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Abstract

In this paper we study simulation-based optimization algorithms for solv-
ing discrete time optimal stopping problems. Using large deviation theory for
the increments of empirical processes, we derive optimal convergence rates for
the value function estimate and show that they can not be improved in general.
The rates derived provide a guide to the choice of the number of simulated
paths needed in optimization step, which is crucial for the good performance
of any simulation-based optimization algorithm. Finally, we present a nu-
merical example of solving optimal stopping problem arising in finance that
illustrates our theoretical findings.

1 Introduction

Let us consider a discrete time optimal stopping problem of the form:

V ∗ = sup
1≤τ≤K

E[Zτ ], (1.1)

where τ is a stopping time taking values in the set {1, . . . , K} and (Zk)k≥0 is a
Markov chain. In most cases the expectation in (1.1) cannot be computed in a
closed form and we have to approximate it numerically in order to find V ∗. In this
paper we study a simulation-based approach to the optimal stopping problem (1.1).
The basic idea is simple - for any τ from a feasible subset of the set of all stopping
times valued in {1, . . . , K}, a random sample from Zτ of the size M is generated and
the expected value function is approximated by the corresponding sample average
function. The resulting sample average optimization problem is then solved and
a suboptimal policy τM is obtained. By sampling from ZτM

and averaging once
again, we get a low biased approximation for V ∗ denoted by VM,N , where N is the
size of the second sample. The idea of using sample average approximations for
solving the optimal stopping problem (1.1) is a natural one and was successfully
used by practioneers over the years. Such an approach is, for example, popular in
the context of a Bermudan option pricing problem in finance (see, e.g. Glasserman,
2003, Section 8.2). The main issues we are going to study in this work are how fast
VM,N converge to V ∗ as M, N →∞ and what the optimal relation between M and
N is that minimizes the computational costs. To the best of our knowledge these
problems are new and have not been studied before.

To get more insight on what kind of convergence rates one can expect, let us start
with the general stochastic programming problem:

h∗ := min
θ∈Θ

EP[h(θ, ξ)], (1.2)
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where Θ is a subset of Rm, ξ is a Rd valued random variable on the probability
space (Ω,F , P) and h : Rm ×Rd → R. Draw an i.i.d. sample ξ(1), . . . , ξ(M) from the
distribution of ξ and define

hM := min
θ∈Θ

[
1

M

M∑
m=1

h(θ, ξ(m))

]
.

It is well known (see e.g. Shapiro (1993)) that under very mild conditions it holds
hM − h∗ = OP(M−1/2). In their pioneering work, Shapiro and Homem-de-Mello
(2000) showed that in the case of discrete random variable ξ and a convex function
h, the convergence of hM to h∗ can be much faster than M−1/2, making simulation-
based approach particularly efficient in this situation. Turn now back to the problem
(1.1). Since the random variable τ takes only discrete values, one can ask whether
the simulation-based methods in the case of discrete time optimal stopping problem
(1.1) can be as efficient as in the case of (1.2) with discrete r.v. ξ. In this work
we give an affirmative answer to this question by deriving the optimal rates of
convergence for the conditional mean of VM,N given a sample of size M , and showing
that these rates are, under some mild conditions, faster than M−1/2. This fact has an
important practical implication since it indicates that M , the number of simulated
paths used in the optimization step, can be taken much smaller than N, the number
of paths used to compute the final estimate VM,N , leading to a significant reduction
of computational costs in the optimization step.

The paper is organized as follows. In Section 2 some notation are introduced and
the optimal stopping problem is rigorously stated. In Section 3 main results are
formulated and discussed. Some applications are presented in Section 4. Proofs
of the main results are collected in Section 5. Section 6 contains the proofs of
some lemmas needed for the proof of the main results. Finally, in Section 7 several
exponential inequalities for the increments of empirical processes are presented.

2 Main setup

Let us consider a Markov chain X = (Xk)k≥0 defined on a filtered probability space
(Ω,F , (Fk)k≥0, Px) and taking values in a measurable space (E,B), where for sim-
plicity we assume that E = Rd for some d ≥ 1 and B = B(Rd) is the Borel σ-algebra
on Rd. It is assumed that the chain X starts at x under Px for some x ∈ E. We also
assume that the mapping x 7→ Px(A) is measurable for each A ∈ F . Fix some natu-
ral number K > 0. Given a set of measurable functions Gk : E 7→ R, k = 1, . . . , K,
satisfying

Ex

[
sup

1≤k≤K
|Gk(Xk)|

]
< ∞

for all x ∈ E , consider the optimal stopping problems:

V ∗
k (x) := sup

k≤τ≤K
Ek, x [Gτ (Xτ )] , k = 1, . . . , K, (2.1)
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where for any x ∈ E, the expectation in (2.1) is taken w.r.t. the measure Pk, x such
that Xk = x under Pk, x and the supremum is taken over all stopping times τ with
respect to (Fn)n≥0. Introduce the stopping region S∗ = S∗1 × . . .×S∗K with S∗K = E
by definition and

S∗k := {x ∈ E : V ∗
k (x) ≤ Gk(x)}, k = 1, . . . , K − 1.

Introduce also the first entry times τ ∗k into S∗ by setting

τ ∗k := τk(S∗) := min{k ≤ l ≤ K : Xl ∈ Sl}.

It is well known ( see, e. g., Peskir and Shiryaev (2006)) that the value functions
V ∗

k (x) satisfy the so called Wald-Bellman equations

V ∗
k (x) = max{Gk(x), Ek,x[V

∗
k+1(Xk+1)]}, k = 1, . . . , K − 1, (2.2)

with V ∗
K(x) ≡ GK(x) by definition. The Wald-Bellman equations (2.2) imply that

the sets S∗k can be also defined as

S∗k =
{
x ∈ E : Ek,x

[
V ∗

k+1(Xk+1)
]
≤ Gk(x)

}
, k = 1, . . . , K − 1. (2.3)

Moreover, the stopping times τ ∗k are optimal in (2.1), that is,

V ∗
k (x) = Ek, x

[
Gτ∗k

(Xτ∗k
)
]
, k = 1, . . . , K.

Let (X
(m)
k )k=0,...,K , m = 1, . . . ,M, be M independent Markov chains with the same

distribution as X all starting from the point x ∈ E. We can think of (X
(1)
k , . . . , X

(M)
k ),

k = 0, . . . , K, as a new process defined on the product

probability space equipped with the product measure P⊗M
x . Let B be a collection

of sets from the product σ-algebra

BK := B ⊗ . . .⊗ B︸ ︷︷ ︸
K

that contains all sets S ∈ BK of the form S = S1× . . .×SK−1×E with Sk ∈ B, k =
1, . . . , K − 1. Here we take into account the fact that the stopping set SK coincides
with E. Let S be a subset of B. Define

SM := arg sup
S∈S

{
1

M

M∑
m=1

Gτ1(S)

(
X

(m)
τ1(S)

)}
. (2.4)

The stopping rule

τM := τ1(SM) = min{1 ≤ k ≤ K : Xk ∈ SM,k}

is generally suboptimal and therefore the corresponding Monte Carlo estimate

VM,N :=
1

N

N∑
n=1

G
τ
(n)
M

(
X̃

(n)

τ
(n)
M

)
(2.5)
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with

τ
(n)
M := min{1 ≤ k ≤ K : X̃

(n)
k ∈ SM,k}, n = 1, . . . , N,

based on a new, independent of (X(1), . . . , X(M)) set of trajectories

(X̃
(n)
0 , . . . , X̃

(n)
K ), n = 1, . . . , N,

is low biased, that is, it fulfills

VM := Ex

[
VM,N |X(1), . . . , X(M)

]
≤ sup

S∈S
Ex

[
Gτ1(S)

(
Xτ1(S)

)]
≤ V ∗ (2.6)

with V ∗ = Ex

[
Gτ∗1 (S)

(
Xτ∗1 (S)

)]
. If the collection S is rich enough, then

sup
S∈S

Ex

[
Gτ1(S)

(
Xτ1(S)

)]
≈ Ex

[
Gτ1(S∗)

(
Xτ1(S∗)

)]
and VM,N can serve as a good approximation for V ∗ for large enough M and N. In
the next section we will derive some probabilistic bounds for the difference V ∗−VM

and show that these bounds are best possible.

3 Main results

First, we introduce the notion of δ-entropy that plays an important role in the theory
of empirical processes. By means of the δ-entropy the complexity of the class S will
be measured.

Definition 3.1. Let δ > 0 be a given number and dX(·, ·) be a pseudedistance
between two elements of B defined as

dX(G1 × . . .×GK , G′
1 × . . .×G′

K) =
K∑

k=1

Px(X(tk) ∈ Gk4G′
k), (3.1)

where {Gk} and {G′
k} are subsets of E. Define N(δ,S, dX) be the smallest value n

for which there exist pairs of sets

(GL
j,1 × . . .×GL

j,K , GU
j,1 × . . .×GU

j,K), j = 1, . . . , n,

such that dX(GL
j,1 × . . . × GL

j,K , GU
j,1 × . . . × GU

j,K) ≤ δ for all j = 1, . . . , n, and for
any G ∈ S there exists j(G) ∈ {1, . . . , n} for which

GL
j(G),k ⊆ Gk ⊆ GU

j(G),k, k = 1, . . . , K.

Then the value H(δ,S, d) := log[N(δ,S, dX)] is called the δ-entropy with bracketing
of S for the pseudedistance dX .

In the sequel we assume that the δ-entropy with bracketing of the class S is poly-
nomial in 1/δ. This condition restricts the complexity of the class S.
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Assumption We assume that the family of stopping regions S is such that

H(δ,S, dX) ≤ Aδ−ρ (3.2)

for some constant A > 0, any 0 < δ < 1 and some ρ > 0.

The next example shows how to construct a class S with the δ-entropy satisfying
(3.2).

Example 3.2. Let S = Sγ, where Sγ is a class of subsets of

K︷ ︸︸ ︷
Rd × . . .× Rd with

boundaries of Hölder smoothness γ > 0 defined as follows. For given γ > 0 and
d ≥ 2 consider the functions b(x1, . . . , xd−1) : Rd−1 → R having continuous partial
derivatives of order l, where l is the maximal integer that is strictly less than γ. For
such functions b, we denote the Taylor polynomial of order l at a point x ∈ Rd−1 by
πb,x. For a given H > 0, let Σ(γ, H) be the class of functions b such that

|b(y)− πb,x(y)| ≤ H‖x− y‖γ, x, y ∈ Rd−1

where ‖y‖ stands for the Euclidean norm of y ∈ Rd−1. Any function b from Σ(γ, H)
determines a set

Sb := {(x1, . . . , xd) ∈ Rd : 0 ≤ xd ≤ b(x1, . . . , xd−1)}.

Define the class

Sγ := {Sb1 × . . .× SbK−1
× E : b1, . . . , bK−1 ∈ Σ(γ, H)}. (3.3)

It can be shown (see Dudley, 1999, Section 8.2) that the class Sγ fulfills

H(δ,Sγ, dX) ≤ Aδ−(K−1)(d−1)/γ

for some A > 0 and all δ > 0 small enough.

Now we are in the position to formulate our main result that provides exponential
bounds for the difference V ∗ − VM with VM given in (2.6).

Theorem 3.3. Let S be a subset of B such that the assumption (3.2) is fulfilled
for some ρ satisfying 0 < ρ ≤ 1, and

V ∗ − V̄ ≤ DM−1/(1+ρ) (3.4)

with V̄ := supS∈S Ex

[
Gτ1(S)

(
Xτ1(S)

)]
and some constant D > 0. Furthermore,

assume that all functions Gk are uniformly bounded and the inequalities

Px(|Gk(Xk)− Ek[V
∗
k+1(Xk+1)]| ≤ δ) ≤ A0,kδ

α, δ < δ0 (3.5)

hold for some α > 0, A0,k > 0, k = 1, . . . , K − 1, and δ0 > 0. Then for any U > U0

and M > M0

P⊗M
x

(
V ∗ − VM ≥ (U/M)

1+α
2+α(1+ρ)

)
≤ C exp(−

√
U/B) (3.6)

with some constants U0 > 0, M0 > 0, B > 0 and C > 0.
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We stress that the inequality (3.6) has non-asymptotic nature since it holds for all
M > M0, where M0 depends only on the characteristics of the process (Gk(Xk))k>0.

Remark 3.4. Without condition (3.4) the inequality (3.6) continues to hold with V ∗

replaced by V̄ , the best approximation of V ∗ within the class of stopping regions S.

Remark 3.5. The requirement that functions Gk are uniformly bounded can be
replaced by the existence of all moments of Gk(Xk), k = 1, . . . , K − 1, under P .
In this case on can reformulate Theorem 7.2 of Section 7 using generalized entropy
with bracketing instead of the usual entropy with bracketing (see Chapter 5.4 in Van
de Geer (2000)). We also note that no convexity or smoothness of the functions Gk

is required as it usual in the case of stochastic programming problems of the form
(1.2).

Remark 3.6. The choice of the class of approximating sets S is very important for a
good performance of simulation-based optimization algorithms. On the one hand, if
the class S is too large, then the optimization over S in (2.4) can become infeasible.
On the other hand, if S is too small, the condition (3.4) may not be fulfilled and
the approximation may be too rough. An ingenious choice of S should be a trade-
off between the above two extremes. In many practical applications it is, however,
often clear how to choose a parsimonious parametrization of the stopping regions.
This choice can be based on a deep understanding of the nature of the underlying
problem or some heuristics (see Section 4 for some examples). An alternative and
more constructive way to choose S is to use the so called ε-nets. A class of sets
N ⊂ B is called a ε-net for S w.r.t. a pseudo-distance d on B if for any S ∈ S there
is S̃ ∈ N such that d(S, S̃) ≤ ε. In the case of distance d defined as the Lebesgue
measure of symmetric difference of sets, an ε-net N for S can be often taken finite.
It can be shown that Theorem 3.3 continues to hold if one performs an optimization
in (2.4) not over the whole class S but only over its ε-net N, provided that ε tends
to 0 with M sufficiently fast.

Remark 3.7. There is a close connection between the simulation-based optimization
algorithm of this paper and the so called regression-based Monte Carlo approach.
The latter one relies on the Wald-Bellman equations (2.2) and tries to approximate
all expectations in (2.2) by means of linear or non-linear regression methods. This
approach was first introduced in financial literature on option pricing (see Section 4
for some additional references) and since then become very popular among prac-
titioners. A theoretical analysis of this type of algorithms was done in Clément,
Lamberton and Protter (2002), Egloff (2005), Egloff, Kohler and Todorovic (2007)
and Kohler, Krzyzak and Todorovic (2009), among others. Both approaches have
their advantages and disadvantages. While the simulation-based optimization algo-
rithm requires a careful choice of the class of approximating sets S (see Remark 3.6)
and involves optimization over S that can be rather time consuming, the regression
methods are usually fast. On the other hand, for a regression approach to perform
well it is necessary to choose a set of basis functions (a bandwidth, a class of sieves)
in a proper way. Moreover, the simulation-based optimization approach seems to be
rather natural given the structure of the underlying optimal stooping problem (1.1).
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Remark 3.8. The way of estimating the optimal value function V ∗ presented in
Section 2 suggests that one can use the simulation-based optimization algorithm
to estimate the boundaries of stopping regions as well. In this case it would be
interesting to reformulate the results of Theorem 3.3 in terms of a distance between
∂S∗ and ∂SM which is different from V ∗ − VM . It is an open problem whether on
can relax or completely avoid the conditions (3.4) and (3.5) in this situation.

In order to illustrate the conditions of Theorem 3.3 let us look at a simple example.

Example 3.9. Fix some α > 0 and x0 ∈ R+ and consider the following optimal
stopping problem:

V ∗ = sup
τ∈{1,2}

E[G(Xτ )|X0 = x0], (3.7)

where

G(x) := (K1/α − x1/α)+, x ∈ R+ (3.8)

with some K > 0. Suppose that the Markov chain (Xk, k = 0, 1, 2) originates from
the discretization of a continuous process Y (t) which in turn follows the Black-
Scholes model with volatility σ and zero interest rate, that is,

dY (t) = σY (t)dW (t), t > 0, Y (0) = x0

and Xk = Y (k∆), k = 0, 1, 2, with some ∆ > 0. By Itô’s formula, the process
Z(t) := Y 1/α(t) fulfills the following SDE:

dZ(t)

Z(t)
=

σ2

2α

(
1

α
− 1

)
dt +

σ

α
dW (t).

Therefore the expectation E[G(X2)|X1 = x] can be computed via the well known
Black-Scholes formula:

E[G(X2)|X1 = x] = K1/αΦ(−d2)− x1/αe∆(α−1−1)(σ2/2α)Φ(−d1), (3.9)

with Φ being the cumulative distribution function of the standard normal distribu-
tion,

d1 :=
log(x/K) + σ2 (α−1 − 2−1) ∆

σ
√

∆

and d2 := d1 − σ
√

∆/α. As can be easily seen from (3.9), the function

B(x) := E[G(X2)|X1 = x]−G(x)

that appears in (3.5), satisfies B(x) � Cx1/α as x → +0 for some constant C. Hence

P(0 < |E[G(X2)|X1]−G(X1)| ≤ δ) . δα, δ → 0, α > 1
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and

P(0 < |E[G(X2)|X1]−G(X1)| ≤ δ) . δ, δ → 0, α ≤ 1.

Turn now to the condition (3.4). In fact, for any α > 0, the optimal stopping region
S∗ = {x ∈ E : B(x) ≤ 0} can be represented in the form S∗ = {x : 0 ≤ x ≤ θ∗} for
some real positive number θ∗ depending on α, σ, ∆ and K. Hence, if S is taken to
be a collection of sets of the form [0, θ) with θ ∈ Θ ⊂ R+, we get V̄ = V ∗ and the
condition (3.4) is fulfilled.

The convergence rates obtained in Theorem 3.3 are in fact optimal and cannot be,
in general, improved as shown in the next theorem.

Proposition 3.10. Consider the problem (2.1) with k = 1 and two possible stopping
dates, i.e. τ ∈ {1, 2}. Fix a pair of non-zero functions G1, G2 such that G2 : Rd →
{0, 1} and 0 < G1(x) < 1 on [0, 1]d. Fix some γ > 0 and α > 0 and let Pα,γ be a
class measures such that the condition (3.5) is fulfilled and for any P ∈ Pα,γ, the
corresponding stopping set S∗ = S∗(P) is in Sγ. Then there exist a subset P of
Pα,γ and a constant B > 0 such that for any M ≥ 1, any stopping time τM ∈ {1, 2}
measurable w.r.t. F⊗M , it holds

sup
P∈P

{
sup

τ∈{1,2}
EP[Gτ (Xτ )]− EP⊗M [EP GτM

(XτM
)]

}
≥ BM− 1+α

2+α(1+(d−1)/γ) .

Hence, for any stopping time τM ∈ {1, 2} measurable w.r.t. F⊗M , there is a measure
P from P , such that

P⊗M
(
V ∗ − VM ≥ CM− 1+α

2+α(1+(d−1)/γ)

)
> 0 (3.10)

with some positive constant C and all M ≥ 1, where V ∗ = supτ∈{1,2} EP[Gτ (Xτ )]
and VM = EP[GτM

(XτM
)].

Remark 3.11. In order to compare (3.10) with (3.6) note that ρ = (d− 1)/γ in the
case S = Sγ and K = 2 (see Example 3.2).

Discussion It follows from Theorem 3.3 that

V ∗ − VM = OP

(
M− 1+α

2+α(1+ρ)

)
= oP(M−1/2)

as long as α > 0. Using the decomposition

V ∗ − VM,N = V ∗ − VM + VM − VM,N

and the fact that VM − VM,N = OP(1/
√

N) for any M > 0, we conclude that

V ∗ − VM,N = OP

(
M− 1+α

2+α(1+ρ) + N− 1
2

)
.
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Hence, given N , a reasonable choice of M , the number of Monte Carlo paths used

in the optimization step, can be defined as M � N
2+α(1+ρ)
2(1+α) . In the case when there

exists a parametric family of stopping regions satisfying (3.4) (see Example 3.9),
one gets

M � N
2+α

2(1+α) (3.11)

since any parametric family of stopping regions with finite dimensional compact
parameter set fulfills (3.2) for arbitrary small ρ > 0. Let us also make a few remarks
on the condition (3.5) and the parameter α. If all functions

Bk(x) = Gk(x)− Ek,x[V
∗
k+1(Xk+1)], k = 1, . . . , K − 1, (3.12)

have a non-vanishing Jacobian in the vicinity of the stopping boundary ∂Sk and Xk

has continuous distribution, then (3.5) is fulfilled with α = 1. Another situation,
where α can be easily determined is described by the following useful lemma.

Lemma 3.12. Let X1, . . . , XK be a time homogenous Markov chain with a state
space R+ and a transition density p(y|x) = x−1p̄(y/x) such that the function p̄(z)
stays positive on (0,∞) and satisfies p̄(z) . z−3/2, z → +∞. Moreover, assume
that Gk(x) = ak(κ−x)+, where ak, k = 1, . . . , K, is a decreasing sequence of positive
numbers and κ is a fixed positive number, then the condition (3.5) is fulfilled with
α ≥ 1/2.

Proof. First, note that

EK−1,x[GK(XK)] = aK

∫ κ/x

0

(κ− zx)p̄(z) dz (3.13)

and the function
d2

dx2
EK−1,x[GK(XK)] = aK

κ2

x3
p̄(κ/x)

is positive on (0,∞). The function BK−1(x) defined in (3.12) satisfies

BK−1(0) = (aK−1 − aK)κ > 0

and BK−1(x) < 0 for x ≥ κ. Hence, there there is a unique point x0 ∈ (0, κ) such
that BK−1(x0) = 0. Since d2

dx2 GK−1(x) = 0 on R+ \ {κ} and GK−1(κ) = 0, we get
B′′K−1(x0) > 0. Let us now look at the behavior of BK−1(x) for large x. It directly
follows from (3.13) that

BK−1(x) � aK p̄(+0)
κ2

2x
, x → +∞.

Therefore

P(|BK−1(XK−1)| ≤ δ) ≤ P(|XK−1 − x0| ≤ Aδ1/2)

+ P(XK−1 ≥ Bδ−1) . δ1/2, δ → 0
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for some properly chosen positive constants A and B not depending on δ. In a similar
manner, using the fact (it can be proved by induction) that

d2

dx2
Ek,x[V

∗
k+1(Xk+1)] > 0, x ∈ (0,∞)

and Ek,x[V
∗
k+1(Xk+1)] & EK−1,x[GK(XK)] as x → ∞ for all k = 1, . . . , K − 1, one

derives bounds for other functions Bk, k = 1, . . . , K − 2.

In fact, it is not difficult to construct examples showing that the parameter α can
take any value from [1,∞) (see Example 3.9). If α = 1 (the most common case)
(3.11) simplifies to M � N3/4, the rule of thumb supported by our numerical exam-
ple.

Finally, we would like to mention an interesting methodological connection between
our analysis and the analysis of statistical discrimination problem performed in
Mammen and Tsybakov (1999) (see also Devroye, Györfi and Lugosi (1996)). In
particular, we need similar results form the theory of empirical processes and the
condition (3.5) formally resembles the so called “margin” condition often encoun-
tered in the literature on discrimination analysis.

4 Applications

In this section we illustrate our theoretical results by some financial applications.
Namely, we consider the problem of pricing discrete time American options. Ac-
cording to the modern financial theory, pricing an American option in a complete
market is equivalent to solving an optimal stopping problem (with a corresponding
generalization in incomplete markets), the optimal stopping time being the rational
time for the option to be exercised. Due to the enormous importance of the early
exercise feature in finance, this line of research has been intensively pursued in recent
times. Solving the optimal stopping problem and hence pricing an American option
is straightforward in low dimensions. However, many problems arising in practice
have high dimensions, and these applications have motivated the development of
Monte Carlo methods for pricing American option. Solving a high-dimensional op-
timal stopping problems or pricing American style derivatives with Monte Carlo is
a challenging task because the determination of the optimal value function requires
a backwards dynamic programming algorithm that appears to be incompatible with
the forward nature of Monte Carlo simulation. Much research was focused on the
development of fast methods to compute approximations to the optimal value func-
tion. Notable examples include mesh method of Broadie and Glasserman (1997),
the regression-based approaches of Carriere (1996), Longstaff and Schwartz (2001),
Tsitsiklis and Van Roy (1999) and Egloff (2005). All these methods aim at ap-
proximating the so called continuation values that can be used later to construct
suboptimal strategies and to produce lower bounds for the optimal value function.
The convergence analysis for this type of methods was performed in several papers
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including Egloff (2005), Egloff, Kohler and Todorovic (2007) and Belomestny (2009).
In the context of our paper we consider the so called parametric approximation al-
gorithms (see Glasserman, 2003, Section 8.2). In essence, these algorithms represent
the optimal stopping sets S∗k by a finite numbers of parameters and then find the
American option price by maximizing, over the parameter space, a Monte Carlo
approximation of the corresponding value function. The important question here is
whether on can parametrize the optimal stopping region S∗ by a finite dimensional
set of parameters, i.e. S∗ = S∗(θ), θ ∈ Θ, where Θ is a compact finite dimensional
set. It turns out that that this is possible in many situations (see Garcia (2001)).
The assumption (3.2) and (3.4) are then automatically fulfilled with arbitrary small
ρ > 0.

4.1 Numerical example: Bermudan max-call

This is a benchmark example studied in Broadie and Glasserman (1997) and Glasser-
man (2003) among others. Specifically, the model with d identically distributed
assets is considered, where each underlying has dividend yield δ. The risk-neutral
dynamic of the asset X(t) = (X1(t), . . . , Xd(t)) is given by

dX l(t)

X l(t)
= (r − δ)dt + σdW l(t), X l(0) = x0, l = 1, ..., d,

where W l(t), l = 1, ..., d, are independent one-dimensional Brownian motions and
x0, r, δ, σ are constants. At any time t ∈ {t1, ..., tK} the holder of the option may
exercise it and receive the payoff

Gk(Xk) :=
(
max

(
X1

k , ..., Xd
k

)
− κ
)+

,

where Xk := X(tk) for k = 1, . . . , K. We take d = 2, r = 5%, δ = 10%, σ = 0.2,
κ = 100, x0 = 90 and tk = kT/K, k = 1, . . . , K, with T = 3, K = 9 as in
Glasserman (2003, Chapter 8).

To describe the optimal early exercise region at date tk, k = 1, . . . , K, one can divide
R2 into three different connected sets: one exercise region and two continuation
regions (see Broadie and Detemple (1997) for more details). All these regions can
be parameterized by using two functions depending on two dimensional parameter
θk ∈ R2. Making use of this characterization, we define a parametric family of
stopping regions as in Garcia (2001) via

Sk(θk) := {(x1, x2) : max(max(x1, x2)−K, 0) > θ1
k; |x1 − x2| > θ2

k},

where θk ∈ Θ, k = 1, . . . , K and Θ is a compact subset of R2. Furthermore, we
simplify the corresponding optimization problem by setting θ1 = . . . = θK . This will
introduce an additional bias and hence may increase the left hand side of (3.4) (see
Remark 3.4). However, this bias turns out to be rather small in practice. In order to
implement and analyze the simulation-based optimization based algorithm in this
situation, we perform the following steps:

11



• Simulate L independent sets of trajectories of the process (Xk) each of the size
M :

(X
(l,m)
1 , . . . , X

(l,m)
K ), m = 1, . . . ,M,

where l = 1, . . . , L.

• Compute estimates θ
(1)
M , . . . , θ

(L)
M via

θ
(l)
M := arg max

θ∈Θ

{
1

M

M∑
m=1

Gτ1(S(θ))

(
X

(l,m)
τ1(S(θ))

)}
.

To compute estimates θ
(1)
M , . . . , θ

(L)
M we use Tom Rowan’s subspace-searching

simplex algorithm for unconstrained maximization of a function (package subplex
in R). This choice of optimization algorithm responds to the discontinuity of
the value function, together with the presence of multiple local maxima.

• Simulate a new set of trajectories of size N independent of (X
(l,m)
k ) :

(X̃
(n)
1 , . . . , X̃

(n)
K ), n = 1, . . . , N.

• Compute L estimates for the optimal value function V ∗
1 as follows

V
(l)
M,N :=

1

N

N∑
n=1

G
τ
(l,n)
M

(
X̃

(n)

τ
(l,n)
M

)
, l = 1, . . . , L,

with

τ
(l,n)
M := min

{
1 ≤ k ≤ K : X̃

(n)
k ∈ Sk

(
θ

(l)
M

)}
, n = 1, . . . , N.

Denote by σM,N,l the standard deviation computed from the sample (G
τ
(l,n)
M

, n =

1, . . . , N) and set σM,N = minl σM,N,l.

• Compute

µM,N,L :=
1

L

L∑
l=1

V
(l)
M,N , ϑM,N,L :=

√√√√ 1

L− 1

L∑
l=1

(
V

(l)
M,N − µM,N,L

)2

.

By the law of large numbers

µM,N,L
P→ EP⊗M [VM,N ] , L →∞, (4.1)

ϑM,N,L
P→ VarP⊗M [VM,N ] , L →∞, (4.2)

where

VM,N :=
1

N

N∑
n=1

G
τ
(n)
M

(
X̃

(n)

τ
(n)
M

)
.

12



The difference V̄ − VM,N with

V̄ := max
θ∈Θ

E[Gτ1(S(θ))(Xτ1(S(θ)))]

can be decomposed into the sum of three terms

(V̄ − EP⊗M [VM ]) + (EP⊗M [VM ]− VM) + VM − VM,N . (4.3)

The first term in (4.3) is deterministic and can be approximated by Q1(M) :=
µM∗,N∗,L∗−µM,N∗,L∗ with large enough L∗, M∗ and N∗. The variability of the second,

zero mean, stochastic term can be measured by
√

VarP⊗M [VM ] which in turn can be
estimated by Q2(M) :=

√
ϑM,N∗,L∗ , due to (4.2). The standard deviation of VM −

VM,N for any M can be approximated by Q3(N) = σM∗,N/
√

N . In our simulation
study we take N∗ = 1000000, L∗ = 500, M∗ = 10000 and obtain V̄ ≈ µM∗,N∗,L∗ =
7.96 (note that V ∗ = 8.07 according to Glasserman (2003)). In the left-hand side of
Figure 1 we plot both quantities Q1(M) and Q2(M) as functions of M. Note that
Q2(M) dominates Q1(M), especially for large M. Hence, by comparing Q2(M) with
Q3(N) and approximately solving the equation Q2(M) = Q3(N) in N , one can infer
on the optimal relation between M and N . In Figure 1 (on the right-hand side)
the resulting empirical relation is depicted by crosses. Additionally, we plotted two
benchmark curves N = M4/3 and N = M4.5/3. As one can see the choice M = N3/4

is likely to be sufficient in this situation since it always leads to the inequality
Q1(M)+σQ2(M) ≤ σQ3(N) for any σ > 1. As a consequence, for M = N3/4 and any
N , V̄ lies with high probability in the interval [µM,N,L∗−σQ3(N), µM,N,L∗+σQ3(N)],
provided that σ is large enough.

Figure 1: Left: functions Q1(M) and Q2(M); Right: optimal empirical relationship
between M and N (crosses) together with benchmark curves N = M4/3 (dashed
line) and N = M4.5/3 (dotted line).

5 Proofs of the main results

In this section we give the proofs of Theorem 3.3 and Theorem 3.10.

5.1 Proof of Theorem 3.3

Let us first sketch the structure of the proof and main ideas behind it. For any
S ∈ S denote

∆(S) := E[Gτ∗1
(Xτ∗1

)]− E[Gτ1(S)(Xτ1(S))].

To prove Theorem 3.3 we need a kind of probabilistic bound for the quantity ∆(SM)
with SM defined in (2.4). In a first step we separate a probabilistic error from an

13



approximation error. The latter one can be quantified by the value ∆(S̄), where

S̄ := arg max
S∈S

E
[
Gτ1(S)

(
X

(m)
τ1(S)

)]
(5.1)

is the best approximation of E[Gτ∗1
(Xτ∗1

)] within the class of stopping regions S.
Define now

∆M(S) := M−1/2

M∑
m=1

{
Gτ1(S)

(
X

(m)
τ1(S)

)
− E

[
Gτ1(S)

(
Xτ1(S)

)]}
and put ∆M(S ′, S) := ∆M(S ′)−∆M(S) for any S ′, S ∈ S. The empirical process
∆M(S ′, S) defined on B ×B shall play a crucial role in obtaining a probabilistic
bound for ∆(S̄). Indeed, since

1

M

M∑
m=1

Gτ1(S̄)

(
X

(m)

τ1(S̄)

)
≤ 1

M

M∑
m=1

Gτ1(SM )

(
X

(m)
τ1(SM )

)
with probability 1, it holds

∆(SM) ≤ ∆(S̄) +

[
∆M(S∗, S̄) + ∆M(SM , S∗)

]
√

M
. (5.2)

Thus in order to get a bound for ∆(SM) we need probabilistic bounds for the quan-
tities ∆M(S∗, S̄) and ∆M(SM , S∗). These bounds in turn can be derived from the
exponential inequalities for the increments of empirical processes which are stated
in Theorem 7.2 (see Section 7). Let us elaborate on this point in more detail. Set
εM = M−1/2(1+ρ) and derive from (5.2)

∆(SM) ≤ ∆(S̄) +
2√
M

sup
S∈S:∆G(S∗,S)≤εM

|∆M(S∗, S)|

+2× ∆
(1−ρ)
G (S∗, SM)√

M
× sup

S∈S:∆G(S∗,S)>εM

[
|∆M(S∗, S)|
∆

(1−ρ)
G (S∗, S)

]
, (5.3)

where

∆G(S, S ′) :=
{

E
[
Gτ1(S)

(
Xτ1(S)

)
−Gτ1(S′)

(
Xτ1(S′)

)]2}1/2

.

for any S, S ′ ∈ B. The reason behind splitting the r. h. s. of (5.2) into two
parts is that the behavior of the empirical process ∆M(S∗, S) is different on the
sets {S ∈ S : ∆G(S∗, S) > εM} and {S ∈ S : ∆G(S∗, S) ≤ εM}. Theorem 7.2 of
Section 7 would imply that for any S, S ′ ∈ S and any U > U0

P

(
sup

S′∈S, ∆G(S,S′)≤εM

|∆M(S, S ′)| > Uε1−ρ
M

)
≤ C exp(−Uε−2ρ

M /C2), (5.4)

P

(
sup

S′∈S, ∆G(S,S′)>εM

|∆M(S, S ′)|
∆1−ρ

G (S, S ′)
> U

)
≤ C exp(−U/C2), (5.5)

P

(
sup
S∈S

|∆M(S, S ′)| > z
√

M

)
≤ C exp(−Mz2/C2B) (5.6)
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with some constants C > 0, B > 0 and U0 > 0, provided that

HB(δ,S, ∆G) ≤ Aδ−2ρ, (5.7)

where HB(δ,S, ∆G) is the entropy with bracketing for the class S w.r.t. the pseudo-
distance ∆G. The condition (5.7) places a bound on the complexity of S and is
similar to (3.2). However, in order to deduce (5.7) from (3.2) we need to relate
the pseudo-distance ∆G to the pseudo-distance dX defined in (3.1). The following
lemma relates ∆G to another auxiliary pseudo-distance and is proved in Section 6.

Lemma 5.1. If maxk=1,...,K ‖Gk‖∞ ≤ AG with some constant AG > 0, then

∆G(S, S ′) ≤ 2AG

√
K∆X(S, S ′)

for any S, S ′ ∈ B, where ∆X is a pseudo-distance between any two sets S, S ′ ∈ B

defined as

∆X(S1 × . . . × SK ,S ′1 × . . . × S ′K) :=
K−1∑
k=1

P

(
Xk ∈ (Sk4S ′k) \

(
K−1⋂
l=k

S ′l

))
.

In fact, Lemma 5.1 and the assumption (3.2) immediately imply (5.7) since ∆X(S, S ′) ≤
dX(S, S ′). So the inequalities (5.4)-(5.6) hold under assumptions of Theorem 3.3.
Let us now show how these inequalities can be used to estimate the second and the
third summands in (5.3). To simplify notations denote

W1,M := sup
S∈S:∆G(S∗,S)≤εM

|∆M(S∗, S)|,

W2,M := sup
S∈S:∆G(S∗,S)>εM

|∆M(S∗, S)|
∆

(1−ρ)
G (S∗, S)

and set A0 := {W1,M ≤ Uε1−ρ
M } for some U > U0. Then the inequality (5.4) leads to

the estimate
P(Ā0) ≤ C exp(−Uε−2ρ

M /C2).

Furthermore, since ∆(S̄) ≤ DM−1/(1+ρ) (see (3.4)) and ε1−ρ
M /

√
M = M−1/(1+ρ), we

get on A0

∆(SM) ≤ C0M
−1/(1+ρ) + 2× ∆

(1−ρ)
G (S∗, SM)√

M
W2,M (5.8)

with C0 = D + 2U . Now we need to find a bound for ∆G(S∗, SM) in terms of
∆(SM). This is exactly the place, where the condition (3.5) comes in. The following
lemma holds
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Lemma 5.2. Assume that (3.5) holds for δ < δ0 < 1/2, then there exist constants
υα and δα such that

∆(S) ≥ υα∆
(1+α)/α
X (S∗, S) (5.9)

for all S ∈ B satisfying ∆X(S∗, S) ≤ δα. Moreover, it holds

∆X(S∗, S) ≤
(

21/α

δ0

)
∆(S) +

δα

2(1 + α)
. (5.10)

for any S ∈ B.

The proof of this lemma is given in Section 6. Lemma 5.2 together with Lemma 5.1
imply now that

∆G(S∗, SM) ≤ 2
√

KAGv−α/2(1+α)
α ∆α/2(1+α)(SM) (5.11)

on the set A1 := {∆X(S∗, SM) ≤ δα}. Let us introduce yet another set

A2 :=
{
∆(SM) > C0(1− π)−1M−1/(1+ρ)

}
for some 0 < π < 1. Combining (5.8) with (5.11), we get on A0 ∩ A1 ∩ A2

∆(SM) ≤ C1
∆α(1−ρ)/(2(1+α))(SM)

π
√

M
W2,M ,

where the constant C1 depends on α but not on π. Therefore

∆(SM) ≤ (π/C1)
−νM−ν/2Wν

2,M

with ν = 2(1+α)
2+α(1+ρ)

. What remains is to estimate P(Ā1). Using again Lemma 5.2, we
arrive at

P(∆X(S∗, SM) > δα) ≤

P

((
21/α

δ0

)
∆(SM) +

δα

2(1 + α)
> δα

)
= P(∆(SM) > cα)

with cα = δ0δα2−1/α
(
1− 1

2(1+α)

)
. Furthermore, due to (5.2)

P(∆(SM) > cα) ≤ P

(
DM−1/(1+ρ) + 2M−1/2 sup

S∈S
|∆M(S)| > cα

)
≤ P

(
sup
S∈S

|∆M(S)| > cα

√
M/4

)
for large enough M. In order to bound the latter probability we can employ the
inequality (5.6) to get

P

(
sup
S∈S

|∆M(S)| > cα

√
M/4

)
≤ B1 exp(−MB2)
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with some constants B1 > 0 and B2 = B2(α) > 0. Thus

P(Ā1) ≤ B1 exp(−MB2).

Applying inequality (5.5) to Wν
2,M and using the fact that ν/2 ≤ 1/(1 + ρ) for all

0 < ρ ≤ 1, we finally obtain the desired bound for ∆(SM)

P
(
∆(SM) > (V/M)ν/2

)
≤ P

({
∆(SM) > (V/M)ν/2

}
∩ A0 ∩ A1 ∩ A2

)
+ P(Ā0) + P(Ā1)

≤ C exp(−
√

V /B3)

+C exp

(
−UMρ/(1+ρ)

C2

)
+ B1 exp(−MB2)

which holds for all V > V0 and M > M0 with some constant B3 depending on π
and α.

5.2 Proof of Proposition 3.10

For simplicity, we give the proof only for the case d = 2 (an extension to higher
dimensions is straightforward). In the case of two exercise dates the corresponding
optimal stopping problem is completely specified by the distribution of the vector
(X1, G2(X2)). Because of a digital structure of G2 the distribution of (X1, G2(X2))
would be completely determined if the marginal distribution of X1 and the probabil-
ity P(G2(X2) = 1|X1 = x) are defined. Taking into account this, we now construct a
family of distributions for (X1, G2(X2)) indexed by elements of the set Ω = {0, 1}m.
First, the marginal distribution of X1 is supposed to be the same for all ω ∈ Ω and
posseses a density p(x) satisfying

0 < p∗ ≤ p(x) ≤ p∗ < ∞, x ∈ [0, 1]2.

Let us now construct a family of conditional distributions Pω(G2(X2) = 1|X1 = x),
ω ∈ Ω. To this end let φ be an infinitely many times differentiable function on
R with the following properties: φ(z) = 0 for |z| ≥ 1, φ(z) ≥ 0 for all z and
supz∈R[φ(z)] ≤ 1. For j = 1, . . . ,m put

φj(z) := δm−γφ

(
m

[
z − 2j − 1

m

])
, z ∈ R

with some 0 < δ < 1. For vectors ω = (ω1, . . . , ωm) of elements ωj ∈ {0, 1} and for
any z ∈ R define

b(z, ω) :=
m∑

j=1

ωjφj(z).

Put for any ω ∈ Ω and any x ∈ R2,

Cω(x) := Pω(G2(X2) = 1|X1 = x) =

= G1(x)− Am−γ/α1 {0 ≤ x2 ≤ b(x1, ω)}
+Am−γ/α1

{
b(x1, ω) < x2 ≤ δm−γ

}
,
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where A is a positive constant. Due to our assumptions on G1(x), there are constants
0 < G− < G+ < 1 such that

G− ≤ G1(x) ≤ G+, x ∈ [0, 1]2.

Hence, the constant A can be chosen in such a way that Cω(x) remains positive and
strictly less than 1 on [0, 1]2 for any ω ∈ Ω. The stopping set

Sω := {x : Cω(x) ≤ G1(x)} = {(x1, x2) : 0 ≤ x2 ≤ b(x1, ω)}

belongs to Sγ since b(·, ω) ∈ Σ(γ, L) for δ small enough. Moreover, for any η > 0

Pω (|G1(X1)− Cω(X1)| ≤ η) = Pω(0 ≤ X2
1 ≤ δm−γ)1(Am−γ/α ≤ η)

≤ δp∗m−γ1(Am−γ/α ≤ η) ≤ δp∗A−αηα

and the condition (3.5) is fulfilled. Let τM be a stopping time w.r.t. F⊗M , then the
identity (see Lemma 6.1)

EPω [Gτ∗(Xτ∗)]− EPω [GτM
(XτM

)] = EPω [(G1(X1)−G2(X2))1(τ ∗ = 1, τM = 2)]

+ EPω [(G2(X2)−G1(X1))1(τ ∗ = 2, τM = 1)]

= EPω [|G1(X1)− E(G2(X2)|F1)|1{τM 6= τ ∗}]

leads to

EPω [Gτ∗(Xτ∗)]− EP⊗M
ω
{EPω [GτM

(XτM
)]} = EP⊗M

ω
EPω [|∆ω(X1)|1{τM 6= τ ∗}]

with ∆ω(x) := G1(x)− Cω(x). By conditioning on X1 we get

EP⊗M EPω [|∆ω(X1)|1{τM 6= τ ∗}] = Am−γ/α P(0 ≤ X2
1 ≤ δm−γ) P⊗M

ω (τM 6= τ ∗)

≥ Am−γ/αp∗δm
−γ P⊗M

ω (τM 6= τ ∗) .

Using now a well known Birgé’s or Huber’s lemma, (see, e.g. Devroye, Györfi and
Lugosi, 1996, p. 243), we get

sup
ω∈{0,1}m

P⊗M
ω (τ̂M 6= τ ∗) ≥

[
0.36 ∧

(
1− MKH

log(|H|)

)]
,

where KH := supP,Q∈H K(P, Q),H := {Pω, ω ∈ {0, 1}m} and K(P, Q) is a Kullback-
Leibler distance between two measures P and Q. Since for any two measures P and
Q from H with Q 6= P

K(P, Q) ≤ sup
ω1,ω2∈{0,1}m

ω1 6=ω2

E

[
Cω1(X1) log

{
Cω1(X1)

Cω2(X1)

}

+(1− Cω1(X1)) log

{
1− Cω1(X1)

1− Cω2(X1)

}]
≤ (1−G+ − A)−1(G− − A)−1

×P(0 ≤ X2
1 ≤ δm−γ)

[
A2m−2γ/α

]
≤ CMm−γ−2γ/α−1
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with some constant C > 0 for small enough A, and log(|H|) = m log(2), we get

sup
ω∈{0,1}m

P⊗M
ω (τ̂M 6= τ ∗) ≥

[
0.36 ∧

(
1− CMm−γ−2γ/α−1

)]
with some constant C > 0. Hence,

sup
ω∈{0,1}m

P⊗M
ω (τ̂M 6= τ ∗) > 0

provided that m = qM1/(γ+2γ/α+1) for small enough real number q > 0. In this case

sup
ω∈{0,1}m

{
EPω [Gτ∗(Xτ∗)]− EP⊗M

ω
{EPω [GτM

(XτM
)]}
}

≥ Ap∗δq
−γ/α−γM−(γ/α+γ)/(γ+2γ/α+1) = BM− (1+α)

2+α(1+1/γ)

with B = Ap∗δq
−γ/α−γ.

6 Proofs of lemmas

In this section we prove Lemma 5.1 and Lemma 5.2. The proofs of both lemmas
essentially rely on the following proposition

Proposition 6.1. For any S, S ′ ∈ B it holds with probability one∣∣Gτk(S)

(
Xτk(S)

)
−Gτk(S′)

(
Xτk(S′)

)∣∣
≤

K−1∑
l=k

|Gl(Xl)−Gτl+1(S)(Xτl+1(S))|1{Xl∈(Sl4S′l)\(
TK−1

l′=l
S′

l′)} (6.1)

and

V ∗
k (Xk)− Vk(Xk)

= E

[
K−1∑
l=k

∣∣Gl(Xl)− E[V ∗
l+1(Xl+1)|Fl]

∣∣1{Xl∈(S∗l 4Sl)\(
TK−1

l′=l
Sl′)}

∣∣∣∣∣Fk

]
(6.2)

for k = 1, . . . , K − 1, where

Vk(Xk) := E
[
Gτk(S)(Xτk(S))|Fk

]
, k = 1, . . . , K.

Before proving this proposition let us recall some basic properties of the sequence
of stopping times τk(S), k = 1, . . . , K, with S ∈ S. First, it immediately follows
from the definition of τk that τk(S) = k iff Xk ∈ Sk, k = 1, . . . , K. In particular,
τK(S) = K with probability 1. Next, the sequence τk(S) satisfies the so called
consistency property

if Xk 6∈ Sk then τk(S) = τk+1(S), k = 1, . . . , K − 1.
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Let us also recall that due to the Wald-Bellman equation (2.2)

V ∗
k (Xk) =

{
E
[
V ∗

k+1(Xk+1)|Fk

]
, Xk 6∈ S∗k ,

Gk(Xk), Xk ∈ S∗k

for k = 1, . . . , K − 1.

Proof. We prove (6.2) by induction. The inequality (6.1) can be proved in a similar
way. For k = K − 1 we get

V ∗
K−1(XK−1)− VK−1(XK−1) =

= E
[
(GK−1(XK−1)−GK(XK))1{XK−1∈S∗K−1, XK−1 6∈SK−1}

∣∣∣FK−1

]
+ E

[
(GK(XK)−GK−1(XK−1))1{XK−1 6∈S∗K−1, XK−1∈SK−1}

∣∣∣FK−1

]
= |GK−1(XK−1)− E[GK(XK)|FK−1]|1{XK−1∈S∗K−14SK−1}

since the events {XK−1 6∈ S∗K−1} and {XK−1 6∈ SK−1} are measurable w.r.t. FK−1

and GK−1(XK−1) ≥ E[GK(XK)|FK−1] on the set {XK−1 ∈ S∗K−1}. Thus, (6.2) holds
with k = K − 1. Suppose that (6.2) holds with k = K ′ + 1. Let us prove it for
k = K ′. Consider a decomposition

Gτ∗
K′ (Xτ∗

K′ )−GτK′ (XτK′ ) = S1 + S2 + S3 (6.3)

with

S1 :=
(
Gτ∗

K′ (Xτ∗
K′ )−GτK′ (XτK′ )

)
1{XK′ 6∈S∗

K′ , XK′ 6∈SK′},

S2 :=
(
Gτ∗

K′ (Xτ∗
K′ )−GτK′ (XτK′ )

)
1{XK′ 6∈S∗

K′ , XK′∈SK′},

S3 :=
(
Gτ∗

K′ (Xτ∗
K′ )−GτK′ (XτK′ )

)
1{XK′∈S∗

K′ , XK′ 6∈SK′}.

Using the fact that τk = τk+1 if Xk 6∈ Sk for any k = 1, . . . , K − 1, we get

E [S1|FK′ ] = E
[(

V ∗
K′+1(XK′+1)− VK′+1(XK′+1)

)
1{XK′ 6∈S∗

K′ , XK′ 6∈SK′}

∣∣∣FK′

]
,

E [S2|FK′ ] =
(
E
[
Gτ∗

K′+1
(Xτ∗

K′+1
)
∣∣∣FK′

]
−GK′(XK′)

)
1{XK′ 6∈S∗

K′ , XK′∈SK′}

=
(
E
[
V ∗

K′+1(XK′+1)
∣∣FK′

]
−GK′(XK′)

)
1{XK′ 6∈S∗

K′ , XK′∈SK′}

and

E [S3|FK′ ] =
(
GK′(XK′)− E

[
GτK′+1

(XτK′+1
)|FK′

])
1{XK′∈S∗

K′ , XK′ 6∈SK′}

=
(
GK′(XK′)− E[V ∗

K′+1(XK′+1)|FK′ ]
)
1{XK′∈S∗

K′ , XK′ 6∈SK′}

+ E
[(

V ∗
K′+1(XK′+1)− VK′+1(XK′+1)

)
1{XK′∈S∗

K′ , XK′ 6∈SK′}

∣∣∣FK′

]
,
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with probability one. Hence

V ∗
K′(XK′)− VK′(XK′) =

∣∣GK′(XK′)− E[V ∗
K′+1(XK′+1)|FK′ ]

∣∣1{XK′∈S∗
K′4SK′}

+ E
[(

V ∗
K′+1(XK′+1)− VK′+1(XK′+1)

)∣∣FK′
]
1{XK′ 6∈SK′}

since GK′(XK′)−E[V ∗
K′+1(XK′+1)|FK′ ] ≥ 0 on the set {XK′ ∈ S∗K′} and GK′(XK′)−

E[V ∗
K′+1(XK′+1)|FK′ ] ≤ 0 on the set {XK′ 6∈ S∗K′} (see (2.3)). Our induction as-

sumption implies now that

V ∗
K′(XK′)− VK′(XK′) =

E

[
K−1∑
l=K′

|Gl(Xl)− E[V ∗
l+1(Xl+1)|Fl]| 1{Xl∈(S∗l 4Sl)\(

TK−1
l′=l

Sl′)}
∣∣∣FK′

]

and hence (6.2) holds with k = K ′.

Let us turn now to the proof of Lemma 5.1. We get by (6.1)

∆G(S, S ′) =
{

E
[
Gτ1(S)

(
Xτ1(S)

)
−Gτ1(S′)

(
Xτ1(S′)

)]2}1/2

≤ 2AG

√√√√E

[
K−1∑
l=1

1{Xl∈(Sl4S′l)\(
TK−1

l′=l
S′

l′)}

]2

≤ 2AG

√√√√K
K−1∑
l=1

P

{
Xl ∈ (Sl4S ′l) \

(
K−1⋂
l′=l

S ′l′

)}

= 2AG

√
K∆X(S, S ′).

The proof of Lemma 5.2 is a little bit more involved and relies on the assumption
(3.5). For any δ ≤ δ0 define the sets

Ak :=
{
x ∈ Rd :

∣∣E[V ∗
k+1(Xk+1)|Xk = x]−Gk(x)

∣∣ > δ
}

, k = 1, . . . , K − 1.

Due to (6.2) we have

∆(S) ≥ δ
K−1∑
k=1

P

(
Xk ∈ (S∗k4Sk) \

(
K−1⋂
l=k

Sk

)⋂
Ak

)

≥ δ
K−1∑
k=1

{
P

(
Xk ∈ (S∗k4Sk) \

(
K−1⋂
l=k

Sk

))
− P(Āk)

}
≥ δ[∆X(S∗, S)− A0δ

α] (6.4)

with A0 =
∑K−1

k=1 Ak,0, where Ak,0 were defined in (3.5). The maximum of (6.4)
is attained at δ∗ = [∆X(S∗, S)/(α + 1)A0]

1/α. Since δ∗ ≤ δ0 for ∆X(S∗, S) ≤
A0(α + 1)δα

0 , the inequality (5.9) holds with υα := A
−1/α
0 α(1 + α)−1−1/α and δα :=

A0(α+1)δα
0 . The inequality (5.10) directly follows from (6.4) by taking δ = δ0/2

1/α.
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7 Exponential inequalities for the increments of

empirical processes

In this section we will use the notation introduced in Section 2. In particular, let
X1, . . . , XK be a Markov chain with the joint distribution PX and let

(X
(m)
1 , . . . , X

(m)
K ), m = 1, . . . ,M,

be M independent copies of X. For any set S ∈ B define the empirical process
νM(S) via

νM(S) := M−1/2

M∑
m=1

{
gS(X

(m)
1 , . . . , X

(m)
K )− E [gS(X1, . . . , XK)]

}
=

√
M

∫
gS d(P⊗M

X − PX)

with functions gS : Rd × . . .× Rd︸ ︷︷ ︸
K

→ R defined as

gS(x1, . . . , xK) :=
K−1∑
k=0

Gk+1(xk+1)1{x1 6∈S1,...,xk 6∈Sk,xk+1∈Sk+1}.

Denote G = {gS : S ∈ S} and define the entropy with bracketing of the class G.

Definition 7.1. Let NB(δ,G, PX) be the smallest value of n for which there exist
pairs of functions {[gL

j , gU
j ]}n

j=1 such that ‖gU
j − gL

j ‖L2(PX) ≤ δ for all j = 1, . . . , n,
and such that for each g ∈ G, there is j = j(g) ∈ {1, . . . , n} such that

gL
j ≤ g ≤ gU

j .

Then HB(δ,G, PX) = log [NB(δ,G, PX)] is called the entropy with bracketing of G.

The following theorem provides us with the exponential bounds for the increment
νM(S)− νM(S0), where S0 is a fixed element of S.

Theorem 7.2. Assume that there exists a constant A > 0 such that

HB(δ,G, PX) ≤ Aδ−κ (7.1)

for any δ > 0 and some κ > 0, where HB(δ,G, PX) is the δ-entropy with bracketing
of G. Fix some S0 ∈ S then for ε = M−1/(2+κ) the following inequalities hold

P

(
sup

S∈S, ‖gS−gS0
‖L2(PX )≤ε

|νM(S)− νM(S0)| > Uε1−κ
2

)
≤ C exp(−Uε−κ/C2),

P

(
sup

S∈S, ‖gS−gS0
‖L2(PX )>ε

|νM(S)− νM(S0)|
‖gS − gS0‖

1−κ/2
L2(PX)

> U

)
≤ C exp(−U/C2).
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for all U > C and M > M0, where C and M0 are two positive constants. Moreover,
for any z > 0

P

(
sup
S∈S

|νM(S)− νM(S0)| > z
√

M

)
≤ C exp(−Mz2/C2B)

with some positive constant B > 0.

Theorem 7.2 follows from Theorem 5.11 and Theorem 5.13 in Van de Geer (2000).
Let us make this statement more precise. First, note that G is a uniformly bounded
class of functions provided that all functions Gk are uniformly bounded. The first
inequality of Theorem 7.2 follows from the inequality (5.42) of Lemma 5.13 in Van
de Geer (2000) if we take β = 0, α = κ. Similarly, the second inequality is a direct
consequence of the inequality (5.43) of the same Lemma 5.13. Finally, the third
inequality of Theorem 7.2 can be derived from the inequality (5.35) of Theorem
5.11 in Van de Geer (2000) by taking a = L

√
n with small enough, but independent

of n, constant L (see also the proof of Theorem 5.13 in Van de Geer (2000)).
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