(ρλ − ρ̄)(s)
∥∥2

L∞(Q)

∫ t

0

∥∥(µλ
t − µ̄t)(s)

∥∥2

H
ds +

∫ t

0

‖z(s)‖2
H ds

≤
∫ t

0

‖z(s)‖2
H ds + C8 λ

4 . (3.73)

Finally, we invoke (3.1) and Hölder’s and Young’s inequalities, as well as the continuity of the
embedding H1(Ω) ⊂ L4(Ω) , to obtain that∫ t

0

∫
Ω

∣∣ρλ
t − ρ̄t

∣∣ ∣∣µλ − µ̄
∣∣ |z| dx ds

≤ max
0≤s≤t

‖z(s)‖H

∫ t

0

∥∥(ρλ
t − ρ̄t)(s)

∥∥
L4(Ω)

∥∥(µλ − µ̄)(s)
∥∥

L4(Ω)
ds

≤ γ max
0≤s≤t

‖z(s)‖2
H +

C9

γ

∫ t

0

∥∥(ρλ
t − ρ̄t)(s)

∥∥2

V
ds

∫ t

0

∥∥(µλ − µ̄)(s)
∥∥2

V
ds

≤ γ max
0≤s≤t

‖z(s)‖2
H + C10 λ

4 . (3.74)
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Combining the estimates (3.69)–(3.74), taking the maximum with respect to t ∈ [0, T ] , adjust-
ing γ > 0 appropriately small, and invoking Gronwall’s lemma, we arrive at the conclusion that
(yλ, zλ) = (y, z) satisfies the inequality

‖yλ‖2
H1(0,T ;H)∩C0([0,T ];V ) + ‖zλ‖2

C0([0,T ];H)∩L2([0,T ];V ) ≤ C11 λ
4 . (3.75)

Finally, testing (3.63) by −∆yλ , and using (3.68), we find that also

‖yλ‖2
L2(0,T ;W ) ≤ C12 λ

4 . (3.76)

This concludes the proof of the assertion.

Corollary 3.4 Let the assumptions (A1)–(A3) be fulfilled, and let ū ∈ Uad be an optimal
control for the problem (CP) with associated state (ρ̄, µ̄) = S(ū) . Then, for every v ∈ Uad ,∫ T

0

∫
Ω

β2 ū(v−ū) dx dt+
∫

Ω

(ρ̄(T )−ρT ) ξ(T ) dx+

∫ T

0

∫
Ω

β1 (µ̄−µT ) η dx dt ≥ 0, (3.77)

where (ξ, η) is the unique solution to the linearized system (3.21)–(3.24) associated with h =
v − ū .

Proof. Let v ∈ Uad be arbitrary. Then h = v− ū is an admissible direction, since ū+λh ∈
Uad for 0 < λ ≤ 1 . For any such λ , we have

0 ≤ J(ū+ λh, S(ū+ λh))− J(ū, S(ū))

λ

≤ J(ū+ λh, S(ū+ λh))− J(ū, S(ū+ λh))

λ
+
J(ū, S(ū+ λh))− J(ū, S(ū))

λ
.

It follows immediately from the definition of the cost functional J that the first summand on the
right-hand side of this inequality converges to

∫ T

0

∫
Ω
β2 ū h dx dt as λ ↘ 0 . For the second

summand, we obtain from Proposition 3.3 that

lim
λ↘0

J(ū, S(ū+ λh))− J(ū, S(ū))

λ
=

∫
Ω

(ρ̄(T )−ρT ) ξ(T ) dx+

∫ T

0

∫
Ω

β1 (µ̄−µT ) η dx dt ,

whence the assertion follows.

3.3 The optimality system

Let ū ∈ Uad be an optimal control for (CP) with associated state (ρ̄, µ̄) = S(ū) . Then, for
every v ∈ Uad , (3.77) holds. We now aim to eliminate (ξ, η) by introducing the adjoint state
variables. To this end, we consider the adjoint system :

19



−(ε+ 2ρ̄) qt − ρ̄t q −∆q = p+ β1 (µ̄− µT ) a. e. in Q, (3.78)

∂q

∂n
= 0 a. e. in Σ, q(x, T ) = 0 a. e. in Ω, (3.79)

−δpt −∆p+ f ′′(ρ̄) p = µ̄ qt − µ̄t q in Q, (3.80)

∂p

∂n
= 0 on Σ, δ p(T ) = ρ̄(T )− ρT in Ω , (3.81)

which is a linear backward-in-time parabolic system for the adjoint state variables p and q .

It must be expected that the adjoint state variables (p, q) be less regular than the state variables
(ρ̄, µ̄) . Indeed, we only have p(T ) ∈ L2(Ω) , and thus (3.80) and (3.81) should be interpreted
in the ususal weak sense. That is, we look for a vector-valued function p ∈ H1(0, T ;V ∗) ∩
C0([0, T ];H) ∩ L2(0, T ;V ) that, in addition to the final time condition (3.81), satisfies

〈−δ pt(t), v〉V ∗,V +

∫
Ω

∇p(t) · ∇v dx +

∫
Ω

f ′′(ρ̄(t)) p(t) v dx

=

∫
Ω

(µ̄(t) qt(t)− µ̄t(t) q(t)) v dx , (3.82)

for every v ∈ V and almost every t ∈ (0, T ) . Notice that if q ∈ H1(0, T ;H)∩C0([0, T ];V ) ,
then it is easily seen that µ̄ qt − µ̄t q ∈ L3/2(Q) , so that the integral on the right-hand side
of (3.82) makes sense. On the other hand, if p has the expected regularity then the solution to
(3.78), (3.79) should belong to H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ) .

Lemma 3.5 Suppose that the system (3.78)–(3.81) has a unique solution (p, q) where
p ∈ H1(0, T ;V ∗) ∩ C0([0, T ];H) ∩ L2(0, T ;V ) and q ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩
L2(0, T ;W ) . Then we have∫

Ω

(ρ̄(x, T )− ρT (x)) ξ(x, T ) dx +

∫ T

0

∫
Ω

β1 (µ̄−µT ) η dx dt =

∫ T

0

∫
Ω

q h dx dt . (3.83)

Proof. The assertion follows from repeated integration by parts, using the well-known integra-
tion by parts formula∫ T

0

(
〈vt(t), w(t)〉V ∗,V + 〈wt(t), v(t)〉V ∗,V

)
dt =

∫
Ω

(
v(T )w(T )− v(0)w(0)

)
dx,

which holds for all functions v, w ∈ H1(0, T ;V ∗) ∩ L2(0, T ;V ) . Since this calculation is
standard in optimal control theory, we may leave it to the reader to work out the details.

Proposition 3.6 The adjoint system (3.78)–(3.81) has a unique solution (p, q) with p ∈
H1(0, T ;V ∗) ∩ C0([0, T ];H) ∩ L2(0, T ;V ) and q ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩
L2(0, T ;W ) , where (3.80) and (3.81) 1 are understood in the sense of (3.82).
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Proof. We proceed in a series of steps.

Step 1: Approximation. As in the proof of Proposition 3.2, we employ a delay technique. How-
ever, this time we have to use a negative delay, since the system (3.78)–(3.81) runs backwards
in time.

For 0 < τ < T , we define the translation operator T̃τ : L1(0, T ;H) → L1(0, T ;H) by
putting, for every v ∈ L1(0, T ;H) and almost all t ∈ (0, T ) ,(

T̃τv
)
(t) = v(t+ τ) if t ≤ T − τ, and

(
T̃τv

)
(t) = 0 if t > T − τ ; (3.84)

clearly, we have that ‖T̃τv‖L2(Q) ≤ ‖v‖L2(Q) , for every v ∈ L2(Q) and any τ ∈ (0, T ) .

We then consider for τ ∈ (0, T ) the following approximating problem: find functions

pτ ∈ H1(0, T ;V ∗) ∩ C0([0, T ];H) ∩ L2(0, T ;V ),

qτ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ) (3.85)

that solve the system

−(ε+ 2ρ̄) qτ
t −∆qτ + qτ = (1 + ρ̄t) T̃τq

τ + T̃τp
τ + β1(µ̄− µT ) a. e. in Q, (3.86)

∂qτ

∂n
= 0 a. e. on Σ, qτ (x, T ) = 0 a. e. in Ω, (3.87)

〈−δ pτ
t (t), v〉V ∗,V +

∫
Ω

∇pτ (t) · ∇v dx +

∫
Ω

f ′′(ρ̄(t)) pτ (t) v dx

=

∫
Ω

(
µ̄(t) qτ

t (t)− µ̄t(t)q
τ (t)

)
v dx ∀ v ∈ V, for a. e. t ∈ (0, T ), (3.88)

δ pτ (T ) = ρ̄(T )− ρT a. e. in Ω. (3.89)

We choose for τ ∈ (0, T ) the discrete values τ = T/N , where N ∈ IN is arbitrary, and
we put tn = n τ , 0 ≤ n ≤ N , and In = (tn, T ) . For n = N − 1, . . . , 1, 0 , we solve the
problem:

−(ε+ 2ρ̄) qn,t −∆qn + qn = (1 + ρ̄t) T̃τqn + T̃τpn + β1(µ̄− µT )

a. e. in Ω× In, (3.90)

∂qn
∂n

= 0 a. e. on Σ, qn(x, T ) = 0 a. e. in Ω, (3.91)

〈−δ pn,t(t), v〉V ∗,V +

∫
Ω

∇pn(t) · ∇v dx +

∫
Ω

f ′′(ρ̄(t)) pn(t) v dx

=

∫
Ω

(
µ̄(t) qn,t(t)− µ̄t(t) qn(t)

)
v dx for all v ∈ V, for a. e. t ∈ (tn, T ), (3.92)

δ pn(T ) = ρ̄(T )− ρT a. e. in Ω. (3.93)

Here, T̃τ acts on functions that are not defined on the entire interval (0, T ) ; however, for
n < N − 1 it is still defined by (3.84), while for n = N − 1 we simply put T̃τpn = T̃τqn = 0 .
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Whenever the pairs (pk, qk) with

pk ∈ H1(Ik;V
∗) ∩ C0(Īk;H) ∩ L2(Ik;V ), (3.94)

qk ∈ H1(Ik;H) ∩ C0(Īk;V ) ∩ L2(Ik;W ), (3.95)

have been constructed for 0 < n ≤ k ≤ N − 1 , we look for the pair (ξn−1, ηn−1) that
coincides with (ξn, ηn) in In . Note that the linear parabolic problem (3.90), (3.91) has a unique
solution qn−1 on Ω × In−1 that satisfies (3.95) for k = n − 1 (see, e. g., [12]) . On inserting
qn−1 in (3.92) (with n replaced by n− 1 ), we then find (e. g., by using an appropriate Galerkin
approximation) that the linear parabolic problem (3.92), (3.93) admits a unique solution pn−1

that fulfills (3.94) for k = n− 1 . Hence, we conclude that (pτ , qτ ) = (p0, q0) satisfies (3.86)–
(3.89) and (3.85).

Step 2: A priori estimates. We now prove a series of a priori estimates for the functions
(pτ , qτ ) . In the following, we denote by Ci ( i ∈ IN ) some generic positive constants, which
may depend on ε, δ, ρ∗, ρ

∗, µ∗, T,K∗
1 , K

∗
2 , but not on τ (i. e., not on N ). For the sake of

simplicity, we omit the superscript τ and simply write (p, q) .

We multiply (3.86) by −qt and integrate over Ω× [t, T ] to obtain, using Young’s inequality,

ε

2

∫ T

t

‖qt(s)‖2
H ds +

1

2

(
‖∇q(t)‖2

H + ‖q(t)‖2
H

)
≤ C1 + C2

∫ T

t

(
‖p(s)‖2

H + ‖q(s)‖2
H

)
ds +

∫ T

t

∫
Ω

|ρ̄t| |T̃τq| |qt| dx ds . (3.96)

Moreover, by virtue of Hölder’s and Young’s inequalities, and invoking the continuity of the em-
bedding H1(Ω) ⊂ L4(Ω) , we have, for any γ > 0 , that∫ T

t

∫
Ω

|ρ̄t| |T̃τq| |qt| dx ds ≤
∫ T

t

‖ρ̄t(s)‖L4(Ω) ‖T̃τq(s)‖L4(Ω) ‖qt(s)‖H ds

≤ γ

∫ T

t

‖qt(s)‖2
H ds +

C3

γ

∫ T−τ

t

‖ρ̄t(s)‖2
V ‖q(s+ τ)‖2

V ds . (3.97)

Observe that by (2.6) the mapping s 7→ ‖ρ̄t(s)‖2
V belongs to L1(0, T ) .

Next, we insert v = p(t) in (3.88) and integrate over [t, T ] , where t ∈ [0, T ] . We find, using
(3.93), that

δ

2
‖p(t)‖2

H +
1

2

∫ T

t

‖∇p(s)‖2
H ds ≤ C4 + C5

∫ T

t

‖p(s)‖2
H ds

+

∫ T

t

∫
Ω

|µ̄| |qt| |p| dx ds +

∫ T

t

∫
Ω

|µ̄t| |q| |p| dx ds . (3.98)

Let us denote for short the last two integrals on the right-hand side of (3.98) by I1 and I2 ,
respectively. Since µ̄ ∈ L∞(Q) , we have that

I1 ≤ γ

∫ T

t

‖qt(s)‖2
H ds +

C6

γ

∫ T

t

‖p(s)‖2
H ds . (3.99)
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Moreover, we conclude from (2.6), invoking Hölder’s and Young’s inequalities, that

I2 ≤
∫ T

t

‖µ̄t(s)‖H ‖q(s)‖L4(Ω) ‖p(s)‖L4(Ω) ds

≤ γ

∫ T

t

‖p(s)‖2
V ds +

C7

γ

∫ T

t

‖µ̄t(s)‖2
H ‖q(s)‖2

V ds , (3.100)

where the mapping s 7→ ‖µ̄t(s)‖2
H belongs to L1(0, T ) .

Now, we combine the estimates (3.96)–(3.100). On choosing γ > 0 sufficiently small, and on
applying Gronwall’s lemma, we find that

‖p‖C0([0,T ];H)∩L2(0,T ;V ) + ‖q‖H1(0,T ;H)∩C0([0,T ];V ) ≤ C8 . (3.101)

It is now a standard matter to verify, by comparison in (3.86) and (3.88), respectively, that also

‖p‖H1(0,T ;V ∗) + ‖q‖L2(0,T ;W ) ≤ C9 . (3.102)

Step 3: Passage to the limit. Let (pN , qN) denote the solution to the system (3.86)–(3.87)
associated with τN = T/N , for N ∈ IN . In Step 2, we have shown that there is some C > 0 ,
which does not depend on N , such that

‖pN‖H1(0,T ;V ∗)∩C0([0,T ];H)∩L2(0,T ;V ) + ‖qN‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W ) ≤ C.

Hence, there is a subsequence, which is again indexed by N , such that

pN → p, weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ),

qN → q, weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ).

By compact embedding, we also have the strong convergences (see, e. g., [16])

pN → p, strongly in L2(Q), qN → q, strongly in C0([0, T ];H) ∩ L2(0, T ;V ).

From this, we can conclude the following convergences:

ρ̄ qN,t → ρ̄ qt weakly in L2(Q), ∆qN → ∆q weakly in L2(Q),

T̃T/NqN → q strongly in L2(Q), T̃T/NpN → p strongly in L2(Q),

ρ̄t T̃T/NqN → ρ̄t q strongly in L1(Q).

Hence, passing to the limit as N → ∞ in (3.86)–(3.87) for τ = T/N , we find that the
pair (p, q) gives a strong solution to the parabolic problem (3.78)–(3.79). Next, we notice that
the weak convergence of {pN} to p in H1(0, T ;V ∗) ∩ L2(0, T ;V ) implies that pN → p
weakly in C0([0, T ];H) . We may thus conclude, in particular, that δ p(T ) = ρ̄(T ) − ρT .
Since f ′′(ρ̄) and µ̄ are bounded, we also have the following convergences:

f ′′(ρ̄) pN → f ′′(ρ̄) p strongly in L2(Q), µ̄ qN,t → µ̄ qt weakly in L2(Q).
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Therefore, (3.82) is fulfilled for any v in C1(Ω) , which is a dense subset of H1(Ω) , because
Ω is a Lipschitz domain. From this, it easily follows that (3.82) is satisfied for every v ∈ H1(Ω) .
In conclusion, the pair (p, q) is a solution to the adjoint system (3.78)–(3.81) that enjoys the
asserted smoothness properties.

Uniqueness remains to be shown. But if (p1, q1) , (p2, q2) are two solutions having the above
properties, then the pair (p, q) , where p = p1 − p2 and q = q1 − q2 , satisfies (3.78)–(3.81),
where the inhomogeneities β1(µ̄ − µT ) and ρ̄ − ρT on the right-hand sides of (3.78) and
(3.81), respectively, cancel out by subtraction. We may then repeat the a priori estimates of
Step 2 to see that in the present situation the constants C1 and C4 appearing, respectively, in
(3.96) and (3.98), simply do not occur. Consequently, the application of Gronwall’s lemma yields
p = q = 0 . This concludes the proof.

In summary, we have proved the following result concerning first-order necessary optimality
conditions.

Theorem 3.7 Suppose that ū ∈ Uad is an optimal control for (CP) with associated state
(ρ̄, µ̄) = S(ū) . Then the adjoint system (3.78)–(3.81) has a unique weak solution (p, q) with
p ∈ H1(0, T ;V ∗) ∩ C0([0, T ];H) ∩ L2(0, T ;V ) , q ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩
L2(0, T ;W ) ; moreover, for any v ∈ Uad , we have the inequality:∫ T

0

∫
Ω

β2 ū (v − ū) dx dt +

∫ T

0

∫
Ω

q (v − ū) dx dt ≥ 0 . (3.103)

Remark: 5. Since Uad is a nonempty, closed and convex subset of L2(Q) , (3.103) has the
following implications:

• For β2 > 0 , the optimal control ū is nothing but the L2(Q) orthogonal projection of
−β−1

2 q onto Uad . In other words,

ū(x, t) = P[0,U(x,t)]

(
−β−1

2 q(x, t)
)

a. e. in Q ,

where, for any a, b ∈ IR such that a ≤ b , P[a,b](u) := min {b, max {a, u}} .

• For β2 = 0 , we have that almost everywhere

ū(x, t) =

{
0 if q(x, t) > 0

U(x, t) if q(x, t) < 0
,

a bang-bang situation where no information can be recovered for points at which
q(x, t) = 0 .
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