
Weierstraÿ-Institut
für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

An inverse electromagnetic scattering problem for a
bi-periodic inhomogeneous layer on a perfectly

conducting plate

Guanghui Hu1, Jiaqing Yang 2, Bo Zhang2

submitted: March 25, 2010

1 Weierstrass Institute
for Applied Analysis and Stochastics
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: Guanghui.Hu@wias-berlin.de

2 LSEC and Institute of Applied Mathematics
Academy of Mathematics and Systems Science
Chinese Academy of Sciences
100190 Beijing
China
E-Mail: jiaqingyang@amss.ac.cn

b.zhang@amt.ac.cn

No. 1499
Berlin 2010

2000 Mathematics Subject Classi�cation. 78A46,35R30,35B27,35Q61.
Key words and phrases. Inverse electromagnetic scattering, uniqueness, periodic inhomogeneous layer,

Maxwell's equations..

This work was supported by the NNSF of China grant No. 10671201, and was completed when the �rst
author was working at WIAS. The �rst author gratefully acknowledges the support by the German Research
Foundation (DFG) under Grant No. EL 584/1-1.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

https://core.ac.uk/display/289298496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Edited by
Weierstraÿ-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraÿe 39
10117 Berlin
Germany

Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract

This paper is concerned with uniqueness for reconstructing a periodic inhomoge-
neous medium covered on a perfectly conducting plate. We deal with the problem in
the frame of time-harmonic Maxwell systems without TE or TM polarization. An
orthogonal relation for two refractive indices is obtained, and then inspired by Kirsch's
idea, the refractive index can be identi�ed by utilizing the eigenvalues and eigenfunc-
tions of a quasi-periodic Sturm-Liouville eigenvalue problem.

1 Introduction
Scattering theory in periodic structures has many applications in micro-optics, radar imaging
and nondestructive testing. We refer to [22] for historical remarks and details of these
applications. Consider a time-harmonic electromagnetic plane wave incident on a bi-periodic
layer sitting on a perfectly conducting plate in R3. We assume that the medium inside the
layer consists of some inhomogeneous isotropic conducting or dielectric material, whereas
the medium above the layer consists of some homogeneous dielectric material. Suppose
the magnetic permeability is a �xed positive constant throughout the whole space. The
material properties of the media are then characterized completely by an index of refraction
in the layer and a positive constant above the layer. The direct scattering problem is,
given the incident �eld and the bi-periodic refractive index, to study the electromagnetic
distributions, whereas the inverse scattering problem is to determine the refractive index
from the knowledge of the incident waves and their corresponding measured scattered �elds.
Adopting the Cartesian axis ox1x2x3 with the x3-axis vertically upwards, perpendicular to
the plate. If the refractive index is invariant in the x2 direction, the direct and inverse
problems as indicated above can be dealt with in the TE polarization case where the electric
�eld E(x) is transversal to the (x1, x3)-plane by assuming E = (0, u(x1, x3), 0), or in the
TM polarization case where the magnetic �eld H(x) is transversal to the (x1, x3)-plane by
assuming H = (0, u(x1, x3), 0). In the case of TE polarization, Kirsch [17] has studied the
direct scattering problem via the variational method, and for the inverse problem, instead
of constructing the complex geometrical optical solutions as in the Calderóns problem (see
[19, 28]), he considered a class of eigenfunctions to a special kind of quasi-periodic Sturm-
Liouville eigenvalue problem. Relying on the asymptotic behavior of those eigenvalues, the
uniqueness result for the inverse problem can be proved once the orthogonal relation for
two di�erent refractive indexes has obtained. See also [25, 26] for the direct and inverse
acoustic scattering by periodic, inhomogeneous, penetrable medium in the whole R2. Other
uniqueness results for reconstructing the pro�le of a bi-periodic perfectly conducting grating
can be seen in [2, 5, 6].
In this paper, we are mainly concerned with the uniqueness issue for reconstructing the
refractive index in the framework of time-harmonic Maxwell equations without TE or TM
polarization. The uniqueness result for the inverse problem in this paper is most closely
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related in term of result and method of argument to Kirsch on the determination of the
refractive index in the TE polarization. Inspired by [27] and [15], we obtain an orthogonality
relation for two di�erent refractive indexes by using a D-to-N map on an arti�cial boundary
on which the tangential electric �elds are identical for an integral type of incident electric
�eld. It should be remarked that the method for constructing geometry optical solutions in
[19, 15, 27] for non-periodic inverse conductivity problems does not work since the solutions
are required to be quasi-periodic in the periodic case. To reconstruct the refractive index, we
follow Kirsch's idea [17] (see also [26]) by considering a kind of Sturm-Liouville eigenvalue
problems. We shall prove the uniqueness result when the index depends only on one direction
(x1 or x2). However, we expect the result to hold in a more general case by constructing
special solutions with suitable asymptotic behaviors for the Maxwell equations.
Scattering by bi-periodic structures have been studied by many authors using both integral
equation methods and variational methods (see, e.g. [1], [4], [12], [13], [14], [16], [20] and
[24]). It is known that, for all but possibly a discrete set of frequencies, the direct scattering
problem has a unique weak solution in the case of bi-periodic inhomogeneous medium in
the whole R3, of which an absorbing medium always leads to a uniqueness result for any
frequency. When the refractive index is non-absorbing, uniqueness can be guaranteed in the
TE mode if the refractive index satis�es an increasing criterion in the x3-direction ([25, 7]).
See also [10] and [30] for the uniqueness results of more general rough surface scattering by
an inhomogeneous medium in a half space in the TE or TM mode. In this paper, we assume
that the medium inside the layer is absorbing so that the uniqueness result for the direct
problem holds, implying that the D-to-N map T (at the end of Section 3), which depends
on the refractive index, is well-de�ned.
The rest of the paper is organized as follows. In the next section we set up the precise
mathematical framework and introduce some quasi-periodic function spaces needed. In
Section 3, we consider a quasi-periodic boundary value problem (QPBVP) in a periodic cell
via the variational approach which is used for the study of the inverse problem. Uniqueness
and existence of solutions to the QPBVP are justi�ed by the classic Hodge decomposition
and the Fredholm alternative. This leads to the de�nition of a D-to-N map on an arti�cial
boundary which is continuous and depends on the refractive index. In Section 4, based
on the property of the transparent boundary condition de�ned on the arti�cial boundary,
we give a solvability result of the direct scattering problem. In Section 5, we establish a
uniqueness result for the inverse scattering problem.

2 Time-harmonic Maxwell equations and quasi-periodic
function spaces

2.1 Time-harmonic Maxwell equations

Let R3
+ = {(x1, x2, x3) ∈ R3 |x3 > 0} and assume that R3

+ is �lled with an inhomogeneous,
isotropic, conducting or dielectric medium of electric permittivity ε > 0, magnetic perme-
ability µ > 0 and electric conductivity σ ≥ 0. Suppose the medium is non-magnetic, that
is, the magnetic permeability µ is a �xed constant in R3

+ and the �eld is source free. Then
the electromagnetic wave propagation is governed by the time-harmonic Maxwell equations
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(with the time variation of the form e−iωt, ω > 0)

curl E − iωµH = 0, curl H + iω(ε + i
σ

ω
)E = 0, (1)

where E and H are the electric �eld and magnetic �eld, respectively. Suppose the inhomoge-
neous medium is 2π-periodic with respect to x1 and x2 directions, that is, for all n1, n2 ∈ Z2,

ε(x1 + 2πn1, x2 + 2πn2, x3) = ε(x1, x2, x3),

σ(x1 + 2πn1, x2 + 2πn2, x3) = σ(x1, x2, x3).

Further, assume that ε(x) = ε0, σ = 0 for x3 > b (which means that the medium above the
layer is lossless) and that the inhomogeneous medium has a perfectly conducting boundary
Γ0 := {x3 = 0}. Consider a time-harmonic plane wave

Ei = peikx·d, H i = qeikx·d,

incident on the periodic inhomogeneous layer from the top region Ω := {x ∈ R3 |x3 > b},
where d = (α1, α2,−β) = (cos θ1 cos θ2, cos θ1 sin θ2,− sin θ1) is the incident wave vector
whose direction is speci�ed by θ1 and θ2 with 0 < θ1 < π, 0 < θ2 ≤ 2π and the vectors p
and q are polarization directions satisfying that p =

√
µ/ε(q × d) and q⊥d. The problem

of scattering of time-harmonic electromagnetic waves in this model leads to the following
problem:

curl curl E − k2E = 0 in x3 > b, (2)
curl curl E − k2qE = 0 in Ωb, (3)

ν × E = 0 on Γ0, (4)
E = Ei + Es in R3

+, (5)

where k =
√

ε0µω is the wave number, q(x) = 1
ε0

(ε(x) + iσ(x)
ω

) is the refractive index and ν
is the unit normal at the boundary.
Set α = (α1, α2, 0) ∈ R3 and n = (n1, n2) ∈ Z2. The periodicity of the medium motivates
us to look for α-quasi-periodic solutions in the sense that E(x1, x2, x3)e

−iα·x is 2π periodic
with respect to x1 and x2, respectively. Since the domain is unbounded in the x3-direction,
a radiation condition must be imposed. It is required physically that the di�racted �elds
remain bounded as x3 tends to +∞, which leads to the so-called outgoing wave condition in
the form of

Es(x) =
∑

n∈Z2

Ene
i(αn·x+βnx3), x3 > b, (6)

where αn = (α1 + n1, α2 + n2, 0) ∈ R3, En = (E
(1)
n , E

(2)
n , E

(3)
n ) ∈ C3 are constant vectors and

βn =

{
(k2 − |αn|2) 1

2 if |αn| < k,

i(|αn|2 − k2)
1
2 if |αn| > k,

with i2 = −1. Furthermore, we assume that βn 6= 0 for all n ∈ Z2. The series expansion
in (6) is considered as the Rayleigh series of the scattered �eld and the condition is called
the Rayleigh expansion radiation condition. The coe�cients En in (6) are also called the
Rayleigh sequence. From the fact that div Es(x) = 0 it is clear that

αn · En + βnE
(3)
n = 0.
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The direct problem (DP) is to compute the total �eld E in R3
+, given the incident wave

Ei, the refractive index q(x) and the boundary condition on Γ0. Since only a �nite number
of terms in (6) are upward propagating plane waves and the rest is evanescent modes that
decay exponentially with distance away from the periodic medium, we use the near �eld
data rather than the far �eld data to reconstruct the refractive index q(x). Thus, our inverse
problem (IP) is to determine the periodic medium q(x) from a knowledge of the incident
wave Ei and the total tangential electric �eld ν×E on a plane Γa = {x ∈ R3 |x3 = a}(a > b)
above the layer.

2.2 Quasi-periodic function spaces

In this section we introduce some function spaces needed for the scattering problem (2)-(5).
These spaces will play a crucial role not only in the study of the direct problem but also in
the inverse problem. In [4, 12, 24], the authors always seek the H1-variational solution for
the magnetic �eld H, based on the facts that the magnetic permeability µ > 0 is a constant
and that any vector �eld H ∈ L2(D)3 satisfying that O×H ∈ L2(D)3 and O ·H ∈ L2(D)3

belongs to H1
loc(D)3 for any bounded domain D ⊂ R3. In this paper, based on the classic

Hodge decomposition, we are interested in weak solutions in H(curl ) of the problem (2)-(5),
that is, both E and O×E belong to L2

loc(R3
+)3. This allows us to solve the scattering problem

in a general case when µ is a periodic variable function other than a constant.
The scattering problem can be reduced to a single periodic cell. To this end, we reformulate
the following notations.

Γb = {x3 = b | 0 < x1, x2 < 2π}, Ωb = {x ∈ R3
+ | x3 < b, 0 < x1, x2 < 2π}.

We also need the following scalar quasi-periodic Sobolev space:

H1(Ωb) = {u(x) =
∑

n∈Z2

un(x3) exp(iαn · x) |u ∈ L2(Ωb),∇u ∈ (L2(Ωb))
3, un ∈ C}.

Denote by H
1
2 (Γb) the trace space of H1(Ωb) on Γb with the norm

||f ||2
H

1
2 (Γb)

=
∑

n∈Z2

|fn|2(1 + |αn|2) 1
2 , f ∈ H

1
2 (Γb),

where fn = (f, exp(iαn ·x))L2(Γb) and write H− 1
2 (Γb) = (H

1
2 (Γb))

′, the dual space to H
1
2 (Γb).

We now introduce some vector spaces. Let

H(curl , Ωb) = {E(x) =
∑

n∈Z2

En(x3) exp(iαn · x) |En ∈ C3,

E ∈ (L2(Ωb))
3, curl E ∈ (L2(Ωb))

3}

with the norm

||E||2H(curl ,Ωb)
= ||E||2L2(Ωb)

+ ||curl E||2L2(Ωb)
.
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For x′ = (x1, x2, b) ∈ Γb, s ∈ R de�ne

Hs
t (Γb) = {E(x′) =

∑

n∈Z2

En exp(iαn · x′) |En ∈ C3, e3 · E = 0,

‖E‖2
Hs(Γb)

=
∑

n∈Z2

(1 + |αn|2)s|En|2 < +∞}

Hs
t (div , Γb) = {E(x′) =

∑

n∈Z2

En exp(iαn · x′) |En ∈ C3, e3 · E = 0,

||E||2Hs(div ,Γb)
=

∑

n∈Z2

(1 + |αn|2)s(|En|2 + |En · αn|2) < +∞}

Hs
t (curl , Γb) = {E(x′) =

∑

n∈Z2

En exp(iαn · x′) |En ∈ C3, e3 · E = 0,

||E||2Hs(curl ,Γb)
=

∑

n∈Z2

(1 + |αn|2)s(|En|2 + |En × αn|2) < +∞}

and write L2
t (Γb) = H0

t (Γb). Recall that

H
−1/2
t (div , Γb) = {e3 × E|Γb

|E ∈ H(curl , Ωb)}

and that the trace mapping from H(curl , Ωb) to H
−1/2
t (div , Γb) is continuous and surjective

(see [8] and the references there).
It is well-known (see [20]) that the free space α-quasi-periodic Green function for the
Helmholtz equation (∆ + k2)u = 0 in R3 is given by

G(x, y) =
1

8π2

∑

n∈Z2

1

iβn

exp(iαn · (x− y) + iβn|x3 − y3|). (7)

We assume throughout this paper that q satis�es the following conditions:

(A1) q ∈ C1(Ωb) and q(x) = 1 when x3 > b;

(A2) Im [q(x)] ≥ 0 for all x ∈ Ωb and Im [q(x0)] > 0 for some x0 ∈ Ωb;

(A3) Re [q(x)] ≥ γ for all x ∈ Ωb for some positive constant γ.

3 A quasi-periodic boundary value problem
Before studying the original problem (2)-(6), we �rst consider the following quasi-periodic
boundary value problem in Ωb:

curl curl E − k2q(x)E = 0 in Ωb, (1)
ν × E = 0 on Γ0, (2)
ν × E = f on Γb, (3)

where f ∈ H
−1/2
div (Γb).
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Lemma 3.1 If the conditions (A1)− (A3) are satis�ed, then there exists a unique solution
E ∈ H(curl , Ωb) to the problem (1)− (3) such that

||E||H(curl ,Ωb) ≤ C||f ||
H
−1/2
div (Γb)

,

where C is a positive constant independent of f .

Proof. We �rst prove the uniqueness part. Let f = 0. Multiplying both sides of (1) by E
it follows from Green's vector formula, the quasi-periodic property of E and the boundary
conditions (2) and (3) that

∫

Ωb

[|curl E|2 − k2q|E|2]dx = 0. (4)

Take the imaginary part of the above equation and use the assumption on q(x) to �nd that
∫

Bε(x0)

|E(x)|2dx = 0,

where Bε(x0) ⊂ Ωb is a small ball centered at x0 with radius ε. Thus E(x) ≡ 0 in Bε(x0).
By [9, Theorem 6] we have E ∈ (H1(Ωb))

3. Thus, by the unique continuation principle (see
[21, Theorem 2.3]) we have E ≡ 0 in Ωb.
We are now in a position to prove the existence of solutions. For any V ∈ H(curl , Ωb) such
that ν × E = 0 on Γ0 ∪ Γb, multiplying both sides of (1) by V yields

∫

Ωb

[curl E · curl V − k2qE · V ]dx = 0. (5)

There exists at least one element W ∈ H(curl , Ωb) satisfying that ν × W = 0 on Γ0 and
ν ×W = f on Γb. Then the equation (5) can be rewritten as
∫

Ωb

[curl (E −W ) · curl V − k2q(E −W ) · V ]dx = −
∫

Ωb

[curl W · curl V − k2qW · V ]dx.

Let X := {U ∈ H(curl , Ωb), ν × U = 0 on Γ0 ∪ Γb}. Then U := E − W ∈ X. Thus the
problem (1)-(3) is equivalent to the following variational problem: Find U ∈ X such that
for any V ∈ X,

∫

Ωb

[curl U · curl V − k2qU · V ]dx = FW (V ), (6)

where FW (V ) = −
∫

Ωb

[curl W · curl V − k2qW · V ]dx. The proof is broken down into the
following steps.
Step 1. To establish the Hodge decomposition:

X = X0 ⊕∇S, (7)

where S = {p ∈ H1(Ωb), p = 0 on Γ0 ∪ Γb} and X0 = {ξ ∈ X |
∫

Ωb

q(x)ξ · ∇p = 0, ∀p ∈ S}.
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For U, V ∈ X de�ne

a(U, V ) =

∫

Ωb

[curl U · curl V − k2qU · V ]dx.

It follows from the assumptions (A1)-(A3) on q(x) that

|a(∇p,∇p)| ≥ k2

∫

Ωb

Re [q(x)]|∇p|2dx ≥ k2γ||∇p||2L2(Ωb)
= k2γ||∇p||2H(curl ,Ωb)

.

Thus, for every E ∈ X there exits a unique p ∈ S such that a(∇p,∇q) = a(E,∇q) for all
q ∈ S. Let ξ := E−∇p. Then it is easy to show that ξ ∈ X0 and X0 ∩S = ∅, which implies
the Hodge decomposition (7).
Step 2. To prove the existence of a unique solution U ∈ X to the problem ((6).
By (7) we may assume that U = ξ +∇p, V = η +∇q with ξ, η ∈ X0 and p, q ∈ S. Then the
problem (6) becomes the following one: Find ξ ∈ X0 and p ∈ S such that

a(∇p,∇q) + a(ξ, η) = FW (∇q) + FW (η).

Since a(·, ·) is coercive on ∇S, there exists a unique p ∈ S such that

a(∇p,∇q) = FW (∇q) ∀ q ∈ S

with the estimate ||∇p||H(curl,Ωb) ≤ C||W ||H(curl,Ωb). It remains to �nd ξ ∈ X0 such that
a(ξ, η) = FW (η) for all η ∈ X0. The bilinear form a(·, ·) can be decomposed into the sum of
the following two forms:

a1(ξ, η) =

∫

Ωb

curl ξ · curl η + ξ · ηdx,

a2(ξ, η) = −k2

∫

Ωb

(1 + q)ξ · ηdx.

Obviously, a1(·, ·) is coercive on X0, and it follows from [3, Lemma 3.2] that X0 is compactly
imbedded into (L2(Ωb))

3. Thus, by the standard Fredholm alternative theory there exists a
unique ξ ∈ X0 satisfying that a(ξ, η) = FW (η) for all η ∈ X0. Furthermore, ||ξ||H(curl,Ωb) ≤
C||W ||H(curl,Ωb).
Step 3. To establish the estimate (4).
By Steps 1 and 2 we know that E = ξ +∇p + W ∈ H(curl , Ωb) is a solution to the problem
(1)-(3) with the estimate

||E||H(curl ,Ωb) ≤ ||ξ||H(curl ,Ωb) + ||∇p||H(curl ,Ωb) + ||W ||H(curl ,Ωb) ≤ C||W ||H(curl ,Ωb). (8)

Recalling that

||f ||
H
−1/2
div (Γb)

= inf{||W ||H(curl ,Ωb) | ν ×W = 0 on Γ0 and ν ×W = f on Γb},

it follows from (8) that ||E||H(curl ,Ωb) ≤ C||f ||
H
−1/2
div (Γb)

. ¤

For f ∈ H
−1/2
div (Γb) de�ne the operator T by

T (f) = ν × (curl E × ν) on Γb,

7



where E solves the quasi-periodic boundary value problem (1)-(3). By Lamma 3.1, the op-
erator T is well-de�ned. Note that T (f) belongs to the dual space (H

−1/2
div (Γb))

′ = H
−1/2
curl (Γb)

of H
−1/2
div (Γb) with the duality de�ned by

< T (f), g >=

∫

Ωb

[curl E · curl V − k2qE · V ]dx

for g ∈ H
−1/2
div (Γb), where V ∈ H(curl , Ωb) satis�es that ν × V = g on Γb and ν × V = 0 on

Γ0. The operator T can be considered as a Dirichlet-to-Neumann map associated with the
problem (1)-(3) and depending on the index q(x). Under the assumptions (A1)-(A3), the
above de�nition of T (f) is independent of the choice of V and therefore T : H

−1/2
div (Γb) →

(H
−1/2
div (Γb))

′ = H
−1/2
curl (Γb) is well-de�ned. Moreover, it follows from the above equality and

Lemma 3.1 that

||T (f)||
H
−1/2
curl (Γb)

≤ C||E||H(curl ,Ωb) ≤ C||f ||
H
−1/2
div (Γb)

.

This implies that T is continuous from H
−1/2
div (Γb) to H

−1/2
curl (Γb).

4 Solvability of the scattering problem
In this section we will establish the solvability of the scattering problem (2)-(6), employing
the variational method. To this end, we propose a variational formulation of the scattering
problem in a truncated domain by introducing a transparent boundary condition on Γb. The
existence and uniqueness of solutions to the problem will then be proved using the Hodge
decomposition together with the Fredholm alternative.

4.1 Transparent boundary condition and variational formulation

Let x′ = (x1, x2, b) ∈ Γb for b > 0. For Ẽ ∈ H
− 1

2
t (div , Γb) with Ẽ(x′) =

∑
n∈Z2 Ẽn exp(iαn·x′),

de�ne R : H
− 1

2
t (div , Γb) → H

− 1
2

t (curl , Γb) by

(RẼ)(x′) = (e3 × curl E)× e3 on Γb, (1)

where E satisfying the Rayleigh expansion condition (6) is the unique quasi-periodic solution
to the problem

curl curl E − k2E = 0 for x3 > b, ν × E = Ẽ(x′) on Γb.

The map R is well-de�ned and can be used to replace the radiation condition (6) on Γb.
Then the direct scattering problem (2)-(6) can be transformed into the following boundary
value problem in the truncated domain Ωb:

curl curl E − k2qE = 0 in Ωb, (2)
ν × E = 0 on Γ0, (3)

(curl E)T −R(e3 × E) = (curl Ei)T −R(e3 × Ei) on Γb, (4)
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where, for any vector function U , UT = (ν × U) × ν denotes its tangential component on
a surface. The variational formulation for the problem (2)-(4) can be given as follows: �nd
E ∈ X := {E ∈ H(curl , Ωb) | ν × E = 0 on Γ0} such that

B(E, ϕ) :=

∫

Ωb

[
curl E · curl ϕ− k2qE · ϕ]

dx−
∫

Γb

R(e3 × E) · (e3 × ϕ)ds (5)

=

∫

Γb

[
(curl Ei)T −R(e3 × Ei)

] · (e3 × ϕ)ds

for all ϕ ∈ X. We have the following properties of R:

1) R : H
− 1

2
t (div , Γb) → H

− 1
2

t (curl , Γb) is continuous and can be explicitly represented as

(RẼ)(x′) = −
∑

n∈Z2

1

iβn

[
k2Ẽn − (αn · Ẽn)αn

]
exp(iαn · x′). (6)

2) Let P = {n = (n1, n2) ∈ Z2 | βn is a real number}. Then

Re < RẼ, Ẽ > = 4π2
∑

n∈Z2\P

1

|βn|
[
k2|Ẽn|2 − |αn · Ẽn|2

]
, (7)

−Re < RẼ, Ẽ > ≥ C1||div Ẽ||2
H
−1/2
t (Γb)

− C2||Ẽ||2H−1/2
t (Γb)

, (8)

where C1 and C2 are positive constants and < ·, · > denotes the inner product of
L2

t (Γb).

3)

Im < RẼ, Ẽ >= 4π2
∑
n∈P

1

βn

[
k2|Ẽn|2 − |αn · Ẽn|2

]
≥ 0. (9)

The representation (6) of R can be computed directly from its de�nition (1) (see [1]) and
the properties (7)-(9) can be easily obtained using this representation. Furthermore, there
exists a C > 0 such that for every η > 0 and E ∈ H(curl , Ωb) we have (see [1])

||ν × E||
H
−1/2
t (Γb)

≤ C
[
η||curl E||L2(Ωb) + (1 + 1/η)||E||L2(Ωb)

]
. (10)

Let

S = {p ∈ H1(Ωa) | p = 0 on Γ0}
X0 = {E ∈ X | B(E,∇p) = 0 ∀p ∈ S}

Then in a completely similar manner as in the proof of Lemma 4.2, we can establish the
Hodge decomposition X = X0 ⊕5S.

4.2 Solvability of the direct scattering problem

Lemma 4.1 The bilinear form B(·, ·) de�ned by (5) is strongly elliptic on X0, that is, for
all w0 ∈ X0,

Re B(w0, w0) ≥ C||w0||X − ρ(w0, w0)

for some constant C > 0 and a compact bilinear form ρ(·, ·).
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Proof. Let M be a positive constant to be determined later and let

b1(w0, ϕ0) =

∫

Ωb

[
curl w0 · curl ϕ0 + (M − k2q)w0 · ϕ0

]
dx−

∫

Γb

R(e3 × w0) · (e3 × ϕ0)ds

b2(w0, ϕ0) = −M

∫

Ωb

w0 · ϕ0dx.

Then B(w0, ϕ0) = b1(w0, ϕ0) + b2(w0, ϕ0) for w0, ϕ0 ∈ X0. By the properties of R it follows
that

−Re < R(e3 × w0), e3 × w0 >

≥ C1||div (e3 × w0)||2H−1/2
t (Γb)

− C2||e3 × w0||2H−1/2
t (Γb)

≥ C1||div (e3 × w0)||2H−1/2
t (Γb)

− C3η
2||curl w0||2L2(Ωb)

− C3(1 +
1

η
)2||w0||2L2(Ωb)

,

where C1, C2 and C3 are three positive constants and η > 0 is arbitrary. Thus we have

Re b1(w0, w0) ≥ ‖curl w0‖2
L2(Ωb)

+ (M − k2q∞)‖w0‖2
L2(Ωb)

−C3η
2||curl w0||2L2(Ωb)

− C3(1 + 1/η)2||w0||2L2(Ωb)

= (1− C3η
2)||curl w0||2L2(Ωb)

+ [M − k2q∞ − C3(1 + 1/η)2]||w0||2L2(Ωb)
,

where q∞ = maxx∈R3
+
|q(x)| < ∞. Choose η su�ciently small and M su�ciently large so that

Re b1(w0, w0) ≥ C0(||curl w0||2L2(Ωb)
+ ||w0||2L2(Ωb)

) (11)

for some constant C0 > 0. This, together with the fact that X0 is compactly imbedded in
(L2(Ωb))

3, yields the desired result. ¤

Theorem 4.2 Assume that the conditions (A1) − (A3) are satis�ed. Then the problem
(2)− (6) has a unique solution E ∈ Hloc(curl ,R3

+) such that

||E||Hloc(curl ,R3
+) := max

a>b
||E||H(curl ,Ωa) ≤ C||Ei||H(curl ,Ωb),

where C is a positive constant depending on the domain and q.

Proof. It follows from Lemma 4.1 and the proof of Lemma 3.1 that there exists a unique
solution E ∈ H(curl , Ωb) satisfying that ||E||H(curl ,Ωb) ≤ C||Ei||H(curl ,Ωb). It remains to
extend E(x) to be a function in Hloc(curl ,R3

+). Suppose e3×(E−Ei)|Γb
=

∑
n∈N×NAne

iαn·x ∈
H−1/2(div , Γb). Let

Es(x) =
∑

n∈N×N
(An × e3 + Bne3)e

iαn·x+iβn(x3−b), x3 > b

and let Es satisfy that div Es(x) = 0 for x3 > b. Then we have Bn = 1
βn

(e3×An) ·αn. Thus

Es(x) =
∑

n∈N×N

[
An × e3 +

1

βn

(e3 × An) · αne3

]
eiαn·x+iβn(x3−b), x3 > b.

De�ne E(x) = Ei(x) + Es(x) for x3 > b. Then it is easy to prove that E ∈ H(curl , Ωa\Ωb)
with ||E||H(curl ,Ωa\Ωb) ≤ C||Ei||H(curl ,Ωb) for any a > b, so E ∈ H(curl , Ωa) for any a > b,
that is, E ∈ Hloc(curl ,R3

+) with the required estimate (12). The proof is thus completed. ¤
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5 The inverse problem
Let a > b and assume that there are two refractive index functions qi (i = 1, 2) satisfying
the assumptions (A1)-(A3). For g ∈ L2

t (Γa) let the incident waves be of the form:

Ei(x, g) = curl xcurl x

∫

Γa

G(x, y)g(y)ds(y), x < a. (1)

Write the scattered electric �eld and the total electric �eld as Es
i (x, g) and Ei(x, g), respec-

tively, indicating their dependance on g and the refractive index function qi (i = 1, 2).

For the refractive index qi denote by Ti the corresponding Dirichlet-to-Neumann map asso-
ciated with the problem (1)-(3) with q replaced by qi (i = 1, 2), as de�ned at the end of
Section 3.

Lemma 5.1 If T1(f) = T2(f) for all f ∈ H
−1/2
t (div , Γb), then

∫

Ωb

E1(x) · E2(x) [q1(x)− q2(x)] dx = 0,

where E1, E2 ∈ H(curl , Ωb) solve the problem (1)− (3) with q replaced by q1 and q2, respec-
tively.

Proof. Let E1 and F2 ∈ H(curl , Ωb) be the solution of the problems

curl curl E1 − k2q1E1 = 0 in Ωb, ν × E1 = 0 on Γ0

and

curl curl F2 − k2q2F2 = 0 in Ωb, ν × F2 = 0 on Γ0, ν × F2 = ν × E1 on Γb,

respectively. Let E = F2 − E1. Then it is easy to see that

curl curl E − k2q2E = k2(q2 − q1)E1 in Ωb,

ν × E = 0 on Γ0 ∪ Γb,

ν × curl E = 0 on Γb,

where the last quality is obtained from the assumption T1 = T2. Thus, it follows from the
Green vector formula that

∫

Ωb

(q2 − q1)E1 · E2dx =
1

k2

∫

Ωb

(curl curl E − k2q2E) · E2dx

=
1

k2

∫

Ωb

(curl E · curl E2 − k2q2E · E2)dx

=
1

k2

∫

Ωb

(E · curl curl E2 − k2q2E · E2)dx

=
1

k2

∫

Ωb

(E · k2q2E2 − k2q2E · E2)dx = 0.

The proof is thus completed. ¤
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For g ∈ L2
t (Γa) appearing in the incident waves (1), we de�ne an operator F : L2

t (Γa) →
H
−1/2
t (div , Γb) by

F (g) = e3 × E(x, g) on Γb,

where E(x, g) solves the problem (2)-(5) with the incident wave Ei(x, g). The operator F
can be considered as an input-output operator mapping the sum of the electric dipoles to the
tangential component of the corresponding total �eld on Γb. Moreover, for all g ∈ L2

t (Γa),
the operator F has a dense range in H

−1/2
t (div , Γb), as stated in the following lemma.

Lemma 5.2 The operator F has a dense range in H
−1/2
t (div , Γb).

Proof. We only need to prove that F ∗ : H
−1/2
t (curl , Γb) → L2

t (Γa) is injective. First, we
show that for any f ∈ H

−1/2
t (curl , Γb), F ∗(f) is given by

F ∗(f) =

[
curl ycurl y

∫

Γb

G(x, y)curl (V +(x)−W (x))× e3ds(x)

]

T

, (2)

where the superscripts + and − indicate the limit obtained from R3\Ωb and Ωb, respectively,
and for any a > b the function V ∈ H(curl , Ωb) ∩H(curl , Ωa\Ωb) solves the problem

curl curl V − k2V = 0 for x3 > b, (3)
curl curl V − k2qV = 0 in Ωb, (4)

ν × V = 0 on Γ0, (5)
ν × V + − ν × V − = 0 on Γb, (6)[

curl V + − curl V −]
T

= f on Γb (7)

and satis�es the Rayleigh expansion condition (6) with α replaced by −α for x3 > b, that is,

V (x) =
∑

n∈Z2

Vne
i(α′n·x+β′nx3), x3 ≥ b (8)

with α′n = (−α1 + n1,−α2 + n2, 0) ∈ R3, Vn ∈ C3 and

β′n =

{
(k2 − |α′n|2)

1
2 if |α′n| < k,

i(|α′n|2 − k2)
1
2 if |α′n| > k.

In addition, the function W is given by

W (x) =
∑

n∈Z2

Vnei((α′n·x+β′n(2b−x3)), x3 ≤ b. (9)

In fact, for any f ∈ H
−1/2
t (curl , Γb) and g ∈ H

−1/2
t (div , Γb) we have

< Fg, f >
H
−1/2
t (div ,Γb)×H

−1/2
t (curl ,Γb)

=

∫

Γb

ν × E(·, g) · fds

=

∫

Γb

ν × E(·, g) · [curl V + − curl V −]ds

=

∫

Γb

[(ν × E · curl V + − ν × V + · curl E)− (ν × E · curl V − − ν × V − · curl E)]ds,

12



where the transmission conditions (6) and (7) have been used. It follows from the Maxwell
equations (4) and (3) and the boundary conditions (5) and (4) that

∫

Γb

[ν × E · curl V − − ν × V − · curl E]ds = 0. (10)

On the other hand, from the Rayleigh expansion conditions (6) and (8) it is derived that
∫

Γb

[ν × E · curl V + − ν × V + · curl E]ds

=

∫

Γb

[(ν × Ei · curl V + − ν × V + · curl Ei) + (ν × Es · curl V + − ν × V + · curl Es)]ds

=

∫

Γb

[ν × Ei · curl V + − ν × V + · curl Ei]ds. (11)

Similarly, from the de�nition of Ei and the Rayleigh expansion condition (9) it follows that
∫

Γb

[ν × Ei · curl W − ν ×W · curl Ei]ds = 0. (12)

The equations (10)-(12) together with the fact that V = W on Γb yield

< Fg, f > =

∫

Γb

[ν × Ei · curl V + − ν × V + · curl Ei]ds

=

∫

Γb

[ν × Ei · curl V + − ν ×W · curl Ei]ds

=

∫

Γb

[ν × Ei · curl V + − ν × Ei · curl W ]ds

=

∫

Γb

ν × Ei · (curl V + − curl W )ds.

Substituting the expression (1) of Ei into the above equation and exchanging the order of
integration we get

< Fg, f >=

∫

Γa

g(y) · curl ycurl y

[∫

Γb

G(x, y)curl [V +(x)−W (x)]× e3ds(x)

]
ds(y),

which implies (2).
We now prove that F ∗ is injective. Suppose F ∗(f) = 0 for some f ∈ H

−1/2
t (curl , Γb). De�ne

U by

U(y) := curl ycurl y

[∫

Γb

G(x, y)h(x)ds(x)

]
, y ∈ R3\Γb,

where h = curl (V + −W ) × e3. Then e3 × U(y) = 0 on Γa. It is clear that U(y) is a −α-
quasi-periodic function satisfying the Rayleigh expansion condition (6) when y3 > a. By the
uniqueness of solutions to the exterior Dirichlet problem (see [2]) we have U(y) = 0 when
y3 > a, which together with the unique continuation principle ([11]) implies that U(y) = 0
when y3 > b. Now from the jump relation e3 × U+(y)− e3 × U−(y) = 0 on Γb and again the
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uniqueness of solutions for the exterior Dirichlet problem for y3 < b we get that U(y) = 0
when y3 < b. Thus, h(y) = e3 × curl [U+(y) − U−(y)] = 0 on Γb, which, together with (8)
and (9), implies that

e3 × V + = e3 ×W, e3 × curl V + = e3 × curl W on Γb. (13)

Since V and W satisfy the Maxwell equation curl curl E − k2E = 0 in the regions x3 > b
and x3 < b, respectively, then it follows easily from the transmission condition (13) and the
Rayleigh expansion conditions (8) and (9) that V = 0 for x3 > b and W = 0 for x3 < b.
Thus, by (6) we have ν × V − = 0 on Γb, so V ∈ H(curl , Ωb) satis�es the problem (1)-(3)
with f = 0. By Lemma 3.1 we have V = 0 in Ωb. Thus, f = [curl V

+− curl V
−
]T = 0, which

completes the proof of Lemma 5.2. ¤
Combining Lemmas 5.1 and 5.2, we have the following orthogonality relation for two di�erent
functions qi (i = 1, 2).

Lemma 5.3 Let the incident waves Ei(x, g) be de�ned by (1). If

e3 × E1(x, g) = e3 × E2(x, g) on Γa (14)
for all g ∈ L2

t (Γa) and some a > b, then the following orthogonality relation holds:
∫

Ωb

E1(x) · E2(x)(q1(x)− q2(x))dx = 0,

where E1, E2 ∈ H(curl , Ωb) solve the problem (1)− (3) with q replaced by q1 and q2, respec-
tively.

Proof. From the equation (14), the uniqueness of solutions for the exterior Dirichlet problem
and the unique continuation principle it follows that E1(x, g) = E2(x, g) for all x3 > b. This
implies that

e3 × curl E+
1 (x, g) = e3 × curl E+

2 (x, g) on Γb.

Since [e3 × curl E+
j (x; g)]|Γb

= 0 for j = 1, 2, then we have
e3 × curl E−

1 (x, g) = e3 × curl E−
2 (x, g) on Γb.

By the above two equalities and the de�nition of Ti we have
T1(e3 × E1(x, g)) = T2(e3 × E2(x, g))

for all g ∈ L2
t (Γa). The continuity of Tj (j = 1, 2) and Lemma 5.2 lead to

T1(f) = T2(f) ∀f ∈ H
−1/2
t (div , Γb).

This together with Lemma 5.1 gives the desired result. ¤
We are now ready to prove our main result for the inverse scattering problem.

Theorem 5.4 Let qj (j = 1, 2) satisfy the assumptions (A1) − (A3) and let qj depend on
only one direction x1 or x2 with j = 1, 2. If

e3 × E1(x, g) = e3 × E2(x, g) on Γa

for all g ∈ L2
t (Γa) with some a > b, where Ej(x, g) solves the problem (2)− (5) with q = qj

(j = 1, 2) corresponding to the incident wave Ei(x, g) given by (1), then q1 = q2.
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Proof. By Lemma 5.3 we have the orthogonality relation:
∫

Ωb

E1(x) · E2(x) [q1(x)− q2(x)] dx = 0, (15)

where E1, E2 ∈ H(curl , Ωb) solve the problem (1)-(3) with q replaced by q1 and q2, respec-
tively.
We now look for solutions to the problem (1)-(3) in the following form:

E(x) = (0, 0, E3(x1, x2)) = (0, 0, v(x1)u(x2))

with the scalar functions v and u satisfying the following quasi-periodic conditions:

v(x1)e
2iα1π = v(x1 + 2π), u(x2)e

2iα2π = v(x2 + 2π).

It is clear that such a function E is α-quasi-periodic and satis�es the boundary condition
(2). Without loss of generality, we may assume that qj(x) = qj(x1), that is, qj depends only
the x1-direction with j = 1, 2. Substituting such E into the Maxwell equation (1) and noting
that curl curl = −4+∇(∇·), we �nd that

v′′(x1)u(x2) + v(x1)u
′′(x2) + k2q(x1)v(x1)u(x2) = 0, x1, x2 ∈ (0, 2π),

which implies that

v′′(x1)

v(x1)
+ k2q(x1)v(x1) =

u′′(x2)

u(x2)
= λ

for some constant λ, where x1, x2 ∈ (0, 2π). Following the idea of Kirsch [17], we construct
a special kind of solutions v by considering the following quasi-periodic Sturm-Liouville
eigenvalue problem:

(I) :





v′′(x1) + k2q(x1)v(x1) = λv(x1), x1 ∈ (0, 2π)
v(x1)e

2iα1π = v(x1 + 2π),
v′(x1)e

2iα1π = v′(x1 + 2π).

The eigenvalues λn and the corresponding eigenfunctions vn, normalized to vn(0) = 1, have
the following asymptotic behaviors as n →∞ (see [29]):

λ±n =
(
n± α1

2π

)2

− k2

2π

∫ 2π

0

q(s)ds +O
(

1

n

)
,

v±n (x1) = exp
[
i(±n +

α1

2π
)x1

]
+O

(
1

n

)

which are uniform in x1 ∈ [0, 2π]. We also consider the following quasi-periodic boundary
problem for u:

(II) :

{
u′′(x2)− λnu(x2) = 0, x2 ∈ (0, 2π)
u(x2)e

2iα2π = v(x2 + 2π).

The non-trivial solutions to the problem (II) can be written explicitly as

un(x2) = cn,1e
√

λnx2 + cn,1e
−
√

λnx2 , λn 6= 0,
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where cn,1 and cn,2 are constants satisfying

cn,1 = cn,2

(
e−2π

√
λn − ei2πα2

)/ (
ei2πα2 − e2π

√
λn

)
. (16)

Now, let E±
3,n = v±n (x1)u

±
n (x2) be the third component of E±

n = (0, 0, E±
3,n) corresponding to

q1(x1) and let E±
3,m = v±m(x1)u

±
m(x2) be the third component of E±

n corresponding to q2(x1).
It follows from (15) that

0 =

∫

Ωb

E3,n(x1, x2) · E3,m(x1, x2) [q1(x1)− q2(x1)] dx = bAn,m
1 An,m

2 , (17)

where

An,m
1 : =

∫ 2π

0

[q1(x1)− q2(x1)]e
i(n−m)x1dx1 +O

(
1

n

)
+O

(
1

m

)
,

An,m
2 : =

∫ 2π

0

(
cn,1e

√
λnx2 + cn,2e

−
√

λnx2

) (
cm,1e

√
λmx2 + cm,2e−

√
λmx2

)
dx2

and cn,j, cm,j satisfy (16) with j = 1, 2. For arbitrarily �xed l ∈ N, letting m = n− l gives

Am+l,m
1 =

∫ 2π

0

[q1(x1)− q2(x1)]e
ilx1d(x1) +O

(
1

m

)
,

Am+l,m
2 =

∫ 2π

0

(
cm+l,1e

√
λm+lx2 + cm+l,2e

−
√

λm+lx2

)(
cm,1e

√
λmx2 + cm,2e−

√
λmx2

)
dx2.

We can always choose appropriate constants cm,2 and cm,1 satisfying (16) such that Am+l,m
2 6=

0 for su�ciently large m. In fact, we may assume that l is a positive number since otherwise
we can take n = m − l′ for some positive l′ instead of l. Now choose cm,2 = e2π

√
λm . Then,

by (16), |cm,1| ≥ C1 for large m with some positive constant C1 independent of m and∣∣∣
∫ 2π

0
cm,2e

−2π
√

λmx2dx2

∣∣∣ tends to +∞ as m → ∞. This implies that |Am+l,m
2 | → +∞ as

m → +∞. Letting m → +∞ we conclude from (17) and the above discussion that
∫ 2π

0

(q1(x1)− q2(x1))e
ilx1dx1 = 0

for every l ∈ N, which implies that q1 = q2. The proof is thus completed. ¤
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