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Abstra
t. This paper 
on
erns general singularly perturbed se
ond order semilin-ear ellipti
 equations on bounded domains Ω ⊂ R
n with nonlinear natural bound-ary 
onditions. The equations are not ne
essarily of variational type. We des
ribean algorithm to 
onstru
t sequen
es of approximate spike solutions, we prove ex-isten
e and lo
al uniqueness of exa
t spike solutions 
lose to the approximate ones(using an Impli
it Fun
tion Theorem type result), and we estimate the distan
ebetween the approximate and the exa
t solutions. Here �spike solution� meansthat there exists a point in Ω su
h that the solution has a spike-like shape in avi
inity of su
h point and that the solution is approximately zero away from thispoint. The spike shape is not radially symmetri
 in general and may 
hange sign.1 Introdu
tionThe aim of this paper is to study the existen
e, lo
al uniqueness and asymptoti
 behaviour for

ε→ 0 of spike solutions to singularly perturbed ellipti
 boundary value problems of the type
ε2

(

n
∑

i,j=1

∂xi
(aij(x)∂xj

u) +
n
∑

i=1

bi(x)∂xi
u

)

= f(x, u, ε), x ∈ Ω,

n
∑

i,j=1

aij(x)νi(x)∂xj
u = g(x, u, ε), x ∈ ∂Ω.



















(1.1)Here ε > 0 is a small parameter, Ω ⊂ R
n is a bounded domain with su�
iently smoothboundary ∂Ω, and νi are the 
omponents of the unit outer normal at ∂Ω. The 
oe�
ients aij , bi :

Ω → R, and the right-hand sides f : Ω×R× [0, 1] → R and g : ∂Ω×R× [0, 1] → R are supposedto be su�
iently smooth. Further, the di�erential operator in (1.1) is supposed to be uniformlyellipti
, i.e. aij = aji and there exists a 
onstant c0 > 0 su
h that
n
∑

i,j=1

aij(x)yiyj ≥ c0|y|2 for all (x, y) ∈ Ω × R
n.Roughly speaking, below we prove the existen
e, lo
al uniqueness and asymptoti
 behaviourfor ε→ 0 of solutions u to (1.1) with the following properties:(i) There exists a point ξ0 ∈ Ω su
h that u has a spike-like behaviour in the vi
inity of ξ0.(ii) In all remaining points x ∈ Ω we have u(x) ≈ 0.Su
h solutions turn out to exist under a series of natural assumptions. The assumption, mainlyimplying property (II), is the following:(A1) f(x, 0, 0) = 0 and ∂uf(x, 0, 0) > 0 for all x ∈ Ω.The rest three assumptions implying mainly property (I) we formulate as follows:(A2) There exist a subdomain Ω̃ ⊆ Ω and a smooth map (r, ξ) ∈ [0,∞) × Ω̃ 7→ φξ(r) ∈ Rsu
h that for every �xed ξ ∈ Ω̃ the fun
tion φ = φξ solves the one-dimensional boundary valueproblem

φ′′(r) + n− 1
r φ′(r) = f(ξ, φ(r), 0), 0 < r <∞,

φ′(0) = 0, φ(∞) = 0, φ(0) 6= 0.







(1.2)1



(A3) There exists a non-degenerate solution ξ0 ∈ Ω̃ to the algebrai
 system
A−1(ξ)b(ξ) + ∇ξ log





√

detA(ξ)

∫

R

φ′ξ(r)
2rn−1dr



 = 0, (1.3)where
A(ξ) := [aij(ξ)]

n
i,j=1 and b(ξ) := [bi(ξ)]

n
i=1 . (1.4)Ea
h fun
tion φξ from assumption (A1) 
orresponds, via Φξ(y) := φξ(|y|), to a radiallysymmetri
 solution v = Φξ of the following n-dimensional boundary value problem

∆yv(y) = f(ξ, v(y), 0), y ∈ R
n,

v(y) → 0 for |y| → ∞.

} (1.5)In the s
ope of our 
onsideration, su
h symmetri
 solutions Φξ will be used to des
ribe a s
aledpro�le of the spike whi
h may appear at point ξ. It is easy to show (see Remark 1.3) that thefun
tions v = ∂yj
Φξ0

are solutions of the linearized problem
∆yv(y) = ∂uf(ξ0,Φξ0

(y), 0)v(y), y ∈ R
n,

v(y) → 0 for |y| → ∞.

} (1.6)Our last assumption 
on
erns the following non-degenera
y property:(A4) For any solution v to (1.6) it holds v ∈ span
{

∂yj
Φξ0

: j = 1, . . . , n
}.Our main result is of the following type:For small ε > 0 and m = 0, 1, . . . we will 
onstru
t smooth fun
tions Wε,m : Ω → R whi
hhave the properties (I) and (II) and whi
h satisfy (1.1) approximately. Moreover, we will provethat for small ε > 0 there exists an exa
t solution u = uε to (1.1) su
h that for any α ∈ (0, 1)and any m it holds

‖uε −Wε,m‖2+α,ε;Ω = O(εm+1) for ε→ 0,where
‖u‖2+α,ε;Ω :=

2
∑

k=0

εk sup
|µ|=k

sup
Ω

|Dµu| + ε2+α sup
|µ|=2

sup
x,y∈Ω,

x 6=y

|Dµu(x) −Dµu(y)|
|x− y|αis an ε-dependent norm in the Hölder spa
e C2+α(Ω). Finally, we will prove a lo
al uniquenessassertion for uε: If ε > 0 is small and u is a solution to (1.1) whi
h is 
lose to Wε,0 (in a senseto be made pre
ise) then u = uε.In order to des
ribe our results more exa
tly, let us 
onsider the lowest approximation order
ase m = 0. De�ne

Wε(x) := Φξ0
(Tε(x)).Here Tε(x) are stret
hed 
oordinates de�ned as follows:

Tε(x) :=
1

ε
A(ξ0 + εx1)

−1/2(x− ξ0 − εx1) for x ∈ Ω.2



Further A(ξ)−1/2 is the inverse square root of the positive de�nite matrix A(ξ) (see nota-tion (1.4)), and x1 is the 
orre
tion term of the �rst order to the spike's position determinedfrom Eq. (2.58). Now our result for m = 0 reads as follows:Theorem 1.1 Suppose that assumptions (A1)�(A4) are ful�lled.Then for any α ∈ (0, 1) there exist εα > 0, δα > 0 and cα > 0 su
h that the following istrue:(i) For all ε ∈ (0, εα) there exists a solution u = uε to (1.1) su
h that
‖uε −Wε‖2+α,ε;Ω ≤ cαε.(ii) If u is a solution to (1.1) with ε ∈ (0, εα) and
‖u−Wε‖2+α,ε;Ω < δαε

2,then u = uε.Existen
e and multipli
ity results for problem (1.1) have been obje
ts of systemati
 investi-gation during last de
ades. This interest is, in parti
ular, motivated by the study of standingwaves in the nonlinear S
hrödinger equation whi
h leads typi
ally to the 
onsideration of 
on-
entrating solutions (so 
alled bound states) of the following ellipti
 boundary value problem
ε2∆u = V (x)u − uq, x ∈ Ω,
∂νu = 0, x ∈ ∂Ω,

}where q > 1, and V : Ω → R is a smooth positive potential. Another sour
e of appli
ations forproblem (1.1) is 
on
erned with the study of pattern formation in 
hemi
al rea
tion-di�usionsystems, in
luding well-known Gierer-Mein
hardt and FitzHugh-Nagumo models [26℄.One 
an distinguish two main approa
hes used systemati
ally in this �eld. A �rst one, ini-tiated by Floer and Weinstein [11℄, relies on a �nite dimensional Lyapunov-S
hmidt redu
tion(see also [22, 23, 24℄). A se
ond one is based on variational methods jointly with a penaliza-tion te
hnique (we re
all, among many others, [34, 42, 28, 29, 30, 31℄, see also [1℄ for furtherreferen
es).Our study di�ers from the above in several points. First, our ellipti
 equation does not havea divergen
e form, what makes impossible appli
ation of variational methods used, for example,for similar equations with bi(x) = 0, see e.g. [37, 32℄. Se
ond, for arbitrary spa
e dimension nwe obtain a sequen
e of approximate solutions with pointwise asymptoti
 estimates in the L∞-norm up to any power of ε. Note that in 
ontrary to most of the previous studies 
on
ernedwith (1.1), our approximate solutions, in general, 
omprise non-zero outer expansion parts. Thisfa
t leads to a more 
ompli
ated formulas for the inner expansions of the spike and boundarylayers, but simultaneously shows the universality of our approa
h. Third, the spike shapesare allowed to 
hange sign. And �nally, to prove our Theorem 4.6 we do not need eigenvalueestimates for the linearized (in the approximate solution) problem. Instead we use a lemma ofR. Magnus [19, Lemma 1.3℄ whi
h helps to verify the assumptions of a quite general impli
itfun
tion theorem (see our Se
tion 3).Remark 1.2 Various su�
ient 
onditions for the existen
e of radially symmetri
 solutions ofproblem (1.5) 
an be found in literature (see, for example, [5, 6, 12, 39, 8℄). Some of them [5, 6℄3



were obtained with the help of variational methods, when instead of the solution to problem (1.5)one looks for a 
riti
al point of the energy fun
tional
Eξ(v) :=

∫

Rn

(

1

2
|∇yv(y)|2dy + F (ξ, v(y), 0)

)

dy, where F (ξ, v, ε) :=

v
∫

0

f(ξ, u, ε)du. (1.7)An important role in this analysis is played by the Pohozaev's identity (see [5, Se
tion 2℄)
n− 2

2

∫

Rn

|∇yv(y)|2dy = −n
∫

Rn

F (ξ, v(y), 0)dy. (1.8)whi
h is valid, in parti
ular, for any radially symmetri
 solution v ∈W 1,2(Rn) of problem (1.5).Remark, the identity (1.8) implies that for any radially symmetri
 solution of problem (1.5)holds
Eξ(v) =

1

n

∫

Rn

|∇yv(y)|2dy. (1.9)Another method to prove the existen
e of radially symmetri
 solutions of problem (1.5) is
on
erned with the dire
t analysis of 
orresponding one-dimensional problem (1.2). It was used,in parti
ular, in [12, 39, 8℄.Remark 1.3 For the solution φξ to problem (1.2), one 
an easily show (see [5, Lemma 4℄) that
lim
r→0

φ′ξ(r)

r
= lim

r→0
φ′′ξ (r) =

1

n
f(ξ, φξ(0), 0). (1.10)Sin
e above we have assumed that φξ(0) 6= 0, limits (1.10) immediately imply that

f(ξ, φξ(0), 0) 6= 0. (1.11)Further, every solution φ = φξ to problem (1.2) 
orresponds to a solution θ = (φξ , φ
′
ξ)

T ofthe linear system
θ′(r) = Πξ(r)θ(r), where Πξ(r) :=







0 1

1
∫

0

∂uf(ξ, tφξ(r), 0)dt −n− 1
r






.Hen
e, taking into a

ount assumption (A1) and applying 
lassi
al results of exponential di-
hotomy theory [7, Chapter 6, Proposition 1℄, we 
ome to the 
on
lusion that for every ξ ∈ Ω̃and every κ ∈ (0,

√

∂uf(ξ, 0, 0)) it holds
|φξ(r)|, |φ′ξ(r)|, |φ′′ξ (r)| ≤ C(ξ, κ)e−κr for all r ∈ [0,∞), (1.12)where C(ξ, κ) > 0 is a 
ertain 
onstant. Alternatively, one 
an get exponential estimates (1.12)from the determining system (1.5) for Φξ (see [33℄).4



Moreover, it is easy to show that for ea
h ξ ∈ Ω̃ the partial derivatives ∂ξj
φξ(r), j = 1, . . . , n,exist, that the 
orresponding fun
tions ∂ξj

φξ satisfy the linear inhomogeneous di�erential equa-tion
∂ξj

φ′′ξ (r) +
n− 1

r
∂ξj

φ′ξ(r) − ∂uf(ξ, φξ(r), 0)∂ξj
φξ(r) = ∂ξj

f(ξ, φξ(r), 0), 0 < r <∞,and, hen
e, that they satisfy estimates analogous to (1.12).Remark 1.4 Note that subdomain Ω̃ in assumption (A2) plays a te
hni
al role only. In par-ti
ular, if at the very beginning we know a point ξ0 ∈ Ω and a 
orresponding solution φ0 ofproblem (1.2), then a straightforward appli
ation of the Impli
it Fun
tion Theorem guaran-tees the existen
e of a subdomain Ω̃ 
ontaining ξ0 and the existen
e of a smooth map (r, ξ) ∈
[0,∞) × Ω̃ 7→ φξ(r) ∈ R su
h that (1.2) is satis�ed for all ξ ∈ Ω̃ and that φ0 = φξ0

.Remark 1.5 One 
an easily 
he
k that in the 
ase b(x) = 0 and f(x, u, ε) = V (x)u − uq with
q > 1, V (x) > 0, Eq. (1.3) is equivalent to the equation for spike's position obtained in [32℄ bymeans of variational te
hnique. Indeed, in this 
ase, every solution v = Φξ to problem (1.5)
orresponds, via Φξ(y) = V (ξ)1/(q−1)U(

√

V (ξ)y), to a radially symmetri
 solution U of equation
∆U = U − U q whi
h de
ays to zero at in�nity and does not depend on ξ. This implies, inparti
ular, that

∫

Rn

|∇yΦξ(y)|2 dy = V (ξ)
q+1

q−1
−n

2

∫

Rn

|∇yU(y)|2 dy,hen
e our Eq. (1.3) determines the same spike's positions as the Theorem 1.3 in [32℄.Note that, in 
ontrary to the paper [32℄, we do not restri
t our 
onsideration to positivesolutions only. Moreover, our method provides more a

urate pointwise asymptoti
 estimates(in L∞-norm) for the obtained solutions.Remark 1.6 Sin
e fun
tions Φξ are assumed to be radially symmetri
, a standard way toverify assumption (A4) is to �nd all bounded solutions of the problem (1.6) by the method ofseparation of variables. This s
heme was previously used to demonstrate that assumption (A4)is ful�lled for any positive, radially symmetri
 solution of the problem (1.5) with the right-handside f(x, u, ε) = V (x)u − uq, q > 1, and V (x) > 0 (see [46, Appendix A℄ and [17℄). Furthergeneralizations of this result 
an be found in [21℄.Besides, assumption (A4) is always ful�lled in the 
ase n = 1. This fa
t follows fromassumption (A1) and well-known results on the exponential di
hotomy [7, Chapter 6, Proposi-tion 1℄.Remark 1.7 Below we prove existen
e of spike solutions to (1.1), where the spike shapes areapproximately radially symmetri
, but may 
hange sign. Remark that, if the solution to (1.5),whi
h approximately determines the spike shape, is positive, then it is ne
essarily radially sym-metri
 (by the famous Gidas-Ni-Nirenberg theorem [15℄).Remark 1.8 Our results 
an be easily generalized on a broader 
lass of singularly perturbedellipti
 equations with non-variational stru
ture. In parti
ular, they are appli
able to equationsof the type
ε2

n
∑

i,j=1

∂xi
(aij(x)∂xj

u) = f(x, u, ε) + εf1(x, u, ε∇xu, ε).5



The proposed asymptoti
 analysis 
an also be used to generalize some known results about bound-ary spike solutions in singularly perturbed problems (see [20, 21, 14, 43, 44, 45, 4℄).Remark 1.9 Our results 
an be easily generalized for the 
ase of solution to problem (1.1)with a �nite number of distin
t spike's. The 
onstru
tion pro
edure and the te
hnique of proofremain almost the same in this 
ase.Our paper is organized as follows:In Se
tion 2 we des
ribe the algorithm of the 
onstru
tion of our approximate solutions. InSe
tion 3 we formulate and prove a generalized Impli
it Fun
tion Theorem, and in Se
tion 4we derive from this existen
e, lo
al uniqueness and estimates of exa
t solutions to (1.1) 
loseto the approximate ones. Finally, some needed te
hni
al estimates are provided in Appendix.2 Constru
tion of the approximate solutionsIn this se
tion, we 
onstru
t approximate solutions to problem (1.1). For this, we assume thatthe 
onditions (A1)�(A4) are satis�ed and that the fun
tion f and the 
oe�
ients aij and bi aresu�
iently smooth to allow their representation via Taylor's formula with ne
essary number ofterms.Following standard s
heme of singular perturbation theory [25, 40, 41℄, we look for approx-imate solutions of the type
Wε,m(x) = uε,m(x) + vε,m(x) + wε,m(x), (2.1)whi
h 
onsist of three di�erent parts: the outer expansion uε,m(x) (whi
h is de�ned by theproperty Wε,m(x) − uε,m(x) ≈ 0 for all x away from the spike 
enter and from ∂Ω), the innerexpansion vε,m(x) of the spike (whi
h is de�ned by the property Wε,m(x) − vε,m(x) ≈ uε,m(x)for all x 
lose to the spike 
enter) and the inner expansion wε,m(x) of the boundary layer (whi
his de�ned by the property Wε,m(x) − wε,m(x) ≈ uε,m(x) for all x 
lose to ∂Ω). The ansatz forthe outer expansion and the inner expansion of the spike is

uε,m(x) =

m
∑

k=0

εkuk(x), and vε,m(x) =

m
∑

k=0

εkvk(Tε,m(x)), (2.2)where Tε,m is a stret
hing transformation near the spike, given by
Tε,m(x) =

1

ε
Q(xε,m)(x− xε,m) with xε,m =

m+1
∑

k=0

εkxk and Q(x) := A(x)−1/2 (2.3)(
f. notation (1.4)). The ansatz for the inner expansion of the boundary layer is
wε,m(x) =

{

χ
(

δ−1 dist(x, ∂Ω)
)
∑m

k=0 ε
kwk(Sε(x)) for dist(x, ∂Ω) < 2δ,

0 otherwise, (2.4)where χ : [0,∞) → R is a non-in
reasing smooth 
ut-o� fun
tion su
h that χ(r) = 1 for
0 ≤ r ≤ 1 and χ(r) = 0 for r ≥ 2. Further, δ > 0 is a parameter, Sε is a stret
hingtransformation near the boundary given by

S−1
ε (z, ζ) := ζ − εzν(ζ) with ζ ∈ ∂Ω and 0 ≤ z <

2δ

ε
, (2.5)6



and ν(ζ) is the unit normal ve
tor of ∂Ω at ζ ∈ ∂Ω pointing out of Ω. We �x δ su�
ientlysmall su
h that the map (z, ζ) 7→ ζ − εzν(ζ) is bije
tive from (0, 2δ/ε)× ∂Ω onto the set of all
x ∈ Ω with dist(x, ∂Ω) < 2δ, and, hen
e, the de�nitions (2.4) and (2.5) are 
orre
t.In the ansatz (2.1)�(2.4) the fun
tions uk : Ω → R, vk : R

n → R and wk : [0,∞)×∂Ω → R aswell as the ve
tors xk ∈ R
n are unknown and have to be determined by the algorithm des
ribedbelow.For the sake of simpli
ity, in what follows we will use the notation

Eεu := ε2





n
∑

i,j=1

∂xi
(aij(x)∂xj

u) +

n
∑

i=1

bi(x)∂xi
u



for the ellipti
 di�erential operator in problem (1.1).Roughly speaking, the algorithm is as follows: First we determine the fun
tions uk su
hthat the equation
Eεuε,m − f(x, uε,m, ε) = 0 (2.6)is satis�ed up to an error of order O(εm+1), this will be done in Subse
tion 2.1. Then wedetermine the fun
tions vk and the ve
tors xk su
h that the system

Eεvε,m − f(x, uε,m + vε,m, ε) + f(x, uε,m, ε) = 0,

∇x (uε,m + vε,m) (xε,m) = 0

} (2.7)is satis�ed up to an error of order O(εm+1), this will be done in Subse
tion 2.2. The requirement
∇x (uε,m + vε,m) (xε,m) = 0 means that the extremum of the approximate spike uε,m + vε,mis lo
ated in the point xε,m, i.e. that xε,m is approximately the extremum point of the exa
tspike. And �nally we determine the fun
tions wk su
h that the boundary value problem

Eεwε,m − f(x, uε,m + wε,m, ε) + f(x, uε,m, ε) = 0, x ∈ Ω,
n
∑

i,j=1

aij(x)νi(x)∂xj
(uε,m + wε,m) − g(x, uε,m + wε,m, ε) = 0, x ∈ ∂Ω







(2.8)is satis�ed up to an error of order O(εm+1), this will be done in Subse
tion 2.3. In summary,we are going to prove the following theorem.Theorem 2.1 Suppose that assumptions (A1)�(A4) are ful�lled.Then, following the algorithm des
ribed in Subse
tions 2.1�2.3 one 
an 
onstru
t for any
ε ∈ (0,∞) and for any nonnegative integer m a smooth fun
tion Wε,m : Ω → R su
h that forany α ∈ (0, 1) it holds

‖EεWε,m − f(·,Wε,m, ε)‖α,ε;Ω = O(εm+1), (2.9)
∥

∥

∥

∥

∥

∥

n
∑

i,j=1

aij(·)νi(·)∂xj
Wε,m − g(·,Wε,m, ε)

∥

∥

∥

∥

∥

∥

1+α,ε;∂Ω

= O(εm). (2.10)Moreover, the fun
tions Wε,m have stru
ture (2.1)-(2.5) with smooth fun
tions uk : Ω → R,
vk : R

n → R and wk : [0,∞) × ∂Ω → R. 7



Finally, for any κ ∈ (0, κ0) and κ ∈ (0,κ0) with
κ0 :=

√

∂uf(ξ0, 0, 0) and κ0 := min
ζ∈∂Ω

∂uf(ζ, 0, 0)
n
∑

i,j=1

aij(ζ)νi(ζ)νj(ζ)
(2.11)there exists c > 0 su
h that for any k = 1, . . . ,m and |µ| ≤ 2 it holds

|Dµvk(y)| ≤ ce−κ|y| for all y ∈ R
n, (2.12)

|Dµwk(z, ζ)| ≤ ce−κz for all (z, ζ) ∈ [0,∞) × ∂Ω. (2.13)2.1 Outer expansionWe substitute the ansatz (2.2) for uε,m into (2.6). Then we expand the left hand side of theresulting equation in the ε-power series. Equating to zero the 
oe�
ients of ea
h power of ε,we obtain an array of algebrai
 equations. The lowest order equation is
f(x, u0(x), 0) = 0.A

ording to (A1), we 
hoose u0(x) ≡ 0. Then the equations for uk, k ≥ 1 are given by

∂uf(x, 0, 0)u1(x) + ∂εf(x, 0, 0) = 0, (2.14)
∂uf(x, 0, 0)uk(x) + (fun
tion depending on u0, . . . , uk−1) = 0, k ≥ 2.Thanks to 
ondition (A1) ea
h uk is uniquely determined su

essively for k = 1, 2, . . . ,m.Moreover, we have

‖Eεuε,m − f(·, uε,m, ε)‖Cα(Ω) = O(εm+1).2.2 Inner expansion of the spikeInstead of variable x we will work with the stret
hed variable y given by (
f. (2.3))
y = Tε,m(x) =

1

ε
Q(xε,m)(x − xε,m), or x = T−1

ε,m(y) = xε,m + εQ(xε,m)−1y.Obviously, for any smooth fun
tion v : R
n → R we have

∇x (v ◦ Tε,m) =
1

ε
Q(xε,m)∇yv ◦ Tε,m.As usual, for ve
tor fun
tions z : Ω → R

n we denote by z · ∇x :=
n
∑

j=1

zj∂xj
the �rst orderdi�erential operator, generated by z, and by ∇x · z :=

n
∑

j=1

∂xj
zj the divergen
e of z.8



Now we substitute the ansatz (2.2) for vε,m and the ansatz (2.3) for xε,m into (2.7). Further,we use that for any smooth fun
tion v : R
n → R it holds

Eε(v ◦ Tε,m)(T−1
ε,m(y)) = ε2 (∇x ·A∇x(v ◦ Tε,m) + (b · ∇x)(v ◦ Tε,m)) (T−1

ε,m(y)) = ∆yv(y)

+ε



Q(xε,m)∇y ·
1
∫

0

(

Q(xε,m)−1y · ∇x

)

A
(

xε,m + εt Q(xε,m)−1y
)

dt Q(xε,m)∇yv(y)





+ε
(

b
(

xε,m + ε Q(xε,m)−1y
)

·Q(xε,m)∇yv(y)
) (2.15)and

[f(·, uε,m + v ◦ Tε,m, ε) − f(·, uε,m, ε)] (T
−1
ε,m(y))

=

1
∫

0

∂uf
(

xε,m + εQ(xε,m)−1y, uε,m(xε,m + εQ(xε,m)y, ε) + tv(y), ε
)

dt v(y). (2.16)This way we get
[Eεvε,m − f(·, uε,m + vε,m, ε) + f(·, uε,m, ε)] ◦ T−1

ε,m = ∆v0 − f(x0, v0, 0)

+

m
∑

k=1

εk (∆yvk − ∂uf(x0, v0, 0)vk − Fk(y, x0, . . . , xk, v0, . . . , vk−1)) +O(εm+1),(2.17)where the right hand sides Fk(y, x0, . . . , xk, v0, . . . , vk−1) depend on the fun
tions v0, . . . , vk−1via the values in the point y of those fun
tions and their �rst and se
ond derivatives only.Moreover,
Fk(y, x0, . . . , xk, 0, . . . , 0) = 0.Similarly, we get

Q(xε,m)−1∇x (uε,m + vε,m) (xε,m) =

m
∑

k=0

εk−1
[

∇yvk(0) + εQ(xε,m)−1∇xuk(xε,m)
]

= ε−1∇yv0(0) + ∇yv1(0) +

m
∑

k=2

εk−1 (∇yvk(0) − dk(x0, . . . , xk−2)) +O(εm),where, be
ause of the fa
t that u0(x) = 0 (see Se
tion 2.1), the right hand sides dk(x0, . . . , xk−2)do not depend on xk−1.We determine the fun
tions vk and the ve
tors xk in the following order: In the step numberzero we solve the problem
∆yv0(y) − f(x0, v0(y), 0) = 0,

∇yv0(0) = 0,

v0(y) → 0 for |y| → ∞











(2.18)with respe
t to v0. In this step x0 is still unknown, i.e. the solution v0 depends on x0.9



In the step number one we solve the problem
∆yv1(y) − ∂uf(x0, v0(y), 0)v1(y) = F1(y, x0, x1, v0),

∇yv1(0) = 0,

v1(y) → 0 for |y| → ∞











(2.19)with respe
t to v1. Be
ause the di�erential equation is linear inhomogeneous and be
ause ofassumption (A4), the right hand side F1(y, x0, x1, v0) has to be orthogonal to an n-dimensionalsubspa
e. This orthogonality 
ondition gives a system of n nonlinear algebrai
 equations tobe solved with respe
t to x0. Thus, after this step v1 and x0 are determined, but x1 is stillunknown. Moreover, we show that x0 does not depend on x1, and v1 depends on x1 a�nely.In the step number two we solve the problem
∆yv2(y) − ∂uf(x0, v0(y), 0)v2(y) = F2(y, x0, x1, x2, v0, v1),

∇yv2(0) = d2(x0),

v2(y) → 0 for |y| → ∞











(2.20)with respe
t to v2. For that the right hand side F2(y, x0, x1, x2, v0, v1) has to be orthogonal tothe n-dimensional subspa
e, again. Although the dependen
e of F2(y, x0, x1, x2, v0, v1) on x1is not a�ne, the 
orresponding orthogonality 
ondition produ
es a system of n inhomogeneousalgebrai
 equations whi
h are a�ne with respe
t to x1 and 
an be uniquely solved with respe
tto x1. Thus, after this step v2 and x1 are determined, but x2 is still unknown, x1 is independenton x2, and v2 depends a�nely on x2.The next steps are as step number two: We have to solve
∆yvk(y) − ∂uf(x0, v0(y), 0)vk(y) = Fk(y, x0, . . . , xk, v0, . . . , vk−1),

∇yvk(0) = dk(x0, . . . , xk−2),

vk(y) → 0 for |y| → ∞











(2.21)with respe
t to vk (linearly depending on xk, whi
h is still unknown) and to xk−1 (whi
h doesnot depend on xk). Remark that we have to work up to step numberm+2 in order to determineall unknowns v0, . . . , vm and x0, . . . , xm+1.Straightforward 
al
ulations give the following representations for the right hand sides
F1(y, x0, x1, v0) = (x1 · ∇x)f(x0, v0(y), 0) +G(y, x0, v0(y)) − I(y, x0, v0) (2.22)and

Fk(y, x0, . . . , xk, v0, . . . , vk−1) = (xk · ∇x)f(x0, v0(y), 0)

+(xk−1 · ∇x) (G(y, x0, v0(y)) − I(y, x0, v0)) + ∂uG(y, x0, v0(y))vk−1(y) − I(y, x0, vk−1)

+
2 − δ2k

2
((xk−1 · ∇x) + vk−1(y)∂u) ((x1 · ∇x) + v1(y)∂u) f(x0, v0(y), 0)

+Rk(y, x0, . . . , xk−2, v0, . . . , vk−2) for k ≥ 2, (2.23)where
I(y, x, v) := Q(x)∇y ·

[(

Q(x)−1y · ∇x

)

A(x) Q(x)∇yv(y)
]

+ b(x) ·Q(x)∇yv(y),10



and
G(y, x, u) :=

(

Q(x)−1y · ∇x

)

f(x, u, 0) + ∂uf(x, u, 0)u1(x) + ∂εf(x, u, 0)and ea
h Rk is a 
ertain fun
tion depending on y and xj and vj with j ≤ k − 2 only. Remarkthat for k ≥ 1 fun
tion Fk depends a�nely on xk. Moreover, for k ≥ 3 it depends also a�nelyon xk−1 and vk−1, but F2 does not depend a�nely on x1 and v1, in general.Now let us show that all the steps of the algorithm 
an be done rigorously. Besides assump-tions (A1)-(A4) we will need some properties of the linear operator
Lξ0

:= ∆y − ∂uf(ξ0,Φξ0
(y), 0),whi
h are formulated in the next two lemmas.Lemma 2.2 For any α ∈ (0, 1) the linear operator Lξ0
: C2+α(Rn) → Cα(Rn) is Fredholm ofindex zero.Proof: The operator Lξ0

is Fredholm of index zero be
ause it 
an be represented as a sumof invertible and 
ompa
t operators
Lξ0

= ∆y − ∂uf(ξ0, 0, 0) +M(y), where M(y) := ∂uf(ξ0,Φξ0
(y), 0) − ∂uf(ξ0, 0, 0). (2.24)Indeed, sin
e ∂uf(ξ0, 0, 0) > 0 (see assumption (A1)), the operator ∆y − ∂uf(ξ0, 0, 0) a
tingfrom C2+α(Rn) to Cα(Rn) is invertible (see for example [16, Theorem 3.4.3℄). On the otherhand, the fa
t that the multipli
ation by M is a 
ompa
t operator from C2+α(Rn) to Cα(Rn)
an be veri�ed as follows.Let χ : [0,∞) → R be a non-in
reasing smooth 
ut-o� fun
tion su
h that χ(r) = 1 for

0 ≤ r ≤ 1 and χ(r) = 0 for r ≥ 2. Then for ea
h R > 0 the fun
tion χR(y) := χ(|y|2/R2) issmooth and has 
ompa
t support. Hen
e the multipli
ation by χRM is a 
ompa
t operator from
C2+α(Rn) to Cα(Rn). Now taking into a

ount exponential estimates (1.12) for Φξ0

, we easilysee that the operator χRM tends to M in the operator norm of L(C2+α(Rn);Cα(Rn)) when
R → ∞. However, the spa
e of 
ompa
t operators is 
losed in the operator norm, therefore theoperator M is 
ompa
t. ♦Be
ause of assumption (A4) we have

KerLξ0
= span

{

∂yj
Φξ0

: j = 1, . . . , n
}

.Hen
e, Lemma 2.2 implies that
RanLξ0

=







F ∈ Cα(Rn) :

∫

Rn

F (y) ∂yj
Φξ0

(y) dy = 0 for all j = 1, . . . , n







,and the restri
tion of Lξ0
is an isomorphism from C2+α(Rn) ∩ RanLξ0

onto RanLξ0
. The fol-lowing lemma shows that the inverse of this isomorphism maps exponentially de
aying fun
tionsonto exponentially de
aying fun
tions. To formulate our statement, let us de�ne the family ofexponentially de
aying fun
tions

ρκ(y) := e−κ(
√

1+|y|2−1) with y ∈ R
n, (2.25)and re
all the notation κ0 =

√

∂uf(ξ0, 0, 0) from Theorem 2.1.11



Lemma 2.3 Suppose that α ∈ (0, 1), κ ∈ (0, κ0), F ∈ RanLξ0
su
h that ρ−1

κ F ∈ Cα(Rn), and
v ∈ C2+α(Rn) su
h that Lξ0

v = F . Then, ρ−1
κ v ∈ C2+α(Rn).Proof: First, we take use of formula (2.24) and rewrite the equation Lξ0

v = F in thefollowing form
∆yv − ∂uf(ξ0, 0, 0)v = F̃ (y) := M(y)v + F (y) ∈ Cα(Rn).Here due to the exponential estimates (1.12) for Φξ0

we have ρ−1
κ M ∈ Cα(Rn), and this togetherwith the assumption ρ−1

κ F ∈ Cα(Rn) implies ρ−1
κ F̃ ∈ Cα(Rn). Now we write fun
tion v as theBessel potential (see [38, Chapter V, �3℄)

v(y) = −κn−2
0

∫

Rn

G2(κ0(y − z))F̃ (z)dz, (2.26)where G2 is the Bessel kernel
G2(x) = (2π)−n/2K(n−2)/2(|x|)|x|−(n−2)/2andKν is the modi�ed Bessel fun
tion of the third kind. Regarding kernel G2 we know that it isan analyti
 fun
tion of |x|, ex
ept at x = 0. Moreover, for x→ 0 and for |x| → ∞ one 
an writeexpli
it asymptoti
 formulas des
ribing the behaviour of kernel G2 and of all its derivatives(see, for example, [3, Chapter II, �4℄). In parti
ular, for all j, k = 1, . . . , n it holds

‖G2‖L1(Rn) <∞, ‖∂kG2‖L1(Rn) <∞, (2.27)
|∂k∂jG2(x)| ≤ 
onst |x|−n for |x| → 0, (2.28)
|G2(x)|, |∂kG2(x)|, |∂k∂jG2(x)| ≤ 
onst e−|x| for |x| → ∞, (2.29)where ∂kG2(x) denotes the �rst partial derivative of G2(x) with respe
t to xk, and ∂k∂jG2(x)is the analogous notation for the se
ond partial derivative with respe
t to xk and xj .From (2.26) it follows

∣

∣ρ−1
κ (y)v(y)

∣

∣ ≤ κn−2
0

∥

∥

∥ρ−1
κ F̃

∥

∥

∥

L∞(Rn)

∫

Rn

|G2(κ0(y − z))| ρ−1
κ (y)ρκ(z)dz. (2.30)Let us show that the right-hand part of (2.30) is uniformly bounded for all y ∈ R

n, i.e. that
ρ−1

κ v ∈ L∞(Rn). (2.31)Indeed, be
ause of (2.27) the integrand in (2.30) is integrable over any 
ompa
t region in
ludingthose whi
h 
ontain point z = y. Hen
e, we need to 
onsider the integrand's behaviour for
|y − z| → ∞ only. Taking into a

ount that for every x ∈ R

n it holds 0 <
√

1 + |x|2 − |x| ≤ 1we easily obtain
ρ−1

κ (y)ρκ(z) ≤ eκe−κ(|z|−|y|) for all y ∈ R
n and z ∈ R

n.12



Then using asymptoti
 formula (2.29) we get
|G2(κ0(y − z))| ρ−1

κ (y)ρκ(z) ≤ eκe−κ(|z|−|y|) |G2(κ0(y − z))|

≤ 
onst e−κ(|z|−|y|+|y−z|)e−(κ0−κ)|y−z| for |y − z| → ∞.Now the triangle inequality |y| ≤ |y − z| + |z| and the assumption κ ∈ (0, κ0) imply theboundedness of the right-hand part in (2.30). Hen
e, estimate (2.31) is true.Next, we 
onsider the partial derivatives ∂yk
v. Be
ause of the properties of Bessel potentials,they are given by integrals

∂yk
v(y) = −κn−1

0

∫

Rn

∂kG2(κ0(y − z))F̃ (z)dz, k = 1, . . . , n. (2.32)Sin
e ea
h ∂kG2 obeys estimates (2.27) and (2.29), we apply arguments as above and obtain
ρ−1

κ ∂yk
v ∈ L∞(Rn) for all k = 1, . . . , n. (2.33)To show that ρ−1

κ ∂yk
∂yj

v ∈ Cα(Rn) we need a more deli
ate analysis, sin
e the 
orrespond-ing derivatives are determined by the improper integral
∂yk

∂yj
v(y) = −κn

0 lim
µ→+0

∫

|z−y|≥µ

∂k∂jG2(κ0(y − z))F̃ (z)dz, (2.34)whi
h is not absolutely 
onvergent (see asymptoti
s (2.28)). Nevertheless, a

ording to the
lassi
al results of potential theory [38, Chapter V, �4℄ it is known that for every F̃ ∈ Cα(Rn)the singular integral (2.34) determines a fun
tion from Cα(Rn).On the other hand, from (2.34) it follows
ρ−1

κ (y)∂yk
∂yj

v(y) = −κn
0 lim

µ→+0

∫

|z−y|≥µ

ρ−1
κ (y)ρκ(z)∂k∂jG2(κ0(y − z))ρ−1

κ (z)F̃ (z)dz

= Ĝ(y) − κn
0 lim

µ→+0

∫

|z−y|≥µ

∂k∂jG2(κ0(y − z))ρ−1
κ (z)F̃ (z)dz, (2.35)where

Ĝ(y) := −κn
0 lim

µ→+0

∫

|z−y|≥µ

(

ρ−1
κ (y)ρκ(z) − 1

)

∂k∂jG2(κ0(z − y))ρ−1
κ (z)F̃ (z)dz. (2.36)In (2.36), the di�eren
e in parentheses 
an be rewritten as follows

ρ−1
κ (y)ρκ(z) − 1 = e

κ
“√

1+|y|2−
√

1+|z|2
”

− 1 = −κ(z − y) · Θ(z − y, y),where Θ : R
n × R

n → R
n is given by

Θ(x, y) :=

1
∫

0

y + tx
√

1 + |y + tx|2
e

κ
“√

1+|y|2−
√

1+|y+tx|2
”

dt. (2.37)13



This identity together with estimates (2.28) and (2.29) implies that the improper integral (2.36)
onverges absolutely and it holds
Ĝ(y) = κκn

0

∫

Rn

(x · Θ(x, y)) ∂k∂jG2(κ0x)ρ
−1
κ (x+ y)F̃ (x+ y)dx.Now we 
an demonstrate that the right-hand part of (2.35) belongs to Cα(Rn). Indeed,sin
e ρ−1

κ F̃ ∈ Cα(Rn), the rightmost integral in (2.35) determines a Cα(Rn)-fun
tion (
omparewith formula (2.34)). Further, from (2.28), (2.29) and (2.37) we get the estimate
|∂k∂jG2(κ0x)|

(

|Θ(x, y)| + |Θ(x, y) − Θ(x, z)|
|y − z|α

)

≤ 
onst |x|−ne−(κ0−κ)|x| for all x, y, z ∈ R
n.Then, using ρ−1

κ F̃ ∈ Cα(Rn) again, we easily verify that Ĝ ∈ Cα(Rn). ♦After this preparation we are ready to formulate the 
onstru
tion algorithm.Case k = 0. The problem to determine the leading term v0 is (2.18). Due to assump-tion (A2), this problem is solved by
v0(y) = Φx0

(y).Remember that at this step the value of x0 is unknown, and we have obtained a
tually an
x0-parametri
 family of fun
tions v0. If we apply a di�erential operator (c1 · ∇ξ) with any
c1 ∈ R

n to the di�erential equation in (1.5) we obtain
∆y [(c1 · ∇ξ)Φx0

] = ∂uf(x0,Φx0
, 0) [(c1 · ∇ξ)Φx0

] + (c1 · ∇x)f(x0,Φx0
, 0), (2.38)whi
h implies

∫

Rn

(c1 · ∇x)f(x0,Φx0
, 0)∂yj

Φx0
(y) dy = 0, j = 1, . . . , n. (2.39)Now, we demonstrate that the problems (2.19), (2.20) and (2.21) determine re
ursively allunknown fun
tions vk and all unknown ve
tors xk.Case k = 1. Obviously, a ne
essary 
ondition for solvability of problem (2.19) is

∫

Rn

F1(y, x0, x1, v0)∂yj
Φx0

(y) dy = 0, j = 1, . . . , n.Noti
e that be
ause of (2.22) and (2.39) this system of equations does not depend on theve
tor x1. A
tually it is equivalent to
∫

Rn

(

G(y, x0, v0(y)) − I(y, x0, v0)
)

∂yj
Φx0

(y) dy = 0, j = 1, . . . , n, (2.40)whi
h we are going to rewrite in terms of the data A, b, f and the spike's pro�le Φξ only. Forthis, we use a series of relations 
olle
ted in the lemma below.14



Lemma 2.4 We have
∫

Rn

h(y) ∂yj
Φξ(y) dy = 0 for any radially symmetri
 h ∈ L∞(Rn),

∫

Rn

(

∂yj
Φξ(y)

)

(∂yk
Φξ(y)) dy =

δjk

n

∫

Rn

|∇yΦξ(y)|2dy,

∫

Rn

yj ∂xl
f(ξ,Φξ(y), 0) ∂yk

Φξ(y) dy = −∂ξl





δjk

n

∫

Rn

|∇yΦξ(y)|2dy



 ,

∫

Rn

ys (∂yk
∂yl

Φξ(y))
(

∂yj
Φξ(y)

)

dy =
1

2n
(δklδsj − δksδlj − δkjδsl)

∫

Rn

|∇yΦξ(y)|2dy.Proof: 1) Sin
e all the derivatives ∂yj
Φξ(y) de
ay exponentially for |y| → ∞ (see Re-mark 1.3), for any h ∈ L∞(Rn) it holds h∂yj
Φξ ∈ L1(Rn). Moreover, be
ause of Φξ(y) = φξ(|y|)we have

∂yk
Φξ(y) =

yk

|y|φ
′
ξ(|y|), (2.41)and this implies the 
laimed identity.2) Similarly be
ause of (2.41) we obtain

∫

Rn

(

∂yj
Φξ

)

(∂yk
Φξ) dy =

∫

Rn

yjyk

|y|2 φ
′
ξ(|y|)dy = δjk

∫

Rn

(∂y1
Φξ)

2 dy =
δjk

n

∫

Rn

|∇yΦξ|2dy. (2.42)3) Again, be
ause of (2.41) we have
Jjkl :=

∫

Rn

yj ∂xl
f(ξ,Φξ(y), 0) ∂yk

Φξ(y) dy =

∫

Rn

yjyk

|y| ∂xl
f(ξ,Φξ(y), 0) φ′ξ(|y|) dy

= δjk

∫

Rn

y1 ∂y1







Φξ(y)
∫

0

∂xl
f(ξ, u, 0)du






dy.Then, integrating the latter expression by parts with respe
t to y1 and taking into a

ount theexponential de
ay property of Φξ (see Remark 1.3), we obtain

Jjkl = −δjk

∫

Rn

dy

Φξ(y)
∫

0

∂xl
f(ξ, u, 0)du.On the other hand, due to the de�nition (1.7) we have

∂ξl

[

F (ξ,Φξ(y), 0)
]

=

Φξ(y)
∫

0

∂xl
f(ξ, u, 0)du+ f(ξ,Φξ(y), 0) ∂ξl

Φξ(y).15



Moreover, sin
e Φξ solves problem (1.5) and de
ays exponentially at in�nity together with its�rst derivatives (see Remark 1.3), the following identity holds
∫

Rn

f(ξ,Φξ, 0) ∂ξl
Φξ dy =

∫

Rn

∆yΦξ ∂ξl
Φξ dy = −

∫

Rn

∇yΦξ · ∇y∂ξl
Φξ dy = −1

2
∂ξl

∫

Rn

|∇yΦξ|2dy.Thus, 
olle
ting together the latter three formulas and applying identity (1.9), we �nally obtain
Jjkl = −δjk∂ξl

∫

Rn

(

1

2
|∇yΦξ|2 + F (ξ,Φξ, 0)

)

dy = −δjk

n
∂ξl

∫

Rn

|∇yΦξ|2dy.4) Di�erentiating formula (2.41) with respe
t to yl, we obtain
∂yk

∂yl
Φξ(y) =

δkl

|y|φ
′
ξ(|y|) +

ykyl

|y|
d

d|y|

(

φ′ξ(|y|)
|y|

)

. (2.43)This identity together with formulas (2.41) and (2.42) implies that
∫

Rn

ys∂yk
∂yl

Φξ(y)∂yj
Φξ(y) dy =

1

n
δklδsj

∫

Rn

|∇yΦξ(y)|2dy+

∫

Rn

ykylysyj

|y|2 φ′ξ(|y|)
d

d|y|

(

φ′ξ(|y|)
|y|

)

dy.On the other hand, di�erentiating the left-hand side of previous relation by parts with respe
tto yj, we obtain
∫

Rn

ys∂yk
∂yl

Φξ∂yj
Φξ dy = −δks

∫

Rn

∂yl
Φξ∂yj

Φξ dy −
∫

Rn

ys∂yk
∂yj

Φξ∂ym
Φξ dy

= − 1

n
(δksδlj + δkjδsl)

∫

Rn

|∇yΦξ(y)|2dy −
∫

Rn

ykylysyj

|y|2 φ′ξ(|y|)
d

d|y|

(

φ′ξ(|y|)
|y|

)

dy.Now, 
omparing the latter two formulas with ea
h other, we easily �nd
∫

Rn

ykylysyj

|y|2 φ′ξ(|y|)
d

d|y|

(

φ′ξ(|y|)
|y|

)

dy = − 1

2n
(δklδsj + δksδlj + δkjδsl)

∫

Rn

|∇yΦξ(y)|2dy.Hen
e,
∫

Rn

ys∂yk
∂yl

Φξ(y)∂yj
Φξ(y) dy =

1

2n
(δklδsj − δksδlj − δkjδsl)

∫

Rn

|∇yΦξ(y)|2dy.And this ends the proof. ♦Lemma 2.4 implies that the system of equations (2.40) 
an be written as follows
Jj(x0) :=

∫

Rn

|∇yΦx0
|2dy





1

2

n
∑

k,r,s=0

q−1
jk (x0) a

−1
rs (x0) ∂xk

ars(x0) +

n
∑

r=1

br(x0) qrj(x0)





+

n
∑

k=1

q−1
jk (x0) ∂ξk

∫

Rn

|∇yΦx0
|2dy = 0, j = 0, . . . , n. (2.44)16



Here we denote by q−1
jk (x0) and a−1

rs (x0) the 
omponents of the matri
es Q(x0)
−1 = A(x0)

1/2(
f. (2.3)) and A(x0)
−1 (
f. (1.4)), respe
tively. Next, transforming the �rst term in parenthesiswith the help of Ja
obi's formula

∂xk
(detA) = tr(A−1∂xk

A),we write equations (2.44) in a matrix form
(

1

2
Q(x0)

−1∇x(log detA(x0)) +Q(x0)b(x0)

)∫

Rn

|∇yΦx0
|2dy +Q(x0)

−1∇ξ

∫

Rn

|∇yΦx0
|2dy = 0.Multiplying the latter equation by the non-degenerate matrix Q(x0) and taking into a

ountthat Q(x0)

2 = A(x0)
−1, and

∫

Rn

|∇yΦξ|2dy =
Σn−1

n

∞
∫

0

φ′ξ(r)
2rn−1dr,where Σn−1 is the surfa
e area of the n-dimensional unit ball, we obtain (1.3) whi
h, thus, isequivalent to the system (2.40). Hen
e, by assumption (A3) we 
an 
hoose

x0 = ξ0, i.e. v0 = Φξ0
. (2.45)Now, we show that the problem (2.19) with x0 and v0 determined by (2.45) has, for anygiven x1 ∈ R

n, a unique solution v1, and for any α ∈ (0, 1) we have
ρ−1

κ v1 ∈ C2+α(Rn) for all κ ∈ (0, κ0). (2.46)Indeed, due to equation (2.38) and the linear superposition prin
iple any solution of prob-lem (2.19) 
an be written in the following form
v1(y) = v1(y) + (x1 · ∇ξ)Φξ0

(y), (2.47)where v1 solves the problem
∆yv1(y) − ∂uf(ξ0,Φξ0

(y), 0)v1(y) = F1(y, ξ0, 0,Φξ0
)

= G(y, ξ0,Φξ0
(y)) − I(y, ξ0,Φξ0

),

∇yv1(0) = 0,

v1(y) → 0 for |y| → ∞.



















(2.48)But, the latter problem does have a unique solution. To see this noti
e �rst that Lemma 2.3implies the existen
e of a unique ṽ1 ∈ C2+α(Rn) ∩ RanLξ0
su
h that Lξ0

ṽ1 = F1(y, ξ0, 0,Φξ0
).This means that general solution of problem (2.48) reads

v1(y) = ṽ1(y) + (c1 · ∇y)Φξ0
(y), c1 ∈ R

n, (2.49)where c1 ∈ R
n is a free parameter. Then, substituting representation (2.49) into 
ondition

∇yv1(0) = 0, we obtain
∇y ṽ1(0) + ∇y(c1 · ∇y)Φξ0

(0) = 0. (2.50)17



This relation determines an n-dimensional linear system with respe
t to the unknown ve
tor c1.Sin
e Φξ is a radially symmetri
 solution of problem (2.18), dire
t 
al
ulation with the help offormulas (1.10) and (2.43) yields
∂yj

∂yk
Φξ0

(0) =
δjk

n
f(ξ0,Φξ0

(0), 0), (2.51)where f(ξ0,Φξ0
(0), 0) 6= 0 due to (1.11). Formula (2.51) says that the matrix of n-dimensionallinear system (2.50) is non-degenerate, hen
e (2.50) has a unique solution c1.Now, let us prove (2.46): From (1.12) it follows that ρ−1

κ Φξ0
∈ C2+α(Rn) for all κ ∈ (0, κ0).Therefore, from assumption (A1) and from (2.14) we obtain ρ−1

κ G(y, ξ0,Φξ0
) ∈ Cα(Rn) for all

κ ∈ (0, κ0). Similarly taking into a

ount that for any j = 1, . . . , n and any κ ∈ (0, κ0) it holds
yjρκ(y) ∈ Cα(Rn), we easily get that ρ−1

κ I(y, ξ0,Φξ0
) ∈ Cα(Rn) for all κ ∈ (0, κ0). Hen
e,(2.22) yields

ρ−1
κ F1(y, ξ0, x1,Φξ0

) ∈ Cα(Rn) for all κ ∈ (0, κ0). (2.52)Therefore Lemma 2.3 implies (2.46).Similarly to (2.52) one 
an show that, for any given fun
tions v0, . . . , vk ∈ C2+α(Rn) su
hthat ρ−1
κ v0, . . . , ρ

−1
κ vk ∈ C2+α(Rn) for all κ ∈ (0, κ0), we have

ρ−1
κ Fk(y, ξ0, x1, . . . , xk,Φξ0

, v1, . . . , vk) ∈ Cα(Rn) for all κ ∈ (0, κ0).Case k = 2. We 
ontinue to 
onstru
t the inner expansion of the spike and 
onsider nowthe problem (2.21) with k = 2. First, we need to reveal exa
tly the dependen
e of the right-hand side F2 on the unknown ve
tor x1. With this aim in view we substitute v1 from (2.47)into the formula (2.23) for k = 2 and obtain
F2(y, ξ0, x1, x2,Φξ0

, v1 + (x1 · ∇ξ)Φξ0
)

= (x2 · ∇x)f(ξ0,Φξ0
(y), 0) + (x1 · Ψ(y)) +

1

2
ψ(y, x1, x1) + F 2(y), (2.53)where Ψ : R

n → R
n and ψ : R

n × R
n × R

n → R are fun
tions de�ned by
(c1 · Ψ(y)) := (c1 · ∇x)(G(y, ξ0,Φξ0

(y)) − I(y, ξ0,Φξ0
))

+ ∂uG(y, ξ0,Φξ0
(y)) [(c1 · ∇ξ)Φξ0

] − I(y, ξ0, (c1 · ∇ξ)Φξ0
)

+
(

(c1 · ∇x)∂uf(ξ0,Φξ0
(y), 0) + ∂2

uf(ξ0,Φξ0
(y), 0) [(c1 · ∇ξ)Φξ0

]
)

v1, (2.54)
ψ(y, c1, c2) := ((c1 · ∇x) + [(c1 · ∇ξ)Φξ0

] ∂u) ((c2 · ∇x) + [(c2 · ∇ξ)Φξ0
] ∂u) f(ξ0,Φξ0

, 0),(2.55)and F 2(y) is a fun
tion whi
h depends neither on x1 nor on x2. Note that a

ording tode�nitions (2.23), (2.53)�(2.55) and estimates (2.12), for any κ ∈ (0, κ0) it holds
|(c1 · Ψ(y))| ≤ c(κ)|c1|e−κ|y|, |ψ(y, c1, c2)| ≤ c(κ)|c1||c2|e−κ|y| for all y ∈ R

n, (2.56)
|F 2(y)| ≤ c(κ)e−κ|y| for all y ∈ R

n,18



where c(κ) is a 
ertain positive 
onstant independent of c1, c2 and y.Formula (2.53) shows that the dependen
e of the right-hand side F2 on the ve
tor x1 isnot a�ne. However, applying the di�erential operator (c1 · ∇ξ)(c2 · ∇ξ) with any 
onstant
oe�
ients c1 ∈ R
n and c2 ∈ R

n to the di�erential equation in (1.5) and writing a 
onsisten
y
ondition by analogy with (2.39) we get
∫

Rn

ψ(y, c1, c2)∂yj
Φξ0

dy = 0, j = 1, . . . , n. (2.57)Hen
e, taking into a

ount relations (2.39) and (2.57) we 
ome to a ne
essary 
ondition forsolvability of problem (2.20) in the following form
0 =

∫

Rn

F2(y, ξ0, x1, x2,Φξ0
, v1 + (x1 · ∇ξ)Φξ0

) ∂yj
Φξ0

dy

=

∫

Rn

(x1 · Ψ(y)) ∂yj
Φξ0

dy +

∫

Rn

F 2(y) ∂yj
Φξ0

dy, j = 1, . . . , n. (2.58)Below we demonstrate that this system 
an be written as follows
(x1 · ∇x)Jj(x0) = (terms independent of x1). (2.59)For this, we apply the partial derivative operator ∂yj

to both sides of (2.38) and get after simpletransformations the identity
∆y

[

(x1 · ∇ξ)∂yj
Φξ0

]

− ∂uf(ξ0,Φξ0
(y), 0)

[

(x1 · ∇ξ)∂yj
Φξ0

]

=
(

(x1 · ∇x)∂uf(ξ0,Φξ0
(y), 0) + ∂2

uf(ξ0,Φξ0
(y), 0) [(x1 · ∇ξ)Φξ0

]
)

∂yj
Φξ0

. (2.60)Then, multiplying both sides of (2.60) by v1, integrating obtained equation by parts and takinginto a

ount the di�erential equation in (2.48), we obtain
∫

Rn

(

(x1 · ∇x)∂uf(ξ0,Φξ0
(y), 0) + ∂2

uf(ξ0,Φξ0
(y), 0) [(x1 · ∇ξ)Φξ0

]
)

v1 ∂yj
Φξ0

dy

=

∫

Rn

(

∆y

[

(x1 · ∇ξ)∂yj
Φξ0

]

− ∂uf(ξ0,Φξ0
(y), 0)

[

(x1 · ∇ξ)∂yj
Φξ0

]

)

v1 dy

=

∫

Rn

(

∆yv1 − ∂uf(ξ0,Φξ0
(y), 0)v1

)

[

(x1 · ∇ξ)∂yj
Φξ0

]

dy

=

∫

Rn

(

G(y, ξ0,Φξ0
(y)) − I(y, ξ0,Φξ0

)
)

[

(x1 · ∇ξ)∂yj
Φξ0

]

dy. (2.61)
19



Combining (2.61) with (2.54), we get
∫

Rn

(x1 · Ψ(y)) ∂yj
Φξ0

dy = (x1 · ∇ξ)





∫

Rn

[G(y, ξ0,Φξ0
(y)) − I(y, ξ0,Φξ0

)] ∂yj
Φξ0

dy





= (x1 · ∇ξ)Jj(ξ0). (2.62)Hen
e, solvability 
ondition (2.58) does have the form (2.59).Sin
e due to assumption (A3) the Ja
obian matrix
H(ξ0) := {∂xk

Jj(ξ0)}n
j,k=1 (2.63)is non-degenerate, system (2.58) determines x1 in a unique way. Knowing x1 we pro
eedfurther as in the 
ase k = 1. Due to the de�nition (2.23) and estimates (2.12) we have

ρ−1
κ F2(y, ξ0, x1, 0,Φξ0

, v1) ∈ Cα(Rn) for any κ ∈ (0, κ0). Hen
e, Lemma 2.3 implies that theproblem (2.21) with k = 2 and x2 = 0 has a unique solution v2 su
h that ρ−1
κ v2 ∈ C2+α(Rn) forall κ ∈ (0, κ0). Therefore the 
omplete problem (2.21) with k = 2 has an x2-dependent familyof solutions

v2(y) = v2(y) + (x2 · ∇ξ)Φξ0
(y), (2.64)and ρ−1

κ v2 ∈ C2+α(Rn) for all κ ∈ (0, κ0).Case k ≥ 3. By analogy with (2.47) and (2.64), we know at this step that
vk−1(y) = vk−1(y) + (xk−1 · ∇ξ)Φξ0

(y), (2.65)where the fun
tion vk−1 does not depend on xk−1. Substituting this into the de�nition of Fk(see (2.23)) we separate again the terms depending on xk and xk−1 as follows
Fk(y, ξ0, x1, ..., xk,Φξ0

, v1, . . . , vk−1 + (xk−1 · ∇ξ)Φξ0
)

= (xk · ∇x)f(ξ0,Φξ0
(y), 0) + (xk−1 · ∇x) (G(y, ξ0,Φξ0

(y)) − I(y, ξ0,Φξ0
))

+∂uG(y, ξ0,Φξ0
(y)) [(xk−1 · ∇ξ)Φξ0

] − I(y, ξ0, [(xk−1 · ∇ξ)Φξ0
]) + ψ(y, xk−1, x1)

+
(

(xk−1 · ∇x)∂uf(ξ0,Φξ0
(y), 0) + ∂2

uf(ξ0,Φξ0
(y), 0) [(xk−1 · ∇ξ)Φξ0

]
)

v1 + F k(y),(2.66)where F k(y) is a fun
tion 
olle
ting all the rest terms whi
h are independent of xk−1 and xk.Now, arguing in a similar way as in (2.61), we obtain
∫

Rn

(

(xk−1 · ∇x)∂uf(ξ0,Φξ0
(y), 0) + ∂2

uf(ξ0,Φξ0
(y), 0) [(xk−1 · ∇ξ)Φξ0

]
)

v1 ∂yj
Φξ0

dy

=

∫

Rn

(

G(y, ξ0,Φξ0
(y)) − I(y, ξ0,Φξ0

)
)

[

(xk−1 · ∇ξ)∂yj
Φξ0

]

dy.

20



Using this identity and relations (2.57), we write a ne
essary 
ondition for solvability of prob-lem (2.21) in the following form
0 =

∫

Rn

Fk(y, ξ0, x1, ..., xk,Φξ0
, v1, . . . , vk−1 + (xk−1 · ∇ξ)Φξ0

) ∂yj
Φξ0

dy

= (xk−1 · ∇ξ)





∫

Rn

[G(y, ξ0,Φξ0
(y)) − I(y, ξ0,Φξ0

)] ∂yj
Φξ0

dy



+

∫

Rn

F k(y) ∂yj
Φξ0

dy.Hen
e, due to assumption (A3) the latter system determines a unique value of xk−1. Thensolving problem (2.21) we obtain an xk-dependent family of fun
tions vk whi
h also 
an bewritten in the form (2.65), and ρ−1
κ vk ∈ C2+α(Rn) for any κ ∈ (0, κ0).It follows immediately from the above 
onstru
tion pro
edure that the inner expansion vε,msatis�es

‖Eεvε,m − f(·, uε,m + vε,m, ε) + f(·, uε,m, ε)‖Cα(Tε,m(Ω)) = O(εm+1).2.3 Inner expansion for the boundary layerThe outer expansion uε,m does not ne
essarily satisfy the boundary 
ondition on ∂Ω. In orderto 
ompensate this dis
repan
y, we 
orre
t our asymptoti
s adding to it a boundary layerterm wε,m.Re
all that above (see (2.5)) we have introdu
ed a lo
al 
oordinate system near the bound-ary ∂Ω. In this way every point x ∈ Ω with dist(x, ∂Ω) < 2δ is parameterized by the stret
heddistan
e to the boundary z = ε−1 dist(x, ∂Ω) and the 
orresponding point ζ ∈ ∂Ω for whi
h thisdistan
e is attained, i.e. dist(x, ∂Ω) = dist(x, ζ). Thus, substituting the ansatz (2.2) for uε,mand the ansatz (2.4) for wε,m into (2.8), and moving into the lo
al 
oordinate system, we get
[Eεwε,m − f(·, uε,m + wε,m, ε) + f(·, uε,m, ε)] ◦ S−1

ε = N(ζ)∂2
zw0 − f(ζ, w0, 0)

+

m
∑

k=1

εk
(

N(ζ)∂2
zwk − ∂uf(ζ, w0, 0)wk −Hk(z, ζ, w0, . . . , wk−1)

)

+O(εm+1), (2.67)where
N(ζ) :=

n
∑

i,j=1

aij(ζ)νi(ζ)νj(ζ),and the right hand sides Hk(z, ζ, w0, . . . , wk−1) depend on the fun
tions w0, . . . , wk−1 via thevalues in the point (z, ζ) of those fun
tions and their �rst and se
ond derivatives. Moreover,
Hk(z, ζ, 0, . . . , 0) = 0.Similarly we rewrite the boundary 
ondition of problem (1.1) in the lo
al 
oordinates (z, ζ)and obtain





n
∑

i,j=1

aij(x)νi(x)∂xj
(uε,m + wε,m) − g(x, uε,m + wε,m, ε)



 ◦ S−1
ε = −ε−1N(ζ)∂zw0(0, ζ)

−
m
∑

k=1

εk−1 (N(ζ)∂zwk(0, ζ) + gk(ζ, w0, . . . , wk−1)) +O(εm). (2.68)21



Here the right hand sides gk(ζ, w0, . . . , wk−1) depend on the fun
tions w0, . . . , wk−1 via thevalues in the point (0, ζ) of those fun
tions and their �rst derivatives.Now, we pro
eed as follows. First, we solve the problem
N(ζ)∂2

zw0(z, ζ) − f(ζ, w0(z, ζ), 0) = 0,

∂zw0(0, ζ) = 0,

w0(z, ζ) → 0 for z → ∞,











(2.69)whi
h is a
tually a one dimensional boundary value problem with respe
t to z, with variable ζplaying the role of parameter only. Due to assumption (A1), we 
an 
hoose
w0(z, ζ) = 0.Remark that problem (2.69) may have other, nonzero solutions. Those other solutions to (2.69)would produ
e other approximate solutions and, via the pro
edure of Se
tion 4, other exa
tsolutions to (1.1). Note that those exa
t solutions to (1.1) would not belong to the domains oflo
al uniqueness, des
ribed by Theorems 1.1 and 4.1, of 
ourse.After w0 has been �xed, we solve in the next steps the linear boundary value problems whi
hdetermine the fun
tions wk:

N(ζ)∂2
zwk(z, ζ) − ∂uf(ζ, 0, 0)wk = Hk(z, ζ, w0, . . . , wk−1),

N(ζ)∂zwk(0, ζ) = −gk(ζ, w0, . . . , wk−1),

wk(z, ζ) → 0 for z → ∞.











(2.70)Sin
e the 
oe�
ients of 
orresponding homogeneous di�erential equation do not depend on zand be
ause of assumption (A1), one 
an easily 
onstru
t Green's fun
tion G(z, z′, ζ) and writethe unique solution to problem (2.70) in the following integral form
wk(z, ζ) = N(ζ)−1µ(ζ)−1gk(ζ, w0, . . . , wk−1)e

−µ(ζ)z +

∞
∫

0

G(z, z′, ζ)Hk(·)dz′, (2.71)where
G(z, z′, ζ) :=







−[µ(ζ)N(ζ)]−1e−µ(ζ)z′

cosh(µ(ζ)z) for 0 ≤ z ≤ z′,

−[µ(ζ)N(ζ)]−1 cosh(µ(ζ)z′)e−µ(ζ)z for z′ < z,and µ(ζ) := [∂uf(ζ, 0, 0)/N(ζ)]
1/2. Using formula (2.71) we easily derive the exponential esti-mates (2.13). Indeed, due to assumption (A1) we have H1(z, ζ, 0) = 0. Hen
e, formula (2.71)for k = 1 determines w1 whi
h obviously satis�es estimate (2.13). Now, we pro
eed by indu
-tion. Suppose that all fun
tions wj , j = 0, . . . , k − 1, satisfy estimate (2.13). Then expansionformulas (2.67) and (2.68) implies that for all κ ∈ (0,κ0) there exists a 
onstant c > 0 su
hthat

|Hk(z, ζ, 0, . . . , wk−1)| ≤ ce−κz for all (z, ζ) ∈ [0,∞) × ∂Ω.This means, in parti
ular, that integral formula (2.71) determines 
orre
tly a solution wk toproblem (2.70), and the exponential estimate (2.13) holds.22



Now, we obtain immediately from the above 
onstru
tion pro
edure that the inner expan-sion wε,m satis�es
‖Eεwε,m − f(·, uε,m + wε,m, ε) + f(·, uε,m, ε)‖Cα(Sε(Ω)) = O(εm+1), (2.72)
∥

∥

∥

∥

∥

∥

n
∑

i,j=1

aij(·)νi(·)∂xj
(uε,m + wε,m) − g(·, uε,m + wε,m, ε)

∥

∥

∥

∥

∥

∥

C1+α(Sε(∂Ω))

= O(εm).Indeed, in the δ-vi
inity of boundary ∂Ω the relation (2.72) is ful�lled be
ause of the determiningproblems (2.69) and (2.70). In the rest of domain Ω this relation is satis�ed sin
e exponentialestimates (2.13) hold.3 A generalized Impli
it Fun
tion TheoremIn this se
tion we formulate and prove an impli
it fun
tion theorem with minimal assumptions
on
erning 
ontinuity with respe
t to the 
ontrol parameter.Our impli
it fun
tion theorem is very 
lose to those of P. C. Fife andW. M. Greenlee [9,Theorem 4.2℄ and of R. Magnus [19, Theorem 1.2℄. For other impli
it fun
tion theorems withweak assumptions 
on
erning 
ontinuity with respe
t to the 
ontrol parameter see also [2,Theorem 7℄ and [10, Theorem 3.4℄. For appli
ations of our impli
it fun
tion theorem to othersingularly perturbed problems see [35, 27℄.Theorem 3.1 Let for any ε ∈ (0, ε0) be given Bana
h spa
es Uε and Vε and maps Fε ∈
C1(Uε, Vε) su
h that

‖Fε(0)‖ → 0 for ε→ +0, (3.1)
‖F ′

ε(u) − F ′
ε(0)‖ → 0 for |ε| + ‖u‖ → 0 (3.2)and there exist ε1 ∈ (0, ε0] and c > 0 su
h that for all ε ∈ (0, ε1)the operators F ′

ε(0) are invertible and ‖F ′
ε(0)−1‖ ≤ c.

} (3.3)Then there exist ε2 ∈ (0, ε1) and δ > 0 su
h that for all ε ∈ (0, ε2) there exists exa
tly one
u = uε with ‖u‖ < δ and Fε(u) = 0. Moreover,

‖uε‖ ≤ 2c ‖Fε(0)‖. (3.4)Proof: For ε ∈ (0, ε1) we have Fε(u) = 0 if and only if
Gε(u) := u− F ′

ε(0)−1Fε(u) = u. (3.5)Moreover, for su
h ε and all u, v ∈ Uε we have
Gε(u) −Gε(v) =

∫ 1

0

G′
ε(su+ (1 − s)v)(u − v)ds

= F ′
ε(0)−1

∫ 1

0

(F ′
ε(0) − F ′

ε(su + (1 − s)v)) (u− v)ds.23



Hen
e, assumptions (3.2) and (3.3) imply that there exist ε2 ∈ (0, ε1) and δ > 0 su
h that forall ε ∈ (0, ε2)

‖Gε(u) −Gε(v)‖ ≤ 1

2
‖u− v‖ for all u, v ∈ Kδ

ε := {w ∈ Uε : ‖w‖ ≤ δ}.Using this and (3.3) again, for all ε ∈ (0, ε2) we get
‖Gε(u)‖ ≤ ‖Gε(u) −Gε(0)‖ + ‖Gε(0)‖ ≤ 1

2
‖u‖ + c‖Fε(0)‖. (3.6)Hen
e, assumption (3.1) yields that Gε maps Kδ

ε into Kδ
ε for all ε ∈ (0, ε2), if ε2 is 
hosen su�-
iently small. Now, Bana
h's �xed point theorem gives a unique in Kδ

ε solution u = uε to (3.5)for all ε ∈ (0, ε2). Moreover, inequality (3.6) yields ‖uε‖ ≤ 1/2‖uε‖ + c‖Fε(0)‖, i.e. (3.4). ♦The following lemma is [19, Lemma 1.3℄, translated to our setting. It gives a 
riterion howto verify the key assumption (3.3) of Theorem 3.1:Lemma 3.2 Let F ′
ε(0) be Fredholm of index zero for all ε ∈ (0, ε0). Suppose that there do notexist sequen
es ε1, ε2 . . . ∈ (0, ε0) and u1 ∈ Uε1

, u2 ∈ Uε2
. . . with ‖uk‖ = 1 for all k ∈ N and

|εk| + ‖F ′
εk

(0)uk‖ → 0 for k → ∞. Then (3.3) is satis�ed.Proof: Suppose that proposition (3.3) is not true. Then there exists a sequen
e ε1, ε2 . . . ∈
(0, ε0) with εk → 0 for k → ∞ su
h that either F ′

εk
(0) is not invertible or it is but ‖F ′

εk
(0)−1‖ ≥ kfor all k ∈ N. In the �rst 
ase there exist uk ∈ Uεk

with ‖uk‖ = 1 and F ′
εk

(0)uk = 0 (be
ause
F ′

εk
(0) is Fredholm of index zero). In the se
ond 
ase there exist vk ∈ Vεk

with ‖vk‖ = 1 and
‖F ′

εk
(0)−1vk‖ ≥ k, i.e.

‖F ′
εk

(0)uk‖ ≤ 1

k
with uk :=

F ′
εk

(0)−1vk

‖F ′
εk

(0)−1vk‖
.But this 
ontradi
ts to the assumptions of the lemma. ♦4 Existen
e and lo
al uniqueness of exa
t solutionsIn Se
tion 2, we have 
onstru
ted a sequen
e of formal approximate solutions Wε,m to prob-lem (1.1). Now we are going to prove the existen
e of a lo
ally unique exa
t solution uε toproblem (1.1) su
h that Wε,m is 
lose to uε for small ε. It will be shown that all Wε,m approx-imate the same exa
t solution uε, and the larger is m the 
loser is Wε,m to uε. In order toobtain su
h results we rewrite problem (1.1) in abstra
t form and then apply our generalizedImpli
it Fun
tion Theorem. As a result we obtainTheorem 4.1 Suppose that assumptions (A1)�(A4) are ful�lled. Then for any m ≥ 0 and any

α ∈ (0, 1) there exist εm,α > 0, δm,α > 0 and cm,α > 0 su
h that the following is true:(i) For all ε ∈ (0, εm,α) there exists a solution u = uε to (1.1) su
h that
‖uε −Wε,m‖2+α,ε;Ω ≤ cm,αε

m+1. (4.1)24



(ii) If u is a solution to (1.1) with ε ∈ (0, εm,α) and
u ∈ Bm,α :=

{

u ∈ C2+α(Ω) : ‖u−Wε,m‖2+α,ε;Ω < δm,αε
2
}

.then u = uε.We postpone the proof of Theorem 4.1 to the end of this se
tion, sin
e it is based onTheorem 4.6 to be formulated below.Remark 4.2 Theorem 1.1 is just Theorem 4.1 in the spe
ial 
ase m = 0.Remark 4.3 Suppose that the Hölder 
onstant α is �xed. Then applying Theorem 4.1 withdi�erent m = 0, . . . , k we obtain an array of solutions um
ε to problem (1.1), ea
h of whi
h isunique in the 
orresponding ball Bm,α. Sin
e min

m≤k
δm,α > 0 and it holds

‖Wε,m −Wε,m+1‖2+α,ε;Ω = O(εm+1) for ε→ 0, (4.2)one 
an 
hoose ε0 > 0 su
h that for every ε ∈ (0, ε0) all the solutions um
ε 
oin
ide. In otherwords, for su�
iently small ε, Theorem 4.1 provides di�erent asymptoti
s for the same solutionto problem (1.1) whi
h is unique in ∪k

m=0Bm,α.In the rest of this se
tion, we assume that the Hölder 
onstant α ∈ (0, 1) is a �xed number.Our main purpose is to reveal the ε-dependen
e of solution uε to problem (1.1). Thereforewriting any estimate we will not monitor whether 
onstants appearing there depend on α,although su
h a dependen
e is typi
ally present.Auxiliary family of approximate solutions Uε,m,σ. In Se
tion 2, we have 
onstru
ted asequen
e of approximate solutions Wε,m(x) 
onsisting of three di�erent parts: the outer expan-sion uε,m(x), the inner expansion wε,m(x) of the boundary layer and the inner expansion vε,m(x)of the spike. Re
all that the inner expansion of the spike is determined as the sum (2.2) ofexponentially de
aying fun
tions vk depending on the stret
hed variable Tε,m(x), and the latteris given by formula (2.3) whi
h 
ontains the approximate spike's position xε,m as a parameter.Keeping the outer expansion uε,m and the inner expansion wε,m of the boundary layerun
hanged, we de�ne the σ-parametri
 family of fun
tions
Uε,m,σ(x) := uε,m(x) + wε,m(x) + vε,m,σ(x), (4.3)where

vε,m,σ(x) := ε(σ · ∇ξ)Φξ0
(Tε,m,σ(x)) +

m
∑

k=0

εkvk(Tε,m,σ(x)),

Tε,m,σ(x) :=
1

ε
Q(xε,m + εσ)(x − xε,m − εσ), (4.4)and σ ∈ R

n is a parameter. Compared with the approximate solution Wε,m, we performedthe following modi�
ations. To obtain Tε,m,σ from the de�nition of Tε,m, we shifted the ap-proximate spike's position xε,m in the dire
tion of ve
tor εσ. Respe
tively, we repla
ed vε,mwith vε,m,σ, where all the terms vk are identi
al to those in de�nition of vε,m (
f. (2.2)), but25



the stret
hed variable Tε,m,σ is di�erent. Finally, in de�nition of vε,m,σ we introdu
ed theadditional term ε(σ · ∇ξ)Φξ0
(Tε,m,σ(x)) whi
h guarantees that the resulting fun
tion Uε,m,σsatis�es the di�erential equation of problem (1.1) with a dis
repan
y of order O(ε2) for all σon 
ompa
t sets. Indeed, following the 
onstru
tion algorithm des
ribed in Subse
tion 2.2 (see,in parti
ular, formulas (2.17), (2.22), (2.23) and (2.53)), we get

(

Eεvε,m,σ − f(·, uε,m + vε,m,σ, ε) + f(·, uε,m, ε)
)

◦ T−1
ε,m,σ(y) =

−ε2
(

σ · Ψ(y) +
1

2
ψ(y, x1 + σ, x1 + σ) − 1

2
ψ(y, x1, x1)

)

+ ε3r(y, σ, ε), (4.5)where the fun
tions Ψ and ψ are de�ned in (2.54) and (2.55), and r : R
n × R

n × R → Ris the remainder term in the 
orresponding Taylor formula. Taking into a

ount exponentialestimates (2.12) we easily verify that for any κ ∈ (0, κ0) and any multi-indi
es |µ1| ≤ 2 and
|µ2| ≤ 1 it holds

|Dµ1

y Dµ2

σ r(y, σ, ε)| ≤ c(κ, σ0, ε0) e
−κ|y| for all y ∈ R

n, (4.6)where c(κ, σ0, ε0) is a positive 
onstant independent of y, |σ| < σ0 and ε ∈ (0, ε0).Remark 4.4 A

ording to de�nition (5.6) from Appendix, for every non-negative integer k andevery λ ∈ (0, 1) we have ‖u‖k+λ,ε;Ω = ‖u ◦ T−1
ε ‖Ck+λ(Tε(Ω)). Sin
e

(

Tε,m,σ ◦ T−1
ε

)

(y) = Q(xε,m + εσ)
(

y − xε,m

ε
− σ

) for all y ∈ Tε,m,σ(Ω),and u ◦ T−1
ε =

(

u ◦ T−1
ε,m,σ

)

◦
(

Tε,m,σ ◦ T−1
ε

), it is easy to verify that there exist two positive
onstants c1 and c2 su
h that for any ε ∈ (0, ε0), any |σ| < σ0 and all u ∈ Ck+λ(Ω) it holds
c1‖u ◦ T−1

ε,m,σ‖Ck+λ(Tε,m,σ(Ω)) ≤ ‖u‖k+λ,ε;Ω ≤ c2‖u ◦ T−1
ε,m,σ‖Ck+λ(Tε,m,σ(Ω)).This means that norms ‖u‖k+λ,ε;Ω and ‖u◦T−1

ε,m,σ‖Ck+λ(Tε,m,σ(Ω)) are equivalent uniformly withrespe
t to ε and σ.Estimates for approximate solutions Uε,m,σ. Below we are going to derive some es-timates for approximate solutions Uε,m,σ. Our main tool will be the di�erentiation formulapresented in the followingRemark 4.5 For every smooth fun
tion v(y, σ) : R
n × R

n → R and every σ ∈ R
n it holds

(σ · ∇σ)
(

v(·, σ) ◦ Tε,m,σ

)

◦ T−1
ε,m,σ(y) = (σ · ∇σ)v(y, σ) −

(

σ ·Q(xε,m + εσ)∇y

)

v(y, σ)

+ε
(

(σ · ∇x)Q(xε,m + εσ)Q(xε,m + εσ)−1y · ∇y

)

v(y, σ). (4.7)A

ording to de�nition of Uε,m,σ we have∇σUε,m,σ = ∇σvε,m,σ. Applying here formula (4.7)and taking into a

ount exponential estimates (2.12) we 
on
lude that for any κ ∈ (0, κ0) andany multi-index |µ| ≤ 3 it holds
∣

∣

∣Dµ
y

(

∂σj
Uε,m,σ ◦ T−1

ε,m,σ(y)
)∣

∣

∣ ≤ c(κ, σ0, ε0)e
−κ|y| for all y ∈ R

n, j = 1, . . . , n, (4.8)26



where c(κ, σ0, ε0) > 0 is a 
onstant independent of y, |σ| < σ0 and ε ∈ (0, ε0). The pointwiseestimate (4.8) implies two 
orollaries formulated in terms of ε-dependent Hölder norms. Namely,for every m ≥ 0 and every ε ∈ (0, ε0), |σ| < σ0 it holds
max

j

∥

∥∂σj
Uε,m,σ

∥

∥

2+α,ε;Ω
≤ c0(ε0, σ0), (4.9)

max
j

∥

∥∂σj
Uε,m,σ

∥

∥

2+α,ε;∂Ω
≤ c0(ε0, σ0)e

−c(ε0,σ0)/ε, (4.10)where c0(ε0, σ0) and c(ε0, σ0) are positive 
onstants independent of ε, σ and Ω. Moreover,applying the mean value theorem and formulas (4.9) we get
∥

∥

∥Uε,m,σ − Uε,m,0

∥

∥

∥

2+α,ε;Ω
≤ c0(ε0, σ0)|σ| for all |σ| ≤ σ0. (4.11)Remark also that in a similar way we obtain the estimate for the se
ond derivative

max
i,j

∥

∥∂σi
∂σj

Uε,m,σ

∥

∥

2+α,ε;Ω
≤ 
onst (4.12)for all ε ∈ (0, ε0) and all |σ| ≤ σ0.Finally we prove that

∥

∥

∥ε−2(σ · ∇σ)
(

EεUε,m,σ − f(·,Uε,m,σ, ε)
)

+ σ · Ψ(Tε,m,σ) + ψ(Tε,m,σ, x1 + σ, σ)
∥

∥

∥

α,ε;Ω

≤ c(σ0, ε0)|σ|(|σ| + |ε|), (4.13)where c(σ0, ε0) is a 
onstant independent of |σ| < σ0 and ε ∈ (0, ε0). For this, we di�erentiateformula (4.5) with the help of identity (4.7). Then, taking into a

ount estimates (2.56), (4.6)and the identity
(σ · ∇σ)ψ(y, x1 + σ, x1 + σ) = 2ψ(y, x1 + σ, σ)following from de�nition (2.55), we obtain (4.13).Reformulation of problem (1.1). For every ε ∈ (0,∞) let us de�ne the pair of Bana
hspa
es
Uε :=

(

C2+α(Ω), ‖ · ‖2+α,ε;Ω

)

× (Rn, | · |)and
Vε :=

(

Cα(Ω), ‖ · ‖α,ε;Ω

)

×
(

C1+α(∂Ω), ‖ · ‖1+α,ε;∂Ω

)

× (Rn, | · |) ,where | · | denotes Eu
lidian norm in R
n.Now, instead of the original boundary value problem (1.1) we 
onsider the following abstra
tequation
Fε(v, σ) = 0, (4.14)where the operator Fε : Uε → Vε reads

Fε(v, σ) :=















ε−2

(

Eε(ε
2v + Uε,m,σ) − f(·, ε2v + Uε,m,σ, ε)

)

ε−1

(

n
∑

i,j=1

aij(·) νi(·) ∂xj
(ε2v + Uε,m,σ) − g(·, ε2v + Uε,m,σ, ε)

)

ε−1
(

∇x(ε2v + Uε,m,σ)
)

(xε,m + εσ)















,27



and where solution u to problem (1.1) was represented via the following ansatz
u = ε2v + Uε,m,σ with (v, σ) ∈ Uε. (4.15)In what follows we shall assume that m ≥ 2. This restri
tion as well as the appearan
e ofadditional fa
tors ε2 and ε−2 in the de�nition of operator Fε re�e
ts, roughly speaking, the fa
tthat to determine parameter σ during the 
onstru
tion of approximate solution one needs to
onsider the se
ond order approximation equation (2.20) of the algorithm des
ribed in Se
tion 2.De�nition of operator Fε 
ontains three 
omponents: the �rst and the se
ond 
omponents
oin
ide with the di�erential equation and boundary 
ondition of problem (1.1), while the third
omponent means that the point xε,m + εσ is an extremum of solution u. Hen
e, it is easyto see that every solution (v, σ) of augmented equation (4.14) determines via formula (4.15) asolution to problem (1.1). Further every ‖ ·‖2+α,ε;Ω-vi
inity of Wε,m is naturally proje
ted ontothe vi
inity of origin in Uε, therefore proving the following theorem we simultaneously justifyTheorem 4.1.Theorem 4.6 Suppose that assumptions (A1)�(A4) are ful�lled.Then there exist ε0 > 0, δ > 0 and c > 0 su
h that for all ε ∈ (0, ε0) there exists exa
tly onesolution (vε, σε) of equation Fε(v, σ) = 0 with ‖(vε, σε)‖Uε

< δ. Moreover,
‖(vε, σε)‖Uε

≤ 2c ‖Fε(0, 0)‖Vε
.Proof: We are going to apply Theorem 3.1, therefore we verify its assumptions.Veri�
ation of assumption (3.1). The 
onstru
tion of fun
tion Uε,m,σ implies that

Uε,m,0 = Wε,m and Tε,m,0 = Tε,m. Hen
e, we get
Fε(0, 0) =















ε−2

(

EεWε,m − f(·,Wε,m, ε)

)

ε−1

(

n
∑

i,j=1

aij(·) νi(·) ∂xj
Wε,m − g(·,Wε,m, ε)

)

ε−1(∇xWε,m)(xε,m)















. (4.16)Now estimates (2.9) and (2.10) from Theorem 2.1 imply that for ε→ 0 it holds
‖Fε(0, 0)‖Vε

≤ 
onst εm−1. (4.17)In parti
ular, ‖Fε(0, 0)‖Vε
→ 0 for ε→ 0 provided m ≥ 2.Veri�
ation of assumption (3.2). We 
al
ulate the derivative operator
F ′

ε(v, σ)(v, σ) =









[F ′
ε(v, σ)(v, σ)]1

[F ′
ε(v, σ)(v, σ)]2

[F ′
ε(v, σ)(v, σ)]3









.
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Its �rst 
omponent reads as follows
[F ′

ε(v, σ)(v, σ)]1 = Eεv − ∂uf(·, ε2v + Uε,m,σ, ε)v + ε−2(σ · ∇σ)
(

EεUε,m,σ − f(·,Uε,m,σ, ε)
)

+ ε−2(σ · ∇σ)
(

f(·,Uε,m,σ, ε) − f(·, ε2v + Uε,m,σ, ε)
)

.Similarly we 
al
ulate the se
ond 
omponent
[F ′

ε(v, σ)(v, σ)]2 = ε





n
∑

i,j=1

aij(·) νi(·) ∂xj
v − ∂ug(·, ε2v + Uε,m,σ, ε)v





+ ε−1(σ · ∇σ)





n
∑

i,j=1

aij(·) νi(·) ∂xj
Uε,m,σ − g(·,Uε,m,σ, ε)





+ ε−1(σ · ∇σ)
(

g(·,Uε,m,σ, ε) − g(·, ε2v + Uε,m,σ, ε)
)

.Finally, applying de�nition (4.3) we get
(∇xUε,m,σ)(xε,m + εσ) = (∇xuε,m)(xε,m + εσ)

+ ε−1Q(xε,m + εσ)

(

ε(σ · ∇ξ)∇yΦξ0
(0) +

m
∑

k=0

εk∇yvk(0)

)

,and this together with the fa
t that (σ · ∇ξ)∇yΦξ0
(0) = 0 results in

[F ′
ε(v, σ)(v, σ)]3 = ε (∇xv) (xε,m + εσ) + ε2

(

(σ · ∇x)∇xv
)

(xε,m + εσ)

+
(

(σ · ∇x)∇xuε,m

)

(xε,m + εσ) +
(

(σ · ∇x)Q(xε,m + εσ)
)

(

m
∑

k=0

εk−1∇yvk(0)

)

.Using obtained formulas for 
omponents of the derivative operator F ′
ε(v, σ) we shall verifythat ‖F ′

ε(v, σ)(v, σ) − F ′
ε(0, 0)(v, σ)‖Vε

→ 0 for ε + ‖(v, σ)‖Uε
→ 0, uniformly with respe
t to

‖(v, σ)‖Uε
= 1. In parti
ular, for the �rst 
omponent we write the inequality
∥

∥

∥ [F ′
ε(v, σ)(v, σ)]1 − [F ′

ε(0, 0)(v, σ)]1

∥

∥

∥

α,ε;Ω

≤
∥

∥

∥

(

∂uf(·, ε2v + Uε,m,σ, ε) − ∂uf(·,Uε,m,0, ε)
)

v
∥

∥

∥

α,ε;Ω

+
∥

∥

∥ε−2(σ · ∇σ)
(

EεUε,m,σ − f(·,Uε,m,σ, ε) − EεUε,m,0 + f(·,Uε,m,0, ε)
)∥

∥

∥

α,ε;Ω

+
∥

∥

∥ε−2(σ · ∇σ)
(

f(·, ε2v + Uε,m,σ, ε) − f(·,Uε,m,σ, ε)
)

∥

∥

∥

α,ε;Ω
(4.18)29



and estimate separately ea
h term in the right-hand part of (4.18). First, employing inequali-ties (4.11), (5.9) and (5.11), we easily get the following estimate
∥

∥

∥

(

∂uf(·, ε2v + Uε,m,σ, ε) − ∂uf(·,Uε,m,0, ε)
)

v
∥

∥

∥

α,ε;Ω

=

∥

∥

∥

∥

∥

∥

1
∫

0

∂2
uf
(

·, ε2tv + tUε,m,σ + (1 − t)Uε,m,0, ε
)

dt ·
(

ε2v + Uε,m,σ − Uε,m,0

)

v

∥

∥

∥

∥

∥

∥

α,ε;Ω

≤ 
onst ‖v‖α,ε;Ω ·
∥

∥ε2v + Uε,m,σ − Uε,m,0

∥

∥

α,ε;Ω
≤ 
onst ‖v‖α,ε;Ω ·

{

ε2‖v‖α,ε;Ω + |σ|
}

.In a similar way we 
onsider the third term in the right-hand part of (4.18) and 
on
lude thatit obeys the inequality
∥

∥

∥ε−2(σ · ∇σ)
(

f(·, ε2v + Uε,m,σ, ε) − f(·,Uε,m,σ, ε)
)

∥

∥

∥

α,ε;Ω

=

∥

∥

∥

∥

∥

∥

(σ · ∇σ)





1
∫

0

∂uf(·, tε2v + Uε,m,σ, ε)dt



 v

∥

∥

∥

∥

∥

∥

α,ε;Ω

≤ 
onst |σ| · ‖v‖α,ε;Ω.Finally, we apply formula (4.13) to estimate the se
ond term in the right-hand part of (4.18),and 
onsidering the di�eren
e ψ(y, x1 +σ, σ)−ψ(y, x1, σ) with the help of de�nition (2.55) andinequalities (2.56) we obtain
∥

∥

∥ε−2(σ · ∇σ)
(

EεUε,m,σ − f(·,Uε,m,σ, ε) − EεUε,m,0 + f(·,Uε,m,0, ε)
)∥

∥

∥

α,ε;Ω
≤ 
onst |σ| (|σ| + |ε|) .The estimate for ‖[F ′

ε(v, σ)(v, σ)]2 − [F ′
ε(0, 0)(v, σ)]2‖1+α,ε;∂Ω is even simpler to obtain, sin
ethe approximate solution Uε,m,σ and all its partial derivatives involved into the de�nitionof [F ′

ε(v, σ)(v, σ)]2 are exponentially small near the boundary ∂Ω (see inequalities (4.10)).Finally, we analyze the third 
omponent of the derivative operator F ′
ε(v, σ). A

ording to the
onstru
tion pro
edure des
ribed in Se
tion 2, we know that u0 = 0, ∇yv0(0) = ∇yv1(0) = 0.Then taking into a

ount de�nition (5.6), we easily obtain

∥

∥

∥ [F ′
ε(v, σ)(v, σ)]3 − [F ′

ε(0, 0)(v, σ)]3

∥

∥

∥

Rn
≤ 
onst (|σ| ‖v‖2+α,ε;Ω + ‖v‖2+α,ε;Ω + ε) → 0.Hen
e, we have shown that assumption (3.2) is also satis�ed.Veri�
ation of assumption (3.3). We are going to apply Lemma 3.2. For this we �rstwrite operator F ′

ε(0, 0) in the matrix form
F ′

ε(0, 0)(v, σ) =









F11v F12σ

F21v F22σ

F31v F32σ









,
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where








F11v

F21v

F31v









=













Eεv − ∂uf(·,Wε,m, ε)v

ε

(

n
∑

i,j=1

aij(·) νi(·) ∂xj
v − ∂ug(·,Wε,m, ε)v

)

ε (∇xv) (xε,m)











and








F12σ

F22σ

F32σ









=























ε−2(σ · ∇σ)

(

EεUε,m,σ − f(·,Uε,m,σ, ε)

)∣

∣

∣

∣

σ=0

ε−1(σ · ∇σ)

(

n
∑

i,j=1

aij(·) νi(·) ∂xj
Uε,m,σ − g(·,Uε,m,σ, ε)

)∣

∣

∣

∣

∣

σ=0

((σ · ∇x)∇xuε,m) (xε,m) + ((σ · ∇x)Q(xε,m))

(

m
∑

k=0

εk−1∇yvk(0)

)























.

A

ording to 
lassi
al results on boundary value problems for linear ellipti
 equations (seefor example [18℄), the operator
(

F11v

F21v

)

: C2+α(Ω) → Cα(Ω) × C1+α(∂Ω)is a Fredholm operator of index zero. On the other hand all the rest 
omponents
F31 : C2+α(Ω) → R

n, F12 : R
n → Cα(Ω), F22 : R

n → C1+α(∂Ω) and F32 : R
n → R

nare operators with �nite-dimensional ranges. Hen
e, the 
omposite operator F ′
ε(0, 0) is a Fred-holm operator of index zero from Uε to Vε, and to apply Lemma 3.2 we yet need to verify itsse
ond assumption only.We perform this veri�
ation by 
ontradi
tion. For this we suppose that εk ∈ (0,∞) and

(uk, σk) ∈ Uεk
are two sequen
es with

‖(uk, σk)‖Uεk
= ‖uk‖2+α,εk;Ω + ‖σk‖Rn = 1 (4.19)and

εk +
∥

∥

∥F ′
εk

(0, 0)(uk, σk)
∥

∥

∥

Vεk

→ 0 for k → ∞. (4.20)Then our strategy will be to demonstrate that assumptions (4.19) and (4.20) lead to the limit
‖(uk, σk)‖Uεk

→ 0 for k → ∞, whi
h obviously 
ontradi
ts to (4.19).Before we pro
eed further, let us write expli
itely the meaning of limit (4.20) for ea
h
omponent of the operator F ′
εk

(0, 0)(uk, σk). To simplify the resulting formulas we negle
t inea
h of them all the terms that vanish for ε→ 0. Noti
e that be
ause of (4.19) without loss ofgenerality we may assume that there exists σ∗ ∈ R
n su
h that

σk → σ∗ in R
n for k → ∞.31



To this end, we 
onsider the �rst 
omponent of operator F ′
εk

(0, 0)(uk, σk) whi
h reads
[

F ′
εk

(0, 0)(uk, σk)
]

1
= Eεk

uk − ∂uf(·,Wεk,m, εk)uk

+ ε−2
k (σk · ∇σ)

(

Eεk
Uεk,m,σ − f(·,Uεk,m,σ, εk)

)∣

∣

∣

∣

∣

σ=0

.Then taking into a

ount assumptions (4.19) and (4.20), and simplifying the last term with thehelp of estimate (4.13), we get
∥

∥

∥Eεk
uk − ∂uf(·,Wεk,m, εk)uk − σ∗ · Ψ(Tεk,m) − ψ(Tεk,m, x1, σ∗)

∥

∥

∥

α,εk;Ω
→ 0. (4.21)For the se
ond 
omponent [F ′

εk
(0, 0)(uk, σk)

]

2
, we take use of the fa
t that fun
tion Uε,m,σand all its partial derivatives are exponentially small near boundary ∂Ω (see inequality (4.10)).Combining this with assumption (4.19) and negle
ting in the limit

∥

∥

[

F ′
εk

(0, 0)(uk, σk)
]

2

∥

∥

1+α,εk;∂Ω
→ 0all the terms vanishing for ε→ 0, we obtain

∥

∥

∥

∥

∥

∥

εk

n
∑

i,j=1

aij(·) νi(·) ∂xj
uk

∥

∥

∥

∥

∥

∥

1+α,εk;∂Ω

→ 0. (4.22)Finally, we 
onsider the meaning of limit (4.20) for the third 
omponent [F ′
εk

(0, 0)(uk, σk)
]

3
.Here, sin
e the outer expansion uε,m starts with a term of order O(ε) and be
ause of identities

∇yv0(0) = ∇yv1(0) = 0 (see 
onstru
tion pro
edure in Se
tion 2), we easily get
∥

∥

∥εk (∇xuk) (xεk,m)
∥

∥

∥

Rn
→ 0. (4.23)In the rest of proof we will show that as a 
onsequen
e of assumptions (4.19) and (4.20) wehave two limits

σk → 0 (4.24)and
∥

∥

∥

∥

∥

∥

ε2k

n
∑

i,j=1

∂xi
(aij(·) ∂xj

uk) − ∂uf(·, 0, 0)uk

∥

∥

∥

∥

∥

∥

α,εk;Ω

→ 0. (4.25)Regarding the latter limit, we remark that in 
ontrary to (4.21) it 
ontains the positive 
oe�-
ient ∂uf(x, 0, 0) (see assumption (A1)) instead of the sign-
hanging 
oe�
ient ∂uf(x,Wεk,m, εk).Therefore, as soon as we prove (4.25) we 
an apply the ε-dependent S
hauder-type estimatesfrom Appendix to 
on
lude that ‖uk‖2+α,εk;Ω → 0 for k → ∞. Then this limit togetherwith (4.24) will 
onstitute the ne
essary 
ontradi
tion ‖(uk, σk)‖Uεk
→ 0 for k → ∞.For the sake of 
learness we divide further argumentation into few steps.Step 1. Operator Pε,s. For every s ∈ (0, κ0), where κ0 is given by (2.11), we de�ne anoperator

Pε,s : Cα(Ω) → Cα(Rn) ∩ L2(Rn),32



by
Pε,su := ((χ0u) ◦ T−1

ε,m)ρs. (4.26)Here
ρs(y) = e−s(

√
1+|y|2−1) with y ∈ R

nis the exponentially de
aying fun
tion de�ned previously in (2.25), and χ0 : Ω → R is a smooth
ut-o� fun
tion su
h that
χ0(x) = 1 for |x− ξ0| < δ and χ0(x) = 0 for |x− ξ0| > 2δ, where δ =

1

4
dist(ξ0, ∂Ω).Note, in de�nition (4.26) we assume that the produ
t χ0u is extended by zero on the whole R

n.Then the argument of resulting fun
tion is stret
hed a

ording to the transformation T−1
ε,m andthe obtained fun
tion is �nally multiplied by the fa
tor ρs.Taking into a

ount Remark 4.4 and inequalities (5.8), (5.9) from Appendix, we easily verifythat for any ε0 > 0 there exists c0(ε0) > 0 su
h that for all ε ∈ (0, ε0) and u ∈ Cα(Ω) it holds

∥

∥(χ0u) ◦ T−1
ε,m

∥

∥

Cα(Rn)
≤ c0(ε0)‖u‖α,ε;Ω (4.27)and

‖Pε,su‖Cα(Rn) ≤ ‖ρs‖Cα(Rn)

∥

∥(χ0u) ◦ T−1
ε,m

∥

∥

Cα(Rn)
≤ c0(ε0)‖ρs‖Cα(Rn)‖u‖α,ε;Ω.Moreover, sin
e de�nition (4.26) 
ontains exponentially de
aying fa
tor ρs ∈ L2(Rn) the esti-mate (4.27) implies

‖Pε,su‖L2(Rn) ≤ ‖ρs‖L2(Rn)

∥

∥(χ0u) ◦ T−1
ε,m

∥

∥

L∞(Rn)
≤ c0(ε0)‖ρs‖L2(Rn)‖u‖α,ε;Ω. (4.28)Hen
e, for all ε ∈ (0, ε0) and all u ∈ Cα(Ω) we have Pε,su ∈ Cα(Rn) ∩L2(Rn), provided s > 0.Similarly one shows that the operator Pε,s maps C2+α(Ω) into C2+α(Rn) ∩W 2,2(Rn). Inparti
ular, for any s > 0 and ε0 > 0 there exists c1(s, ε0) > 0 su
h that for all ε ∈ (0, ε0) and

u ∈ C2+α(Ω) it holds
‖Pε,su‖C2+α(Rn) + ‖Pε,su‖W 2,2(Rn) ≤ c1(s, ε0)‖u‖2+α,ε;Ω, (4.29)Now let us de�ne the sequen
e

v̂k := Pεk,suk.In fa
t ea
h v̂k depends also on s. But later on we will �x s independently of k, therefore wedo not mention the s-dependen
e in the notation of v̂k for the sake of simpli
ity.Be
ause of (4.19) and (4.29) the sequen
e v̂k is bounded in the Hilbert spa
e W 2,2(Rn).Without loss of generality we may assume that there exists v∗ ∈ W 2,2(Rn) su
h that
v̂k ⇀ v∗ in W 2,2(Rn) for k → ∞. (4.30)Step 2. Derivation of equation for v∗ and σ∗. From (2.15) it follows

∣

∣(Eεk
uk)

(

T−1
εk,m(y)

)

− ∆y

(

uk ◦ T−1
εk,m

)

(y)
∣

∣ ≤ 
onst εk(1 + |y|)‖uk‖2+α,εk;Ω (4.31)33



for all y ∈ Tεk,m(Ω). Further, a

ording to the de�nitions of χ0 and Tε,m, for any ε0 > 0 thereexists δ̂ = δ̂(ε0) > 0 su
h that
χ0

(

T−1
ε,m(y)

)

= 1 for all ε ∈ (0, ε0) and |y| ≤ δ̂/ε.Hen
e, assumption (4.19) implies for all η ∈ L2(Rn)

∫

|y|≤δ̂/εk

(

Pεk,s

(

Eεk
uk

)

− ρs∆y

(

uk ◦ T−1
εk,m

)

)

η dy → 0,provided s > 0. Be
ause of uk ◦ T−1
εk,m = ρ−1

s v̂k this yields
∫

|y|≤δ̂/εk

(

Pεk,s

(

Eεk
uk

)

− ∆v̂k − 2(ρs∇ρ−1
s · ∇v̂k) − ρsv̂k∆ρ−1

s

)

η dy → 0. (4.32)But assumption (4.19) and the inequalities (5.8), (5.9) from the Appendix imply
‖Eεk

uk‖α,εk;Ω ≤ 
onst,whereas the de�nition of ρs results in the inequalities
‖ρs ∂yj

ρ−1
s ‖L∞(Rn) ≤ s, ‖ρs∆ρ

−1
s ‖L∞(Rn) ≤ s(s+ 2n− 1).Hen
e, in (4.32) the limits of integration may be extended to R

n and we get
∫

Rn

(

Pεk,s

(

Eεk
uk

)

− ∆v̂k − 2(ρs∇ρ−1
s · ∇v̂k) − ρsv̂k∆ρ−1

s

)

η dy → 0. (4.33)In other words, we have
Pεk,s

(

Eεk
uk

)

− ∆v̂k − 2(ρs∇ρ−1
s · ∇v̂k) − ρsv̂k∆ρ−1

s ⇀ 0 in L2(Rn). (4.34)Similarly one shows that
Pεk,s

(

∂uf(·,Wεk,m, εk)uk

)

− ∂uf(ξ0,Φξ0
, 0)v̂k ⇀ 0 in L2(Rn). (4.35)Indeed, as above we 
an repla
e the integrals over R

n by integrals over |y| ≤ δ̂/εk be
ause of
∣

∣∂uf(·,Wεk,m, εk) ◦ T−1
εk,m − ∂uf(ξ0,Φξ0

, 0)
∣

∣ ≤ 
onst εk(1 + |y|) for all y ∈ Tεk,m(Ω).The latter estimate follows dire
tly from the stru
ture of the formal asymptoti
s Wε,m.Finally, we have
Pεk,s

[

σ∗ · Ψ(Tεk,m) + ψ(Tεk,m, x1, σ∗)
]

−
(

σ∗ · Ψ + ψ(·, x1, σ∗)
)

ρs ⇀ 0 in L2(Rn), (4.36)where the fun
tions Ψ and ψ are de�ned in (2.54) and (2.55), respe
tively. This weak 
onver-gen
e is true be
ause the left hand side of (4.36) vanishes for |y| ≤ δ̂/εk.34



Colle
ting together the limits (4.34)�(4.36) and using (4.21) and (4.28) we get
∆v̂k + 2(ρs∇ρ−1

s · ∇v̂k) −
(

∂uf(ξ0,Φξ0
, 0) − ρs∆ρ

−1
s

)

v̂k

−
(

σ∗ · Ψ + ψ(·, x1, σ∗)
)

ρs ⇀ 0 in L2(Rn).This gives the desired equation for v∗ and σ∗
Dsv∗ := ∆v∗ + 2(ρs∇ρ−1

s · ∇v∗) −
(

∂uf(ξ0,Φξ0
(y), 0) − ρs∆ρ

−1
s

)

v∗

=
(

σ∗ · Ψ + ψ(·, x1, σ∗)
)

ρs for almost all y ∈ R
n. (4.37)Step 3. Proof of the fa
t that σ∗ = 0. Assumption (A1) and exponential estimate (2.12)imply that f(ξ0,Φξ0

, 0) ∈ Cα(Rn) and (σ∗ · Ψ + ψ(·, x1, σ∗))ρs ∈ Cα(Rn), therefore every solu-tion v∗ ∈ W 2,2(Rn) to Eq. (4.37) belongs simultaneously to C2+α(Rn). Below we demonstratethat an appropriate 
hoi
e of s guarantees that σ∗ = 0 and v∗ ∈ span
{

ρs∂yj
Φξ0

: j = 1, . . . , n
}.To this end, we use the following lemma.Lemma 4.7 There exists s0 > 0 su
h that for every s ∈ [0, s0) the operator Ds (
f. (4.37))mapping C2+α(Rn) into Cα(Rn) is a Fredholm operator with dimKerDs = codimRanDs = n.Moreover,

KerDs = span
{

ρs∂yj
Φξ0

: j = 1, . . . , n
}

,

RanDs =







v ∈ Cα(Rn) :

∫

Rn

v(y)ρ−1
s (y)∂yj

Φξ0
(y)dy = 0 for all j = 1, . . . , n







.Proof: Straightforward 
al
ulation yields
lim
s→0

∥

∥2(ρs∇ρ−1
s · ∇) − ρs∆ρ

−1
s

∥

∥

L(C2+α(Rn);Cα(Rn))
= 0. (4.38)Sin
e small perturbations do not violate Fredholm property and do not in
rease the dimensionof kernel and the 
odimension of range (see, for example, [36, Theorem 5.11℄), estimate (4.38)together with Lemma 2.2 and assumption (A4) imply that for su�
iently small s > 0 theoperator Ds is Fredholm of index zero and dimKerDs = codimRanDs ≤ n.Above we have assumed that s ∈ (0, κ0), where the 
onstant κ0 is given by (2.11). Thereforeexponential estimates (2.12) guarantee that ρs∂yj

Φξ0
∈ C2+α(Rn). Moreover, taking intoa

ount assumption (A4) we easily verify that ρs∂yj

Φξ0
∈ KerDs. The only remaining pointregarding KerDs is to show that dimKerDs = n, i.e. that fun
tions ρs∂yj

Φξ0
, j = 1, . . . , n,are linearly independent. To 
he
k this we write the Gram matrix G(s) with elements

[G(s)]jk :=

∫

Rn

ρs∂yj
Φξ0

ρs∂yk
Φξ0

dy.35



It is 
lear that G(0) is non-degenerate (see assumption (A4)). On the other hand, simple
al
ulation shows that the matrix derivative G′(0) with respe
t to s is bounded. Thereforefor su�
iently small s matrix G(s) is non-degenerate too, hen
e, for su
h values s fun
tions
ρs∂yj

Φξ0
, j = 1, . . . , n, are linearly independent.Now let us prove the statement regarding RanDs. For this we remark that due to exponen-tial estimates (2.12), for any s ∈ (0, κ0) and any v ∈ C2+α(Rn) we 
an perform integration byparts in the following formula
∫

Rn

(

∆v(y) + 2
(

ρs(y)∇ρ−1
s (y) · ∇v(y)

))

ρ−1
s (y)Φξ0

(y) dy

=

∫

Rn

v(y)
(

∆
(

ρ−1
s Φξ0

)

(y) − 2
(

∇ρ−1
s (y) · ∇Φξ0

(y)
)

− 2Φξ0
(y)∆ρ−1

s (y)
)

dy

=

∫

Rn

v(y)
(

ρ−1
s (y)∆Φξ0

(y) − Φξ0
(y)∆ρ−1

s (y)
)

dy.With the help of this identity we easily see that for any s ∈ (0, κ0) and any v ∈ C2+α(Rn) itholds
∫

Rn

(Dsv)(y) ρ
−1
s (y)∂yj

Φξ0
(y) dy = 0 for all j = 1, . . . , n.Moreover, in 
omplete analogy with our 
onsideration of fun
tions ρs∂yj

Φξ0
(see the Grammatrix argument above) we 
an show that for all s > 0 small enough fun
tions ρ−1

s ∂yj
Φξ0

,
j = 1, . . . , n, are linearly independent. ♦Let us assume that the parameter s of fun
tion ρs satis�es the inequality 0 < s < min(κ0, s0).(Note that this is the only restri
tion that we impose on s in our proof!) Then regardingEq. (4.37), Lemma 4.7 and the Fredholm alternative imply that

∫

Rn

(σ∗ · Ψ + ψ(·, x1, σ∗))ρs ρ
−1
s ∂yj

Φξ0
dy = 0, j = 1, . . . , n. (4.39)These equations already appeared in Se
tion 2, when we transformed system (2.58). Usingidentities (2.57) and (2.62) obtained there, we rewrite system (4.39) as follows

H(ξ0)σ∗ = 0,where H(ξ0) is the Ja
obian matrix of system (1.3) at point ξ0 (see de�nition (2.63)). Due toassumption (A3) this matrix is non-degenerate. Hen
e, σ∗ = 0 and v∗ ∈ KerDs, i.e.
v∗ =

n
∑

j=1

Cj ρs∂yj
Φξ0

,where Cj ∈ R are some 
onstants.Step 4. Proof of the fa
t that v∗ = 0. With the help of limit (4.23), below we show that
v∗ = 0. To this end, we again de�ne a non-in
reasing smooth 
ut-o� fun
tion χ : [0,∞) → R36



su
h that χ(r) = 1 for 0 ≤ r ≤ 1 and χ(r) = 0 for r ≥ 2. Then for every R ∈ (0,∞) we de�nethe fun
tion χR(y) := χ(|y|2/R2) that satis�es the inequality
‖χR‖C2+α(Rn) ≤ 
onst for all R ≥ 1.Sin
e v̂k ⇀ v∗ in W 2,2(Rn), for every R > 0 we also have χRv̂k ⇀ χRv∗ in W 2,2(Rn). Thenthe 
ompa
t imbedding W 2,2(Rn) →֒ L2(supp(χR)) implies
‖χRv̂k − χRv∗‖L2(Rn) → 0 for k → ∞. (4.40)On the other hand, be
ause of (4.19) and (4.29), for every R ≥ 1 it holds

‖χRv̂k‖C2+α(Rn) ≤ 
onst. (4.41)Hen
e, from (4.40) and (4.41) we easily get
‖χRv̂k − χRv∗‖C1+α(supp(χR)) → 0 for k → ∞. (4.42)Indeed, suppose that (4.42) is not true. Then there exists c > 0 and a subsequen
e χRv̂kjof χRv̂k su
h that

‖χRv̂kj
− χRv∗‖C1+α(supp(χR)) ≥ c for all j = 1, 2, . . . . (4.43)Taking into a

ount the 
ompa
t imbedding C2+α(supp(χR)) →֒ C1+α(supp(χR)) and the esti-mate (4.41), we derive from the sequen
e χRv̂kj

a subsequen
e 
onverging in C1+α(supp(χR)) toa 
ertain fun
tion ωR su
h that ‖ωR−χRv∗‖C1+α(supp(χR)) ≥ c (
f. (4.43)). But this 
ontradi
tsto the limit (4.40). Hen
e, the limit (4.42) holds true.In parti
ular, it implies
∇y v̂k(0) → ∇yv∗(0) =

n
∑

j=1

Cj∇y∂yj
Φξ0

(0) for k → ∞, (4.44)where we have used the fa
t that ρs(0) = 1 and ∇yρs(0) = 0. On the other hand, dire
t
al
ulation with the help of de�nition (4.26) and limit (4.23) yields
∇y v̂k(0) = ∇y

(

uk

(

T−1
εk,m(y)

)

ρs(y)
)∣

∣

∣

y=0
= εkQ(xεk,m)−1∇xuk(xεk,m) → 0,where we took into a

ount that Q(ξ0) is a non-degenerate matrix and that xε,m → ξ0 for

ε → 0. Now 
omparing the latter limit with formula (4.44) we obtain ∇yv∗(0) = 0. Therefore
onsidering the right-hand part of (4.44) as an n-dimensional linear system with respe
t to Cj ,and taking into a

ount that the (n × n)-matrix ∂yj
∂yk

Φξ0
(0) is non-degenerate (see (2.51)and (1.11)) we 
ome to the 
on
lusion that C1 = . . . = Cn = 0, and hen
e v∗ = 0.The latter result has an important 
onsequen
e: If we substitute v∗ = 0 into limit (4.42)and apply de�nition (4.26), we easily get that for every �xed R ≥ 1 it holds

∥

∥χR

(

uk ◦ T−1
εk,m

)∥

∥

C1+α(supp(χR))
≤ 
onst ‖χRv̂k‖C1+α(supp(χR)) → 0 for k → ∞. (4.45)This limit plays the 
ru
ial role in the next step.37



Step 5. Constru
tion of 
ontradi
tion. Now we have all ne
essary ingredients to demonstratethat assumptions (4.19) and (4.20) do result in limit (4.25). In parti
ular, above we have provedthat σ∗ = 0. Substituting this into formula (4.21) we obtain
∥

∥

∥
Eεk

uk − ∂uf(·,Wεk,m, εk)uk

∥

∥

∥

α,εk;Ω
→ 0 for k → ∞.The latter limit 
an be further redu
ed to limit (4.25) if we show that the following two relationshold true

∥

∥

∥

∥

∥

ε2k

n
∑

i=1

bi(·) ∂xi
uk

∥

∥

∥

∥

∥

α,εk;Ω

→ 0 for k → ∞, (4.46)
∥

∥

∥

(

∂uf(·,Wεk,m, εk) − ∂uf(·, 0, 0)
)

uk

∥

∥

∥

α,εk;Ω
→ 0 for k → ∞. (4.47)Limit (4.46) is trivial. Indeed, it follows from the estimate

∥

∥

∥

∥

∥

ε2k

n
∑

i=1

bi(·) ∂xi
uk

∥

∥

∥

∥

∥

α,εk;Ω

≤ 
onst εk max
i

‖εk∂xi
uk‖α,εk;Ω ≤ 
onst εk ‖uk‖2+α,εk;Ω ,be
ause of assumption (4.19) and inequalities (5.8), (5.9) and (5.11) from Appendix.To justify limit (4.47), we write the triangle inequality

∥

∥

∥

(

∂uf(·,Wεk,m, εk) − ∂uf(·, 0, 0)
)

uk

∥

∥

∥

α,εk;Ω

≤
∥

∥

∥

(

∂uf(·,Wεk,m, εk) − ∂uf (·,Φξ0
◦ Tεk,m, 0)

)

uk

∥

∥

∥

α,εk;Ω

+
∥

∥

∥

(

∂uf (·,Φξ0
◦ Tεk,m, 0) − ∂uf(x, 0, 0)

)

uk

∥

∥

∥

α,εk;Ω
. (4.48)Sin
e the stru
ture of formal asymptoti
s Wε,m (see Theorem 2.1) implies that

‖Wε,m − Φξ0
◦ Tε,m‖α,ε;Ω = O(ε) for ε→ 0,we easily get the estimate

∥

∥

∥∂uf(·,Wε,m, ε) − ∂uf (·,Φξ0
◦ Tε,m, 0)

∥

∥

∥

α,ε;Ω
= O(ε) for ε→ 0.Hen
e, applying inequalities (5.9) and (5.11) and taking into a

ount that ‖uk‖2+α,εk;Ω ≤ 1,we see that the �rst term in the right-hand part of formula (4.48) vanishes for k → ∞.For the last term in the right-hand part of formula (4.48), we write the inequality

∥

∥

∥

(

∂uf (·,Φξ0
◦ Tεk,m, 0) − ∂uf(·, 0, 0)

)

uk

∥

∥

∥

α,εk;Ω

=

∥

∥

∥

∥

∥

∥

1
∫

0

∂2
uf (·, tΦξ0

◦ Tεk,m, 0) dt (Φξ0
◦ Tεk,m) uk

∥

∥

∥

∥

∥

∥

α,εk;Ω

≤ 
onst ‖(Φξ0
◦ Tεk,m)uk‖α,εk;Ω ≤ 
onst ∥∥Φξ0

(

uk ◦ T−1
εk,m

)∥

∥

Cα(Tεk,m(Ω))
,38



where the norm ‖ · ‖α,ε;Ω was estimated by ‖ · ‖Cα(Tεk,m(Ω)) a

ording to Remark 4.4. Nowemploying the notation of the 
ut-o� fun
tion χR (see above), we get
∥

∥Φξ0

(

uk ◦ T−1
εk,m

)∥

∥

Cα(Tεk,m(Ω))
≤ ‖Φξ0

‖Cα(Tεk,m(Ω))

∥

∥χR

(

uk ◦ T−1
εk,m

)∥

∥

Cα(Tεk,m(Ω))

+ ‖(1 − χR)Φξ0
‖Cα(Tεk,m(Ω))

∥

∥uk ◦ T−1
εk,m

∥

∥

Cα(Tεk,m(Ω))

≤ ‖Φξ0
‖Cα(Rn)

∥

∥χR

(

uk ◦ T−1
εk,m

)∥

∥

Cα(supp(χR))
+ ‖(1 − χR)Φξ0

‖Cα(supp(1−χR)) ‖uk‖α,εk;Ω , (4.49)The sum in the right-hand part of (4.49) tends to zero for k → ∞ due to the following argument.Be
ause of the exponential de
ay of Φξ0
(see Remark 1.3), for arbitrarily small γ > 0 we 
an�rst take R su�
iently large su
h that it holds

‖(1 − χR)Φξ0
‖Cα(supp(1−χR)) ‖uk‖α,εk;Ω ≤ γ for all k = 1, 2, . . . .Then �xing this R and applying relation (4.45), we 
an 
hoose su�
iently large k to obtain

‖Φξ0
‖Cα(Rn)

∥

∥χR

(

uk ◦ T−1
εk,m

)∥

∥

Cα(supp(χR))
≤ γ.Thus we have justi�ed limit (4.47).Re
all that obtained limits (4.46) and (4.47) guarantee that another limit (4.25) holds true.Therefore we 
an apply Theorem 5.2 from Appendix to relations (4.22) and (4.25). As a resultwe get ‖uk‖2+α,εk;Ω → 0 and this together with another limit σk → 0 
onstitutes the ne
essary
ontradi
tion. Now, Lemma 3.2 provides us with the required estimate for the inverse operator

F ′
ε(0, 0)−1 and the 
laimed assertion follows from our generalized Impli
it Fun
tion Theorem. ♦Proof of Theorem 4.1: Translating the assertion of Theorem 4.6 into original settings weobtain the solution to problem (1.1)

uε = ε2vε + Uε,m,σε
,where ‖(vε, σε)‖Uε

= ‖vε‖2+α,ε;Ω + |σε| = O(εm−1) for ε → 0 (see estimate (4.17)). Thenre
alling that Uε,m,0 = Wε,m and taking into a

ount inequality (4.11) we derive the estimate
‖uε −Wε,m‖2+α,ε;Ω ≤ ε2‖vε‖2+α,ε;Ω + ‖Uε,m,σε

− Uε,m,0‖2+α,ε;Ω = O(εm−1).Note that the a

ura
y of di�eren
e Uε,m,σε
− Uε,m,0 is dominating in the latter expression.Now sin
e m ≥ 2, dire
t 
al
ulation with the help of relation (4.2) yields

‖uε −Wε,m−2‖2+α,ε;Ω ≤ ‖uε −Wε,m‖2+α,ε;Ω + ‖Wε,m −Wε,m−2‖2+α,ε;Ω = O(εm−1),and this after reindexing m′ = m− 2 gives the 
laimed result (4.1).The se
ond assertion of theorem is trivial, sin
e for every ε ∈ (0,∞) and every u ∈ C2+α(Ω)we have
∥

∥

(

ε−2(u−Wε,m), 0
)∥

∥

Uε
= ε−2‖u−Wε,m‖2+α,ε;Ω.That ends the proof. ♦
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5 Appendix: S
hauder type estimates in Hölder spa
eswith ε-dependent normsLet Ω be a bounded domain in R
n with smooth boundary ∂Ω and ε a s
alar positive parameter.We 
onsider the singularly perturbed linear ellipti
 operator

Lεu := ε2
n
∑

i,j=1

∂xi

(

aij(x, ε)∂xj
u
)

+ c(x, ε)u (5.1)de�ned in Ω, whi
h is equipped with the natural boundary operator
Nεu := ε

n
∑

i,j=1

aij(x, ε)νi(x)∂xj
u (5.2)de�ned on ∂Ω, where νi are the 
omponents of the unit outer normal at ∂Ω. Introdu
ingweighted ε-dependent norms in Hölder spa
es, we modify some well-known results of theS
hauder theory for the 
omposite operator (Lε,Nε) in a way to produ
e the upper boundestimate for inverse operator (Lε,Nε)

−1, whi
h is uniform with respe
t to ε→ 0.For this we re
all that for any λ ∈ (0, 1) fun
tion u is 
alled Hölder 
ontinuous with expo-nent λ in Ω if the seminorm
[u]λ;Ω := sup

x,y∈Ω,
x 6=y

|u(x) − u(y)|
|x− y|λ (5.3)is �nite. Respe
tively, for any integer k ≥ 0 we de�ne the Hölder spa
e Ck+λ(Ω) as a subspa
eof Ck(Ω) 
onsisting of all fun
tions u with the �nite norm

‖u‖k+λ;Ω := ‖u‖k;Ω + sup
|µ|=k

[Dµu]λ;Ω , (5.4)where
‖u‖k;Ω :=

k
∑

j=0

sup
|µ|=j

sup
Ω

|Dµu|and a standard notation for multi-index µ was adopted.If domain Ω belongs to a 
lass Ck+λ with k ≥ 1 (see 
orresponding de�nition in [13, Se
. 6.3℄),then one 
an naturally de�ne a Bana
h spa
e Ck+λ(∂Ω) with the norm
‖u‖k;∂Ω := inf

U
‖U‖k;Ω, (5.5)where U denotes a Ck+λ(Ω)-extention of fun
tion u on Ω and the in�mum is taken over allpossible extensions U . Sin
e the set of su
h extensions U is nonempty (see Lemma 6.38 in [13℄),de�nition (5.5) is always 
orre
t.To eliminate the singularity o

urring for ε→ 0 in operators Lε and Nε, one might employa simple 
oordinate transformation Tε : R

n → R
n de�ned for all ε ∈ (0,∞) with the formula40



Tεx := x/ε. Indeed, in the new 
oordinates these di�erential operators have regular 
oe�
ientsand read as follows
L̃εv :=

n
∑

i,j=1

∂yi

(

aij(εy, ε)∂yj
v
)

+ c(εy, ε)v,

Ñεv :=

n
∑

i=1

aij(εy, ε)νi(εy)∂yj
v.However, the former a
ts now in the ε-dependent domain Ω/ε := Tε(Ω), whereas the lattera
ts on the ε-dependent surfa
e ∂Ω/ε := Tε(∂Ω). Taking this into a

ount we de�ne the new

ε-dependent norms
‖u‖k+λ,ε;Ω := ‖u ◦ T−1

ε ‖k+α;Ω/ε =

k
∑

j=0

εj sup
|µ|=j

sup
Ω

|Dµu| + εk+λ sup
|µ|=k

[Dµu]λ;Ω (5.6)and
‖u‖k+λ,ε;∂Ω := ‖u ◦ T−1

ε ‖k+λ;∂Ω/ε, (5.7)in Hölder spa
es Ck+λ(Ω) and Ck+λ(∂Ω), respe
tively. Su
h norms turn out to be a naturalsetting for analysis of singularly perturbed 
omposite operator (Lε,Nε). In parti
ular, theysatisfy a series of inequalities with a simple expli
it dependen
e on parameter ε. We presentthese inequalities in the following lemma.Lemma 5.1 Let k ≥ 0 be an integer and λ ∈ (0, 1). Then for any ε ∈ (0,∞) it holds:
min(1, εk+λ)‖u‖k+λ;Ω ≤ ‖u‖k+λ,ε;Ω ≤ max(1, εk+λ)‖u‖k+λ;Ω for all u ∈ Ck+λ(Ω), (5.8)
‖uv‖λ,ε;Ω ≤ ‖u‖λ,ε;Ω ‖v‖λ,ε;Ω for all u, v ∈ Cλ(Ω). (5.9)Moreover, if k ≥ 1 then it holds:

min(1, εk+λ)‖u‖k+λ;∂Ω ≤ ‖u‖k+λ,ε;∂Ω ≤ max(1, εk+λ)‖u‖k+λ;∂Ω for all u ∈ Ck+λ(∂Ω),(5.10)
‖u‖k−1+λ,ε;Ω ≤ C(n, k, λ)‖u‖k+λ,ε;Ω for all u ∈ Ck+λ(Ω), (5.11)where C(n, k, λ) is a 
onstant independent of ε and Ω.Proof: Inequalities (5.8)-(5.10) follow dire
tly from de�nitions (5.5)-(5.7).To verify the inequality (5.11) we �rst write the estimate

εk−1+λ sup
|µ|=k−1

[Dµu]λ;Ω ≤ εk−1+λ sup
|µ|=k−1



sup
Ω

(2|Dµu|)1−λ
sup

x,y∈Ω,

x 6=y

|Dµu(x) −Dµu(y)|λ
|x− y|λ





≤ sup
|µ|=k−1

(

sup
Ω

(

2εk−1|Dµu|
)1−λ

)

sup
|µ|=k

(

sup
Ω

(

nεk|Dµu|
)λ
)

≤ C∗(n, k, λ)‖u‖k+λ,ε;Ω,41



where C∗(n, k, λ) > 0 is a 
onstant independent of ε and Ω. Denoting C(n, k, λ) = 1+C∗(n, k, λ)and taking into a

ount de�nition (5.6) we obtain the 
laimed inequality (5.11). ♦Now we are ready to formulate and prove the main statement 
on
erning the upper boundestimate of inverse operator (Lε,Nε)
−1.Theorem 5.2 Let Ω be a bounded domain in R

n of 
lass C2+α with α ∈ (0, 1). Suppose thatthe following assumptions hold:(i) For every ε > 0 it holds aij(·, ε) ∈ C1+α(Ω) and c(·, ε) ∈ Cα(Ω). Furthermore, thereexists a 
onstant M > 0 su
h that
‖aij(·, ε)‖1+α;Ω , ‖c(·, ε)‖α;Ω ≤M for all ε ∈ (0,∞). (5.12)(ii) There exist 
onstants κ > 0 and c0 > 0 su
h that

n
∑

i,j=1

aij(x, ε)ξiξj ≥ κ|ξ|2 for all (x, ε, ξ) ∈ Ω × (0,∞) × R
n, (5.13)and

c(x, ε) ≤ −c0 for all (x, ε) ∈ Ω × (0,∞). (5.14)Then there exist ε0 > 0 and C0 > 0 su
h that for all ε ∈ (0, ε0) and all u ∈ C2+α(Ω) it holds
‖u‖2+α,ε;Ω ≤ C0(‖Lεu‖α,ε;Ω + ‖Nεu‖1+α,ε;∂Ω).Proof: We base our proof on Lemma 3.2. First we remark that inequality (5.8) implies theequivalen
e of norms ‖ · ‖k+α,ε;Ω and ‖ · ‖k+α;Ω for any k ≥ 0. Similarly, from inequality (5.10)follows the equivalen
e of norms ‖ · ‖k+λ,ε;∂Ω and ‖ · ‖k+λ;∂Ω with k ≥ 1. Hen
e, taking intoa

ount 
lassi
al results of the theory of linear ellipti
 operators (see Theorem 3.2 in [18℄), weeasily see that the 
omposite operator

(Lε,Nε) :
(

C2+α(Ω), ‖ · ‖2+α,ε;Ω

)

→
(

Cα(Ω), ‖ · ‖α,ε;Ω

)

×
(

C1+α(∂Ω), ‖ · ‖1+α,ε;∂Ω

)is a Fredholm operator of index zero.Let εk ∈ (0,∞) and uk ∈ C2+α(Ω) be sequen
es with
‖uk‖2+α,εk;Ω = 1 (5.15)and

εk + ‖Lεk
uk‖α,εk;Ω + ‖Nεk

uk‖1+α,εk;∂Ω → 0 for k → ∞. (5.16)We are going to demonstrate that these two assumptions a
tually imply
‖uk‖2+α,εk;Ω → 0 for k → ∞ (5.17)what is the ne
essary 
ontradi
tion.First we will show that assumption (5.16) together with properties (5.12)�(5.14) results inthe uniform estimate
‖uk‖0;Ω → 0 for k → ∞. (5.18)42



Indeed, for ea
h uk we 
an 
onstru
t two fun
tions of the following form
u±k (x) := uk(x) ± K

(

‖Lεk
uk‖α,εk;Ω + ‖Nεk

uk‖1+α,εk;∂Ω

)

± ‖Nεk
uk‖1+α,εk;∂Ω χ(x) exp

(

− 1

εκ
dist(x, ∂Ω)

)

,where K is a positive 
onstant to be 
hosen later, and χ : [0,∞) → R is a smooth 
ut-o�fun
tion su
h that
χ(r) = 1 for 0 ≤ r ≤ δ and χ(r) = 0 for r ≥ 2δ,with δ > 0 being a �xed number, small enough to guarantee that for every x ∈ Ω satisfying

dist(x, ∂Ω) < 2δ there exists the only point ζ ∈ ∂Ω su
h that dist(x, ζ) = dist(x, ∂Ω). Thensimple 
al
ulation and estimate (5.13) yield
±Nεk

u±k (x) = ±Nεk
uk(x)+‖Nεk

uk‖1+α,εk;∂Ω
1

κ

n
∑

i,j=1

aij(x, εk)νi(x)νj(x) ≥ 0 for all x ∈ ∂Ω.On the other hand, using assumption (5.12) we easily 
he
k that
∥

∥

∥

∥

∥

∥

ε2
n
∑

i,j=1

∂xi

(

aij(x, ε)∂xj

(

χ(x) exp

(

− 1

εκ
dist(x, ∂Ω)

)))

∥

∥

∥

∥

∥

∥

0;Ω

≤ 
onst for all ε ∈ (0, 1).Hen
e, assumption (5.14) allows us to 
hoose K > 0 su
h that for all k with εk ∈ (0, 1) it holds
Lεk

u+
k (x) ≤ 0 and Lεk

u−k (x) ≥ 0 for all x ∈ Ω.Now Strong Maximum Prin
iple for linear ellipti
 operators (see [13, Theorem 3.5℄) implies
u+

k (x) ≥ 0 and u−k (x) ≤ 0 for all x ∈ Ω,and this gives (5.18). The latter limit 
an be easily transformed into a stronger one. Indeed,sin
e the following inequality holds
εα

k [uk]α;Ω ≤ εα
k sup

Ω
(2|uk|)1−α

sup
x,y∈Ω,

x 6=y

|uk(x) − uk(y)|α
|x− y|α ≤ (2‖uk‖0;Ω)

1−α

(

nεk sup
|µ|=1

sup
Ω

|Dµuk|
)α

,assumption (5.15) and limit (5.18) guarantee that
‖uk‖α,εk;Ω → 0 for k → ∞. (5.19)To pro
eed further we remark that for every ε ∈ (0, 1) estimates (5.8) and (5.10) imply

εα‖u‖α;Ω ≤ ‖u‖α,ε;Ω ≤ ‖u‖α;Ω for all u ∈ Cα(Ω),

ε1+α‖u‖1+α;∂Ω ≤ ‖u‖1+α,ε;∂Ω ≤ ‖u‖1+α;∂Ω for all u ∈ C1+α(∂Ω), (5.20)43



respe
tively. Hen
e, assuming without loss of generality that εk < 1, and applying inequal-ity (5.9), we get the limit
ε2+α

k

∥

∥

∥

∥

∥

∥

n
∑

i,j=1

aij(·, εk)∂xi
∂xj

uk

∥

∥

∥

∥

∥

∥

α;Ω

≤

∥

∥

∥

∥

∥

∥

ε2k

n
∑

i,j=1

aij(·, εk)∂xi
∂xj

uk

∥

∥

∥

∥

∥

∥

α,εk;Ω

≤ ‖Lεk
uk‖α,εk;Ω

+

∥

∥

∥

∥

∥

∥

ε2k

n
∑

i,j=1

∂xi
aij(·, εk)∂xj

uk

∥

∥

∥

∥

∥

∥

α,εk;Ω

+ ‖c(·, εk)‖α;Ω ‖uk‖α,εk;Ω → 0 for k → ∞, (5.21)where all the terms in the right hand part of (5.21) vanish be
ause of assumptions (5.12), (5.15)and limits (5.16), (5.19).A

ording to 
lassi
al S
hauder estimates for linear ellipti
 operators (see for example The-orem 6.30 in [13℄), there exists a 
onstant C1 = C1(n, α, κ,M,Ω) > 0 whi
h is independent of εsu
h that for every u ∈ C2+α(Ω) it holds
‖u‖2+α;Ω ≤ C1





∥

∥

∥

∥

∥

∥

n
∑

i,j=1

aij(·, ε)∂xi
∂xj

u

∥

∥

∥

∥

∥

∥

α;Ω

+

∥

∥

∥

∥

∥

∥

n
∑

i,j=1

aij(·, ε)νi(·)∂xj
u

∥

∥

∥

∥

∥

∥

1+α;∂Ω

+ ‖u‖0;Ω



 .Multiplying both sides of this inequality with ε2+α we get
ε2+α‖u‖2+α;Ω ≤ C1



ε2+α

∥

∥

∥

∥

∥

∥

n
∑

i,j=1

aij(·, ε)∂xi
∂xj

u

∥

∥

∥

∥

∥

∥

α;Ω

+ ε1+α

∥

∥

∥

∥

∥

∥

ε

n
∑

i,j=1

aij(·, ε)νi(·)∂xj
u

∥

∥

∥

∥

∥

∥

1+α;∂Ω

+ ε2+α‖u‖0;Ω



 . (5.22)Hen
e, taking into a

ount previously obtained estimate (5.21), assumptions (5.15), (5.16) andinequality (5.20) we obtain from (5.22) that
ε2+α

k ‖uk‖2+α;Ω → 0 for k → ∞. (5.23)Now, the last step is to derive from limits (5.19) and (5.23) the ne
essary 
ontradi
tion (5.17).For this we employ the interpolation inequality (see Lemma 6.3.1 in [16℄)
εs‖u‖s;Ω ≤ C2

(

ε2+α‖u‖2+α;Ω + (εs + 1)‖u‖0;Ω

)that holds true for all 0 ≤ s ≤ 2+α and ε ∈ (0,∞) with the 
onstant C2 = C2(n, α, s,Ω) whi
his independent of ε. Indeed, due to limits (5.19) and (5.23) we easily get
εk‖uk‖1;Ω → 0 and ε2k‖uk‖2;Ω → 0 for k → ∞.Thus, all terms in the de�nition of norm ‖uk‖2+α,εk;Ω vanish when k → ∞ and limit (5.17)does hold. This means that Lemma 3.2 works and this ends the proof. ♦44



Remark 5.3 The prove of Theorem 5.2 
an be easily modi�ed to 
over the 
ase of Diri
hletboundary 
onditions. In result we obtain the following statement.Suppose that all assumptions of Theorem 5.2 are ful�lled. Then there exist ε0 > 0 and
C0 > 0 su
h that for all ε ∈ (0, ε0) and all u ∈ C2+α(Ω) it holds

‖u‖2+α,ε;Ω ≤ C0(‖Lεu‖α,ε;Ω + ‖u‖2+α,ε;∂Ω).A
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