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Abstract. This paper concerns general singularly perturbed second order semilin-
ear elliptic equations on bounded domains 2 C R™ with nonlinear natural bound-
ary conditions. The equations are not necessarily of variational type. We describe
an algorithm to construct sequences of approximate spike solutions, we prove ex-
istence and local uniqueness of exact spike solutions close to the approximate ones
(using an Implicit Function Theorem type result), and we estimate the distance
between the approximate and the exact solutions. Here ”spike solution” means
that there exists a point in 2 such that the solution has a spike-like shape in a
vicinity of such point and that the solution is approximately zero away from this
point. The spike shape is not radially symmetric in general and may change sign.

1 Introduction

The aim of this paper is to study the existence, local uniqueness and asymptotic behaviour for
e — 0 of spike solutions to singularly perturbed elliptic boundary value problems of the type

62 < i 811 (CLU(I)am]U) + i bz(x)811u> = f(.f,u, 6)5 S Qv
i,j=1 i=1

(1.1)

NS

(Zij (I)VZ(I)amyu = g(iE, U, 5)7 MRS aQ
1

Here ¢ > 0 is a small parameter, 2 C R” is a bounded domain with sufficiently smooth
boundary 0f2, and v; are the components of the unit outer normal at 9. The coefficients a;;, b; :
Q — R, and the right-hand sides f : Q xR x[0,1] = R and g : 92 xR x [0, 1] — R are supposed

to be sufficiently smooth. Further, the differential operator in (1.1) is supposed to be uniformly
elliptic, i.e. a;; = a;; and there exists a constant ¢ > 0 such that

n

Z ai; (x)yiy; > coly|® for all (z,y) € Q x R™.
i,j=1
Roughly speaking, below we prove the existence, local uniqueness and asymptotic behaviour
for e — 0 of solutions u to (1.1) with the following properties:
(i) There exists a point & € Q) such that u has a spike-like behaviour in the vicinity of &.
(ii) In all remaining points z € Q we have u(z) ~ 0.
Such solutions turn out to exist under a series of natural assumptions. The assumption, mainly
implying property (II), is the following:
(A1) f(2,0,0) =0 and 9, f(x,0,0) > 0 for all z € (.
The rest three assumptions implying mainly property (I) we formulate as follows:

(A2) There exist a subdomain Q C Q and a smooth map (r,€) € [0,00) x Q — ¢¢(r) € R
such that for every fixed £ € Q the function ¢ = ¢, solves the one-dimensional boundary value
problem

¢ (r) + B L ¢/ (1) = f(£,6(r),0), 0 <7< oo,
¢'(0) =0, ¢(c0) =0, ¢(0)#0.

(1.2)



(A3) There exists a non-degenerate solution &, € Q to the algebraic system

ATHOD(E) + Ve log \/detA(ﬁ)/qué(r)%"_ldr =0, (1.3)
R

where

A(8) = [ai; (O)];;—;  and  b(&) := [Bi(§)];-; - (1.4)

Each function ¢¢ from assumption (A1) corresponds, via ®¢(y) := ¢¢(ly|), to a radially

symmetric solution v = @, of the following n-dimensional boundary value problem

Ayv(y) = f(&v(y), 0)7 y € R, }

(1.5)
v(y) =0 for |yl — oo.

In the scope of our consideration, such symmetric solutions ®¢ will be used to describe a scaled
profile of the spike which may appear at point £. It is easy to show (see Remark 1.3) that the
functions v = 9, ®¢, are solutions of the linearized problem

Ayo(y) = 8uf (&0, P, (1), 0)o(y), yeR™, }

(1.6)
v(y) =0 for |yl — oo.

Our last assumption concerns the following non-degeneracy property:
(A4) For any solution v to (1.6) it holds v € span {9,,®¢, : j=1,...,n}.

Our main result is of the following type:
For small € > 0 and m = 0, 1,... we will construct smooth functions W; ,,, : @ — R which
have the properties (I) and (II) and which satisfy (1.1) approximately. Moreover, we will prove
that for small € > 0 there exists an exact solution u = u. to (1.1) such that for any « € (0, 1)
and any m it holds
ue = Wemllotaeq = O(E™T) for & —0,
where
2

D# — D#
lull2+a.e0 = Zak sup sup | D u| + &> sup sup |DHu(x) - u(y)|
k=0 Iul=k @ |u|=2 =y lz —yl

is an e-dependent norm in the Hélder space C?+(Q2). Finally, we will prove a local uniqueness
assertion for u.: If € > 0 is small and u is a solution to (1.1) which is close to W; o (in a sense
to be made precise) then u = u,.
In order to describe our results more exactly, let us consider the lowest approximation order
case m = 0. Define
We(z) i= P, (T2 ().

Here T.(z) are stretched coordinates defined as follows:

1
Te(z) == gA(é-O +ex) V2 (x— & —exy) for zeq.



Further A(¢)~!/2 is the inverse square root of the positive definite matrix A(£) (see nota-
tion (1.4)), and z; is the correction term of the first order to the spike’s position determined
from Eq. (2.58). Now our result for m = 0 reads as follows:

Theorem 1.1 Suppose that assumptions (A1) (A4) are fulfilled.

Then for any o € (0,1) there exist €, > 0, do > 0 and c¢o > 0 such that the following is
true:

(i) For all € € (0,e4) there exists a solution u = u to (1.1) such that

||ua - Wa||2+a,€;ﬂ < cq€.
(i) If u is a solution to (1.1) with ¢ € (0,2,) and
||u - W€||2+a,5;ﬂ < 60‘527
then u = u..

Existence and multiplicity results for problem (1.1) have been objects of systematic investi-
gation during last decades. This interest is, in particular, motivated by the study of standing
waves in the nonlinear Schrédinger equation which leads typically to the consideration of con-
centrating solutions (so called bound states) of the following elliptic boundary value problem

e?Au = V(x)u—ui, z€Q,
ou = 0, x € 09,

where ¢ > 1, and V : Q — R is a smooth positive potential. Another source of applications for
problem (1.1) is concerned with the study of pattern formation in chemical reaction-diffusion
systems, including well-known Gierer-Meinchardt and FitzHugh-Nagumo models [26].

One can distinguish two main approaches used systematically in this field. A first one, ini-
tiated by Floer and Weinstein [11], relies on a finite dimensional Lyapunov-Schmidt reduction
(see also [22, 23, 24]). A second one is based on variational methods jointly with a penaliza-
tion technique (we recall, among many others, [34, 42, 28, 29, 30, 31], see also [1] for further
references).

Our study differs from the above in several points. First, our elliptic equation does not have
a divergence form, what makes impossible application of variational methods used, for example,
for similar equations with b;(z) = 0, see e.g. [37, 32]. Second, for arbitrary space dimension n
we obtain a sequence of approximate solutions with pointwise asymptotic estimates in the L°°-
norm up to any power of £. Note that in contrary to most of the previous studies concerned
with (1.1), our approximate solutions, in general, comprise non-zero outer expansion parts. This
fact leads to a more complicated formulas for the inner expansions of the spike and boundary
layers, but simultaneously shows the universality of our approach. Third, the spike shapes
are allowed to change sign. And finally, to prove our Theorem 4.6 we do not need eigenvalue
estimates for the linearized (in the approximate solution) problem. Instead we use a lemma of
R. Magnus [19, Lemma 1.3] which helps to verify the assumptions of a quite general implicit
function theorem (see our Section 3).

Remark 1.2 Various sufficient conditions for the existence of radially symmetric solutions of
problem (1.5) can be found in literature (see, for example, [5, 6, 12, 39, 8]). Some of them [5, 6]



were obtained with the help of variational methods, when instead of the solution to problem (1.5)
one looks for a critical point of the energy functional

Ee(v) ::/(%|Vyv(y)|2dy+F({“,U(y),O)) dy, where F(§,v,¢) ::/f(f,u,a)du. (1.7)
0

RTL
An important role in this analysis is played by the Pohozaev’s identity (see [5, Section 2])

n—2

5 /IVyv(y)|2dy = —n/F(&v(y)ao)dy (1.8)
R™ R™

which is valid, in particular, for any radially symmetric solution v € WH2(R™) of problem (1.5).
Remark, the identity (1.8) implies that for any radially symmetric solution of problem (1.5)

holds
1

n

&e(v) = - [ IV,0()dy. (19)

Rn

Another method to prove the existence of radially symmetric solutions of problem (1.5) is
concerned with the direct analysis of corresponding one-dimensional problem (1.2). It was used,
in particular, in [12, 39, 8].

Remark 1.3 For the solution ¢¢ to problem (1.2), one can easily show (see [5, Lemma 4]) that

tim 260~ i ) = L 6.0¢(0).0). (1.10)

Since above we have assumed that ¢¢(0) # 0, limits (1.10) immediately imply that

f(& ¢¢(0),0) # 0. (1.11)

Further, every solution ¢ = ¢¢ to problem (1.2) corresponds to a solution 6 = (¢5,¢'§)T of
the linear system

0 1

P = Telr)fr), where o=\ fp e totr ot —=L
0

Hence, taking into account assumption (A1) and applying classical results of exponential di-
chotomy theory [7, Chapter 6, Proposition 1], we come to the conclusion that for every £ € Q

and every k € (0,/0,f(£,0,0)) it holds
| (r)|, [0 (r)], 16 (r)| < C(&,k)e™™" for all 1 € [0,00), (1.12)

where C(€,k) > 0 is a certain constant. Alternatively, one can get exponential estimates (1.12)
from the determining system (1.5) for ®¢ (see [33]).



Moreover, it is easy to show that for each £ € Q the partial derivatives O, pe(r), 7=1,...,n,
exist, that the corresponding functions O¢; ¢ satisfy the linear inhomogeneous differential equa-
tion

(95].(;5/51(7') +

n —

1afj¢/£(T) - 6Uf(§7¢5(7')70)651¢5(7.) = 85jf(§,¢5(r),0), 0<r<oo,

r

and, hence, that they satisfy estimates analogous to (1.12).

Remark 1.4 Note that subdomain ) in assumption (A2) plays a technical role only. In par-
ticular, if at the very beginning we know a point £ € Q and a corresponding solution ¢o of
problem (1.2), then a straightforward application of the Implicit Function Theorem guaran-
tees the ezistence of a subdomain Q containing &o and the existence of a smooth map (r,€) €

[0,00) X Q > de(r) € R such that (1.2) is satisfied for all £ € Q and that o = ¢, .

Remark 1.5 One can easily check that in the case b(x) =0 and f(x,u,e) = V(z)u — u? with
qg>1,V(x) >0, Eq. (1.3) is equivalent to the equation for spike’s position obtained in [32] by
means of variational technique. Indeed, in this case, every solution v = ®¢ to problem (1.5)
corresponds, via ®¢(y) = V()Y DU (\/V (€)y), to a radially symmetric solution U of equation
AU = U — U? which decays to zero at infinity and does not depend on &. This implies, in

particular, that
a+1

[19, 0w dy=v©F2 [[9,00)P d,
R R
hence our Eq. (1.3) determines the same spike’s positions as the Theorem 1.3 in [32].
Note that, in contrary to the paper [32], we do not restrict our consideration to positive
solutions only. Moreover, our method provides more accurate pointwise asymptotic estimates
(in L°°-norm) for the obtained solutions.

Remark 1.6 Since functions ®¢ are assumed to be radially symmetric, a standard way to
verify assumption (A4) is to find all bounded solutions of the problem (1.6) by the method of
separation of variables. This scheme was previously used to demonstrate that assumption (A4)
is fulfilled for any positive, radially symmetric solution of the problem (1.5) with the right-hand
side f(z,u,e) = V(x)u —u?, ¢ > 1, and V(z) > 0 (see [46, Appendiz A] and [17]). Further
generalizations of this result can be found in [21].

Besides, assumption (A4) is always fulfilled in the case n = 1. This fact follows from
assumption (A1) and well-known results on the exponential dichotomy [7, Chapter 6, Proposi-
tion 1].

Remark 1.7 Below we prove existence of spike solutions to (1.1), where the spike shapes are
approzimately radially symmetric, but may change sign. Remark that, if the solution to (1.5),
which approzrimately determines the spike shape, is positive, then it is necessarily radially sym-
metric (by the famous Gidas-Ni-Nirenberg theorem [15]).

Remark 1.8 Our results can be easily generalized on a broader class of singularly perturbed
elliptic equations with non-variational structure. In particular, they are applicable to equations
of the type

n

g2 Z Oz, (0ij(2)0z,u) = f(x,u,€) +efi(x,u,eVau,e).

ij=1



The proposed asymptotic analysis can also be used to generalize some known results about bound-
ary spike solutions in singularly perturbed problems (see [20, 21, 14, 43, 44, 45, 4]).

Remark 1.9 Our results can be easily generalized for the case of solution to problem (1.1)
with a finite number of distinct spike’s. The construction procedure and the technique of proof
remain almost the same in this case.

Our paper is organized as follows:

In Section 2 we describe the algorithm of the construction of our approximate solutions. In
Section 3 we formulate and prove a generalized Implicit Function Theorem, and in Section 4
we derive from this existence, local uniqueness and estimates of exact solutions to (1.1) close
to the approximate ones. Finally, some needed technical estimates are provided in Appendix.

2 Construction of the approximate solutions

In this section, we construct approximate solutions to problem (1.1). For this, we assume that
the conditions (A1) (A4) are satisfied and that the function f and the coefficients a,; and b; are
sufficiently smooth to allow their representation via Taylor’s formula with necessary number of
terms.

Following standard scheme of singular perturbation theory [25, 40, 41], we look for approx-
imate solutions of the type

Wem () = te m () + Ve m (T) + we m(x), (2.1)

which consist of three different parts: the outer expansion ue ., () (which is defined by the
property We i (x) — e m(x) &~ 0 for all © away from the spike center and from 9<), the inner
expansion v ,,,(x) of the spike (which is defined by the property We i (x) — Ve m () & te,m(2)
for all x close to the spike center) and the inner expansion we ., (x) of the boundary layer (which
is defined by the property We i (2) — we m () & ue m () for all z close to ). The ansatz for
the outer expansion and the inner expansion of the spike is

Ue,m(T) = Zakuk(x), and ve () = Zakvk(T&m(a@)), (2.2)
k=0 k=0
where T ., is a stretching transformation near the spike, given by
1 m+1
Tem(@) = —Q(wem) (¥ = wem) With e m = > efay and Q(z) = Ax) '/ (2.3)
k=0

(cf. notation (1.4)). The ansatz for the inner expansion of the boundary layer is

(z) = x (67t dist(z, 0)) >4 e wi(Se(x)) for dist(z, Q) < 26,
We,m{) =1 otherwise,

where x : [0,00) — R is a non-increasing smooth cut-off function such that x(r) = 1 for
0 <r <1and x(r) =0 for r > 2. Further, § > 0 is a parameter, S is a stretching
transformation near the boundary given by

(2.4)

S712,¢) = ¢ —ezv(¢) with (€0Q and 0< 2 < 2?6, (2.5)



and v(() is the unit normal vector of 9Q at ¢ € 92 pointing out of ). We fix § sufficiently
small such that the map (z,¢) — ¢ — ezv(¢) is bijective from (0,26 /) x I onto the set of all
x € ) with dist(x, 0Q) < 26, and, hence, the definitions (2.4) and (2.5) are correct.

In the ansatz (2.1) (2.4) the functions ug : Q — R, v : R® — R and wy, : [0,00) x 9Q — R as
well as the vectors x;, € R™ are unknown and have to be determined by the algorithm described
below.

For the sake of simplicity, in what follows we will use the notation

F.u:=¢? Z O, (i (2)0y,u) + Z bi(2)0r, u

i,j=1 i=1

for the elliptic differential operator in problem (1.1).
Roughly speaking, the algorithm is as follows: First we determine the functions uj such
that the equation
Eotiem — f(x, e m,e) =0 (2.6)

is satisfied up to an error of order O(¢™*!), this will be done in Subsection 2.1. Then we
determine the functions v and the vectors zp such that the system

2.7)

Esvs,m - f({E, Ue,m + Ve,m, 5) + f(:E, Ue,m, 5) = 0,
Vi (Ue,m + Vem) (Tem) 0

is satisfied up to an error of order O(¢™*1), this will be done in Subsection 2.2. The requirement
Vo (Uem + Vem) (Te,m) = 0 means that the extremum of the approximate spike ey + Ve m
is located in the point z. ,,, i.e. that x.,, is approximately the extremum point of the exact
spike. And finally we determine the functions wy such that the boundary value problem

ana,m - f(xaus,m + wa,mag) + f(xaus,mu 5) =0, z¢€ Q,

n 2.8
_Zl i (2)vi (2)0; (Uem + We,m) — 9(2, Ue i + We,m,€) =0, € 0N (2:8)
1,)=

is satisfied up to an error of order O(¢™*1!), this will be done in Subsection 2.3. In summary,
we are going to prove the following theorem.

Theorem 2.1 Suppose that assumptions (A1)—(A4) are fulfilled.

Then, following the algorithm described in Subsections 2.1-2.3 one can construct for any
€ € (0,00) and for any nonnegative integer m a smooth function Ws , : Q — R such that for
any o € (0,1) it holds

| EeWe m — (s We 5)”0‘,5;9 = O(5m+1)a (2.9)

n

Z Qi ()Vz()am] Wa,m - g('7 Wa,mu 5)

3,J=1

(2.10)

I
S)
o
Z

14,00

Moreover, the functions Ws ,, have structure (2.1)-(2.5) with smooth functions uy : Q — R,
vt R" = R and wy, : [0,00) x 02 — R.



Finally, for any x € (0, ko) and s € (0, 5¢0) with

8, 1(C,0,0
Ko = v/ 0uf(£0,0,0) and s := qnelgslz — f(¢ ) (2.11)
_Zlaij(Ow(O’/j (©)
i,j=
there exists ¢ > 0 such that for any k =1,...,m and |u| < 2 it holds
|DHui(y)| < ce™™ ¥ for all y e R™, (2.12)
| D wi (2, ¢)| < ce™*  for all (z,¢) € [0,00) x IN. (2.13)

2.1 Outer expansion

We substitute the ansatz (2.2) for ., into (2.6). Then we expand the left hand side of the
resulting equation in the e-power series. Equating to zero the coefficients of each power of ¢,
we obtain an array of algebraic equations. The lowest order equation is

f(z,up(z),0) = 0.
According to (A1), we choose ug(z) = 0. Then the equations for uy, k > 1 are given by
Ouf(x,0,0)u1(x) + 9: f(2,0,0) = 0, (2.14)
Ouf(2,0,0)ur(x) + (function depending on ug,...,ux—1) =0, k>2.

Thanks to condition (A1) each wy is uniquely determined successively for k = 1,2,...,m.
Moreover, we have
||Esus,m - f(, Ue,m, 5)||ca(§) = 0(5m+1)-

2.2 Inner expansion of the spike

Instead of variable = we will work with the stretched variable y given by (cf. (2.3))

1 _ _
y="Tem(x) = EQ($6M)($ —Tem), O T = Ts,f}l(y) = Teom + €Q(Tem) ly-

Obviously, for any smooth function v : R™ — R we have

1
VeWoTem) = EQ(Is,m)VyU oTem.

n
As usual, for vector functions z : Q& — R™ we denote by z -V, := ) 2;0,; the first order
j=1

n
differential operator, generated by z, and by V, -z := >~ 0,,2; the divergence of z.
j=1



Now we substitute the ansatz (2.2) for v. ,, and the ansatz (2.3) for z. ,, into (2.7). Further,
we use that for any smooth function v : R — R it holds

(y) = e? (Vi - AV (vo Ts,m) + (- Vg)(vo TE,m)) (Ts_r}@(y)) = Ayv(y)

E.(vo Ts,m)(Ts_,ﬁm
1
+e Q(xa,m)vy ’ / (Q(gc&m)_ly : Vm) A (ws,m +et Q(x&m)_ly) dt Q(ma,m)vyv(y)
0

+e (b (@em + Q(Tem) 1Y) - Q(xs,m)vyv(y)) (2.15)

and

[ ttem +v0 Tem,€) = (s ttem, €)] (To (y))

1
_ /&j (e + € Qem) ™ Yy e (Tem + & Q@em)y &) + to(y),€) dt v(y). (2.16)
0

This way we get

[EE’UE,’ITL - f(u ué‘,m + UE,’HHE) + f('7u€,m7 E)] o Tg_,'r}q, = AUO - f(fL'Q,’UO, 0)

+Z ek (Ayvg — Oy f(x0,v0,0) vk — Fi(y, o, - -, Tk, Vos - -+, V1)) + O(e™™),(2.17)

k=1
<y Vk—1

.,Vk—1) depend on the functions vy, ..

where the right hand sides Fy(y, zo, ..., Tk, Vo, - -
via the values in the point y of those functions and their first and second derivatives only.

,0) =0.

Moreover,
Fk(yaIOV-'vxkaOv"'

Similarly, we get

Q(xs,m)_lvm (us,m + vs,m) (xs,m) = Z 5k_1 [Vyvk(0> + EQ(zs,m)_lvzuk(xs,m)}
k

=0
=e7'Vyu0(0) + Vyu1(0) + > ¥ (Vo (0) — di (o, ..., mx—2)) + O(e™),
k=2

where, because of the fact that ug(z) = 0 (see Section 2.1), the right hand sides di (o, . .., Tx—2)

do not depend on xj_;.
We determine the functions v, and the vectors xy in the following order: In the step number

zero we solve the problem

Ayvo(y) — f(wo,v0(y),0)
vy’Uo(O) = O,

vo(y) = 0 for [y — oo

the solution vy depends on zg.

(2.18)

with respect to vg. In this step xg is still unknown, i.e.



In the step number one we solve the problem

Ayvl (y) - 8uf(x0, ’Uo(y), 0)1)1 (y) = I (ya Zo,T1, vO)a
Vyui(0) = 0, (2.19)
vi(y) — 0 for |y| — oo

with respect to v;. Because the differential equation is linear inhomogeneous and because of

assumption (A4), the right hand side Fy(y, zo,21,v0) has to be orthogonal to an n-dimensional

subspace. This orthogonality condition gives a system of n nonlinear algebraic equations to

be solved with respect to xg. Thus, after this step v; and zg are determined, but z; is still

unknown. Moreover, we show that zy does not depend on 1, and v; depends on z; affinely.
In the step number two we solve the problem

Ayv2(y) —auf(IO,’UO(y),O)UQ(y) = FQ(yaIOaxlv'ervavl)a
Vy’l)g(O) = dz(l‘o), (2.20)
va(y) — 0 for |y| — oo

with respect to vy. For that the right hand side Fy(y, xo, x1, 22, v9,v1) has to be orthogonal to
the n-dimensional subspace, again. Although the dependence of Fy(y, zo, z1,Z2, v, v1) on 1
is not affine, the corresponding orthogonality condition produces a system of n inhomogeneous
algebraic equations which are affine with respect to z; and can be uniquely solved with respect
to x1. Thus, after this step vy and x; are determined, but x5 is still unknown, x; is independent
on x3, and ve depends affinely on x.

The next steps are as step number two: We have to solve

Ay’l)k(y) - auf(x()?UO(y)?O)Uk(y) = Fk(y7x07"'7$k7U07"'7vk—1)7
Vy’Uk (0) = dk(fto, N ,xkfg), (2.21)
uk(y) = 0 for [y| — oo

with respect to vy (linearly depending on xy, which is still unknown) and to z;_1 (which does
not depend on x). Remark that we have to work up to step number m+2 in order to determine
all unknowns vg, ...,vy, and g, ..., Tmi1-

Straightforward calculations give the following representations for the right hand sides

Fi(y, zo,x1,v0) = (21 - Va) f (20, v0(y),0) + G(y, w0, vo(y)) — I(y, zo, v0) (2.22)
and
Fr(y,xo, ..., Tk, 0y -+, Vk—1) = (xk - V) f(20,v0(y),0)
+(@k-1-Vz) (G(y, 20, v0(y)) — I(y, %o, v0)) + 0uG(y, T, vo(y))vk-1(y) — L(y, To, vk—1)
$220 (0 V) o ()00 (@1 Vo) + 01 )0) Flz0, 0(9).0)
Ry, %0y T, V0, s Op_s) for k> 2, (2.23)
where

I(y,2,0) == Q(2)Vy - [(Q2) "'y Va) Al2) Q(2)Vyu(y)] +b(2) - Q(2)Vyu(y),
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and
G(yvxau) = (Q(x)ily : vm) f(z,u, O) + (9uf($,’u, O)U,l(.%') + 6&][(557”7 0)

and each Ry, is a certain function depending on y and z; and v; with j < k — 2 only. Remark
that for £ > 1 function Fj depends affinely on xp. Moreover, for k > 3 it depends also affinely
on rx—1 and vg_1, but F» does not depend affinely on x; and v;, in general.

Now let us show that all the steps of the algorithm can be done rigorously. Besides assump-
tions (A1)-(A4) we will need some properties of the linear operator

LEo = Ay - auf(g()’ q)fo (y)a 0)7
which are formulated in the next two lemmas.

Lemma 2.2 For any a € (0,1) the linear operator L, : C*T*(R™) — C*(R") is Fredholm of
index zero.

Proof: The operator L, is Fredholm of index zero because it can be represented as a sum
of invertible and compact operators

Le, = Ay — 04,f(£0,0,0) + M(y), where M(y) := 0uf (o, Pey(v),0) — 0uf(£0,0,0). (2.24)

Indeed, since 9, f(&0,0,0) > 0 (see assumption (A1)), the operator A, — 9, f(&,0,0) acting
from C%T2(R™) to C*(R™) is invertible (see for example [16, Theorem 3.4.3]). On the other
hand, the fact that the multiplication by M is a compact operator from C?t*(R") to C*(R")
can be verified as follows.

Let x : [0,00) — R be a non-increasing smooth cut-off function such that x(r) = 1 for
0 <r <1land x(r) =0 for r > 2. Then for each R > 0 the function xr(y) := x(Jy|*/R?) is
smooth and has compact support. Hence the multiplication by x g M is a compact operator from
C* 2 (R") to C*(R™). Now taking into account exponential estimates (1.12) for ®¢,, we easily
see that the operator YgM tends to M in the operator norm of L(C?**%(R"); C*(R")) when
R — oo. However, the space of compact operators is closed in the operator norm, therefore the
operator M is compact. ¢

Because of assumption (A4) we have
Ker L¢, = span {8yj<1350 ci=1,... ,n} .

Hence, Lemma 2.2 implies that

RanL¢, =< F € C“(R") : /F(y)ayjfbgo(y)dyzo forall j=1,...,n,,

R

and the restriction of Lg, is an isomorphism from C?T*(R™) N Ran L¢, onto Ran L¢,. The fol-
lowing lemma shows that the inverse of this isomorphism maps exponentially decaying functions
onto exponentially decaying functions. To formulate our statement, let us define the family of
exponentially decaying functions

pe(y) == e FWIHIP=D  with ¢y e R?, (2.25)
and recall the notation ko = 1/, f(£0,0,0) from Theorem 2.1.

11



Lemma 2.3 Suppose that o € (0,1), k € (0,K0), F € Ran Lg, such that p,'F € C*(R"), and
v € C?*T*(R™) such that L¢,v = F. Then, p;'v € C*o(R").

Proof: First, we take use of formula (2.24) and rewrite the equation L¢yv = F' in the
following form

Ay = 8uf(&,0,0)v = F(y) :== M(y)v + F(y) € C*(R").

Here due to the exponential estimates (1.12) for ®¢, we have p; ' M € C*(R"), and this together
with the assumption p;'F € C*(R") implies p;'F € C*(R"). Now we write function v as the
Bessel potential (see [38, Chapter V, §3])

o) =~ [ Galwoly — 2) F(a)d (2.26)
J

where G5 is the Bessel kernel
Ga(x) = (2m) "2 K (1y_2) 2 (|]) 2| =" 72/

and K, is the modified Bessel function of the third kind. Regarding kernel G5 we know that it is
an analytic function of |z|, except at © = 0. Moreover, for © — 0 and for |z| — oo one can write
explicit asymptotic formulas describing the behaviour of kernel Go and of all its derivatives
(see, for example, [3, Chapter II, §4]). In particular, for all j,k = 1,...,n it holds

||G2||L1(Rn) < 00, ||8kG2||L1(]Rn) < 00, (2.27)
|0x0;G2(x)| < const |z|~™ for |z| — 0, (2.28)
|G ()|, |0k Ga ()], |0k 0;Ga(x)] < const e™1*! for |z| — oo, (2.29)

where 9;G2(x) denotes the first partial derivative of Ga(z) with respect to xy, and 9;0;Ga(z)
is the analogous notation for the second partial derivative with respect to x;, and x;.
From (2.26) it follows

OOl P Y AR [PPSR X
2

Let us show that the right-hand part of (2.30) is uniformly bounded for all y € R™, i.e. that
pntv € L®(R™). (2.31)

Indeed, because of (2.27) the integrand in (2.30) is integrable over any compact region including
those which contain point z = y. Hence, we need to consider the integrand’s behaviour for
|y — z| — oo only. Taking into account that for every z € R™ it holds 0 < /1 + |z|2 — |z| < 1
we easily obtain

Pt (W)ps(z) < efe FTWD forall y e R™ and 2z € R™.
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Then using asymptotic formula (2.29) we get
|Galko(y = 2))l i (W)pe(z) < eem ™D |Gy (mo(y — 2))]

< const e~ rE W=D o~ (ro=mlv=2 for |y~ 2] s oo,

Now the triangle inequality |y| < |y — z| + |2| and the assumption x € (0,k) imply the
boundedness of the right-hand part in (2.30). Hence, estimate (2.31) is true.

Next, we consider the partial derivatives 0y, v. Because of the properties of Bessel potentials,
they are given by integrals

Oy, v(y /Bsz (ko(y — 2))F(2)dz, k=1,...,n. (2.32)

Since each 9;G2 obeys estimates (2.27) and (2.29), we apply arguments as above and obtain
pr 0y v € L(R™) forall k=1,...,n. (2.33)
To show that p,; 19, 0,,v € C*(R™) we need a more delicate analysis, since the correspond-

ing derivatives are determined by the improper integral

Dy Oy, v(y) = —K{ Jim Ok0;Ga(ko(y — 2))F(2)dz, (2.34)

l[z—y|>p

which is not absolutely convergent (see asymptotics (2.28)). Nevertheless, according to the
classical results of potential theory [38, Chapter V, §4] it is known that for every F € C*(R")
the singular integral (2.34) determines a function from C*(R™).

On the other hand, from (2.34) it follows

pr ()0, 0y,0(y) = —kg lim / Pt (1) P (2) 005G (k0 (y — 2))pr t (2) F(2)dz

n—=+0
[z—y|>n

= Gly) -+ lm / O Galroly — 2)py ()P (2)dz,  (2.35)

G = g i [ (5 0e(2) = 1) B0,Galiol — I F ()= (230)

p—=+0
lz—y|>p

In (2.36), the difference in parentheses can be rewritten as follows
_ k(/14+|y|2—+/1+]|2|2
P (Y)pe(z) —1=¢ (Vi+h] ) 1=

where © : R™ x R™ — R" is given by

1
/ y+tz . (\/l+|y|27\/1+\y+tz\2)dt' (2.37)
0

—K(z—y) Oz —y,y),

1+ |y + tx|?
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This identity together with estimates (2.28) and (2.29) implies that the improper integral (2.36)
converges absolutely and it holds

Cly) = [ (2 O(2,0)) 90y Galonn)p a + ) Flo +y)do.
R

Now we can demonstrate that the right-hand part of (2.35) belongs to C*(R"). Indeed,
since p;1F € C*(R"), the rightmost integral in (2.35) determines a C*(R")-function (compare
with formula (2.34)). Further, from (2.28), (2.29) and (2.37) we get the estimate

1©(z,y) — O(x, 2)]|
ly — 2|~

|0k0; G2 (ko) <|®(x,y)| + ) < const |z| e~ oMzl for all z,y, 2 € R™.
Then, using p;'F € C*(R") again, we easily verify that G € C*(R").
After this preparation we are ready to formulate the construction algorithm.

Case k = 0. The problem to determine the leading term vy is (2.18). Due to assump-
tion (A2), this problem is solved by

vo(y) = Py (y).

Remember that at this step the value of zy is unknown, and we have obtained actually an
zo-parametric family of functions vy. If we apply a differential operator (c¢1 - V¢) with any
c1 € R™ to the differential equation in (1.5) we obtain

Ay [(Cl ! vﬁ)q)io] = 8uf(x0, (I)moa O) [(Cl ! vﬁ)q)io] + (Cl ! Vm)f(fbo, (I)moa 0)7 (238)
which implies
/(cl Vo) f(xo, Pay, 0)0y,; Py (y) dy =0, j=1,...,n. (2.39)
Rn

Now, we demonstrate that the problems (2.19), (2.20) and (2.21) determine recursively all
unknown functions v, and all unknown vectors zy.

Case k =1. Obviously, a necessary condition for solvability of problem (2.19) is

/Fl(y,xo,xl,vo)ayjfbm(y) dy=0, j=1,...,n
RTL

Notice that because of (2.22) and (2.39) this system of equations does not depend on the
vector x1. Actually it is equivalent to

/ (G(ya Zo, Uo(y)) - I(y,i[]o,’l)o)) ayj(l)wo(y) dy = 07 j = 17 s 1y (240)
R'Vl

which we are going to rewrite in terms of the data A, b, f and the spike’s profile ®; only. For
this, we use a series of relations collected in the lemma below.
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Lemma 2.4 We have

/h(y) Oy, ®e(y) dy = 0 for any radially symmetric h € L>(R"),

R
[ 01,2ew) ey =2 [19,0e0d,
Rn Rn

5.
[ 53 020116, 2c0).0) 0, 26(0) dy = ~05, | 2 [19,0¢()Pay |
]Rn

]Rn

1
/ Ys (8, 0y, Pe () (8, Pe(y)) dy = o, (Oki8sj = Oksdtj — Ojdst) / [V ®e(y)|*dy.
R™ R™

Proof: 1) Since all the derivatives J,,®¢(y) decay exponentially for |y| — oo (see Re-
mark 1.3), for any h € L>(R") it holds hd,, ®¢ € L'(R™). Moreover, because of ®¢(y) = ¢¢(|y|)
we have

By, Be(y) = i}—’]qsguyw, (2.41)

and this implies the claimed identity.
2) Similarly because of (2.41) we obtain

(0, e) (D Pe) dy = | LG (1yDdy = S50 [ (0, Be) dy = L& [ |V, 0 Pdy.  (2.42)
Rn ]Rn |y| ]Rn an

3) Again, because of (2.41) we have

i = / s O f (€ e(),0) 0y, Pe(y) dy = / ELE B (€ @e(0),0) 01yl dy
R™ Rn
Pe(y)
= jk / Y1 Oy, / O, f(€,u,0)du | dy.
R™ 0

Then, integrating the latter expression by parts with respect to y; and taking into account the
exponential decay property of ®, (see Remark 1.3), we obtain

Pe (y)
Tkl = —5j;€/dy / 0z, (&, u,0)du.
Rn 0
On the other hand, due to the definition (1.7) we have
Pe (y)
0 [F(€0e).0)] = [ 8,7(6 u.0)du+ (6, 2e(0).0) 9 ely)
0
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Moreover, since ®¢ solves problem (1.5) and decays exponentially at infinity together with its
first derivatives (see Remark 1.3), the following identity holds

1
[ 1600 0q0c dy= [ 8,0¢ 040 dy = [ 9,0 9,000 dy =306 [ 19,0¢d
R R R R
Thus, collecting together the latter three formulas and applying identity (1.9), we finally obtain

1
ikt = —0;x0¢, / (§|Vy‘1’5|2 +F(§,‘1>570)> dy = ——5£1/|V De|dy.

R R

4) Differentiating formula (2.41) with respect to y;, we obtain

5 d (o
00 ely) = Pot ) + 20 L (D) (2.49)

This identity together with formulas (2.41) and (2.42) implies that

1 s d_(¢(yD)
[ 100048010, ) dy = 2oty [ 19, 0e( P+ [P )L (P ) ay
R™ R™ R™

On the other hand, differentiating the left-hand side of previous relation by parts with respect
to y;, we obtain

/ YsOy, Oy, POy, P dy = —0ps / 0y, @0y, B¢ dy — / Ys Oy, Oy, POy, e dy

Rn Rn R

L YEYIYsY; d (¢:(lyl)
:_E(6ks5lj+5kj55l)/|qu)£(y)|2dy_/ k|l|2 Loe(lyl) = ( : d
R R

dly| |y

Now, comparing the latter two formulas with each other, we easily find

s d (de(lyl) 1
/ykg(”(zyj de(lyl) = ( : )dy: _%(5kl65j+6ks5lj+6kj5sl)/|vy(1)£(y)|2dy-
Rn R

dly| |yl

Hence,

1
/ysaykayzq’ﬁ(y)ayj e (y) dy = o (0k10s5 — Oksd1j — Okj0s1) / |V, e (y)|*dy.
]Rn

And this ends the proof. ¢

Lemma 2.4 implies that the system of equations (2.40) can be written as follows

1 n n
T i= [ 19,0y (5 D0 031 (00) 072 (00) Dusara(an) + - brlzo) 4an)
Rn k,r,s=0 r=1
+ Z qj_kl (x0) O, / |V, @, |%dy = 0, j=0,...,n. (2.44)

k=1 Rn
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Here we denote by q;kl (z0) and a_}(xo) the components of the matrices Q(zo)~' = A(xg)'/?
(cf. (2.3)) and A(xg)~! (cf. (1.4)), respectively. Next, transforming the first term in parenthesis
with the help of Jacobi’s formula

B, (det A) = tr(A~18,, A),

we write equations (2.44) in a matrix form

(%Q(mo)1Vm(logdetA(;v0))—i—Q(;vo)b(;vo)) /|qu>m0|2dy+cg(xo)*lvg/|vy<1>m0|2dy:o.
R~ R~»

Multiplying the latter equation by the non-degenerate matrix Q(z) and taking into account
that Q(x¢)? = A(zo)~!, and

En—l

[ 19, 0ePay -

R

/ b¢ (r)2r"Ldr,
0

where X,,_1 is the surface area of the n-dimensional unit ball, we obtain (1.3) which, thus, is
equivalent to the system (2.40). Hence, by assumption (A3) we can choose

To = 50, i.e. Vo = (1)50. (245)

Now, we show that the problem (2.19) with 2y and vy determined by (2.45) has, for any
given 1 € R™, a unique solution v1, and for any « € (0,1) we have

prtvr € C*P(R™) for all & € (0, ko). (2.46)

Indeed, due to equation (2.38) and the linear superposition principle any solution of prob-
lem (2.19) can be written in the following form

v1(y) =01(y) + (21 - Ve)Pg, (y), (2.47)
where 71 solves the problem
Ayﬁl (y) - auf(é.Oa (I)Eo (y)a 0)51 (y) = F1 (yv 507 05 (I)Eo)
= G(yv&hq)fo(y)) _I(y7507(1)£o)7 (2 48)
vyﬁl (O) = 07 '

v1(y) — 0 for |y — oo.

But, the latter problem does have a unique solution. To see this notice first that Lemma 2.3
implies the existence of a unique o, € C*T*(R") N Ran L, such that Le, 91 = Fy(y, &, 0, Pg,).
This means that general solution of problem (2.48) reads

U1(y) = 01(y) + (c1- Vy)Pg (y), 1 €RY, (2.49)

where ¢; € R™ is a free parameter. Then, substituting representation (2.49) into condition
V,71(0) = 0, we obtain
Vy91(0) + Vy(c1 - V)P, (0) = 0. (2.50)
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This relation determines an n-dimensional linear system with respect to the unknown vector c;.
Since ®¢ is a radially symmetric solution of problem (2.18), direct calculation with the help of
formulas (1.10) and (2.43) yields

00,0006, (0) = 2 1€, ,0),0), (2.51)
where f(&o, P, (0),0) # 0 due to (1.11). Formula (2.51) says that the matrix of n-dimensional
linear system (2.50) is non-degenerate, hence (2.50) has a unique solution ¢;.

Now, let us prove (2.46): From (1.12) it follows that p'®¢, € C*T*(R") for all k € (0, ko).
Therefore, from assumption (A1) and from (2.14) we obtain p, 'G(y, &, ®¢,) € C*(R™) for all
k € (0, k). Similarly taking into account that for any j = 1,...,n and any & € (0, k) it holds
yips(y) € C*(R™), we easily get that p;11(y, &, Pe,) € C(R™) for all k € (0,r¢). Hence,
(2.22) yields

P Fi(y, o, 71, ®g,) € C(R™) for all & € (0, ko). (2.52)
Therefore Lemma 2.3 implies (2.46).
Similarly to (2.52) one can show that, for any given functions vy, ..., v, € C*t*(R") such

that p,;lvo, ..., ps v € C?TY(R") for all k € (0, ko), we have
it Fi(y, &0, w1, ooy ke, Py, 01, -, vp) € CY(R™) for all & € (0, ko).
Case k = 2. We continue to construct the inner expansion of the spike and consider now
the problem (2.21) with k = 2. First, we need to reveal exactly the dependence of the right-

hand side F5 on the unknown vector z;. With this aim in view we substitute v; from (2.47)
into the formula (2.23) for k£ = 2 and obtain

Fy(y, &0, 71, 72, Pgy, U1 + (21 - Vi) Pgy)
1 —
where U : R” — R” and ¥ : R” x R™ x R™ — R are functions defined by

(Cl : \I](y)) (Cl : VI)(G(yag‘Jv (1)50 (y)) - I(y=§07 (I)Eo))
+ 0uG(y, &0, Peo () [(c1 - Ve) e, | — I(y, o, (c1 - V) Pg,)

+ ((e1 Va)ouf (o, ey (1), 0) + 02£ (6o, Dea(y), 0) [(e1 - Vo), ) 71, (2.54)

by, er,e2) = ((e1- Vi) +[(e1- V) gy 9u) ((c2 - Vi) + [(c2 - Vi) Peo] Bu) f (&0, Py, 0),(2.55)

and Fa(y) is a function which depends neither on x; nor on xs. Note that according to
definitions (2.23), (2.53)—(2.55) and estimates (2.12), for any x € (0, ko) it holds

(er - T(y)] < c(lerle™ M, oy, 1, eo)| < elw)lerlcale™ ¥ forall yeR",  (2.56)

[Fa(y)| < c(k)e ™ forall yeR"

18



where ¢(k) is a certain positive constant independent of ¢, ¢z and y.

Formula (2.53) shows that the dependence of the right-hand side F5 on the vector z; is
not affine. However, applying the differential operator (c1 - V¢)(ca - Ve) with any constant
coefficients ¢; € R™ and ¢z € R™ to the differential equation in (1.5) and writing a consistency
condition by analogy with (2.39) we get

/w(y,cl,CQ)Byj@go dy=0, j=1,...,n. (2.57)
Rn

Hence, taking into account relations (2.39) and (2.57) we come to a necessary condition for
solvability of problem (2.20) in the following form

0 = /F2(y=§07x17x27(1)50751 + (xl ' vﬁ)q)ﬁo) ayjq)fo dy
R'Vl
= /(:1:1 “W(y)) Oy, Pe, dy + /Fg(y) Oy, Peo dy, j=1,...,n. (2.58)
R™ R™

Below we demonstrate that this system can be written as follows
(1 - Vy)Jj(x0) = (terms independent of x7). (2.59)

For this, we apply the partial derivative operator d,, to both sides of (2.38) and get after simple
transformations the identity

Ay [(xl ’ vﬁ)ayj (1)50} - auf(&h (I)fo (y)7 0) [(‘Tl : vﬁ)ayj (1)50}
= (21 V)00 (€0, Py (), 0) + 927 (€0, @y (1), 0) (1 - V)P, ]) 0y, P, (2:60)

Then, multiplying both sides of (2.60) by 71, integrating obtained equation by parts and taking
into account the differential equation in (2.48), we obtain

[ (@1 9200860, 26,(0).0) + 025 (60,26, 1).0) (01 - )85, 1) 71 0,0, dy

Rn

= / (Ay [(‘Tl ’ vf)ayj (1)50] - 8uf(§07(1)§0 (y),O) [(‘Tl 'Vé)ayjq)éo}) it dy
]Rn

= / (AyUl - auf(&h P, (9)70)51> [(‘Tl 'vﬁ)ayjq)fo] dy
Rn

— [ (6006026, ) = 10,60, 2,)) [(01 - T0)0,,26,] dy. (2.61)
]Rn
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Combining (2.61) with (2.54), we get

/ (1-U()) By, B, dy = (21- V) / Gy, €0, Dey () — I(y, €0, Bey)] By, e, dy
Rn Rn
= (z1-Ve)J;(o) (2.62)

Hence, solvability condition (2.58) does have the form (2.59).
Since due to assumption (A3) the Jacobian matrix

H(&o) = {0, 1 (60)}j 21 (2.63)

is non-degenerate, system (2.58) determines z; in a unique way. Knowing x; we proceed
further as in the case k = 1. Due to the definition (2.23) and estimates (2.12) we have
Pt By (y, &0, 21,0, Pgy,v1) € C¥(R™) for any k € (0,k0). Hence, Lemma 2.3 implies that the
problem (2.21) with k = 2 and z2 = 0 has a unique solution ¥, such that p_ v € C?*(R") for
all k € (0, k). Therefore the complete problem (2.21) with k£ = 2 has an zo-dependent family
of solutions

v2(y) = D2(y) + (w2 - Ve)Pe, (1), (2.64)
and p,tvg € C2T(R™) for all k € (0, ko).
Case k > 3. By analogy with (2.47) and (2.64), we know at this step that

VE-1(y) = Tr-1(y) + (Tr—1 - V) g, (1), (2.65)

where the function 7x_; does not depend on xj_;. Substituting this into the definition of Fj
(see (2.23)) we separate again the terms depending on xj, and zx_; as follows

Fie(y,80, %1, o Tho, gy 15 - - T + (Th—1 - Vi) Pgy)
= (Ik : Vl)f(g()a (I)Eo (y)a O) + (.Ik,l : Vz) (G(yag(% (I)fo (y)) - I(yag()a (I)Eo))

+0uG (Y, €0, Peo () [(Th—1 - V) g, — I(y, o, [(Tr—1 - V) Pgo|) + P (Y, 21, 1)

+ ((kal : vm)auf(&)v (1)50 (y)v 0) + aﬁf(goa (I)Eo (y)a O) [(kal . VE)(I)&)]) it +Fk(y)7(266)

where F(y) is a function collecting all the rest terms which are independent of zj_; and .
Now, arguing in a similar way as in (2.61), we obtain

/ ((;vk_l - Ve)0uf (L0, Pey (1), 0) + 92 f (€0, ey (), 0) [(zh—1 'Vg)‘l’so]) U1 Oy, D¢, dy

Rn

— [ (60:60: 26, 0) = 160, 85,)) (011 Ve)D,, e ] do.

R
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Using this identity and relations (2.57), we write a necessary condition for solvability of prob-
lem (2.21) in the following form

0= /Fk(y,§0,$1, vy Ty (I)Eouvlu e 7516—1 + (:Ek:—l . vﬁ)(l)ﬁo) auj(l)ﬁo dy
Rn

= (‘Tk—l : Vg) /[G(yagoaq)ﬁo(y)) - I(y7§0a (1)50)] 61/1(1)50 dy + /Fk(y) ayj(l)ﬁo dy
n R’n

Hence, due to assumption (A3) the latter system determines a unique value of z;_;. Then
solving problem (2.21) we obtain an z,-dependent family of functions v, which also can be
written in the form (2.65), and p;lvy € C*T*(R") for any « € (0, ko).

It follows immediately from the above construction procedure that the inner expansion ve m,
satisfies

| Eeve.m — f(-s Uem + Vems €) + (-5 Ue,m, 5)”()&(:@%(5)) =0(e™).

2.3 Inner expansion for the boundary layer

The outer expansion u. ,, does not necessarily satisfy the boundary condition on 9. In order
to compensate this discrepancy, we correct our asymptotics adding to it a boundary layer
term we .

Recall that above (see (2.5)) we have introduced a local coordinate system near the bound-
ary 0. In this way every point z € Q with dist(z, d) < 2§ is parameterized by the stretched
distance to the boundary z = ¢! dist(x, Q) and the corresponding point ¢ € 9 for which this
distance is attained, i.e. dist(x,0Q) = dist(z, ). Thus, substituting the ansatz (2.2) for uc m,
and the ansatz (2.4) for w. , into (2.8), and moving into the local coordinate system, we get

[Esws,m - f('vus,m + ws,m75) + f('vus,ma g)] o Ss_l = N(C)azzw0 — (¢, wo,0)

—|—Z gk (N(C)&fwk — Ouf (¢, wo, 0)wy — Hi(z, ¢, wo, .. .,wkfl)) + 0(5m+1), (2.67)
k=1

where .
N(Q) =Y a(Qui(Qw;(9),
i,j=1
and the right hand sides Hy(z,, wo,...,wr—1) depend on the functions wo, ..., wr—_1 via the

values in the point (z,¢) of those functions and their first and second derivatives. Moreover,
Hy(2,¢,0,...,0)=0.
Similarly we rewrite the boundary condition of problem (1.1) in the local coordinates (z, ()
and obtain

n

Z 7] (‘T)Vz(w)amj (ua,m + wa,m) - g(;v, Ue,m + We,m, 5) © S‘;l = _EilN(C)aZU}O(Oa C)
ij=1

=3 (N0 (0,€) + gi(C.wo, - - wi—1)) + O(™). (268)
k=1
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Here the right hand sides gx((,wo,...,wg—1) depend on the functions wy,...,wi_1 via the
values in the point (0, () of those functions and their first derivatives.
Now, we proceed as follows. First, we solve the problem

N(¢)d2wo(z,¢) = f(¢,wo(2,¢),0) = 0,
d.we(0,¢) = 0, (2.69)

wo(z,{) = 0 for z — oo,

which is actually a one dimensional boundary value problem with respect to z, with variable ¢
playing the role of parameter only. Due to assumption (A1), we can choose

wO(Zuc) =0.

Remark that problem (2.69) may have other, nonzero solutions. Those other solutions to (2.69)
would produce other approximate solutions and, via the procedure of Section 4, other exact
solutions to (1.1). Note that those exact solutions to (1.1) would not belong to the domains of
local uniqueness, described by Theorems 1.1 and 4.1, of course.

After wg has been fixed, we solve in the next steps the linear boundary value problems which
determine the functions wy:

N(Q)D2wi(2,¢) = 0uf((,0,0)wy = Hy(z,(wo, .., wy—1),
N(C)azwk(()’C) = _gk(<7w05- ..,1Uk71), (270)
wg(2,{) = 0 for z — oc.

Since the coefficients of corresponding homogeneous differential equation do not depend on z
and because of assumption (A1), one can easily construct Green’s function G(z, 2/, {) and write
the unique solution to problem (2.70) in the following integral form

wi(2,¢) = N(Q) ™ Q) " gi(C wo, . . ., wp—1)e MO 4 / G(z, 2, ) Hy(-)d?, (2.71)
0

where

—[QON(Q)]te O cosh(u(¢)z)  for  0<z2< 2,
G(z,2,¢) =
—[(ON(Q)) " cosh(u(¢)2)e = for 2 <z,

and p(¢) := [0uf(¢,0, O)/N(C)]1/2. Using formula (2.71) we easily derive the exponential esti-
mates (2.13). Indeed, due to assumption (A1) we have H;(z,(,0) = 0. Hence, formula (2.71)
for k = 1 determines w; which obviously satisfies estimate (2.13). Now, we proceed by induc-
tion. Suppose that all functions w;, j = 0,...,k — 1, satisfy estimate (2.13). Then expansion
formulas (2.67) and (2.68) implies that for all > € (0, 55) there exists a constant ¢ > 0 such
that

|Hi(2,¢,0,...,wg—1)| <ce™™* forall (z,¢) € [0,00) x IN.

This means, in particular, that integral formula (2.71) determines correctly a solution wy to
problem (2.70), and the exponential estimate (2.13) holds.
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Now, we obtain immediately from the above construction procedure that the inner expan-
sion wy ,y, satisfies

”ana,m - f(u Ue,m + We,m, 5) + f(u Ue,m, E)HCQ(SE(Q)) = O(€m+1)7 (2'72)
Z aij(')yi(')azj (u&m + ws,m) - g('vus,m + ws,mvE) = O(Em)'
wI=t C1+0(5.(09))

Indeed, in the J-vicinity of boundary 92 the relation (2.72) is fulfilled because of the determining
problems (2.69) and (2.70). In the rest of domain Q this relation is satisfied since exponential
estimates (2.13) hold.

3 A generalized Implicit Function Theorem

In this section we formulate and prove an implicit function theorem with minimal assumptions
concerning continuity with respect to the control parameter.

Our implicit function theorem is very close to those of P. C. Fire and W. M. GREENLEE [9,
Theorem 4.2] and of R. MAGNUS [19, Theorem 1.2]. For other implicit function theorems with
weak assumptions concerning continuity with respect to the control parameter see also [2,
Theorem 7] and [10, Theorem 3.4]. For applications of our implicit function theorem to other
singularly perturbed problems see [35, 27].

Theorem 3.1 Let for any ¢ € (0,e9) be given Banach spaces U, and V. and maps F. €
CY(U.,Vz) such that
|F=(0)]| =0 for e— +0, (3.1)

[1FL(u) = F(O)| = 0 for |e[ + |ull =0 (3.2)

and

there exist €1 € (0,e0] and ¢ > 0 such that for all ¢ € (0,¢1) } (3.3)

the operators F.(0) are invertible and |[F.(0)~1| < c.

Then there exist eo € (0,e1) and § > 0 such that for all € € (0,e2) there exists exactly one
u = us with ||u]| < ¢ and F.(u) = 0. Moreover,

Juel| < 2¢[|F=(0)]]. (3.4)
Proof: For ¢ € (0,e1) we have F.(u) = 0 if and only if
Ge(u) :=u — F/(0) ' F.(u) = u. (3.5)

Moreover, for such € and all u,v € U, we have
1
G:(u) — Ge(v) = / GL(su+ (1 —s)v)(u—v)ds
0

1
=F/(0)* /0 (F(0) — Fl(su+ (1 —s)v)) (u—v)ds.

23



Hence, assumptions (3.2) and (3.3) imply that there exist €5 € (0,e1) and § > 0 such that for
all € € (0,¢e9)

1
|Ge(u) — Ge(v)|| < §||u —v|| forall w,ve K2 :={wel.: |w| <}
Using this and (3.3) again, for all ¢ € (0,e2) we get
1
1Ge(w)]] < [|Ge(w) = G=(O)] + | Ge(0)]] < 5 llull + €[ E=(O)]]- (3.6)

Hence, assumption (3.1) yields that G. maps K? into K? for all € € (0,¢2), if &2 is chosen suffi-
ciently small. Now, Banach’s fixed point theorem gives a unique in K? solution u = u, to (3.5)
for all € € (0,e2). Moreover, inequality (3.6) yields ||uc|| < 1/2||lue|| + || F=(0)]], i.e. (3.4). ¢

The following lemma is [19, Lemma 1.3], translated to our setting. It gives a criterion how
to verify the key assumption (3.3) of Theorem 3.1:

Lemma 3.2 Let F/(0) be Fredholm of index zero for all € € (0,e0). Suppose that there do not
exist sequences €1,€2... € (0,e0) and u1 € Ug,,u2 € Ug, ... with ||ug|| =1 for all k € N and
lex| + | FL, (0)ug|| — O for k — oo. Then (3.3) is satisfied.

Proof: Suppose that proposition (3.3) is not true. Then there exists a sequence e1,e2... €
(0,e0) with e, — 0 for k — oo such that either F/, (0) is not invertible or it is but || F, (0)7!|| > k
for all k € N. In the first case there exist uy € U, with |lug|| = 1 and F/, (0)uy = 0 (because
F! (0) is Fredholm of index zero). In the second case there exist vy € V, with |lvg]| = 1 and

!

12, (0) okl = &, e

F(0) 1wy,

E! (0)ug| < L b A"
2, O)uell < 72, 0) o]

with  u =

S

But this contradicts to the assumptions of the lemma. ¢

4 Existence and local uniqueness of exact solutions

In Section 2, we have constructed a sequence of formal approximate solutions W, ,, to prob-
lem (1.1). Now we are going to prove the existence of a locally unique exact solution wu. to
problem (1.1) such that W, ,, is close to u. for small €. It will be shown that all W ,,, approx-
imate the same exact solution u., and the larger is m the closer is W, ,;, to u.. In order to
obtain such results we rewrite problem (1.1) in abstract form and then apply our generalized
Implicit Function Theorem. As a result we obtain

Theorem 4.1 Suppose that assumptions (A1)-(A4) are fulfilled. Then for any m > 0 and any
a € (0,1) there exist em,q > 0, Om.o > 0 and ¢ o > 0 such that the following is true:

(i) For all € € (0,&,,,4) there ezists a solution u = u. to (1.1) such that

”us - WE,m||2+a)5;Q < Cm,a5m+1- (4].)
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(ii) If u is a solution to (1.1) with ¢ € (0,em,q) and
€ B = {uce O Q) ¢ lu = Wemlloraen < 5m,a62} .
then u = u,.

We postpone the proof of Theorem 4.1 to the end of this section, since it is based on
Theorem 4.6 to be formulated below.

Remark 4.2 Theorem 1.1 is just Theorem 4.1 in the special case m = 0.

Remark 4.3 Suppose that the Hélder constant o is fized. Then applying Theorem 4.1 with
different m = 0,...,k we obtain an array of solutions u* to problem (1.1), each of which is
unique in the corresponding ball By, . Since mér]i Om,a > 0 and it holds

m=

Wem = Wemill2taen =0E™)  for &—0, (4.2)

one can choose g > 0 such that for every e € (0,e0) all the solutions u* coincide. In other
words, for sufficiently small e, Theorem 4.1 provides different asymptotics for the same solution
to problem (1.1) which is unique in UX,_ By, o.

In the rest of this section, we assume that the Holder constant o € (0, 1) is a fixed number.
Our main purpose is to reveal the e-dependence of solution u. to problem (1.1). Therefore
writing any estimate we will not monitor whether constants appearing there depend on «,
although such a dependence is typically present.

Auxiliary family of approximate solutions U/ ,, ,. In Section 2, we have constructed a
sequence of approximate solutions W; ., (x) consisting of three different parts: the outer expan-
sion u. ., (), the inner expansion we ,,, () of the boundary layer and the inner expansion v y, ()
of the spike. Recall that the inner expansion of the spike is determined as the sum (2.2) of
exponentially decaying functions vy, depending on the stretched variable T; ,,, (), and the latter
is given by formula (2.3) which contains the approximate spike’s position z. ,, as a parameter.

Keeping the outer expansion u.,, and the inner expansion w,, of the boundary layer
unchanged, we define the o-parametric family of functions

Ue im0 () 1= Ue i (2) + We,m (T) + Ve m,o(T), (4.3)
where
Vemo(2) 1= €(0 - Ve)Peo (Tem,0(2)) + Z Ekvk(Ta,m,o(x))v
k=0
1
Temo(@) = - Q@em +e0)(@ —&em —€0), (4.4)

and 0 € R" is a parameter. Compared with the approximate solution W; ,,, we performed
the following modifications. To obtain 7} ,, , from the definition of T ,,,, we shifted the ap-
proximate spike’s position . ., in the direction of vector eo. Respectively, we replaced ve p,
with ve .o, where all the terms vy, are identical to those in definition of v, ., (cf. (2.2)), but
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the stretched variable T ,,, , is different. Finally, in definition of v ,, , we introduced the
additional term e(o - V¢)®@¢, (T2 m,o(x)) which guarantees that the resulting function U ¢
satisfies the differential equation of problem (1.1) with a discrepancy of order O(g?) for all o
on compact sets. Indeed, following the construction algorithm described in Subsection 2.2 (see,
in particular, formulas (2.17), (2.22), (2.23) and (2.53)), we get

3

(Esvs,m,a — [ teym + Ve m,or€) + f(5 Ue m, 5)) © TETT}'L,O’(y) =

—2 (o ¥+ gon + o+ ) - G ) +Srlnne), (45)

where the functions ¥ and i are defined in (2.54) and (2.55), and r : R® x R* x R — R
is the remainder term in the corresponding Taylor formula. Taking into account exponential
estimates (2.12) we easily verify that for any x € (0,k0) and any multi-indices |u1]| < 2 and
|2] <1 it holds

|DirDE2r(y, 0,¢)| < c(k, 00, 0) e "Wl forall yeR™, (4.6)
where ¢(k, 00, €0) is a positive constant independent of y, |o] < o and ¢ € (0, g9).

Remark 4.4 According to definition (5.6) from Appendiz, for every non-negative integer k and
every A € (0,1) we have |[uflkir 0 = luo T2 | gririr, @) Since

(Tgymﬂ, o Ts—l) (y) = Q(ze.m + €0) (y — %Tm — 0) forall y € T&m)g(ﬁ),

and uoT-1 = (u o TE_’,&L)U) o (T&m,g o Ta_l), it is easy to verify that there exist two positive

constants c; and co such that for any e € (0,e0), any |o| < 09 and all u € CK¥T2(Q) it holds
cl||u o T5T7}7>U||Ck+/\(Ts,m,n‘(§)) < ||U||k+)\,s;£2 < CQHU © T;r}q,oHCkJr/\(Tsymﬁ(ﬁ))'

This means that norms |ul|x4x.c;0 and |uoT, ),

respect to € and o.

)g||ck+/\(TE o (C0)) GTE equivalent uniformly with

Estimates for approximate solutions U/ ,, ,. Below we are going to derive some es-
timates for approximate solutions U: ,, ». Our main tool will be the differentiation formula
presented in the following

Remark 4.5 For every smooth function v(y,o) : R™ x R" — R and every @ € R™ it holds
@ Vo) (v(40) 0 Temo) 0 Tt o) = @ - Vo )0y, 0) = (7 Qe + )V, ) v(y, )
t2 (@ V2)Q@eum +20)Q(werm +20) 'y ¥y ) v(y,0). (4.7)
According to definition of Uz y, » we have VolUe .o = Ve m,o. Applying here formula (4.7)
and taking into account exponential estimates (2.12) we conclude that for any s € (0, ko) and

any multi-index |p| < 3 it holds

‘D{j (&HL{E,WU oT ) (y))’ < c(k,00,e0)e” W forall yeR™, j=1,....,n, (4.8)

e,m,o
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where ¢(k, 09,£0) > 0 is a constant independent of y, |o] < o¢ and ¢ € (0,ep). The pointwise
estimate (4.8) implies two corollaries formulated in terms of e-dependent Hélder norms. Namely,
for every m > 0 and every € € (0,¢¢), |o| < o9 it holds

mjax }|8gju5,m,g}|2+a7€;ﬂ < ¢o(e0,00), (4.9)

max Hagjum,,, < ¢o(eo, 0’0)676(60’00)/6, (4.10)
J

‘ ’2+a,5;8(2

where ¢g(g9,00) and ¢(eg,00) are positive constants independent of e, o and . Moreover,
applying the mean value theorem and formulas (4.9) we get

Remark also that in a similar way we obtain the estimate for the second derivative

Uems =Uemo, < ecoleo.on)lo] forall o] < o (4.11)
24a,e;Q2

< const (4.12)

H}:}'X Ha‘” 601u5>m7‘7 H2+a,s;(2

for all € € (0,ep) and all |o| < oy.
Finally we prove that

[e72@ Vo) (Bhoamio = F(Uenia:©)) 47 - ¥ (Temis) + V(T 71 +0,7)

a,e;2
< c(o0,0)[7|(lo] + l€]), (4.13)

where ¢(0g,0) is a constant independent of |o| < g and ¢ € (0,ep). For this, we differentiate
formula (4.5) with the help of identity (4.7). Then, taking into account estimates (2.56), (4.6)
and the identity
(@ -Vo)U(y,z1 + 0,21 + 0) = 2¢(y, 1 + 0,7)

following from definition (2.55), we obtain (4.13).

Reformulation of problem (1.1). For every ¢ € (0,00) let us define the pair of Banach
spaces

Ue := (O2+a(ﬁ)a [ - ||2+a,s;52) x (R™,]-1)
and
Vo= (CoQ), || flaes) X (CTOQ), || - [l14a,s00) x (R™]-]),

where | - | denotes Euclidian norm in R"™.

Now, instead of the original boundary value problem (1.1) we consider the following abstract
equation

F.(v,0) =0, (4.14)

where the operator F. : U. — V; reads

e ? <E5(621) +Uemo) — [, €20+ Ue om0 5))

n

Fe(v,0):=| ( > aii()) vi(+) On, (€20 + Ueomyo) — g (-, €20 +ua,m,aa<€)> ’

21
g1 (VI(EQ’U + Z/{&m,g)) (Is,m + 50')
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and where solution u to problem (1.1) was represented via the following ansatz
u=ev4+Umo with (v,0)€ U.. (4.15)

In what follows we shall assume that m > 2. This restriction as well as the appearance of
additional factors €2 and €2 in the definition of operator F, reflects, roughly speaking, the fact
that to determine parameter ¢ during the construction of approximate solution one needs to
consider the second order approximation equation (2.20) of the algorithm described in Section 2.

Definition of operator F. contains three components: the first and the second components
coincide with the differential equation and boundary condition of problem (1.1), while the third
component means that the point ., + €0 is an extremum of solution u. Hence, it is easy
to see that every solution (v,o0) of augmented equation (4.14) determines via formula (4.15) a
solution to problem (1.1). Further every || -||2+q,s;0-vicinity of W, ., is naturally projected onto
the vicinity of origin in U, therefore proving the following theorem we simultaneously justify
Theorem 4.1.

Theorem 4.6 Suppose that assumptions (A1)—(A4) are fulfilled.
Then there exist eg > 0, 6 > 0 and ¢ > 0 such that for all € € (0,e¢) there exists exactly one
solution (ve, o) of equation F.(v,0) =0 with ||(ve, 0¢)||u. < 0. Moreover,

1(ve, 0e) lo. < 2¢[|F=(0, 0)]v. -

Proof: We are going to apply Theorem 3.1, therefore we verify its assumptions.

Verification of assumption (3.1). The construction of function U, implies that
Uem,0 = Wem and T; 0 = T¢ . Hence, we get

2 <E5Ws,m - f(a Wa,mvf':))

FOO=1 (.ilam-) () Do Werm — g<-,wg,m,a>> (416)
T O )
Now estimates (2.9) and (2.10) from Theorem 2.1 imply that for ¢ — 0 it holds
| F.(0,0)]|y. < const g™t (4.17)

In particular, ||F:(0,0)||v. — 0 for ¢ — 0 provided m > 2.

Verification of assumption (3.2). We calculate the derivative operator
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Its first component reads as follows
FL(0,0)(@2)]y = Bl = 0 (%0 + Ueims )T+ 25 - Vo) (Bllemio = J (- Ueomor€) )
+ £20 Vo) (F(Uemose) = [(620 + Uemos€))

Similarly we calculate the second component

[Fl(0,0)®,3)], = | Y ai() vi() 02,7 = 0ug(-,6%0 + Ue 5, €)T

ij=1
+ 5_1(6 : va) Z aij(') Vz() aﬂajua,m,o - g('aua,m,aag)
ij=1

+ e7T Vo) (9 Uemior ) = (820 + Uemios€))
Finally, applying definition (4.3) we get

(Vzus,m,o)(xs,m + EU) = (Vzus,m)(zs,m + EU)
+ e 'Q(xem +0) (5(0 -Ve)Vy®e, (0) + Z skvyvk(0)> ,
k=0
and this together with the fact that (o - V¢)V,®¢, (0) = 0 results in

[FL(v,0)(,5)]5 = € (VaT) (Tem + £0) + 2 ((a- Vm)Vzv) (Zem + €0)

+ ((E- Vm)Vzus,m> (Te,m +€0) + ((E- Vao)Q(zem + 60)) (i Ek_lvyvk(0)> .
k=0

Using obtained formulas for components of the derivative operator F/(v,o) we shall verify
that ||F/(v,0)(®,7) — F/(0,0)(,7)|y. — 0 for ¢ + [|(v,0)[lv. — 0, uniformly with respect to
(T, 7)||u. = 1. In particular, for the first component we write the inequality

| [F2(v.0)®.)], - [F£(0,0)(w, 7)),

a,e;Q2

S H (auf(a 52'0 +us,m,075) - auf('vus,m,ng)) v

a,e;)

+|e72@ - Vo) (Belheimr = F(Uemos©) = Edheamo + F(Ueamo.))

a,e;)

(4.18)

+ “572(6' vo) (f(a e2v +us,m.,075) - f(',ug,m,mf))

a,e;Q2
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and estimate separately each term in the right-hand part of (4.18). First, employing inequali-
ties (4.11), (5.9) and (5.11), we easily get the following estimate

H (8uf(7 52'U + us,m,ch 5) - 8uf('7u5,m,0a 5)) v

a,e;Q2

1
= /83]“ (-, 2tv + Uz .0 + (1 — ) Use 0, 5) dt - (521} +Uem,o — Ua,m,o) )
0

a,e;)

< const ||7]|a,e:02 - ||52v +Ueom,o — L{E’m*OHa,a;Q < const ||T]|ae;0 - {52||v||a15;9 + |0|} .

In a similar way we consider the third term in the right-hand part of (4.18) and conclude that
it obeys the inequality

H‘E_z(ﬁ ) va) (f('752v +u€,m,oa 5) - f('aua,m,m 5))

a,e;)

1
=g V) /8uf(-,t52v +Ue o €)dt | v < const [7] - ||v||a.e:2-
0

a,e;)

Finally, we apply formula (4.13) to estimate the second term in the right-hand part of (4.18),
and considering the difference ¥ (y, 1 4+ 0,7) — ¥ (y, x1,7) with the help of definition (2.55) and
inequalities (2.56) we obtain

o720 Vo) (Blheoms = F(Uemio) = Elheamo + F(Uemo.))

< const || (|o] + |¢]).
a,e;

The estimate for ||[F(v,0)(D,7)], — [F£(0,0)(T, )], , o .00 i even simpler to obtain, since
the approximate solution U ,, ., and all its partial derivatives involved into the definition
of [F.(v,0)(T,7)], are exponentially small near the boundary 02 (see inequalities (4.10)).

Finally, we analyze the third component of the derivative operator F!(v, o). According to the
construction procedure described in Section 2, we know that uy = 0, V,v0(0) = V,v1(0) = 0.
Then taking into account definition (5.6), we easily obtain

| 20, 0) @9, - [FL0.0)®, 7)), < const (jo] [Tllztacq + [v]2+aci+2) = 0.

Hence, we have shown that assumption (3.2) is also satisfied.

Verification of assumption (3.3). We are going to apply Lemma 3.2. For this we first
write operator F/(0,0) in the matrix form

F1iv Fia0
FEI(Oa O)(Ea E) = -7:215 -7:226 )
F310  F3o0
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where

E.v— 8uf(7 WE,mu 5)5

F110
—7:215 == g < zn: aij(-) Vz() 8%.5— 8ug(-,WE,m,5)5>
ij=1
]: _ 3J
s & (Vo) (Ten)
and
5_2(6 : va) (Eaua,m,o - f('uua,m,aa 5))
F120 o=0
F220 = 571(6 : va) <§: aij(') Vi(') 6mjua,m,a - g('aus,m,ou 5))
F320 R . o=0
()T sten) ) + (7 V) QL)) (£ 519,0000))

k=0

According to classical results on boundary value problems for linear elliptic equations (see
for example [18]), the operator

F1uiv _ _
( ) L 020 () — (@) x O (90)

is a Fredholm operator of index zero. On the other hand all the rest components
F31: C*T(Q) = R", Fia:R" — C*(Q), Fag:R" — C*(0Q) and Fzp: R™ — R"

are operators with finite-dimensional ranges. Hence, the composite operator F/(0,0) is a Fred-
holm operator of index zero from U, to V., and to apply Lemma 3.2 we yet need to verify its
second assumption only.

We perform this verification by contradiction. For this we suppose that e, € (0,00) and
(ug, o) € U, are two sequences with

[(uks on)lv.,, = ukll2+aem0 + loklrr =1 (4.19)

and
€k +‘

—0 for k — oo. (4.20)

k

FL(0,0)(ux, )|

Then our strategy will be to demonstrate that assumptions (4.19) and (4.20) lead to the limit
[ (uk, o%)|lv., — 0 for k — oo, which obviously contradicts to (4.19).

Before we proceed further, let us write explicitely the meaning of limit (4.20) for each
component of the operator F, (0,0)(ux,ox). To simplify the resulting formulas we neglect in
each of them all the terms that vanish for £ — 0. Notice that because of (4.19) without loss of
generality we may assume that there exists o, € R™ such that

o —o0s in R"™ for k— oo.
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To this end, we consider the first component of operator I, (0,0)(ug, o)) which reads

I:Fslk (050)(/“’]650.]6)}1 = Eskuk - 8’U.f('7W€k,ma€k)uk

+ 6];2(0.]6‘ . Va') (Eskusk,m,a' - f(';usk,m,a'ysk)>

o=0

Then taking into account assumptions (4.19) and (4.20), and simplifying the last term with the
help of estimate (4.13), we get

— 0. (4.21)

a,ep; Q2

HEEkuk - 8’u.f() Wsk,m; €k)Uk - U* : ‘IJ(TEk,m) - w(TEk,m; :Elv U*)

For the second component [F7, (0,0)(ux, Uk)]27 we take use of the fact that function U ., »
and all its partial derivatives are exponentially small near boundary 99 (see inequality (4.10)).
Combining this with assumption (4.19) and neglecting in the limit

| [F:, (O,O)(uk,Uk)]2||1+a)8k;(,m =0
all the terms vanishing for ¢ — 0, we obtain

n

ek Yy aij() Vi) Onyup —0. (4.22)

hj=1 1+a,ep;09

Finally, we consider the meaning of limit (4.20) for the third component [F!, (0,0)(ux,o%)] 5
Here, since the outer expansion uc ., starts with a term of order O(g) and because of identities
V4v0(0) = V,v1(0) = 0 (see construction procedure in Section 2), we easily get

Jex (Votue) (2.

0. 4.23
- (4.23)
In the rest of proof we will show that as a consequence of assumptions (4.19) and (4.20) we
have two limits
or — 0 (4.24)

and

et Y O (aij(+) Onyur) — 9uf(+,0,0)uy —0. (4.25)

hi=1 a,ep;Q

Regarding the latter limit, we remark that in contrary to (4.21) it contains the positive coeffi-
cient 9, f(z, 0,0) (see assumption (A1)) instead of the sign-changing coefficient 9y, f (x, We, m, €k)-
Therefore, as soon as we prove (4.25) we can apply the e-dependent Schauder-type estimates
from Appendix to conclude that ||uk|l24+a,e0 — O for & — oco. Then this limit together
with (4.24) will constitute the necessary contradiction ||(uk, ox)||v., — 0 for k — oco.

For the sake of clearness we divide further argumentation into few steps.

Step 1. Operator P: s. For every s € (0,rK0), where ko is given by (2.11), we define an
operator B
P. i : C*(Q) — C*(R™) N L*(R™),
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by
P. u = ((xou) o T, )ps- (4.26)

Here
ps(y) = e SWIHWP=D with e R®

is the exponentially decaying function defined previously in (2.25), and xo : @ — R is a smooth
cut-off function such that

Xo(z) =1 for |x —&| <d and xo(x)=0 for |z —E&]| > 25, where §= idist({o,[)(l).

Note, in definition (4.26) we assume that the product xou is extended by zero on the whole R™.
Then the argument of resulting function is stretched according to the transformation T;,}l and
the obtained function is finally multiplied by the factor p;.

Taking into account Remark 4.4 and inequalities (5.8), (5.9) from Appendix, we easily verify

that for any g9 > 0 there exists c¢o(eg) > 0 such that for all € € (0,20) and v € C*(Q) it holds
H(XOU') o E_J}’LHC(M(RTL) < CO(EO)HU‘HQ,E;Q (4'27)

and
|1 Pz sullcagny < |lpsllce@ny ||(xouw) o T;ﬁcha(Rn) < co(o)llpslloa @) llulla.en-

Moreover, since definition (4.26) contains exponentially decaying factor ps € L?(R™) the esti-
mate (4.27) implies

1Pz sl ooy < Nlpsllzany [[(xow) © Toml| o gy < coE)llpsll o lluflaeio- (4.28)

Hence, for all € € (0,2¢) and all u € C%(Q) we have P. su € C*(R™) N L2(R"), provided s > 0.

Similarly one shows that the operator P. ; maps C?T%(Q)) into C*T*(R") N W22(R"). In
particular, for any s > 0 and gy > 0 there exists ¢1(s,£9) > 0 such that for all € € (0,() and
u € C2(Q) it holds

| Pz sullg2tamny + || Pz stllw22@ny < c1(s,€0)[|ull2+a.e0, (4.29)

Now let us define the sequence
O 1= Pr, sug.

In fact each vy depends also on s. But later on we will fix s independently of k, therefore we
do not mention the s-dependence in the notation of vy, for the sake of simplicity.

Because of (4.19) and (4.29) the sequence 9y is bounded in the Hilbert space W?2?2(R").
Without loss of generality we may assume that there exists v, € W22(R") such that

O = v, in W**R") for k — oco. (4.30)
Step 2. Derivation of equation for v, and o.. From (2.15) it follows

|(Eeyu) (T m () — Ay (uk 0 T2 (0)] < const ex(1+ [y [ukllz4a.c:0 (4.31)
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for all y € Ty, (). Further, according to the definitions of xo and T ;,, for any €9 > 0 there
exists & = d(gg) > 0 such that

xo (Toh(y)) =1 forall ee(0,6) and |y <d/e.

Hence, assumption (4.19) implies for all n € L?(R")

/ (Psk,s (Eskuk) — psAy (ug 0 T;k,lm)) ndy — 0,

|y|§$/5k
provided s > 0. Because of uy o 1., = p; !0y this yields
/ (ng,s (Eskuk) — Aby, — 2(psVpy - Vi) — psﬁkAps_l) ndy — 0. (4.32)
ly|<é/ex

But assumption (4.19) and the inequalities (5.8), (5.9) from the Appendix imply
|1 Ee, k|| ,er:00 < const,
whereas the definition of pg results in the inequalities
s Oy, 5 lLoe@ny <5 llpspy Lo @ny < s(s+2n—1).
Hence, in (4.32) the limits of integration may be extended to R™ and we get

/ (Pw (Ekuk) — Aby, — 2(psVpl L Vi) — ps@kApgl) ndy — 0. (4.33)
R’Vl

In other words, we have
P, . (Eskuk) — Aby — 2(ps VIl Vi) — petApst =0 in LE(R™). (4.34)
Similarly one shows that

Peps (uf (s Wepamser)ux) = 0uf (60, ey, 0)5 =0 in LA(R™). (4.35)

Indeed, as above we can replace the integrals over R™ by integrals over |y| < §/e; because of
lauf(., We, m»Ek) © Ta;lm — Ouf (&0, Dy, O)| < const e, (1 + |y|) for all y € Tr, ,n(Q).

The latter estimate follows directly from the structure of the formal asymptotics W; .
Finally, we have

P, [a* U (Tey ) + ¢(T5k,m,x1,a*)} - (a* U 1/)(-,11,0*)) ps —0 in L2(R"™), (4.36)

where the functions ¥ and ¢ are defined in (2.54) and (2.55), respectively. This weak conver-
gence is true because the left hand side of (4.36) vanishes for |y| < d/ey.
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Collecting together the limits (4.34)—(4.36) and using (4.21) and (4.28) we get
Atk +2(psVpg - Vik) = (Ouf (S0, Pe, 0) = ps ) D
- (a* U ¢(-,x1,0*)> ps =0 in LRM).
This gives the desired equation for v, and o,
Dyvi:= Av +2(psVpg - Vo) = (9uf (€0, Pe, (9),0) — psApy ) vs

= (0* U+ w(-,xl,a*)) ps for almost all y € R™. (4.37)

Step 8. Proof of the fact that o, = 0. Assumption (A1) and exponential estimate (2.12)
imply that f(&, ®¢,,0) € C*(R") and (04 - ¥ + (-, x1,04))ps € C*(R™), therefore every solu-
tion v, € W22(R") to Eq. (4.37) belongs simultaneously to C2**(R"). Below we demonstrate
that an appropriate choice of s guarantees that o, = 0 and v, € span {psayj Deij=1,... ,n}.
To this end, we use the following lemma.

Lemma 4.7 There exists so > 0 such that for every s € [0, so) the operator Dy (cf. (4.37))
mapping C*T*(R") into C*(R™) is a Fredholm operator with dim Ker D, = codim Ran Ds = n.
Moreover,

KerD; = span{psayjfbgo ij= 1,...,n},

Ran D, = v € C*(R") : /v(y)ps_l(y)(?yj@go(y)dy =0 foral j=1,...,n
Rn

Proof: Straightforward calculation yields
21_1)1(13 ||2(pszs_l V) — psAps_l ||L(C2+Q(R");CQ(R")) =0. (4.38)

Since small perturbations do not violate Fredholm property and do not increase the dimension
of kernel and the codimension of range (see, for example, [36, Theorem 5.11]), estimate (4.38)
together with Lemma 2.2 and assumption (A4) imply that for sufficiently small s > 0 the
operator D, is Fredholm of index zero and dim Ker D = codim Ran D, < n.

Above we have assumed that s € (0, ko), where the constant g is given by (2.11). Therefore
exponential estimates (2.12) guarantee that p,d, ®¢, € C*T*(R™). Moreover, taking into
account assumption (A4) we easily verify that ps0,,®¢, € Ker D,. The only remaining point
regarding Ker Dy is to show that dimKer D = n, i.e. that functions ps0,,®¢,, j = 1,...,n,
are linearly independent. To check this we write the Gram matrix G(s) with elements

06 = [ 90,06, 0.0y, d.
R’Vl
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It is clear that G(0) is non-degenerate (see assumption (A4)). On the other hand, simple
calculation shows that the matrix derivative G’(0) with respect to s is bounded. Therefore
for sufficiently small s matrix G(s) is non-degenerate too, hence, for such values s functions
psOy; e, j = 1,...,n, are linearly independent.

Now let us prove the statement regarding Ran D;. For this we remark that due to exponen-
tial estimates (2.12), for any s € (0, x¢) and any v € C?*T%(R") we can perform integration by
parts in the following formula

/ (Av(y) +2 (ps(y)VpE "y) - Vv(y))) ps () Pe, (y) dy

R™

= [ o) (& (6 06) ()~ 2 (Vo ) Ve, (1)) ~ 206, () 1)

R

— /v(y) (P;l(y)Afbgo(y) — ‘I’Eo(y)Aps_l(y)> dy.

With the help of this identity we easily see that for any s € (0, k) and any v € C?T*(R") it
holds

[(D0)w) 600,06, ) dy =0 forall j=1....n.
Rn
Moreover, in complete analogy with our consideration of functions p,9,, ®¢, (see the Gram
matrix argument above) we can show that for all s > 0 small enough functions p;layj D¢y,
j=1,...,n, are linearly independent. ¢
Let us assume that the parameter s of function p; satisfies the inequality 0 < s < min(xg, So).

(Note that this is the only restriction that we impose on s in our proof!) Then regarding
Eq. (4.37), Lemma 4.7 and the Fredholm alternative imply that

/(U* U+ (-, x1,00)ps py Oy, Pe dy =0, j=1,...,n. (4.39)
R’Vl

These equations already appeared in Section 2, when we transformed system (2.58). Using
identities (2.57) and (2.62) obtained there, we rewrite system (4.39) as follows

H(go)O'* = 07
where H(&p) is the Jacobian matrix of system (1.3) at point & (see definition (2.63)). Due to
assumption (A3) this matrix is non-degenerate. Hence, 0. = 0 and v, € Ker Dy, i.e.

n
Vs = Z Cj psayjq)fov
=1

where C; € R are some constants.

Step 4. Proof of the fact that v, = 0. With the help of limit (4.23), below we show that
v, = 0. To this end, we again define a non-increasing smooth cut-off function x : [0,00) — R
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such that x(r) =1 for 0 <r <1 and x(r) = 0 for r > 2. Then for every R € (0,00) we define
the function xr(y) := x(|y|?/R?) that satisfies the inequality

Ixrllc2te@n) < const forall R>1.

Since 95, — v, in W22(R"), for every R > 0 we also have ygix — Yrv« in W22(R"). Then
the compact imbedding W22(R") < L?(supp(xr)) implies

IXrOx — XRU«||L2@n) — 0 for k — oc. (4.40)
On the other hand, because of (4.19) and (4.29), for every R > 1 it holds
X ROk | c2+e@ny < const. (4.41)
Hence, from (4.40) and (4.41) we easily get

||XR’0k - XRU*||Cl+a(supp(XR)) — 0 for k — oco. (442)

Indeed, suppose that (4.42) is not true. Then there exists ¢ > 0 and a subsequence x g0y,
of xgr¥y such that

||XR,OIC]' — XRU*”CHQ(supp(XR)) >c¢ forall j=1,2,.... (4.43)

Taking into account the compact imbedding C?T%(supp(xr)) — C'T(supp(xr)) and the esti-
mate (4.41), we derive from the sequence x r0x; a subsequence converging in C*(supp(xr)) to
a certain function wg such that [|[wr — X rV«||c1+e (supp(xr)) = € (cf. (4.43)). But this contradicts
to the limit (4.40). Hence, the limit (4.42) holds true.

In particular, it implies

Vyor(0) = Vyv.(0) = Y CV,0y, ®e,(0) for & — oo, (4.44)

J=1

where we have used the fact that ps(0) = 1 and V,ps(0) = 0. On the other hand, direct
calculation with the help of definition (4.26) and limit (4.23) yields

V00 = Vy (e (T55,0) ps0) | = 6Q@erm) ™ Vit ey ) = 0,

where we took into account that Q(§p) is a non-degenerate matrix and that ., — & for
e — 0. Now comparing the latter limit with formula (4.44) we obtain V,v,(0) = 0. Therefore
considering the right-hand part of (4.44) as an n-dimensional linear system with respect to Cj,
and taking into account that the (n x n)-matrix 0,0y, ®¢,(0) is non-degenerate (see (2.51)
and (1.11)) we come to the conclusion that Cy = ... = C,, = 0, and hence v, = 0.

The latter result has an important consequence: If we substitute v, = 0 into limit (4.42)
and apply definition (4.26), we easily get that for every fixed R > 1 it holds

Ixr (ur 0 TS ) ‘|Cl+a(supp(XR)) < const [[XrROk [ cr+asupp(ynyy — 0 for k—oo.  (4.45)

This limit plays the crucial role in the next step.

37



Step 5. Construction of contradiction. Now we have all necessary ingredients to demonstrate
that assumptions (4.19) and (4.20) do result in limit (4.25). In particular, above we have proved
that o, = 0. Substituting this into formula (4.21) we obtain

HEEkuk - auf(7 WEk,magk)uk — 0 for k — oo.

a,E k592

The latter limit can be further reduced to limit (4.25) if we show that the following two relations
hold true

—0 for k— oo, (4.46)

1=1

a,ep; Q2

— 0 for k — oo. (4.47)

a,eg;82

[ (2ur W r1) — 050,00

Limit (4.46) is trivial. Indeed, it follows from the estimate

et Z bi(-) O, ur
i=1

< const g, max ||5k6wiuk||a,gk;gz < const g ||u;.c||2+0t’€k;Q ,
a,eR; Q2

because of assumption (4.19) and inequalities (5.8), (5.9) and (5.11) from Appendix.
To justify limit (4.47), we write the triangle inequality

[ (06 Wy o 2i) = 0u5,0,0))

a,eR; Q2

< H (auf(-,wak,m,gk) —9uf (-, B, 0 Tak,m,O)) w

a,er; Q2

+H(auf(.,q>50 0 Tep ., 0) _auf(x,o,O)) w (4.48)

a,eR;Q '
Since the structure of formal asymptotics Ws ,, (see Theorem 2.1) implies that
[We,m — ®¢, 0 Ts,m||a7€;Q =0() for e—0,

we easily get the estimate
|0 (. Wems2) = 0 (-, @, © Tein, 0)

Hence, applying inequalities (5.9) and (5.11) and taking into account that ||ug|l24a,e0 < 1,
we see that the first term in the right-hand part of formula (4.48) vanishes for k — oo.
For the last term in the right-hand part of formula (4.48), we write the inequality

1(80f (@4 0 Tepm, 0) = 0uf (-,0,0)) wn

=0(g) for e—0.

a,e;Q2

e,
1
= /aﬁf (1P, 0 Ty om, 0) dt (Pgy 0 Teyo m) Ui
0 a,Ex;82

< const [[(Pgy 0 Tz, m) u’“”a,sk;ﬂ < const Hq)ﬁo (u;.C o Ta_k}m) HCQ(T%M@)) ,
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where the norm || - ||a,c;0 Was estimated by || - [[ca(r. | (@) according to Remark 4.4. Now
Efsm

employing the notation of the cut-off function yr (see above), we get
-1 -1
Hfl)go (ur o TS 1) HCCX(TEk,m(ﬁ)) < ||‘I)§o||ca(T€k,m(ﬁ)) HXR (ur o TS 1) Hca(Tsk,m(ﬁ))
—1
HI = xr) e llear., @) 1wk o Temll o,y

< ||¢§0||C°‘(R") HXR (uk © Ta;}m) HCO‘(Supp(XR)) + ||(1 - XR)q)EoHCa(supp(leR)) ”uk”a,ak;ﬂ ) (4'49)

The sum in the right-hand part of (4.49) tends to zero for k — oo due to the following argument.
Because of the exponential decay of ®¢, (see Remark 1.3), for arbitrarily small v > 0 we can
first take R sufficiently large such that it holds

10~ X8 e uppa oy [t <7 forall k=12,
Then fixing this R and applying relation (4.45), we can choose sufficiently large k& to obtain
—1
190 llo e xr (k0 T25m) [l o ouppanyy < V-

Thus we have justified limit (4.47).

Recall that obtained limits (4.46) and (4.47) guarantee that another limit (4.25) holds true.
Therefore we can apply Theorem 5.2 from Appendix to relations (4.22) and (4.25). As a result
we get || ukll2+a,e;0 — 0 and this together with another limit o, — 0 constitutes the necessary
contradiction. Now, Lemma 3.2 provides us with the required estimate for the inverse operator
F!(0,0)! and the claimed assertion follows from our generalized Implicit Function Theorem. ¢

Proof of Theorem 4.1: Translating the assertion of Theorem 4.6 into original settings we
obtain the solution to problem (1.1)

Ue = 52’05 + u&,m,osu
where [|(ve,00)|lu. = ||vellataen + |oe] = O(™™1) for e — 0 (see estimate (4.17)). Then
recalling that Uz 1,0 = We m and taking into account inequality (4.11) we derive the estimate

||u5 - We,m||2+a,s;(2 S 52||U5||2+a,5;ﬂ + ||u5,m,crs - us,m,O”ZJra,s;Q - O(Em_l)-
Note that the accuracy of difference U 1,6, — Ue .m0 is dominating in the latter expression.
Now since m > 2, direct calculation with the help of relation (4.2) yields

[|ue — Waym—2||2+a,8;ﬂ < Jue — Ws,m||2+a7€;ﬂ + ||W€,m - Wa7m—2||2+a,6;9 = O(Emil)

)

and this after reindexing m’ = m — 2 gives the claimed result (4.1). _
The second assertion of theorem is trivial, since for every e € (0,00) and every u € C?T((Q)
we have

H (572(’“’ - Wa,m)v 0) HUE = 572”“ - Wa,m||2+a,s;ﬂ-
That ends the proof. {
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5 Appendix: Schauder type estimates in Holder spaces
with e-dependent norms

Let 2 be a bounded domain in R™ with smooth boundary 02 and ¢ a scalar positive parameter.
We consider the singularly perturbed linear elliptic operator

Lou:=g? Z On, (aij(x,€)0p,u) + c(z,€)u (5.1)

i,j=1

defined in , which is equipped with the natural boundary operator

New = ¢ Z aij(z,€)vi(2)0z,u (5.2)

3,J=1

defined on 0F), where v; are the components of the unit outer normal at 9. Introducing
weighted e-dependent norms in Holder spaces, we modify some well-known results of the
Schauder theory for the composite operator (£, N;) in a way to produce the upper bound
estimate for inverse operator (E;._-,Na)*l, which is uniform with respect to ¢ — 0.

For this we recall that for any A € (0, 1) function wu is called Hélder continuous with expo-
nent A in € if the seminorm

[u(z) — u(y)|
= L) = B 5.3
[u]x:0 wyS%% P (5.3)

is finite. Respectively, for any integer k > 0 we define the Holder space C*+*(2) as a subspace
of C*(Q) consisting of all functions u with the finite norm

[ullkrre = lulle + sup [D*uly.q, (5.4)
nl=k
where
k
[ullkse == sup sup D"
§j=0 |ul=7 €

and a standard notation for multi-index p was adopted.
If domain €2 belongs to a class C¥T* with k > 1 (see corresponding definition in [13, Sec. 6.3])
then one can naturally define a Banach space C*+*(9Q) with the norm

3

[ulliog = nf [|U]lke, (5.5)

where U denotes a C***(Q)-extention of function u on © and the infimum is taken over all
possible extensions U. Since the set of such extensions U is nonempty (see Lemma 6.38 in [13]),
definition (5.5) is always correct.

To eliminate the singularity occurring for € — 0 in operators £. and AN, one might employ
a simple coordinate transformation T, : R” — R"™ defined for all ¢ € (0,00) with the formula
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T.x := x/e. Indeed, in the new coordinates these differential operators have regular coefficients
and read as follows

n

Lov = Z By, (aij(cy,€)0y,v) + c(ey, &)v,
ij=1
New = Zaij(sy,s)yi(sy)[)ij.
i=1
However, the former acts now in the e-dependent domain Q/e := T.(Q2), whereas the latter

acts on the e-dependent surface 9§/e := T.(0€). Taking this into account we define the new
e-dependent norms

k
ullirree = luo T ktanye = Zaj sup sup | D u| + ¥ sup [D*u)y.q (5.6)
j=0 lul=j € |ul=Fk
and
ullerason = lluo T Hlkrao0/e, (5.7)

in Holder spaces C***(Q) and C¥T*(99), respectively. Such norms turn out to be a natural
setting for analysis of singularly perturbed composite operator (L., N;). In particular, they
satisfy a series of inequalities with a simple explicit dependence on parameter . We present
these inequalities in the following lemma.

Lemma 5.1 Let k > 0 be an integer and A € (0,1). Then for any € € (0,00) it holds:
min(L, e ) Jullerne < [ulliree < max(l e ) lullkine for all ue CF(Q), (5.8)
Juvllrcn < Nullaeo [olaen for all uv e CA@). (5.9)

Moreover, if k > 1 then it holds:

min(1, ") [|ull 4 r00 < ullkiarsoo < max(l, e ) ||ulliron for all w e CFF(00),(5.10)
[ullk-14re0 < Ok, N[|ullpireo for al uwe CHA(Q), (5.11)
where C(n,k,\) is a constant independent of € and €.

Proof: Inequalities (5.8)-(5.10) follow directly from definitions (5.5)-(5.7).
To verify the inequality (5.11) we first write the estimate

| D u(z) — D'u(y)|*

eFTITA qup [DFulng < e sup sup (2|Du)* ™ sup S
|ul=k—1 lul=k-1 \ @ = wea, |z —yl

1-A A
< sup (sup (26" | D*ul) ) sup (sup (ne®| DHul) > < Ci(n, kb, MJullktr 0,
lul=k—1 \ Q lul=k \ @
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where C,(n, k, A) > 0is a constant independent of € and Q. Denoting C(n, &k, \) = 1+Ci(n, k, \)
and taking into account definition (5.6) we obtain the claimed inequality (5.11). ¢

Now we are ready to formulate and prove the main statement concerning the upper bound
estimate of inverse operator (L, N:) ™t

Theorem 5.2 Let ) be a bounded domain in R™ of class C*** with o € (0,1). Suppose that
the following assumptions hold:

(i) For every € > 0 it holds a;;(-,¢) € C*T*(Q) and c(-,¢) € C*(Q). Furthermore, there
exists a constant M > 0 such that
||aij('78)||1+a;9 ) HC(VE)HQ;Q <M forall €€ (0,00). (5.12)

(ii) There exist constants k> 0 and c¢o > 0 such that

n

Z aij(z,6)&&5 > KIE[P for all (x,6,8) € Q% (0,00) x R", (5.13)

ij=1

and
c(x,e) < —¢g  forall (x,e) € Qx (0,00). (5.14)

Then there exist eg > 0 and Cy > 0 such that for all ¢ € (0,¢¢) and all u € C*t*(Q) it holds

”U”?Jra,s;ﬂ < OO(HEsuHa,s;Q + ”NsquJra,s;aQ)-

Proof: We base our proof on Lemma 3.2. First we remark that inequality (5.8) implies the
equivalence of norms || - |k+a,e;0 and || - ||k+a;0 for any k£ > 0. Similarly, from inequality (5.10)
follows the equivalence of norms || - ||x+x,c;00 and || - [|g+x00 with & > 1. Hence, taking into
account classical results of the theory of linear elliptic operators (see Theorem 3.2 in [18]), we
easily see that the composite operator

(Le, N2) = (CPQ), | ll2taein) = (COO), [ llaein) x (CTFOQ), || - 1+a.ci00)

is a Fredholm operator of index zero.
Let ) € (0,00) and uy € C*T*(€2) be sequences with

||uk||2+a,€k;ﬂ =1 (5.15)

and
ek + [ Lepukllaerio + N urll1+a.e,00 — 0 for k — oo (5.16)

We are going to demonstrate that these two assumptions actually imply
lukll24a.er0 — 0 for k — oo (5.17)

what is the necessary contradiction.
First we will show that assumption (5.16) together with properties (5.12)—(5.14) results in
the uniform estimate
lukllojo — 0 for k — oco. (5.18)
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Indeed, for each uj we can construct two functions of the following form

ui@) = ui(e) = K ([1Loullozn + W ulheoe00)

1.
& ALkl on (o) exp (o dist(z, 00) ).

where K is a positive constant to be chosen later, and x : [0,00) — R is a smooth cut-off
function such that

x(r)=1 for 0<r<é and x(r)=0 for r> 24,

with § > 0 being a fixed number, small enough to guarantee that for every z € Q satisfying
dist(z, 9Q) < 20 there exists the only point ¢ € 9 such that dist(x,() = dist(z,99Q). Then
simple calculation and estimate (5.13) yield

1 n
N uf (o) = N, un(z) + ||Nakuk”1+a,ak;8&7; Z a;j(z,ep)vi(z)vj(z) >0 forall x e ON.

5,J=1

On the other hand, using assumption (5.12) we easily check that

Z O, (aw x,€)0,, (X( ) exp (——d1st(33 89 < const forall g€ (0,1).

i,j=1
Hence, assumption (5.14) allows us to choose K > 0 such that for all & with e € (0, 1) it holds
Louf(z) <0 and Loug (z) >0 forall ze€Q.
Now Strong Maximum Principle for linear elliptic operators (see [13, Theorem 3.5]) implies
uf () >0 and wu; () <0 forall ze€Q,

and this gives (5.18). The latter limit can be easily transformed into a stronger one. Indeed,
since the following inequality holds

(e
_ up(r) — ug @ _
e un)asa < e sup (2Jux])' ™ sup (@) = ur(y)” a(y” < 2)lugllos) ™ | ner sup sup |[DPui| |
Q z,y€en, |='E - yl lul=1 ©
Ay
assumption (5.15) and limit (5.18) guarantee that
uklloerso — 0 for &k — oo (5.19)

To proceed further we remark that for every € € (0,1) estimates (5.8) and (5.10) imply
eullae < ullaca < ufan forall uweC*(Q),

e ullivavn < llullitason < llullivaoe forall weC(09),  (5.20)
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respectively. Hence, assuming without loss of generality that ¢, < 1, and applying inequal-
ity (5.9), we get the limit

n n
giJrO‘ Z aij(.’gk)amiamjuk < Ei Z aij('vsk)afbiamjuk < ||£5kuk||a,sk;ﬂ
ij=1 a0 hj=1 a,er;0
n
+llEr Y Ouiais(-ex) O un + ey em)ll o 1ukllacpe — 0 for &k — oo, (5.21)
hi=1 a,eR;Q

where all the terms in the right hand part of (5.21) vanish because of assumptions (5.12), (5.15)
and limits (5.16), (5.19).

According to classical Schauder estimates for linear elliptic operators (see for example The-
orem 6.30 in [13]), there exists a constant C1 = C(n, a, k, M,Q) > 0 which is independent of ¢
such that for every u € C?t%(Q) it holds

n n

lullzvaie < C1 (|| D2 aii(€)0u0su|  + || D aij(,e)vi()ds,u + [lulloe
L=l ORI | 140300
Multiplying both sides of this inequality with €27 we get
n
N ullzrae < Co [P ai(,6)0, 00 u
b=l a;Q
n
i L WETOR IO + o |- (5:22)
b=l 1+a;00

Hence, taking into account previously obtained estimate (5.21), assumptions (5.15), (5.16) and
inequality (5.20) we obtain from (5.22) that

e |ug|l24ai0 — 0 for k — oc. (5.23)

Now, the last step is to derive from limits (5.19) and (5.23) the necessary contradiction (5.17).
For this we employ the interpolation inequality (see Lemma 6.3.1 in [16])

e*llullsn < Ca (27 ullz4as + (€° + Dullow)

that holds true for all 0 < s < 2+« and € € (0, 00) with the constant Co = Ca(n, «, s,€2) which
is independent of e. Indeed, due to limits (5.19) and (5.23) we easily get

erllukll.o — 0 and 5%||uk||2;g — 0 for k — oo.

Thus, all terms in the definition of norm ||uk|24a,e,;0 vanish when k& — oo and limit (5.17)
does hold. This means that Lemma 3.2 works and this ends the proof. ¢
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Remark 5.3 The prove of Theorem 5.2 can be easily modified to cover the case of Dirichlet
boundary conditions. In result we obtain the following statement.

Suppose that all assumptions of Theorem 5.2 are fulfilled. Then there exist ¢g > 0 and
Co > 0 such that for all € € (0,2¢) and all u € C?*T(Q) it holds

||u||2+a,€;ﬂ < OO(”LEUHOL-,E;Q + ||u||2+a,6;352)-
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