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ABSTRACT. We present a spatially resolved semiclassical model for the simulation of
semiconductor quantum-dot lasers including a multi-species description for the carriers
along the optical active region. The model links microscopic determined quantities like
scattering rates and dephasing times, that essentially depend via Coulomb interaction on
the carrier densities, with macroscopic transport equations and equations for the optical
field.

1. INTRODUCTION

Due to many advantages, such as low threshold currents and improved robustness of
operation, semiconductor quantum dot (QD) lasers have become increasingly interesting
for telecom applications. The need for a detailed understanding of the physics involved
and for optimization of such devices makes them subject for theoretical investigations,
comprising modeling and numerical simulation. A suitable model used for the simulation
of such devices constitutes a complex multiscale problem and has to cover many important
physical effects.

On the coarsest scale, classical carrier transport through the bulk part of the device
can be described by a macroscopic model, which are the drift-diffusion equations in our
case. Additionally, a semiclassical description of the optical field by Maxwell equations
is required. Usually, by selfconsistently coupling of both the electronic and the optical
model via the optical gain on one hand, and via the rate of spontaneous and stimulated
recombination on the other hand, a self-consistent picture for the spatial distributions of
the carriers and the field intensity (Bandelow et al, 2003) is achieved.

However, due to the quantum confinement of carriers on the scale of a few nanometers
in QD active regions, c.f. Fig. 1, processes like optical gain, scattering and recombination
of carriers have to be described by a microscopic model. The carrier-carrier scattering via
Coulomb interaction, that dominates at high carrier densities (Nielsen et al, 2004; Nilsson
et al, 2005; Lorke et al, 2006) and which we will exclusively take into account within this
paper, causes nonradiative, Auger-like transitions between QDs and carrier reservoirs such
as bulk and wetting layer (WL) states. Thereby, the dynamics of the laser can be strongly
influenced by density dependent scattering rates (Viktorov et al, 2006). Also the optical
transitions between the QD electron and hole states, that result in the optical gain, will be
modified by the Coulomb interaction. This is reflected by a density dependend dephasing
time (Lorke et al, 2006; Dachner et al, 2010), which modifies the optical gain. The active
region of our considered device comprises optically active QDs grown on a 2D WL as
shown in Fig 1a. We will restrict to two-level QDs possessing only a single electron and
only a single hole state, see Fig. 1c.

The paper is organized as follows: We present in Section 2 a spatially resolved multi-
species electronic model for QD lasers. In Section 3 we address the microscopic calcula-
tion of the Coulomb-assisted carrier-carrier scattering and the dephasing processes occur-
ring in the model. We demonstrate this approach by calculations of scattering rates and
dephasing times for a two-level QD system, including the calculation of the optical gain.

2. MULTI SPECIES MODEL

In our model we differ between bulk carriers, reservoir carriers, here taken to be con-
fined in a two-dimensional WL, and carriers that are localized in the quantum dots as
schematically shown in Figs. 1a and 1c. The bulk carriers are freely roaming through the
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FIGURE 1. (a) Scheme of transverse cross-section of an edge-emitting
QD laser with a QD-WL active region that contains lens-shaped QDs
(b). (c) Scheme of scattering and recombination processes in the quan-
tum dot active region described by the multi-species model. Carriers are
injected from the bulk into the wetting layers and enter the quantum dots
by Coulomb scattering. There they contribute to the stimulated recom-
bination.

layers in devices as depicted in Fig. 1c and are described by classical drift-diffusion equa-
tions. The two-dimensional transport of the carriers confined in the WL is described by
in-plane drift-diffusion equations, whereas the occupation of the QD-states is governed by
rate equations for localized states. All these equations are coupled to each other by corre-
sponding carrier-exchange rates and by the electrostatic potential via the Poisson equation.
The injection of the bulk carriers into the wetting layers, as depicted in Fig. 1, is described
by phenomenological capture-escape models (Grupen and Hess, 1998; Steiger et al, 2008).
For the capture-escape process from the wetting layer into the quantum dots we use scat-
tering rates derived from a microscopic model for the dominating Auger-like processes at
high carrier densities, which have their physical origin in Coulomb-scattering. The con-
ceptual approach to describe the carriers in low-dimensional nanostructures by a partition
of the carrier density into different species has been proposed by Steiger et al (2008) for
the simulation quantum-well and quantum-wire based optoelectronic nanostructures.

For edge-emitters we can restrict our considerations to a transverse cross section Ω⊂R2

of the device, as schematically shown in Fig.1a. In order to simplify the presentation of
our model we consider in the following the case of QD-lasers containing only a single QD
optical active layer. We denote the Nabla operator with respect to rt = (x,y)∈Ω by ∇, and
its in-plane part with respect to the in-plane coordinate r‖ = (x,0) along the QD layer by
∇‖. The bulk carrier densities of the electrons and holes are denoted by n and p and are
defined on the whole cross-section Ω of the device, see Fig. 1a. The carrier densities of the
electrons and holes confined in the WL and in the QDs are denoted by we, wh and ne, nh,
respectively. The WL densities we and wh and QD occupation densities ne and nh are sheet
densities depending only on the in-plane coordinate r‖, see Fig. 1a. The evolution of the
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carrier densities is governed by the following system of equations:

−∇ · (ε0εs∇ϕ) = q(C−ntot + ptot),(1)

∂n
∂ t
− 1

q
∇ · jn =−R−C3,cap

n ,(2)

∂ p
∂ t

+
1
q

∇ · jp =−R−C3,cap
p ,(3)

∂we

∂ t
− 1

q
∇‖ · jwe =−R̃nr +C2,cap

n −
[
Sin

e (N
QD−ne)−Sout

e ne)
] Ntot

NQD −RWL
sp ,(4)

∂wh

∂ t
+

1
q

∇‖ · jwh =−R̃nr +C2,cap
p −

[
Sin

h (N
QD−nh)−Sout

h nh)
] Ntot

NQD −RWL
sp ,(5)

∂ne

∂ t
= Sin

e (N
QD−ne)−Sout

e ne−Rstim−Rsp,(6)

∂nh

∂ t
= Sin

h (N
QD−nh)−Sout

h nh−Rstim−Rsp.(7)

The net charge density, given by the sum over the the local distributions of the respective
electron and hole species, together with the doping profile C, enters the Poisson equa-
tion (1) for the electrostatic potential ϕ , where q is the elementrary charge and εs is the
static permittivity. The bulk electron and hole current densities jn and jp, as well as those
for the WL, jwe and jwh, are defined in the usual way by gradients of corresponding quasi
Fermi-potentials, i.e. jn =−qµnn∇ϕn and jwe =−qµwewe∇‖ϕwe, c.f. (Steiger et al, 2008).
C3,cap describes the injection from the bulk into the WL by phenomenological capture-
escape rates according to Grupen and Hess (1998). C2,cap are the corresponding charge-
conserving counterparts in the WL equations. Sin

e/h and Sout
e/h are scattering rates describing

the capture and escape processes from the WL into the QDs. These scattering rates depend
nonlinearly on we and wh, see Section 3 and Fig. 2a. Ntot is twice the total density of
QDs grown on the WL and NQD is twice the sheet density of resonant QDs. The rates of
spontaneous recombination in the WL and QDs are denoted by RWL

sp and Rsp, respectively.
The rate of stimulated recombination in the QDs is denoted by Rstim and defined by

(8) Rstim =
vg

L
g(ω)|Ξ0|2Ns,

where L is the length of the laser, vg is the group velocity and Ξ0(rt) refers to the nor-
malized transverse main mode profile. In the case of stable transverse waveguiding and
longitudinal single-mode operation we work with the balance equation

(9) Ṅs = vg(2ℑmβ −α0)Ns + rsp.

for the numbers of photons Ns, where ℑm[β ] is the modal gain given by the imaginary
part of the corresponding eigenvalue β of the transverse waveguiding problem, α0 are
all longitudinal losses by scattering into other modes (radiation modes, e.g.) including
outcoupling losses. The spontaneous emission rate into the mode is denoted by rsp. For
further details we refer to (Bandelow et al, 2003).

The material gain caused by the interband polarization from the QDs has the form:

g(ω) =− ω

n(ω)c
|dvc|2

L0
(NQD−nh−ne)

∫
Γ2(ε,we,wh)

(ε− h̄ω)2 +Γ2(ε,we,wh)2 G(ε) dε,(10)

where Γ2 = h̄/T2 (11) is the homogeneous broadening of the gain defined by the dephasing
time T2, and G(ε) is the (Gaussian-shaped) distribution of the QD transition energy, which
causes inhomogeneous broadening. In Eq. (10) n(ω) is the refractive index, c is the speed
of light, dvc the dipole matrix element of the QD transition, L0 is a normalization length.

If one neglects bulk/WL carrier transport and assumes spatially homogenous WL and
QD densities, Eq.s (1)–(9) reduce to a set of rate equations. Such type of rate-equation

3



models have been applied for the analysis of the electron and hole dynamics of edge-
emitting QD lasers (Malic et al, 2006; Lüdge et al, 2008; Lüdge and Schöll, 2009).

3. COULOMB SCATTERING BETWEEN QUANTUM DOT AND WETTING LAYER STATES

The calculation of the scattering rates Sin and Sout as found in Eqs. (4)-(7), as well as
of the dephasing time entering Eq. (10) of the resonant QD transition, has been treated by
density matrix theory in the limit of the second order Born approximation. The description
results in a nonlinear dependence of these scattering rates and of the dephasing time on the
WL carrier density (Nielsen et al, 2004; Nilsson et al, 2005; Lorke et al, 2006; Malic et al,
2007). For precise calculations several scattering channels between the QD and WL have
to be included, as in particular pure dephasing processes for the calculation of T2 (Lorke
et al, 2006). The dephasing time determines the homogeneous line width of the single QD
gain, additionally broadened by an inhomogeneous distribution of QDs, see Eq. (10).

To describe Sin/out we use a Hamiltonian according to Nielsen et al (2004) containing
free carrier energies of both quantum dot and wetting layer states and carrier-carrier inter-
action via the Coulomb matrix element Vabcd =

∫
d3r

∫
d3r′φ ∗a (r)φ ∗b (r)V (r−r′)φc(r′)φd(r).

The latter is calculated with QD and WL-OPW-wavefunctions as in Nielsen et al (2004),
where a, b, c and d are compound indices denoting all possible QD and WL states. This
includes the highest WL valence subband, the lowest WL conduction subband and both
the QD valence and conduction ground states, all doubly degenerate due to spin. In the
following we will use the indices i and j to denote states restricted to the QDs.

To derive the scattering contribution, we consider the temporal evolution of density
matrices ρab, since they determine all dynamical quantities in Eqs. (4)-(7). For consistency
with our semiclassical description of the WL used in the multi-species model we assume
quasi-equilibrium for the WL states by using Fermi-distributions in the following. The
parameters used for the numerical calculations of scattering rates and dephasing times are
near to Lorke (2008) for shallow QDs. Additionally, we used the approximation that the
width of the WL equals to the height of the QDs and to L0 in Eq. (10), which applicable to
the considered lens-shaped QDs embedded in the WL.

The diagonal elements ρa := ρaa of the density matrix are the occupation probabilities
of the states a. Our EOM for the occupation probabilities of QD states has the same form as
in Malic et al (2006). The determination of Sin and of Sout are next to Nielsen et al (2004),
but we included screening in the static limit of the Lindhard-formula (Haug and Koch,
2004). The resulting scattering rates are depicted in Fig. 2a (for room temperature) and
show a nonlinear dependence on the WL carrier density. The dephasing time T2 = h̄/Γ2 of
the QD polarization ρi j, i 6= j, has in the markovian limit the form

Γ2 =π ∑
a,b,c

{
Wabic

(
Wicab−Wicba

)
[ρc(1−ρb)(1−ρa)+(1−ρc)ρbρa]δ (εa + εb− εc− εi)

+Wjabc(Wbc ja−Wcb ja) [ρbρc(1−ρa)+(1−ρb)(1−ρc)ρa]δ (ε j + εa− εb− εc)

−2
(

WaiicWjca j−WaiicWjc ja−WiaicWjca j

)
[(1−ρc)ρa]δ (εa− εc)

−
(

Wabi jWjiba

)
[ρ j(1−ρb)(1−ρa)+(1−ρ j)ρbρa]δ (εa + εb− ε j− εi)

−
(

WjibcWcbi j

)
[ρbρc(1−ρi)+(1−ρb)(1−ρc)ρi]δ (ε j + εi− εb− εc)

}
.

(11)

Here Wabcd denotes the screened Coulomb matrix elements. In previous publications (Kim
et al, 2010; Dachner et al, 2010) an approximation of this expression by contributions
possessing a similar formal structure as the in- and out-scattering terms (first two lines)
has been used, which leads to smaller dephasing times. For the numerical evaluation of
Γ2 in this paper all contributions in (11) have been considered. Results for the calcuation
of the dephasing time are depicted in Fig. 2b. The gain spectra for our example QD-WL
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FIGURE 2. Calculated (a) Coulomb scattering rates for electrons (solid)
and holes (dotted), (b) dephasing time T2, in dependence on the WL car-
rier density. (c) gain spectra for WL densities 4,10,20,30 · 1011cm−2.
For the calculation of the scattering rates Auger-like processes according
to Malic et al (2007) have been considered, together with an inhomoge-
noues broadening FWHM of 60 meV. we = wh always assumed.

structure are depicted in Fig. 2c. As a result of the Coulomb interaction, they exhibit a
saturation behaviour with increasing carrier density.

4. CONCLUSION

A semiclassical, spatially resolved, multi-species model for the simulation of semicon-
ductor QD lasers has been presented. The electronic model comprises the carriers in the
bulk, in the wetting layer, and in the QDs, governed by suited transport equations. The
coupling between the equations for the wetting layer densities and the equations for the
QD densities are determined in particular by microscopically calculated scattering rates
between these species. This electronic model is selfconsistently coupled to equations for
the optical field, where in addition a microscopically determined dephasing time enters via
the optical gain. In effect these microscopically calculated quantities become dependent on
the carrier densities in a nonlinear way. This nonlinear behavior is expected to influence the
dynamic properties of such devices, as e.g. their modulation response (Lüdge et al, 2008).
The presented model goes beyond the existing approaches with respect to the following
two aspects: First, in pure rate-equation models the influence of a spatial inhomogenous
current injection, of the electrostatic interaction via the Poisson equation, and of the spatial
inhomogenous stimulated recombination is neglected. Second, compared to other exist-
ing models with spatial resolution, we cover the impact of important QD-WL Coulomb
interaction on the scattering rates and on the optical gain by microscopic calculations.
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