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1Abstrat We desribe the large-time moment asymptotis for the paraboli Andersonmodel where the speed of the di�usion is oupled with time, induing an aeleration ordeeleration. We �nd a lower ritial sale, below whih the mass �ow gets stuk. On thissale, a new interesting variational problem arises in the desription of the asymptotis.Furthermore, we �nd an upper ritial sale above whih the potential enters the asymptotisonly via some average, but not via its extreme values. We make out altogether �ve phases,three of whih an be desribed by results that are qualitatively similar to those from theonstant-speed paraboli Anderson model in earlier work by various authors. Our proofsonsist of adaptations and re�nements of their methods, as well as a variational onvergenemethod borrowed from �nite elements theory.1 IntrodutionWe onsider the solution u(t) : [0,∞) × Z
d → [0,∞), t > 0, to the Cauhy problem for theheat equation with random oe�ients and t-dependent di�usion rate,

∂

∂s
u(t)(s, z) = κ(t)∆u(t)(s, z) + ξ(z)u(t)(s, z), s > 0, z ∈ Z

d, (1.1)
u(t)(0, ·) = 1l0,where ∆ is the disrete Laplaian,

∆f(z) =
∑

x∈Zd : |x−z|=1

[f(x) − f(z)],

(ξ(z))z∈Zd is a �eld of independent and identially distributed random variables, and
κ : [0,∞) → [0,∞) is a funtion with limt→∞ tκ(t) = ∞. Our main goal is to understandthe asymptoti behaviour as t→ ∞ of the expeted total mass at time t,

U(t) =
∑

z∈Zd

u(t)(t, z).The total mass may be represented in terms of the famous Feynman�Ka formula,
U(t) = E

(t)

0

[
exp

{∫ t

0

ξ(Xs) ds
}]
, (1.2)where (Xs)s∈[0,∞) is a random walk with generator 2dκ(t)∆, starting from zero under E

(t)

0 .Denoting by 〈 · 〉 the expetation with respet to the random potential ξ, we will study thelogarithmi asymptotis of 〈U(t)〉 for various hoies of the di�usion funtion t 7→ κ(t).The model with onstant di�usion rate κ(t) ≡ 1 has been analysed in [GM98℄ and [BK01℄for three important lasses of tail distributions of ξ(0), see also [GK05℄ for a survey and[CM94℄ for more bakground. In [HKM06℄ a lassi�ation of all potential distributions intofour universality lasses was made out suh that the qualitative behaviour of 〈U(t)〉 in eahof the lasses is similar. This lassi�ation holds under mild regularity assumptions anddepends only on the upper tails of the potential. Heuristially, the main e�et in eah ofthese lasses is the onentration of the total mass on a so-alled intermittent island thesize of whih is t-dependent and deterministi. The (resaled) shape of the solution and thepotential on this island an be desribed by a deterministi variational formula. The thinnerthe tails of the potential distribution are, the larger the islands are, ranging from single sitesto large areas, however still having a radius ≪ t1/d.In (1.1), the di�usion is oupled with time so that it is aelerated if the di�usion funtion
t 7→ κ(t) grows or deelerated if it dereases. Now an interesting ompetition between the



2speed of the di�usion and the thikness of the tails of the potential distribution arises: thefaster κ(t) is, the stronger the �attening e�et of the di�usion term is. One rightfully expetsthat if the speed of this funtion is not too extreme, then similar formulas should be validas for onstant di�usion rate. Indeed, we will identify a lower ritial sale for κ(t), whihdepends on the upper tails of the potential distribution, and marks the threshold belowwhih the mass does not �ow unboundedly far away from the origin in the Feynman�Kaformula, see below Assumption 2.1. Then we are in the ase of [GM98℄. Furthermore, wewill see that � if κ(t) is above this lower ritial sale � t2/d presents an upper ritial salein the sense that, for κ(t) ≪ t2/d, the main ontribution to the total mass omes fromextremely high potential values, while for κ(t) ≈ t2/d, it omes from just super-average, butnot extreme, values. This is re�eted by the fat that the asymptotis an be desribed interms of the upper tails of the potential distribution in the former ase (then we �nd theformulas derived in [BK01℄ and [HKM06℄), but all the details of this distribution are requiredin the latter. (If the speed is even faster, then, onjeturally, only a rough mean behaviourof the potential values will in�uene the asymptotis.)The paper is organised as follows. In Setion 2, we formulate our assumptions on thepotential and on the funtion κ. Then we state our results for the moment asymptotisof U(t) in Setion 3. Our main result will be the identi�ation of �ve phases with qualitativelydi�erent behaviour, whih we will desribe informally in Setion 3.1 and rigourously inSetion 3.2 (for four of them). We will also give a proposition onerning the onvergene ofa disrete variational formula to the orresponding ontinuous version, representing one ofthe main tools used in the proof of the asymptotis. In Setions 4�6, we give skethes of theproofs of this proposition and of the theorems. The details are rather lengthy and involved;they may be found in the seond author's thesis [S10℄.2 Assumptions and Preliminaries2.1 Model AssumptionsLet
H(t) = log〈etξ(0)〉, t > 0,be the logarithmi moment generating funtion of ξ(0). We assume H(t) <∞ for all t > 0,whih is su�ient for the existene of a nonnegative solution of (1.1) and the �niteness ofall its positive moments [GM90℄. Now we reall the disussion on regularity assumptions in[HKM06, Setion 1.2℄. If we assume that t 7→ H(t)/t is in the de Haan lass, then the theoryof regularly varying funtions provides us with an asymptoti desription of H that dependsonly on two parameters γ and ρ, see [BGT87℄ and [HKM06, Proposition 1.1℄. This leads tothe following assumption whih will be in fore throughout the rest of this paper.Assumption 2.1 There exist parameters γ ≥ 0 and ρ > 0 and a ontinuous funtion

KH : (0,∞) → (0,∞), regularly varying with parameter γ, suh that, loally uniformly in
y ∈ [0,∞),

lim
t→∞

H(ty) − yH(t)

KH(t)
= ρĤ(y), (2.1)where

Ĥ(y) =






y log y if γ = 1,

y − yγ

1 − γ
if γ 6= 1.

(2.2)The sale funtion KH roughly desribes the thikness of the potential tails at in�nity. Aswe will see later, the funtion t 7→ KH(t)/t presents a lower ritial sale for the di�usionfuntion κ(t). The following lemma is a onsequene of [BGT87, Theorem 3.6.6℄.



3Lemma 2.2. Let Assumption 2.1 hold.(a) If ess sup ξ(0) ∈ {0,∞}, then H is regularly varying with index γ.(b) If 〈ξ(0)〉 = 0, then H is regularly varying with index γ ∨ 1.Now we formulate some mild regularity assumptions on the speed funtion κ.Assumption 2.3 The following limits exist:
lim

t→∞
tκ(t) = ∞, lim

t→∞
tκ(t)

KH(t)
∈ [0,∞], lim

t→∞
κ(t)

t2/d
∈ [0,∞].We also need a sale funtion α : [0,∞) → [0,∞), whih will be interpreted as the orderof the radius of the relevant island. While we an de�ne α = 1 in the results for Phases 1and 2 of our lassi�ation, we will need the following �xed point equation in Phase 3:

KH

( t

αd
t

)
=
tκ(t)

αd+2
t

. (2.3)Let us state existene and some important properties of a solution of (2.3).Lemma 2.4. Let κ(t) be regularly varying with index β ∈ (γ − 1, 2/d). Then there existsa regularly varying funtion α suh that (2.3) holds for all large t. Any solution α(t) = αtsatis�es limt→∞ αt = ∞. Furthermore, t/αd
t ≫ 1 and αx

t ≪ tκ(t) for eah x < d+ 2.Proof. Similar to the proof of [HKM06, Proposition 1.2℄. For details, see [S10, Lemma 2.1.5℄.From the assumptions of Theorem 3.1() below, we will see that the interval for the indexof regular variation for κ is not a hard restrition in Phase 3.2.2 Variational FormulasThe following variational formulas will play a role in our results. Here, H1(Rd) is the Sobolevspae on R
d and M1(Z

d) is the spae of probability measures on Z
d. The inner produton Z

d is denoted by (· , ·). All integrals are with respet to Lebesgue measure. We alwayshave ρ, θ > 0 and γ ≥ 0.
χ(B)

γ (ρ) = inf
g∈H1(Rd)
‖g‖2=1

{∫

Rd

|∇g|2 +
ρ

1 − γ

∫

Rd

(g2γ − g2)
}
, (2.4)

χ(AB)(ρ) = inf
g∈H1(Rd)
‖g‖2=1

{∫

Rd

|∇g|2 − ρ

∫

Rd

g2 log g2
}
, (2.5)

χ(DE)(ρ) = inf
p∈M1(Zd)

{
−

(
∆
√
p,
√
p
)
− ρ

(
p, log p

)}
, (2.6)

χ(DB)

γ (ρ) = inf
p∈M1(Zd)

{
−

(
∆
√
p,
√
p
)

+
ρ

1 − γ

(
pγ − p, 1

)}
, (2.7)

χ(RWRS)

H (θ) = inf
g∈H1(Rd)
‖g‖2=1

{∫

Rd

|∇g|2 − θ

∫

Rd

H ◦ g2
}
. (2.8)If γ = 0, then we use the interpretation ∫

Rd g
2γ = |supp g| and (pγ , 1) = |supp p|. Wesometimes refer to the formulas that are de�ned in R

d (that is, χ(B)
γ , χ(AB) and χ(RWRS)

H ) asto `ontinuous' formulas and to the others as to the `disrete' ones. Clearly, χ(B)
γ and χ(AB)are the ontinuous variants of χ(DB)

γ and χ(DE), respetively. Note that χ(B)
γ is degenerate inthe ase γ > 1 + 2/d (whih we do not onsider here).



4 The formulas χ(DE), χ(AB) and χ(B)
γ are already known from the study of the paraboliAnderson model for onstant di�usion κ(t) ≡ 1 in three universality lasses, see the sum-mary in [HKM06℄. Our notation refers to the names of these lasses introdued there: `DE'for `double-exponential', `AB' for `almost bounded', and `B' for `bounded'. Informally, thefuntions g2 and p, respetively, in the formulas have the interpretation of the shape (up topossible resaling and vertial shifting) of those realisations of the solution u(t)(t, ·) that givethe overwhelming ontribution to the expeted total mass, 〈U(t)〉. If the total mass omesfrom an unboundedly growing island, then a resaling is neessary, and a ontinuous formulaarises, otherwise a disrete one.In [S09℄ the existene, uniqueness (up to shift) and some haraterisations of the minimiserof χ(B)

γ are shown for γ < 1, in [HKM06℄ it is shown that the only minimiser of χ(AB) isan expliit Gaussian funtion, and in [GM98℄ and [GH99℄, the minimisers of χ(DE)(ρ) areanalysed, whih are unique (up to shifts) for any su�iently large ρ. Formula χ(RWRS)

H is aresaling of the Legendre transform of a variational formula whih appeared in the study oflarge deviations for the random walk in random senery in [GKS07℄, see (6.2). Its propertieshave not been analysed yet.However, formula χ(DB)
γ (`DB' refers to `disrete bounded') appears in the study of theparaboli Anderson model for the �rst time in the present paper. Here are some of itsproperties.Proposition 2.5. (a) For any ρ > 0 and any γ 6= 1 with 0 ≤ γ < max{1+1/d, 1+ρ/(2d)},there exists a minimiser for χ(DB)

γ (ρ).(b) Let p be a minimiser for χ(DB)
γ (ρ). Then supp p is �nite if and only if γ ≤ 1/2. In thease γ > 1/2 the support of p is the whole lattie.Proof. See [S10, Prop. 2.1.8℄. This uses ideas from [GK09, Lemma 3.2℄ for the existene andfrom [GH99, p. 44℄ for the size of the support.Similarly to the ontinuous analogue in [HKM06, Proposition 1.16℄, it is possible to showthat limγ→1 χ

(DB)
γ (ρ) = χ(DE)(ρ), furthermore we have limρ→∞ χ(DB)

γ (ρ) = 2d.3 ResultsIn what follows, we will use the notation ft ≫ gt if limt→∞ ft/gt = ∞ and ft ≍ gt if
limt→∞ ft/gt exists in (0,∞). We will always work under the assumptions made in Se-tion 2.1.3.1 Five PhasesDepending on the ratio between the speed κ(t) and the ritial sales KH(t)/t and t2/d, wemake out up to �ve phases. In the following, we resume heuristially our results for thesephases. Reall the Feynman�Ka formula in (1.2).Phase 1. κ(t) ≪ KH(t)/t.The mass stays in the origin, where the potential takes on its highest value. The expetedtotal mass behaves therefore like 〈U(t)〉 ≈ 〈u(t)(t, 0)〉 ≈ exp(H(t) − 2dtκ(t)). This inludesthe single-peak ase of [GM98℄.Phase 2. κ(t) ≍ KH(t)/t.The radius of the intermittent island remains bounded in time, and onsequently the mo-ment asymptotis are given in terms of a disrete variational formula. Denoting κ∗ =
limt→∞ tκ(t)/KH(t),



5
lim

t→∞
1

tκ(t)
log〈U(t)e−H(t)〉 = −

{
χ(DE)(ρ/κ∗) if γ = 1,

χ(DB)
γ (ρ/κ∗) if γ 6= 1.

(3.1)While the ase γ = 1 is qualitatively the same as the ase of the double-exponential dis-tribution analysed in [GM98℄, the ase γ 6= 1 shows a new e�et that was not present foronstant di�usion speed κ(t) ≡ 1. The di�usion is deelerated so strongly that the massmoves only by a bounded amount.Phase 3. KH(t)/t≪ κ(t) ≪ t2/d.The relation between a-/deeleration and thikness of potential tails is so strong that themass �ows an unbounded amount of order αt de�ned by (2.3). Sine the aeleration is nottoo strong, the total mass omes from sites of extremely high potential values. Therefore,we get the ontinuous analogue to (3.1), but on sale tκ(t)/α2
t ,

lim
t→∞

α2
t

tκ(t)
log〈U(t) exp(−αd

tH(tα−d
t ))〉 = −

{
χ(AB)(ρ) if γ = 1,

χ(B)
γ (ρ) if γ 6= 1.

(3.2)Hene, for γ = 1 we are in the almost-bounded ase [HKM06℄ and for γ < 1 in the boundedase [BK01℄. Note that we an have γ ∈ [0, 1 + 2/d) here, whih has never been onsideredbefore in the paraboli Anderson model.Phase 4. KH(t)/t≪ κ(t) ≍ t2/d.As in Phase 3, the mass �ows an unbounded distane away from the origin. The aelerationreahes the ritial level, suh that this distane is of order t1/d, whih is muh larger thanin Phase 3. Only so little mass reahes the sites in this large island that the potential is notextremely large here, but only by a bounded amount larger than the mean. Therefore, theharateristi variational formula does not only depend on the tails of the distribution, buton all values of the logarithmi moment generating funtion H . This regime has strong on-netions to the large deviation result for a random walk in random senery model desribedin [GKS07℄.Phase 5. κ(t) ≫ KH(t)/t and κ(t) ≫ t2/d.The speed is so high that, onjeturally, the values of the potential in�uene the expetedtotal mass only via their mean, and the di�usion behaves like free Brownian motion withsome di�usion onstant that depends on the potential distribution. We will not presentrigorous results for this phase in the present paper.Note that, beause of regular variation, KH(t) = tγ+o(1). Hene, Phases 3 and 4 an onlyappear if we have γ ≤ 1 + 2/d. The four universality lasses for the onstant-di�usion ase
κ(t) ≡ 1 are found in Phases 1�3 depending on whether γ = 1 or γ 6= 1.3.2 Moment AsymptotisWe now formulate our results. Reall the variational formulas de�ned in the Setion 2.2 andset

χd
γ =

{
χ(DE) if γ = 1,

χ(DB)
γ if γ 6= 1,

and χc
γ =

{
χ(AB) if γ = 1,

χ(B)
γ if γ 6= 1.Then we have the following result for the �rst three regimes of our model.Theorem 3.1 (Phase 1 � Phase 3). Assume ess sup ξ(0) ∈ {0,∞}.(a) If κ(t) ≪ KH(t)/t, then we have for t→ ∞

〈U(t)〉 = exp
(
H(t) − 2dtκ(t)(1 + o(1))

)
. (3.3)



6(b) If κ(t) ≍ KH(t)/t, then
〈U(t)〉 = exp

(
H(t) − tκ(t)χd

γ

( ρ

κ∗

)
(1 + o(1))

) (3.4)with κ∗ = limt→∞ tκ(t)/KH(t) ∈ (0,∞).() Let the assumption of Lemma 2.4 hold, in partiular we have KH(t)/t ≪ κ(t) ≪ t2/d.Furthermore suppose KH(t) ≫ log t and γ < 2. Then
〈U(t)〉 = exp

(
αd

tH
( t

αd
t

)
− tκ(t)

α2
t

χc
γ(ρ)(1 + o(1))

)
. (3.5)Note that the assumption ess sup ξ(0) ∈ {0,∞} is not restritive, sine a shift of the potentialwould only lead to an additive onstant in our results. The assumptions KH(t) ≫ log t and

γ < 2 in part () of the theorem are purely tehnial, the �rst one only needed in thease γ = 0. Sine γ < 1 + 2/d in the respetive phase (whih follows from the assumption ofLemma 2.4), γ < 2 is only a restrition in dimension 1.Now we ome to Phase 4, where we will meet the variational formula χ(RWRS)

H (θ) de�nedin (2.8). Sine the result will no longer depend on the upper tails of the potential distribution,it will make sense to have an assumption for the expetation of ξ(0) instead of its essentialsupremum. Again, this is no loss of generality.Theorem 3.2 (Phase 4). Assume 〈ξ(0)〉 = 0 and KH(t)/t ≪ κ(t) ≍ t2/d. Let γ ∈ [0, 1 +
2/d), γ < 2. Then we have for t→ ∞

〈U(t)〉 = exp
(
−tκ∗χ(RWRS)

H

( 1

κ∗

)
(1 + o(1))

) (3.6)with κ∗ = limt→∞ κ(t)/t2/d ∈ (0,∞).3.3 Variational ConvergeneWe now state a result whih is both important in the proof of Theorem 3.1() and ofindependent interest as a onnetion between the disrete variational formula χd
γ(ρ) and itsontinuous analogue χc

γ(ρ). In the ase γ = 1, this fat is stated in [HKM06℄ and is derivedwithout di�ulties from an expliit representation of χ(AB)(ρ). The proof for the ase γ 6= 1is muh more involved and uses tehniques from the theory of �nite elements.Proposition 3.3. Let ρ > 0. As κ→ ∞, we have
κχ(DE)

(ρ
κ

)
= χ(AB)(ρ) + ρ

d

2
log κ+ o(1) (3.7)and for γ ∈ [0, 1 + 2/d) \ {1}

κ1−dνχ(DB)

γ

(ρ
κ

)
= χ(B)

γ (ρ) + ρ
1 − κ−dν

1 − γ
+ o(1) (3.8)with ν = 1−γ

2+d(1−γ) .Note that (3.7) and (3.8) are onsistent, as (3.7) is a ontinuous ontinuation of (3.8)to γ = 1. Proposition 3.3 shows that Phases 2 and 3 an be ontinuously transformed intoeah other, i.e., the transition between them is atually no phase transition in the sense ofstatistial mehanis.



74 Proof of Variational Convergene (Proposition 3.3)The asymptotis (3.7) follows from the arguments in [HKM06, p. 313℄. To show (3.8), weremark �rst that the summand ρ
1−γ drops out in both (2.4) and (2.7). Therefore (3.8) isequivalent to

lim
κ→∞

κ1−dν inf
p∈M1(Zd)

{
−

(
∆
√
p,
√
p
)

+
ρ

κ(1 − γ)

∑

z∈Zd

p(z)γ
}

= χ̂γ(ρ), (4.1)where
χ̂γ(ρ) = inf

g∈H1(Rd)
‖g‖2=1

{ ∫

Rd

|∇g|2 +
ρ

1 − γ

∫

Rd

g2γ
}
.The proof of the upper bound of (4.1) is standard and we will here only give the idea.To an approximate minimiser g for the in�mum in χ̂γ(ρ) and for small ε > 0, we de�ne aprobability measure pε by

pε(z) =

∫

εz+[0,ε)d

g(x)2 dx, z ∈ Z
d.Assuming that g is smooth and ompatly supported, we an make use of Taylor expansionsto see that, as ε ↓ 0,

−ε−2
(
∆
√
pε,

√
pε

)
→

∫

Rd

|∇g|2 and εd(1−γ)
∑

z∈Zd

pε(z)
γ →

∫

Rd

g2γ .Reall γ < 1 + 2/d. Putting ε = κ−(1−dν)/2 = κ−1/(2+d(1−γ)) ↓ 0 as κ → ∞, this shows theupper bound.Let us now turn to the lower bound. This proof is pretty involved and omes in severalsteps. The prinipal idea and main arguments are taken from [HKM06, Proof of (5.3)℄.However, we ould not �nd an argument for the L2-normalisation of the limit funtion in theirapproximation approah, sine this involves interhanging integral and limit, whih seemsto be hard to justify. Hene, we use a di�erent onstrution. Furthermore, our onsiderationof γ > 1 auses some additional di�ulties.We will only treat the ase γ > 1. The struture for γ < 1 is similar, for details we referto the proofs of [S10, Prop. 3.4.7 and Prop. 5.2.1℄. We denote S(p) = −
(
∆
√
p,
√
p
).Step 1. We hoose minimising sequenes κn → ∞ and (pn)n from M1(Z

d) for the lefthand side of (4.1). Put an = κ
(1−dν)/2
n . We now argue that we an assume, without loss ofgenerality, that

sup
n∈N

a2
nS(pn) <∞. (4.2)For this, we need the following disrete Sobolev inequality:Lemma 4.1. Let γ > 1 with γ(d− 2) < d. There exists a onstant c = cd,γ suh that for all

p ∈ M1(Z
d) ∑

z∈Zd

p(z)γ ≤ cS(p)d(γ−1)/2.Proof. See [S10, Lemma 3.2.10℄.Now suppose that (4.2) does not hold. Then, by Lemma 4.1 and beause of d(γ − 1)/2 < 1,



8
lim

n→∞
a2

n

{
S(pn) +

ρ

a
2+d(1−γ)
n (1 − γ)

∑

z∈Zd

pn(z)γ

}

≥ lim sup
n→∞

{
a2

nS(pn) − cρ

γ − 1

(
a2

nS(pn)
)d(γ−1)/2

}
= ∞.Sine (pn)n is a minimising sequene, the lower bound would now be trivially satis�ed.Hene, we an assume (4.2).Step 2. We ompatify on a box BRan

= [−Ran, Ran]d ∩ Z
d for R > 0. Consider theperiodised probability measures

pR
n (z) =

∑

k∈(2Ran+1)Zd

pn(z + k), z ∈ BRan
.In [GM98, Lemma 1.10℄, it was shown that Sπ,R(pR

n ) ≤ S(pn) in the one-dimensional ase,where Sπ,R is the Dirihlet form with periodi boundary ondition. This holds as well inhigher dimensions, besides we have 1
1−γ

∑
z∈BRan

pR
n (z)γ ≤ 1

1−γ

∑
z∈Zd pn(z)γ by subaddi-tivity. Therefore it will be su�ient to prove that

lim inf
R→∞

lim inf
n→∞

a2
n

{
Sπ,Ran

(
pR

n

)
+

ρ

1 − γ
a−2−d(1−γ)

n

∑

z∈BRan

(
pR

n (z)
)γ

}
≥ χ̂γ(ρ). (4.3)Sine Sπ,R(pR

n ) ≤ S(pn), (4.2) implies
sup
n∈N

a2
nS

π,R(pR
n ) <∞. (4.4)Step 3. Our goal is to onstrut potential minimisers for χ̂γ(ρ) that interpolate the valuesof the resaled step funtions hn(x) =

√
ad

np
R
n (⌊anx⌋) on the lattie {x = z/an : z ∈

BRan
}. In the present step, we de�ne pieewise linear interpolations gn ∈ H1(Q(n)

R ) with
Q(n)

R = [−R,R+a−1
n )d, whih we will slightly modify in Step 4 in order to obtain normalised

H1(Rd)-funtions.We borrow a tehnique from �nite elements theory, see e.g. [B07℄. Consider the triangu-lation
Q(n)

R =
⋃

z∈BRan

⋃

σ∈Sd

Tσ(z),where Sd is the set of permutations of 1, . . . , d and Tσ(z) is the d-dimensional tetrahedronde�ned as the onvex hull of the points z, z+ eσ(1), . . . , z+ eσ(1) + · · ·+ eσ(d), where ei is the
i-th unit vetor in R

d. Note that the tetrahedra are disjoint up to the boundary. On eahtetrahedron Tσ(z), we de�ne a funtion
gn,z,σ(x) = b(0)n,z,σ +

d∑

k=1

b(k)

n,z,σ(anxσ(k) − zσ(k)), x = (x1, . . . , xd) ∈ Tσ(z),where the oe�ients are given by
b(0)n,z,σ =

√
ad

np
R
n (z) = hn

( z

an

)
,

b(k)

n,z,σ =
√
ad

np
R
n (z + eσ(1) + · · · + eσ(k)) −

√
ad

np
R
n (z + eσ(1) + · · · + eσ(k−1))for k = 1, . . . , d, where pR

n is ontinued periodially outside BRan
. Then gn,z,σ satis�es

gn,z,σ(z̃/an) = hn(z̃/an) for all z̃ ∈ Tσ(z) ∩ Z
d.



9The values of all funtions gn,z,σ on the ommon borders of their respetive tetrahedraoinide; see [BK10, Proof of Lemma 2.1℄ for a detailed argument. Hene, the funtion
gn : Q(n)

R → R given by
gn(x) = gn,z,σ(x) if x ∈ Tσ(z)is well-de�ned and ontinuous, and gn ∈ H1(Q(n)

R ).A diret alulation for the gradient gives ∂xσ(k)
gn(x) = anb

(k)
n,z,σ and thus

∫

Q
(n)
R

|∇gn|2 = a2
nS

π,R(pR
n ). (4.5)Note that by (4.4) this is bounded in n. Now onsider the L2-norm of g. Beause of |anxσ(k)−

zσ(k)| ≤ 1 and b(k)
n,z,σ = a−1

n ∂xσ(k)gn(x) we obtain
‖(gn − hn)1l

Q
(n)
R

‖2
2 ≤ a−2

n

∫

Q
(n)
R

( d∑

i=1

∂

∂xi
gn(x)

)2

dx.By Jensen's inequality, (∑d
i=1 ci)

2 ≤ d
∑d

i=1 c
2
i . Sine ‖hn1l

Q
(n)
R

‖2 = 1, the triangle inequalitygives
|‖gn1l

Q
(n)
R

‖2 − 1|2 ≤ da−2
n

∫

Q
(n)
R

|∇gn|2, (4.6)whih tends to zero as n→ ∞ by (4.5) and (4.4).A similar alulation for the L2γ-norm results in
‖(gn − hn)1l

Q
(n)
R

‖2γ
2γ ≤ dγa−2γ

n

∫

Q
(n)
R

|∇gn|2γ .Beause of pR
n (z) ∈ [0, 1], we have |b(k)

n,z,σ| ≤ a
d/2
n and therefore |∇gn|2 ≤ dad+2

n . For γ > 1,this yields
|∇gn(x)|2γ = dγa(d+2)γ

n

( |∇gn(x)|2
dad+2

n

)γ

≤ dγ−1a2γ
n a−2−d(1−γ)

n |∇gn(x)|2.Now use triangle inequality to get
ad(γ−1)

n

∑

z∈BRan

(
pR

n (z)
)γ

= ‖hn1l
Q

(n)
R

‖2γ
2γ ≤

(
‖gn1l

Q
(n)
R

‖2γ + cna
−2−d(1−γ)

2γ
n

)2γ

, (4.7)where cn = (d2γ−1
∫

Q
(n)
R

|∇gn|2)1/(2γ) is bounded in n.Step 4. In order to adapt our funtion gn to zero boundary onditions, we introdue a ut o�funtion ΨR(x) =
∏d

i=1 ψR(xi), x = (x1, . . . , xd) ∈ R
d, where ψR = 1 on [−R+

√
R,R−

√
R],

ψR = 0 on R \ [−R,R] and it interpolates linearly in-between. Then 0 ≤ ψR ≤ 1 and
|ψ′

R| ≤ 1/
√
R. Let us estimate the relevant terms for the H1(Rd)-funtion gnΨR (whih iszero outside QR = [−R,R]d). As for the gradient,

∫

Rd

( ∂

∂xi
(gnΨR)(x)

)2

dx ≤
∫

QR

( ∂

∂xi
gn(x)

)2

dx+
1

R

∫

QR

gn(x)2 dx

+
2√
R

√∫

QR

( ∂

∂xi
gn(x)

)2

dx

√∫

QR

gn(x)2 dx,where we used the properties of ψR and the Cauhy�Shwarz-inequality. Sine all integralsare bounded (reall (4.5), (4.6) and (4.4)), we �nd a onstant c > 0 suh that for all n andall R
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∫

Rd

|∇(gnΨR)(x)|2 dx ≤
∫

QR

|∇gn(x)|2 dx+
c√
R
. (4.8)Our basi tool for estimating the L2- and L2γ-norm of gnΨR is a variation of the shiftlemma [DV75, Lemma 3.4℄. Indeed, using the shift-invariane of the variational problembeause of periodi boundary onditions, the mass of a nonnegative funtion on the boundary

QR \ QR−
√

R an, after suitable shifting, be estimated by its total mass on QR times thequotient of the volumes. Applying this to g2
n + g2γ

n , we may assume that
∫

QR\QR−
√

R

(
g2

n + g2γ
n

)
≤ d√

R

∫

QR

(
g2

n + g2γ
n

)
.Skipping the details, this leads to

‖gnΨR‖2γ
2γ ≥

(
1 − d√

R

)
‖gn1l

Q
(n)
R

‖2γ
2γ − c√

R
(4.9)and, with use of (4.6),

|‖gnΨR‖2
2 − 1| ≤ c√

R
(4.10)for a suitable onstant, not depending on n or R, whih we also denote c > 0.Step 5. Now we put everything together to show (4.3). We use (4.5) and (4.7) and notethat 1 < γ < 1 + 2/d to get

lim inf
n→∞

a2
n

{
Sπ,Ran

(
pR

n

)
+

ρ

1 − γ
a−2−d(1−γ)

n

∑

z∈BRan

(
pR

n (z)
)γ

}

≥ lim sup
n→∞

( ∫

Q
(n)
R

|∇gn|2 −
ρ

γ − 1
‖gn1l

Q
(n)
R

‖2γ
2γ

)
.Next, we plug in (4.8) and (4.9) obtaining

lim inf
R→∞

lim inf
n→∞

a2
n

{
Sπ,Ran

(
pR

n

)
+

ρ

1 − γ
a−2−d(1−γ)

n

∑

z∈BRan

(
pR

n (z)
)γ

}

≥ lim sup
R→∞

lim sup
n→∞

(∫

Rd

|∇(gnΨR)|2 − ρ

γ − 1
‖gnΨR‖2γ

2γ

)
.With the help of (4.10), we an replae gnΨR by its normalised version gnΨR/‖gnΨR‖2,whih is a andidate for the in�mum in χ̂γ(ρ). This yields the assertion.5 Proof for Phases 1�3 (Theorem 3.1)The proof of (a) and (b) is analogous to the proof of [GM98, Theorem 1.2℄ (see [S10℄ fordetails), therefore we only sketh the idea here and omit all details, like ompati�ation,utting, or error terms.Denote by ℓt(z) =

∫ t

0 1l{Xs=z} ds the loal time of the random walk path (Xs)s∈[0,t] withgenerator 2dκ(t)∆ in the point z ∈ Z
d. Starting from the Feynman�Ka formula (1.2), weapply the asymptotis (2.1) to the normalised loal times ℓt/t. Heuristially, this gives

〈U(t)〉e−H(t) ≈ E
(t)

0

[
exp

(
KH(t)

∑

z∈Zd

ρĤ
( ℓt(z)

t

)
(1 + o(1))

)]
, t→ ∞.



11Denote by P
(t)

0 the probability measure related to E
(t)

0 . Under P
(t)

0 , the proess (ℓt/t)t satis�esa large deviation priniple on sale tκ(t) with rate funtion p 7→ −
(
∆
√
p,
√
p
). In part (a),the sale KH(t) is asymptotially smaller than tκ(t), therefore the main ontribution omesfrom the event that the proess (Xs)s∈[0,t] stays in the origin, whih leads to formula (3.3).In part (b), beause of KH(t) ≍ tκ(t), an appliation of Varadhan's lemma gives (3.4).The proof of () follows mainly the arguments of [HKM06℄ (who onsider only γ = 1),adapting them to the new sale tκ(t)/α2

t . The ase γ < 1 was treated in a similar way in[BK01℄, whereas the ase γ > 1 did not appear originally in Phase 3. For onveniene, wegive a universal derivation for all values γ ∈ [0, 1 + 2/d).By an adaption of [HKM06, Prop. 3.4℄, the resaled and normalised loal times
Lt(y) =

αd
t

t
ℓt(⌊αty⌋), y ∈ R

d, (5.1)with αt de�ned by (2.3), satisfy under P
(t)

0 ( · 1l{suppLt⊆QR}) a large deviation priniple in theweak topology indued by test integrals against ontinuous funtions, where we reall that
QR = [−R,R]d. The sale of the priniple is tκ(t)/α2

t and the rate funtion is g2 7→
∫

Rd |∇g|2for g ∈ H1(Rd) with supp g ⊆ QR and ‖g‖2 = 1.For a lower bound, we start again with (1.2) and insert the indiator on the event
{suppLt ⊆ QR}, using the notation E

(t)

0,R[ · ]. After transforming
〈U(t)〉 ≥ E

(t)

0,R

[
exp

( ∑

z∈Zd

H(ℓt(z))
)]

= E
(t)

0,R

[
exp

(
αd

t

∫

QR

H
( t

αd
t

Lt(y)
)

dy
)]

= e
αd

t H( t

αd
t

)
E

(t)

0,R

[
exp

( tκ(t)
α2

t

∫

QR

H
(

t
αd

t
Lt(y)

)
− Lt(y)H

(
t

αd
t

)

KH

(
t

αd
t

) dy
)]
, (5.2)we restrit the integral to the part where Lt(y) ≤ M for some M > 1, noting that theintegrand on the set {Lt(y) > M} is nonnegative beause of the onvexity of H . Then weapply the loally uniform asymptotis (2.1). Next, to get rid of the indiator on {Lt(y) ≤M},we introdue a Hölder parameter η ∈ (0, 1) to separate the expetations over the wholeintegral and over the di�erene set {Lt(y) > M}. The expetation over the rest term anbe shown to be negligible on the exponential sale tκ(t)/α2

t (see [S10, pp. 86f℄; here weuse Lemma 2.2(a) and the assumption that γ < 2). Finally, we apply the large deviationpriniple for Lt and Varadhan's lemma; the lower semi-ontinuity of g2 7→
∫

QR
Ĥ ◦ g2 wasproved in [HKM06, Lemma 3.5℄ for γ = 1 and an be shown similarly for all positive γ.Summarizing, we obtain for γ > 0

lim inf
t→∞

α2
t

tκ(t)
log

(
〈U(t)〉e−αd

t H(tα−d
t )

)

≥ lim inf
M→∞

lim inf
t→∞

α2
t

tκ(t)
log E

(t)

0,R

[
exp

( tκ(t)
α2

t

∫

QR

ρĤ(Lt(y))1l{Lt(y)≤M} dy
)]

≥ lim inf
t→∞

α2
t

tκ(t)
log E

(t)

0,R

[
exp

(
(1 − η)

tκ(t)

α2
t

∫

QR

ρĤ(Lt(y)) dy
)]

≥ − inf
g∈H1(Rd)
supp g⊆QR

‖g‖2=1

{ ∫

QR

|∇g|2 − ρ(1 − η)

∫

QR

Ĥ ◦ g2
}
.A standard argument shows that the ompati�ed variational formula onverges to χc

γ(ρ) as
R → ∞ and η ↓ 0. For the ase γ = 0, we refer to [S10, pp. 85f℄.



12 Now we prove the upper bound of (3.5). For tehnial reasons, we will not work with thelarge deviation priniple, but use a method derived in [BHK07℄. First, we ompatify withthe help of an eigenvalue expansion desribed in [BK01℄ and applied in [HKM06℄. Replaingarefully t by tκ(t) in their proofs, we �nd for R > 0

α2
t

tκ(t)
log〈U(t)〉 ≤ C

R2
+

α2
t

tκ(t)
log〈U4Rαt

(t)〉 + o(1), t→ ∞, (5.3)with some onstant C > 0, where URαt
(t) = E

(t)

0,R[e
∫

t
0

ξ(Xs) ds]. Similarly to (5.2), we anwrite
〈URαt

(t)〉 = e
αd

t H( t

αd
t

)
E

(t)

0,R

[
exp

( tκ(t)
α2

t

∑

z∈BRαt

H(ℓt(z)) − t
αd

t
ℓt(z)H

(
t

αd
t

)

KH

(
t

αd
t

)
)]
,where we reall that BR = [−R,R]∩Z

d. We split the sum into the part where ℓt(z) ≤Mtα−d
tand the rest where ℓt(z) > Mtα−d

t for some M > 1, separating the respetive expeta-tions with Hölder's inequality. The rest term an again be negleted on the exponentialsale tκ(t)/α2
t , while an appliation of (2.1) in the main term leads to

lim sup
t→∞

α2
t

tκ(t)
log

(
〈URαt

(t)〉 e
−αd

t H( t

αd
t

)
)

≤ lim sup
t→∞

α2
t

tκ(t)
log E

(t)

0,R

[
exp

(
ρ̃
tκ(t)

αd+2
t

∑

z∈BRαt

Ĥ
(αd

t

t
ℓt(z)

)
1l{ℓt(z)≤M t

αd
t

}

)]
, (5.4)where ρ̃ = ρ(1 + η) with the Hölder parameter η ∈ (0, 1). Next, we an omit the indiatoron the event {ℓt(z) ≤Mtα−d

t } noting that the funtion Ĥ is nonnegative on [1,∞).We now need the mentioned tool from [BHK07℄, namely an expliit desription of theloal times density, whih provides an upper bound on exponential funtionals like in (5.4)in the form of a variational formula: De�ne
Gt(p) = α

−(d+2)
t

∑

z∈Zd

Ĥ(αd
t p(z))for p ∈ M1(Z

d). Then, noting that our loal times are related to a random walk withgenerator 2dκ(t)∆, a respetive adaption in the formulation of [HKM06, Prop. 3.3℄ gives
E

(t)

0,R

[
exp

(
tκ(t)ρ̃ Gt

(ℓt
t

))]

≤ exp
(
tκ(t) sup

p∈M1(Z
d)

supp p⊆BRαt

{
ρ̃ Gt(p) +

(
∆
√
p,
√
p
)})

(2dtκ(t))|BRαt ||BRαt
|

≤ exp
(
− tκ(t)

α2
t

χt(ρ̃)
)

eo(tκ(t)/α2
t ),where we put

χt(ρ̃) = −α2
t sup

p∈M1(Zd)

{
ρ̃ Gt(p) +

(
∆
√
p,
√
p
)}
.In the last step, we also used the properties of the sale funtion αt mentioned in Lemma 2.4and the assumption KH(t) ≫ log t.Now a diret alulation shows that
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χt(ρ̃) =






α2
tχ

(DE)

( ρ̃

α2
t

)
+ ρ̃

d

2
logα2

t for γ = 1,

α2
tχ

(DB)
γ

( ρ̃

α
2+d(1−γ)
t

)
+ ρ̃

1 − α
−d(1−γ)
t

1 − γ
for γ 6= 1.In both ases, we an apply Prop. 3.3 with κ = α

2+d(1−γ)
t → ∞ for t→ ∞, sine γ < 1+2/d.Hene, χt(ρ̃) onverges to χ(AB)(ρ̃) in the ase γ = 1 and to χ(B)

γ (ρ̃) in the ase γ 6= 1,i.e. to χc
γ(ρ̃) in both ases. In summary, (5.4) beomes

lim sup
t→∞

α2
t

tκ(t)
log

(
〈URαt

(t)〉 e
−αd

t H( t

αd
t

)
)
≤ lim sup

t→∞
(−χt(ρ̃)) ≤ −χc

γ(ρ̃).By a saling argument, one an see that χc
γ(ρ̃) = χc

γ(ρ(1 + η)) onverges to χc
γ(ρ) for

η ↓ 0. Together with (5.3), the assertion (3.5) is thus shown, whih �nishes the proof ofTheorem 3.1.6 Proof for Phase 4 (Theorem 3.2)Phase 4 is haraterised by the fat that the spae�time sale ratio is onstant: αt = t1/d,i.e. t/αd
t = 1. We resale both loal times and potential,

Lt(y) = ℓt(⌊αty⌋) and ξ̄t(y) = ξ(⌊αty⌋), y ∈ R
d.Note that beause of κ(t) = κ∗t2/d(1 + o(1)), the de�nition of the resaled (and nor-malised) loal times is asymptotially equivalent to (5.1), hene we have again an LDPunder P

(t)

0 ( · 1l{supp Lt⊆QR}) on sale tκ(t)/α2
t ≍ t with rate funtion g2 7→

∫
Rd |∇g|2 for

g ∈ H1(Rd) satisfying supp g ⊆ QR and ‖g‖2 = 1.We will frequently make use of arguments from [GKS07℄, in partiular their main result onlarge deviations for the salar produt (
Lt, ξ̄t

). The time parameter t in [GKS07℄ is replaedby tκ(t) and our sale funtion αt = t1/d orresponds to the [GKS07℄-sale at time tκ(t),multiplied by (κ∗)−1/(d+2). Thus, [GKS07, Thm. 1.3℄ reads
lim

t→∞
1

t
log P

(t)

0 × Prob
((
Lt, ξ̄t

)
> u

)
= −(κ∗)d/(d+2)χ

[GKS07]
H (u) (6.1)for u > 0 suh that u ∈ (supp ξ(0))◦, where Prob is the probability with respet to thepotential and

χ
[GKS07]
H (u) = inf

g∈H1(Rd)
‖g‖2=1

{∫

Rd

|∇g(y)|2 dy + sup
β>0

[
βu−

∫

Rd

H(βg2(y)) dy
]}
.By resaling and duality, it turns out that the variational problem χ

(RWRS)
H that we wish to�nd in this proof is essentially the negative Legendre transform of χ[GKS07]
H :

sup
u>0

{
βu− χ

[GKS07]
H (u)

}
= −β−2/dχ

(RWRS)
H

(
β1+2/d

)
, β > 0. (6.2)Let us ome to the lower bound of (3.6). A transformation of the Feynman�Ka for-mula (1.2) gives

〈U(t)〉 = 〈E(t)

0

[
exp

(
t
(
Lt, ξ̄t

))]
〉 =

∫

R

teut
P

(t)

0 × Prob
((
Lt, ξ̄t

)
> u

)
du.



14With the help of (6.1), we an onlude for �xed u > 0 and ε > 0 that
〈U(t)〉 ≥ εte(u−ε)t

P
(t)

0 × Prob
((
Lt, ξ̄t

)
> u

)

= exp
(
t
[
u− ε− (κ∗)d/(d+2)χ

[GKS07]
H (u)

]
(1 + o(1))

)as t→ ∞. Now let ε ↓ 0, take the supremum over all u > 0 and use (6.2) for β = (κ∗)−d/(d+2)to �nish the proof of the lower bound.For the upper bound, we an �rst derive an analogue formula to (5.3) to restrit thesupport of the loal times on a ompat box (see [S10, Prop. 4.4.3℄ for details). Therefore,it su�es to onsider URαt
(t) = E

(t)

0,R[exp(t(Lt, ξ̄t))] for some large R > 0 instead of U(t).We will use a similar strategy as in the proof of the upper bound in [GKS07, Thm. 1.3℄:In order to be able to apply the LDP for the loal times, we need to smooth the senery,whih we an only do after utting it. For M > 0, introdue ξ̄(≤M)

t = (ξ̄t ∧ M) ∨ (−M)and ξ̄(>M)

t = (ξ̄t −M)+. Then ξ̄t ≤ ξ̄(≤M)

t + ξ̄(>M)

t . We want to work with the onvolution
ξ̄(≤M)

t ⋆ jδ with jδ = δ−dj(·/δ), where j ≥ 0 is a smooth, rotational invariant, L1-normalisedfuntion supported in Q1. For brevity, we will not explain in detail how to deal with theremainder terms E
(t)

0,R[exp(t(Lt, ξ̄
(>M)

t ))] and E
(t)

0,R[exp(t(Lt, ξ̄
(≤M)

t − ξ̄(≤M)

t ⋆ jδ))] (whih anbe separated from the main term by Hölder's inequality). For the smoothing, one an apply[GKS07, Lemma 3.5℄, while the utting is tehnially involved and follows the proof of [GK09,(2.12)℄ (here we need Lemma 2.2(b) and γ < 2). Let us in the following take for grantedthat it is enough to show
lim sup
M→∞

lim sup
δ↓0

lim sup
t→∞

1

tκ∗
log〈E(t)

0,R

[
exp

(
t
(
Lt, ξ̄

(≤M)

t ⋆ jδ
))]

〉

≤ −χ(RWRS)
H

( 1

κ∗

)
. (6.3)Denote ℓ(δ)

t (z) =
∫

z+[0,1)d Lt ⋆ jδ(y/αt) dy, then by rotational invariane of j, we have
t(Lt, ξ̄

(≤M)

t ⋆ jδ) =
∑

z∈Zd ℓ
(δ)

t (z)ξ(≤M)(z), and ξ(≤M)(z) = (ξ ∧M) ∨ (−M) ≤ ξ(z) ∨ (−M).Furthermore,
〈E(t)

0,R

[
e
∑

z∈Zd ℓ
(δ)
t (z)ξ(z)∨(−M)

]
〉 ≤ 〈E(t)

0,R

[
e
∑

z∈Zd ℓ
(δ)
t (z)ξ(z)

]
1l{ξ(z)>−M}〉

+ 〈E(t)

0,R

[
e−M

∑
z∈Zd ℓ

(δ)
t (z)

]
1l{ξ(z)≤−M}〉.The seond summand is negligible on exponential sale t for t → ∞ and M → ∞ beauseof ∑

z∈Zd ℓ
(δ)

t (z) = t. In the �rst summand, the de�nition of H and Jensen's inequality (forthe probability measure 1l{z+[0,1)d} dy) yield
〈
exp

( ∑

z∈Zd

ℓ(δ)

t (z)ξ(z)
)〉

≤ exp
(
t

∫

Rd

H(Lt ⋆ jδ(y)) dy
)
.Now we are ready to apply Varadhan's lemma to derive for any M > 0

lim sup
t→∞

1

tκ∗
log〈E(t)

0,R

[
et

∫
Rd H(Lt⋆jδ(y)) dy

]
1l{ξ(z)>−M}〉

≤ − inf
g∈H1(Rd)
supp g⊆QR

‖g‖2=1

{∫

Rd

|∇g|2 − 1

κ∗

∫

Rd

H
(
g2 ⋆ jδ(y)

)
dy

}
.Again Jensen's inequality for the probability measure jδ and Fubini's theorem show thatwe reeive an upper bound when omitting the onvolution with jδ. Thus, we have arrivedat a ompati�ed version of our variational problem χ

(RWRS)
H (1/κ∗), whih we an estimateagainst the whole-spae problem. This shows (6.3) and ompletes the proof of the theorem.
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