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Abstract

We describe the formation of a strong pulse asymmetry in mode-locked quantum-dot

edge-emitting two-section semiconductor lasers. A mode decomposition technique reveals

the role of the superposition of different modal groups. The results of theoretical analysis

are supported by experimental data.

The advantages of self-assembled quantum dot (QD) materials [1] can be exploited in multi-
section mode-locked (ML) lasers which are able to generate stable high intensity picosecond
and sub-picosecond pulses [2].

In this letter, we study experimentally and theoretically, strongly asymmetric ML pulses gener-
ated by an edge-emitting QD ML laser consisting of a 100 µm long saturable absorber (SA) and
a 900 µm long gain section. Our particular attention is drawn to the study of the pulses having a
broad trailing edge plateaux (TEP) [3]. Our theoretical analysis shows that the TEP in QD lasers
arise mainly due to non-instant carrier transitions between the carrier reservoir (CR), excited
state (ES) and ground state (GS) of the QDs. These multiple finite-time transitions slow-down
the carrier exchange between the electrically pumped CR and the photon generating GS of QD,
act as a filtering and lead to a homogenization of the carrier and photon distributions along the
gain section. To reveal the role of separate optical modes in ML regimes with strongly asymmet-
ric pulses we have performed a modal analysis [4]. The pulses with a strongly enhanced TEP
can be represented as a superposition of a usual pulsating ML state formed by a large number
of longitudinal modes and phase-shifted pulsations comprising only a few optical modes.

We consider a 1+1 dimensional traveling wave model describing spatial-temporal evolution of
the two counter-propagating optical fields, E+(z, t) and E−(z, t), material polarization func-
tions, p+(z, t) and p−(z, t), normalized carrier density ncr(z, t) within the CR, and occupation
probabilities ngs(z, t) and nes(z, t) of the GS and ES of quantum dots, respectively [3].

To describe carrier exchange between the CR, GS, and ES of the QDs in the SA (z ∈ [0, lSA])
and gain (z ∈ [lSA, L]) sections we use the rate equations [5]:

d
dt
ngs(z, t) = −ngs

τgs
+ 2Res,gs −

1
ΘE
R(ngs, E, p),

d
dt
nes(z, t) = −nes

τes
−Res,gs +Rcr,es,

d
dt
ncr(z, t) =

I(z)
θI

− ncr

τcr
− 4Rcr,es,

R = <e
∑

ν=±
Eν∗

[

2g′(ngs−
1
2
)Eν− ḡ(Eν− pν)

]

,

Res,gs(nes, ngs) =
nes(1−ngs)

τes→gs
− ngs(1−nes)

2τgs→es
,

Rcr,es(ncr, nes) =
ncr(1−nes)
4τcr→es

− nes

τes→cr
.

(1)

Here the function R stands for a stimulated recombination, Res,gs and Rcr,es describe the car-
rier exchange rates between the dot’s states, and τ−1

a and τ−1
a→b, a, b ∈ {gs, es, cr} denote
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spontaneous relaxation and transition rates between GS, ES and CR, respectively. (1 − ngs)
and (1 − nes) represent the Pauli blocking, while factors 2 and 4 account for the degeneracy
in the QD energy levels. Following Ref. [6] we assume that in the reversely biased SA section
the carrier transitions from the CR to the ES can be neglected. Hence, in this section we set
τ−1
cr→es = 0 and consider only the equations for ngs and nes in Eq. (1).

The meaning and values of most of the laser parameters can be found in Ref. [3]. In the present
letter we use the linewidth enhancement factor αH = 2 and the scaling factors ΘI = 1.5A ps,
ΘE = 239W ps/m, which relate the gain section injection current IG = I(z)|z∈[lSA,L] and
the field intensity |E±|2 with the scaling of ncr, the QD density, the electron charge, the group
velocity, and the cross-section area of the active zone. In addition, in the gain section we set
τes = τgs = 1 ns, τes→gs = 2 ps, τgs→es = τcr→es = 5 ps, τes→cr = 80 ps. Other parameters
are the same as in Ref.[3].
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Figure 1: Typical fundamental ML pulsations (U = −3V, IG = 40mA). Left: time traces of
the emitted field intensities (a) and the carrier functions ngs,es,cr averaged over the gain and
SA sections (c), respectively. Right: axial distributions of the optical fields (b) and the carrier
functions (d) at the time moment t0.

A single light pulse traveling back and forth the laser cavity and sequentially emitted at the SA
and gain section facets (see functions |E−(0, t)|2 and |E+(L, t)|2 in Fig. 1(a)) corresponds to
a fundamental ML regime. A fast increase of the carrier functions ngs and nes in the SA section
(see panel (c)) corresponds to a fast saturation of this section after the passage of a pulse.

Axial distributions of the intensities of two counter-propagating field amplitudes and carrier vari-
ables at the time moment t0 are shown in panels (b) and (d) of Fig. 1. At this moment the power
of electromagnetic field is concentrated within a pulse traveling along the laser cavity in forward
direction, see the function |E+(z, t0)|

2 in Fig. 1(b). Panel (d) shows the depletion of the carriers
in the gain section induced by this pulse. The strongest depletion corresponding to the largest
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pulse amplification is expected to take place twice per round trip when the pulse comes close
to one of the two edges of the gain section. We note, that in contrast to our previous study of a
simplified two-carrier rate equation model [3], the depletion of ncr(z) (panel (d)) as well as the
oscillation amplitude of ncr(t) (panel (c)) are much weaker. This is because the impact of the
optical field onto the dynamics of the CR carrier density is additionally filtered by the interme-
diate rate equation for the ES occupation probability, which was omitted in our previous study
[3].
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Figure 2: ML pulsation with a large plateaux at the trailing edge of the pulse. Same as in Fig. 1,
but for IG=80mA.

Fig. 2 represents another typical ML regime computed with injection current IG twice as large
as that used in Fig. 1. Let us emphasize the most important differences between these two
ML regimes: (i) At larger injections a ML pulse has a long TEP. (ii) While the emitted pulse
energy increases with the injection current, the peak intensity of the output field remains almost
unchanged. (iii) Carrier density ncr of the gain section increases with the injection current. The
occupation probabilities nes and ngs which are pumped indirectly by Rcr,es and Res,gs remain
nearly unchanged. (iv) In the panels c) of both figures, the growth and decay rates of ngs in the
SA section are similar. However, in Fig. 2 this probability has long flat maxima indicating the
absorber saturation by the long TEP of the ML pulse. These maxima correspond to the plateaux
of pulses emitted at the SA facet (see solid gray curves in panels (c) and (a)). The formation of
strongly asymmetric pulses with TEP is unknown for the bulk or quantum well based devices,
what directly confirms the role of at least one non-instant carrier transition between the CR and
the GS.

In order to get a deeper understanding of the formation mechanisms of stable ML pulses with a
long TEP, we have performed a modal analysis[4] of the model equations. Introducing a differ-
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ential operator H(β), we rewrite the field equations [3] in the operator form:

d

dt
Ψ(z, t) = H(β)Ψ(z, t), Ψ

def
=

(

E+, E−, p+, p−
)T
. (2)

The field function Ψ(z, t) can be decomposed into a series of instantaneous (β(t)-dependent)
modes:

Ψ(z, t)=
∑

k

fk(t)Θk(β, z) ⇒ E+(L, t)=
∑

k

fk(t), (3)

where Θk and fk are properly scaled eigenfunctions of the spectral problem H(β)Θ(β, z) =
iΩ(β)Θ(β, z), and complex modal functions representing the contribution of k-th mode to the
field emitted from the gain section facet, respectively. <eΩk and =mΩk give a main contribution
to the rotation and damping of the modal functions [4] which can be written in the form

fk(t) = f0(t)sk(t)e
ik(2πt/Tc−ψk(t)), k ∈ Z.

Here, sk(t) = |fk/f0| and ψk(t) are real slowly varying Tc-periodic functions, where Tc is the
period of ML regime close to the field round-trip time in the laser cavity. Relative phases ψk(t)
represent the phase difference between the k-th mode and the mode with the largest amplitude
to which we assign the index "0". The perfect locking between several equidistant modes having
equal intensities corresponds to ψk(t) = ψ̄(t) and sk(t) ≡ 1. Then the relation t/Tc =
ψ̄(t)/2π mod(1) determines the time moments when the ML pulse peaks are expected.

The shape of a ML pulse depends strongly on the relations between the amplitudes and phases
of the complex modal functions. Hence, using the mode decomposition (3) the contribution of
the different modes into the formation of ML pulse can be revealed.
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Figure 3: Modal analysis of a ML regime shown in Fig. 2. (a): Calculated time trace of the field
intensity emitted at the gain section facet (thick gray curve) and its reconstruction using 50, 20
and 4 modes with largest |fk| (thin curves). (b): Bullets give a parametric representation of the
modal phases ψk(t) (above) and amplitudes |fk(t)| (below) vs. modal frequencies <eΩk(t).
Optical spectrum of the emitted field is shown by solid line. Bullets of different size indicate
modes used for the field reconstruction in panel (a).

A total number of 200 modes centered around the gain peak frequency have been used in the
decomposition of the field function Ψ(z, t), see Fig. 3. After that, a reconstruction of the electric
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fields have been performed with the help of a superposition of m modes (m = 4, 20, 50)
having largest amplitudes. We notice that the reconstruction with m = 50 modes gives almost
perfect approximation of the original field function, while 4- and 20-mode reconstructions are
not sufficient to recover the precise shape of the calculated pulse.

The comparison of field reconstructions with different numbers of modesm shows an interesting
feature of ML pulses with a broad TEP. For conventional ML state an increase of the number
of phase-locked modes usually leads to an increase of the pulse amplitude and a decrease
of the pulse width without a significant shift of the pulse peak location. In our case, however,
when increasing the number m from 4 to 50 the peak location of the reconstructed pulse shifts
by 15 − 20% of the pulse repetition period Tc. This indicates that the strong asymmetry in the
pulse shape appears not only due to larger amplitudes of a few most powerful central modes but
also due to specific phase relations between these modes and the rest of the optical spectrum.

In Fig. 3(b), the amplitudes and relative phases of modes are shown vs their frequency. All these
modes give a similar contributions to the formation of the sharp main peaks of the ML pulses
located at t ≈ 0 and t ≈ Tc in Fig. 3(a). Only a few most powerful modes in the central part of
the optical spectrum have the phases ψk shifted from zero by approximately 15 − 20% of the
period. These shifts correspond to the shift of the TEP from the position of the main peak, see
the dash-dotted line in Fig. 3(a)). Therefore, we can conclude that TEP is formed by a few most
powerful modes.

Thus, an optical field of a ML pulse with a TEP can be represented as a sum of two components:
E+(L, t) = E1(t) + E2(t). The intensities of the components, |E1(t)|

2 and |E2(t)|
2, have

the same periodicity Tc. While |E1(t)|
2 has a form of a narrow high intensity pulse, |E2(t)|

2

corresponds to a rather broad pulse with a time-shifted peak and smaller peak power.

Experimental studies of the ML pulse broadening have been performed with a ridge waveguide
two section QD monolithic ML laser. The material incorporated is InGaAs forming 15 stacked
layers of QDs. The device was integrated in a module comprising a fiber pigtail, a microwave
port, dc contacts, and a thermoelectric cooler [7, 8].

Fig. 4 gives two different time-domain representations of the pulses measured for several in-
jection currents IG. The autocorrelation (AC) functions of these pulses (panel (a)) clearly show
a typical increase of the pulse width with injection current. Note that for IG = 100mA the AC
function has non-vanishing wings, which is typical for pulses with the intensity remaining distin-
guishable from zero for more then the half of the pulse repetition period.

Fig. 4(b) shows the corresponding pulses reconstructed by means of the FROG technique [9].
Similarly to our theoretic predictions, the shape of the front edge of the pulse remains nearly
independent of IG, while the pulse broadening is due to the growing trailing edge. At higher
currents (IG = 80mA) the formation of the TEP is visible. At even higher injections, however,
the pulse reconstruction fails, since the FROG algorithm requires zero intensities at the edges
of the corresponding AC functions.

In conclusion, we demonstrated numerically and experimentally, that the increase of the injection
current in a monolithic two-section mode-locked QD laser leads to a formation of ML pulses with
a large TEP formed by a few central modes having much larger amplitudes than the remaining
ML modes.
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Figure 4: Experimental AC measurements (a) and reconstructed pulse shapes using FROG
technique (b) at fixed voltage of the SA section and several values of the injection currents into
the gain section.
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