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Functional Magnetic Resonance Imaging inherently involves noisy measure-

ments and a severe multiple test problem. Smoothing is usually used to reduce

the effective number of multiple comparisons and to locally integrate the signal

and hence increase the signal-to-noise ratio. Here, we provide a new structural

adaptive segmentation algorithm (AS) that naturally combines the signal de-

tection with noise reduction in one procedure. Moreover, the new method is

closely related to a recently proposed structural adaptive smoothing algorithm

and preserves shape and spatial extent of activation areas without blurring the

borders.

1 Introduction

The challenges of the measurement and analysis of functional Magnetic Resonance Imag-

ing (fMRI) data (Friston et al., 2007; Lazar, 2008) are manifold. These include noisy

measurements and an inherently severe multiple-comparison problem, for a recent discus-

sion see Kriegeskorte and Bandettini (2007). Both challenges and their interplay will be

in the focus of investigation in the current manuscript.

Since the functional signal is spatially distributed smoothing is frequently applied to in-

crease the signal-to-noise ratio. Simultaneously it reduces the number of independent

tests for signal detection. However, classical nonadaptive smoothing comes at the cost of

decreased effective spatial resolution. A large number of algorithms has been developed

in the past to overcome this limitation, based on different methodology. While it is im-

possible to name all of them we here refer only to a small and surely incomplete selection

which are in spirit closely related to the approach of this manuscript (Poline and Mazoyer,

1994a,b; Worsley, 2001; Lu et al., 2003; Kriegeskorte et al., 2006; Harrison et al., 2008)

and use scale space ideas or adaptive region growing.

We recently proposed a new algorithm based on the structural adaptation principle (Tabe-
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low et al., 2006), which has been proven to be especially useful for high-resolution

fMRI (Tabelow et al., 2009). There the statistical parametric map from a linear model

is smoothed adaptively to preserve the shape and spatial extent of the activation areas.

Since under the null hypotheses the standardized parameter values approximately form a

random t-Field, signal detection can then be performed using thresholds obtained from

Random Field Theory (RFT) (Adler, 2000; Worsley, 1994, 2003). Although this sequential

procedure is statistically correct it is desirable to combine adaptive smoothing and signal

detections in a way that solves the multiple-comparison problem and to directly tackle

the noise and multiple test problem of fMRI analysis at once. Such integration is possi-

ble since the information used to generate weighting schemes for each bandwidth in the

structural adaptive procedure (Tabelow et al., 2006) can also be used for signal detection

at the respective scale.

The manuscript is organized as follows: In Section 2 we present the problem, some prelim-

inaries from extreme value theory and multiscale tests and a proposal for multiscale tests

on fMRI data. Section 3 introduces our new structural adaptive segmentation (AS) pro-

cedure and discusses the necessary parameter settings. In Section 4 we present results on

two artificial and one experimental high resolution fMRI data set. We summarize results

in the conclusions.

2 Theoretical background

Structural adaptive segmentation (AS) combines ideas from scale space analysis (Chaud-

huri and Marron, 2000), multiscale testing (Dümbgen and Spokoiny, 2001; Poline and

Mazoyer, 1994a) and structural adaptive smoothing (Polzehl and Spokoiny, 2006; Tabe-

low et al., 2006). The approach described below directly provides an efficient solution to

the problems of structure preserving denoising and signal detection in fMRI.

Within our approach we try to solve the following test problem, which occurs in signal

detection in fMRI. Let V be a set of voxels within a predefined region of interest (ROI)

or the whole data cube. Denote by Γ = {γ̂i}i∈V a statistical parametric map (SPM) of

estimated parameters or contrasts γi and by D̂(γ̂i) their corresponding variance estimates.

Our interest is in deciding if and in which region there is an activation related to the
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experiment. Usually, an activation in voxel i ∈ V is detected if a suitable test rejects

the hypothesis H : γi = 0, i.e., if γ̂i significantly deviates from zero. Here, we take a

more general approach by assigning an activation to voxel i ∈ V if the value γi (or |γi|)

exceeds a prescribed value δ ≥ 0, i.e. we consider voxels with contrast smaller than δ as

uninteresting. Note that the commonly used hypothesis H is included for δ = 0.

Adjustment for multiple testing can be done by requiring that if the hypothesis H : γi ≤ δ

(or H : |γi| ≤ δ in case of a two sided alternative) is true for all voxel i ∈ V . For a

suitable test the probability to reject the hypothesis in any voxel i ∈ V should be less or

equal a prescribed significance level α. In other words we need to construct a test for the

hypothesis

H : max
i∈V

γi ≤ δ (or max
i∈V

|γi| ≤ δ). (1)

We will then use the values of the corresponding test statistic to provide a segmentation

of the set V into two (three) classes: The first class corresponds to regions where the test

does not reject the hypothesis. The other two classes contain regions where the hypothesis

is rejected and the observed values are significantly larger than δ (or smaller than −δ).

2.1 Preliminaries: Extreme value theory and multiscale tests

We first introduce a basic result from extreme value theory, see e.g. Resnick (1987), that

dates back to Fisher and Tippett (1928) and Gnedenko (1943) and plays a central role in

the construction of the multiscale tests proposed here.

Let Xn,n≥1 be an i.i.d. sequence of random variables with common cumulative distribution

function F (x) and let Mn = maxk=1,...,n Xk. The distribution function of Mn is the n-th

power Fn(x) of F . Denote by P [.] the probability of some event. We then have, see e.g.

Gnedenko (1943); Resnick (1987), the following:

Proposition (Gnedenko (1943); Resnick (1987)). Suppose there exist an > 0 and bn

(n ≥ 1) such that

P

[
(Mn − bn)

an
≤ x

]
= Fn(anx + bn) → G(x)

weakly as n →∞ where G is nondegenerate. Then the limiting distribution G is of one of
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the following three classes:

(i) Φα(x) =

 0 : x < 0

exp{−x−α} : x ≥ 0
for some α > 0

(ii) Ψα(x) =

 exp{−(−x)α} : x < 0

1 : x ≥ 0
for some α > 0

(iii) Λ(x) = exp{−e−x} x ∈ R

These functions characterize the three types of possible extreme value distributions de-

pending on the tail behavior of the distribution function F .

Our proposal is motivated by a class of multiscale tests proposed in Dümbgen and Spokoiny

(2001). The authors consider as a special case the problem of testing qualitative hypotheses

on the regression function f in the univariate regression model

Yi = f(xi) + εi = fi + εi for i = 1, . . . , n

with i.i.d. Gaussian errors εi ∼ N(0, σ2) and equidistant design xi = (i−1/2)/n. In section

2 of their paper the authors propose a multiscale test for the hypothesis H0 : fi ≡ 0 ∀i,

against the alternative H1 : |fi| ≥ ρ for some ρ > 0, that is rate optimal over arbitrary

Hölder smoothness classes with respect to the supremum norm.

Let K be a kernel with bounded total variation and compact support [−1, 1]. For the

regression case define Kt,h(x) = K((x− t)/h) and a standardized estimate

Ψ̂n(t, h) =
∑n

i=1 Kt,h(xi)

σ (
∑n

i=1 Kt,h(xi)2)
1/2

∑n
i=1 Kt,h(xi)Yi∑n
i=1 Kt,h(xi)

= (Df̂h(t))−1/2f̂h(t)

The random variables Ψ̂((2j−1)h, h)−EΨ̂((2j−1)h, h), j = 1, . . . , (2h)−1 are independent

Gaussian with variance 1 and, under the hypothesis, expectation 0. Therefore, under H0

and for suitable an(h) and bn(h) the asymptotic distribution of the normalized maximum

maxj
bΨn((2j−1)h,h)−bn(h)

an(h) of these n(h) = (2h)−1 variables is in the domain of attraction of

the Gumbel distribution Λ. The test statistic in Dümbgen and Spokoiny (2001) is given

as

T (Y ) = sup
h∈(0,1/2)

sup
t∈[h,1−h]

(|Ψ̂(t, h)| − C(2h)) (2)

with C(h) =
√

2 ln(1/h).
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The additive correction term C(2h) is obtained as the normalizing constant bn(h), n(h) =
1
2h , while an(h) = bn(h)−1 → 0 for h → 0 secures that supt∈[h,1−h] Ψ̂n(th, h) = C(2h) +

op(1).1 Therefore the suprema over t for different h are comparable in size and information

on different scales h is synchronized. Note that in (2) it suffices to consider pairs (t, h)

such that t = j/n and h = d/n for integers d ∈ [1, n/2] and j ∈ [d, n− d]. Critical values

for this test are well defined and obtained by simulation.

2.2 Variance estimates in the linear model for fMRI

Let Yit, be the observed fMRI data, i ∈ V the voxel index in the image volume (or ROI),

t = 1, . . . , T the index of observation times and X = (x1, . . . , xp) a design matrix describing

both stimulus effects and possible trends in time. Let us assume that prewhitening in time

has been done as part of data preprocessing. We use the linear model

Yit = Xβi + εit (3)

with Var εit = σ2
i , βi ∈ Rp to describe the experiment. Let c be a contrast vector and γi =

cT βi. Let us assume that we have weighting schemes Wi = {wij}j∈V containing weights

associated with a pair of voxel i and j. For the moment we will consider w
(h)
ij = K

(
δ(i,j)

h

)
where K is a positive kernel function integrating to 1 and with finite second moment,

δ(i, j) is the spatial distance between the centers of voxel i and j, and h is a bandwidth.

We define spatially smoothed versions of Yit as

Y
(h)
it =

∑
j∈V

w
(h)
ij Yjt/

∑
j∈V

w
(h)
ij

and denote by γ̂
(h)
i = cT β̂

(h)
i and D̂γ̂

(h)
i = (cT D̂β̂

(h)
i c) the estimated contrast and its

estimated standard variance obtained from the model

Y
(h)
it = Xβ

(h)
i + ε

(h)
it . (4)

Note that estimating γ̂
(h)
i from model (4) coincides with smoothing estimates of γ̂i obtained

from the model (3) using the weighting scheme Wi due to the linearity of the equations.

1The proof of this property, given for a more general form of (2) in Dümbgen and Spokoiny (2001), relies

on an extension of Levy’s modulus of continuity for Brownian motion, cf. Shorack and Wellner (1986).
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The quantities
γ̂

(h)
i√

D̂γ̂
(h)
i

are (approximately) t-distributed random variables with some ν degrees of freedom, with

ν depending on T and the correlation of Yit in time. Note, that D̂γ̂
(h)
i = cT (XT X)−1c σ̂2

i,h

where σ̂2
i,h is the residual variance.

2.3 Multiscale tests on fMRI data

Statistical parametric maps (SPM) obtained in fMRI studies usually form a random field

of t-distributed variables with ν degrees of freedom. According to the proposition in

Section 2.1 the limiting distribution in this case is a Fréchet distribution with shape

parameter ν and cumulative distribution function Φν(x) = exp(−x−ν) for x ≥ 0. The

sequences an(ν) and bn(ν) here depend on ν.

Following the idea from Dümbgen and Spokoiny (2001) we are now ready to propose

multiscale tests for this situation. Let us consider the one sided hypothesis H0 : γi ≤ δ ∀i

(alternative H1 : ∃i γi > δ) where δ ≥ 0 would correspond to a maximum contrast value

that is considered uninteresting. In the classical fMRI analysis δ equals 0.

Our proposal a test statistic for this setting is

T1(Γ̂H)=max
h∈H

max
i∈V

(
γ̂

(h)
i − δ

)
an(h)(ν)

√
D̂γ̂

(h)
i

−
bn(h)(ν)
an(h)(ν)

(5)

where H denotes a set of bandwidths and n(h) denotes a number of independent ex-

periments that carries the same information as the random field Γ̂ = {γ̂(h)
i }i∈V . More

formally, for homogeneous σ2
i , n(h) can be chosen as n(h) =

bDbγbDbγ(h)
nROI , i.e. depending on

the variance reduction achieved at bandwidth h. Here nROI corresponds to a number of

independent resolution elements within a specified region of interest. It depends on both

the size of this region as well as the spatial correlation observed in the original fMRI time

series. Again normalization by an(h) and bn(h) is used to make contributions for different

bandwidths h to the test statistic comparable.

Note that the critical values for this test are obtained under the least favorable situation

γi ≡ δ ∀i and therefore do not depend on δ. If any γi < δ the resulting test will be

conservative.
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In a similar way we may define a two sided test for H0 : |γi| ≤ δ ∀i (alternative H1 :

∃i |γi| > δ) as

T2(Γ̂H)=max
h∈H

max
i∈V

(
|γ̂(h)

i | − δ
)

an(h)(ν)
√

D̂γ̂
(h)
i

−
bn(h)(ν)
an(h)(ν)

.

The distribution of Tk(Γ̂H) can, for given ν and H be approximated by simulation under

the hypothesis H0 : γi = 0 ∀i.

To get a good approximation of the distribution Fn of Mn = maxi∈V γ̂
(h)
i by its limiting

distribution Φν we select normalizing sequences an(ν) and bn(ν) such that

ln(Fn[an(ν)xk + bn(ν)]) = n ln(F [an(ν)xk + bn(ν)])

= n ln
[
1− 1

2
I ν

ν+[an(ν)xk+bn(ν)]2

(
ν

2
,
1
2

)]
≈ ln Φν(xk)

= −x−ν
k , (6)

with Ix(a, b) denoting the incomplete Beta function, is a good approximation for a set of

quantiles xk,k=1,...,K , of Φν . This is achieved by minimizing a mean relative error

Q(an(ν), bn(ν)) =
K∑

k=1

(
n ln

[
1− 1

2
I ν

ν+(an(ν)xk+bn(ν)))2

(
ν

2
,
1
2

)]
(xk)ν + 1

)2

. (7)

The interval of quantile levels (.9, .995) considered corresponds to the range of values

needed to determine thresholds in the segmentation algorithm. Values an(ν) and bn(ν)

have been obtained numerically for a logarithmic grid of n, ranging from 250 to 2 · 106

and a dense grid of ν, ranging from 40 to 1000, degrees of freedom. The resulting arrays

1/an(ν) and bn(ν)/an(ν) have then been approximated by a smooth function, see Figure 1.

3 Structural adaptive segmentation (AS)

The Propagation-Separation approach introduced in Polzehl and Spokoiny (2006) provides

an iterative smoothing procedure based on adaptive weighting schemes Wi. One essential

property of this approach is that - in the case of no spatial structure - the resulting

estimates behave like the nonadaptive kernel estimates used in the previous section. This

case corresponds to the hypothesis of no activation in fMRI experiments. More precisely,

the generated adaptive weighting schemes resemble their nonadaptive counterparts with
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Figure 1: Approximation of the determined values for the sequences an and bb by a smooth

function and dependence on ν and n. Top: 1/an(ν). Bottom: bn(ν)/an(ν). Both

plots are scaled by some arbitrary value for the sake of visualization.

high probability. This property will enable us to generalize the tests proposed in the last

subsection to the use of such adaptive weighting schemes.

3.1 The algorithm

Let H = {h0, . . . , hk∗} be a sequence of exponentially growing bandwidths, and Kloc and

Kst be nonincreasing kernel functions with compact support [0, 1]. Adaptive weighting

schemes W
(h)
i are generated as a product of two terms: The first term is a nonadaptive

weight depending on the distance between voxel i and j weighted by a bandwidth h. The
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second is a stochastic term depending, e.g. on the Kullback-Leibler distance of the non-

central t-distributions with noncentrality parameters bγ(h)
i

cT (XT X)−1cσ2
i,(h)

and
bγ(h)

j

cT (XT X)−1cσ2
j,(h)

.

Here σ2
.,(h) is the variance of Y

(h)
.t . Note that this Kullback-Leibler distance is, for suitable

large ν, well approximated by

“bγ(h)
i −bγ(h)

j

”2

cT (XT X)−1cσ2
i,(h)

.

More formally the adaptive weights take the form

w
(h)
ij = Kloc

(
δ(i, j)

h

)
Kst


(
γ̂

(h)
i − γ̂

(h)
j

)2

λcT (XT X)−1cσ̂2
i,(h)


for a suitably chosen value of λ and σ̂2

i,(h) the residual variance in (4).

Let eit denote the residuals from estimating β in model (3). We will use ζi ∈ {−1, 0, 1}

to denote if voxel i has been classified to have significantly negative, nonsignificant or

significantly positive contrast. The resulting algorithm, for a two sided alternative, has

the following form

• Initialization: Start with an nonadaptive weighting scheme w
(h0)
ij = Kloc

(
δ(i,j)

h0

)
.

For all i ∈ V compute smoothed estimates of γi as

γ̂
(h0)
i =

∑
j∈V

w
(h0)
ij γ̂j/

∑
j∈V

w
(h0)
ij

and generate estimates of σ2
i,(h) from smoothed residuals

σ̂2
i,(h0) =

1
T − p

T∑
t=1

(
e
(h0)
it

)2
(8)

e
(h0)
it =

∑
j∈V

w
(h0)
ij ejt/

∑
j∈V

w
(h0)
ij . (9)

Set ζi = 0 for all voxel and k = 1.

• Generate weighting schemes W
(hk)
i = {w(hk)

ij }j∈V ∀i, as

w
(hk)
ij =


Kloc

(
δ(i,j)
hk

)
Kst

(
(bγ(hk−1)

i −bγ(hk−1)

j )2

λcT (XT X)−1cbσ2
i,(hk−1)

)
: ζiζj = 0

Kloc

(
δ(i,j)
hk

)
: ζiζj = 1

0 : ζiζj = −1

(10)

• Compute new (smoothed) parameter estimates as

γ̂
(hk)
i =

∑
j

w
(hk)
ij γ̂j/

∑
j

w
(hk)
ij (11)
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and corresponding variance estimates as D̂γ̂
(hk)
i = cT (XT X)−1c σ̂2

i,(hk) with

σ̂2
i,(hk) =

1
T − p

T∑
t=1

(e(hk)
it )2 (12)

e
(hk)
it =

∑
j∈V

w
(hk)
ij ejt/

∑
j∈V

w
(hk)
ij (13)

• If ζi = 0 and
(|γ̂(hk)

i | − δ)

an(i,hk)(ν)(D̂γ̂
(hk)
i )1/2

−
bn(i,hk)(ν)
an(i,hk)(ν)

> τ (14)

with n(i, hk) = D(e
(hk)

it )
D(eit)

nROI set

ζi = sign γ̂
(hk)
i (15)

• Iterate: Set k := k + 1. If k > k∗ stop, else continue with second step.

The use of the intermediate segmentation results (15) in the definition of weights (10)

leads to a nonadaptive estimate within detected segments. Adaptive weights are used if

the hypothesis has not been rejected for one of the voxel.

3.2 Adjustment of parameters

The procedure depends on several parameters that serve different purposes. The first class

of parameters refers to properties of the adaptive smoothing procedure and consists of the

scale parameter λ in (10), and the sequence of bandwidths H. The second group consists

of δ and the critical value τ in (14). A third group includes the choice of kernels Kloc and

Kst.

3.2.1 Smoothing parameters

The sequence of bandwidths H can be chosen as hk = ck
hh0 with initial bandwidth h0

such that Kloc(δ(i, j)/h0) > 0 ⇔ i ≡ j and ch = 1.251/3. This leads to a sequence of

exponentially growing bandwidths and corresponds to the settings used in Polzehl and

Spokoiny (2006); Tabelow et al. (2006, 2009). The maximal bandwidth hk∗ may be chosen

as a maximal expected diameter of activated regions.
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The most important smoothing parameter is λ that controls the sensitivity of adaptation.

Note, that this parameter does not depend on the signal and noise variance within the

data. The parameter λ can thus be chosen by simulation, as the smallest value that

complies with the following propagation condition, see also Tabelow et al. (2006):

Propagation condition: Let γ̌i
(k) =

∑
j Kloc

(
δ(i,j)

h(k)

)
γj/

∑
j Kloc

(
δ(i,j)
hk

)
be the non-

adaptive estimate using kernel Kloc and bandwidth hk. We require that for a SPM Γ with

Eγi ≡ 0 and τ = ∞ the adaptive estimates γ̂
(k)
i fulfill the propagation condition

E|γ̂(k) − γ̌(hk)| < κE|γ̌(hk) − γ| (16)

for some prespecified κ > 0.

We use a value corresponding to κ = 0.05.

3.2.2 Parameters of the multiscale test

The normalizing sequences an(i,h)(ν) and bn(i,h)(ν) are specified using the approximation

described in the end of Subsection 2.3. Under the hypothesis (for δ = 0) n(i, h) ≈ n(h)

while in case of deviations from H0 we usually observe n(i, h) ≥ n(h) due to the adaptive

weighting scheme.

Empirical distributions for the test statistic T2 have been obtained by simulation (sim-

ulation size 10000) under the hypothesis (δ = 0) for a grid of reasonable values for ν,

λ, k∗ and nROI . The critical value τ mainly depends the significance level and degrees

of freedom ν. In the simulated empirical distributions we observe a slight dependence

on the chosen value of the smoothing parameter λ, the number of iteration steps k∗, or

equivalently the maximum bandwidth, and the field of view nROI . Values for τ used in

our implementation are smooth interpolations between the appropriate quantiles of the

empirical distributions. The same critical values are used in case of δ > 0 although the

resulting test will be conservative.
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3.2.3 Kernels

We use

Kloc(x) =


1 : x < 1/2

2(1− x) : 1/2 ≤ x < 1

0 : x ≥ 1

and Kst(x) =


1 : x < 1/4

4/3(1− x) : 1/4 ≤ x < 1

0 : x ≥ 1

as kernel functions. They have only minor influence on the results and are chosen for

speed of computation.

4 Results

We applied the new AS procedure to two artificial datasets and one experimental fMRI

dataset. Experimental data was motion-corrected using afni (Cox, 1996). All datasets

were processed using the package fmri for R (R foundation for Statistical Computing)

(Polzehl and Tabelow, 2007; R Development Core Team, 2006). Typical computation

times for a complete analysis from linear modeling to the final activation maps range in

the order of one minute depending on the dataset resolution.

4.1 Artificial data I

For the creation of an artificial dataset we use a numerical phantom simulating a situation

where the fMRI response depends on two stimuli, left/right (L/R), and analyze their

contrast. This mimics e.g. the situation in imaging ocular dominance columns in the visual

cortex. The phantom consists of 10 slices with only the fifth slice containing activation.

We designed stripes with different widths (1-4) at an in-plane matrix of 64 × 64, see

Figure 2.

White and black stripes correspond to voxel where R > L and L > R, respectively.

Figure 3 illustrates the expected BOLD signals for the two regions. Voxel size in z-

direction is held constant and set to twice the within slice voxel size of the medium

resolution dataset. At each voxel a time series was created with 174 samples, stimulus

onset times at the 7th, 31st, 55th, 79th, 103rd, 127th, 151st sample for the L stimulus and

at the 19th, 43rd, 67th, 91st, 115th, 139th, 163rd sample for the R stimulus with a stimulus
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duration of 6 samples and 1.5 s between two samples. We added autocorrelated Gaussian

noise (AR(1) = 0.3) with a standard deviation of 10 for the independent noise variables.

We aggregated the artificial data at lower resolutions of 32 × 32 and 16 × 16 matrix to

mimic partial volume effects and SNR dependence. Here, clearly partial voluming removes

the small stripes completely from the data. Even for the wider stripes, there are some

voxel with no signal contrast in the data. Hence, we do not expect them to be detected

by any method at the lower resolution.

In Figure 4 we show the results of signal detection in

Figure 2: Phantom design.

these artificial datasets with different methods. The first

column corresponds to the detection of the R > L, and

L > R contrast segments using the structural adaptive

segmentation method described in this paper at signifi-

cance level α = 0.05. The second column provides the

signals detected for both contrasts (blue for R > L and

red for L > R) using the structural adaptive smooth-

ing method from Tabelow et al. (2006) with multiple test

correction via RFT (α = 0.05). The third column is the

result for non-adaptive smoothing, while the right column shows results of a voxelwise

analysis. Both adaptive smoothing methods are able to detect the simulated stripe struc-

tures at high resolution and low signal-to-noise, cf. Tabelow et al. (2009). This shows,

that the adaptive segmentation method proposed in this paper has a similar sensitivity.

Non-adaptive smoothing inherently is not able to detect such alternating structures and

leads to significant blurring and a loss in information on the shape of the activation re-

gion. The low SNR prevents the detection without smoothing, or with only very small
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Figure 3: Expected BOLD signals (L > R - solid, R > L - dashed).
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Figure 4: Signal detection for the artificial dataset I at different resolutions using different smooth-

ing methods. The first column contains detections of the R > L and L > R contrast

using the structural adaptive segmentation method described in this paper. The result is

a segmentation of the brain into two segments where the hypotheses H0 of no activation

has been rejected and one set of voxel with no evidence to reject the hypothesis H0. We

use white, grey and black for the segments. The second column shows detected signals

for both contrasts (blue for R > L and red for L > R, the color has been arbitrar-

ily chosen to provide a good visual contrast between both areas) using the structural

adaptive smoothing method from Tabelow et al. (2006) with multiple test correction

via RFT (α = 0.05). Note that the color intensity corresponds to the p-values. The

third column is the result for non-adaptive smoothing, while the right column provides

voxelwise results (no smoothing). See online version for color.

bandwidths that may be used to avoid blurring and partial voluming. Note, that in all

cases the signal detection is corrected for the large number of multiple tests.
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4.2 Artificial data II

To compare the results with our previous work in Tabelow et al. (2009), we re-analyze

the numerical phantom first created there. It provides a rich spatial structure of activa-

tion areas and allows for a direct comparison of the signal detection using the algorithm

proposed here and our former work Tabelow et al. (2006).

The phantom consists of 30 slices with three slices containing activation alternated with

two slices without. The in-plane resolution corresponds to a matrix size of 128× 128, see

Figure 5(a). Voxel size in z-direction is held constant and set to twice the within slice

voxel size. Gray values correspond to the signal strength in the corresponding position.

Structures are replicated with clockwise increasing SNR, i.e., the signal size is 1.25k for

(a) Phantom (b) Structural adaptive smoothing (c) Structural adaptive segmentation

Figure 5: (a) Phantom used in simulations. Gray values indicate the size of the signal at

the corresponding location. Size and structure of activated areas vary radially

while the size of the signal increases clockwise by a factor of 1.25 from spoke to

spoke. The phantom was first used in Tabelow et al. (2009) and re-analyzed here

to directly compare the former results with the new algorithm. (b) Probability of

signal detection using the structural adaptive smoothing algorithm as described

in Tabelow et al. (2009, 2006). (c) Probability of signal detection using the

structural adaptive segmentation algorithm.

k = 0, . . . , 7. At each voxel a time series was created with 107 samples, stimulus onset

times at the 18th, 48th, and 78th sample with a stimulus duration of 15 samples and 2

s between two samples. Errors are generated from white noise with a standard deviation

of 10 by first applying an AR(1) model with parameter 0.3 and followed by a convolution
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Table 1: Signal detection results depending on signal size for structural adaptive smooth-

ing (Tabelow et al., 2006)(PS) and the proposed segmentation method (AS) as

shown in Figure 5. For signal intensity 0 false positives are reported while other

columns contain the number of detected voxels for clockwise increasing SNR.

Signal intensity 0 1 1.25 1.252 1.252 1.253 1.254 1.255 1.256

Number of voxel 449760 4860 5580 4860 5580 4860 5580 4860 5580
detected voxel (PS) 1710 17 176 509 1530 2411 3889 4233 5499
detected voxel (AS) 989 27 206 721 1973 2819 4672 4650 5555

with a Gaussian kernel with FWHM-bandwidths (1, 1, 0.5) times voxel size.

Figure 5 illustrates the phantom (a) and the relative frequency of signal detection in slices

containing activation in the different locations within the phantom for both the structural

adaptive smoothing algorithm (Tabelow et al., 2009, 2006) and the proposed structural

adaptive segmentation procedure. In this setting structural adaptive segmentation was

able to detect 13% more activated voxel and to reduce the number of false positives by

42% compared to the adaptive smoothing with RFT thresholding. For detailed results

depending on signal strength see Table 1. Note that for both algorithms false positives

almost exclusively occur adjacent to activated regions.

4.3 Experimental Data

We re-analyse an experimental fMRI dataset we used in one of our previous publica-

tions (Tabelow et al., 2009) to demonstrate the properties of the new structural adaptive

segmentation algorithm proposed here and to compare its results with our structural adap-

tive smoothing fMRI analysis (Tabelow et al., 2006).

A somatosensory motor task fMRI scan was performed by one healthy adult male subject

within a research protocol approved by the institutional review board of Weill Cornell

Medical College. For functional MRI, a GE-EPI sequence with TE/TR = 40/2000 ms was

used and 20 axial slices of 4 mm thickness were acquired. We used a field-of-view of 24

cm with a matrix size 128 × 128, yielding voxel dimensions of 1.88 mm, respectively. A

task was performed in three blocks of 60 s duration; each block consisted of 30 s task and

16



Structural Structural adaptive segmentation
Anatomic

adaptive smoothing δδ=0, αα=0.05 δδ=2, αα=0.05 δδ=0, αα=0.01

S
lic

e 
13

S
lic

e 
14

S
lic

e 
15

Figure 6: Signal detection in a sensorymotor experiment. The first column contains the signal

detection using our structural adaptive smoothing algorithm (multiple test corrected

α = 0.05.) for comparison. Colors correspond to p-values. The second, third, and

fourth column contain the results of our proposed structural adaptive segmentation

algorithm using different values for the minimal signal δ, and the significance level α.

Colors code the size of the estimated signal. The image orientation is R-L. See online

version for color.

30 s rest. The first 4 scans before these block were discarded, yielding in total 105 scans.

The task consisted of bimanual tapping of the thumb against all fingers of the same hand,

one by one and in quick succession.

The result of our different signal detection methods for this experiment are shown in

Figure 6. These are three consecutive slices in the primary motor area. The first col-

umn reproduces the result of signal detection using classical structural adaptive smooth-

ing and RFT (Tabelow et al., 2009) (multiple test corrected α = 0.05.). Since in this

paper our focus is not on comparing our structural adaptive smoothing method with non-
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adaptive methods, we generate our results using a Plateau-kernel for the localization kernel

(see Tabelow et al. (2006) and Section 3.2.3 for details) and a more sensitive adaptation

leading to slightly different areas.

The next three columns show the detected signal segments for different values of δ and

significance level α. Apparently, the total size of activation areas reduces with α, while

at α = 0.05 the result is comparable to the PS result. The exclusion of low signals δ = 2

is shown in column three. Within detected segments color codes the size of the esti-

mated signal γ̂
(hk∗ )
i . This provides, in contrast to p-values, easily interpretable additional

information. The rightmost column shows T1 anatomic data.

5 Conclusions

Structural adaptive segmentation (AS) is a new algorithm for the analysis of functional

MRI data which is based on the principle of structural adaptation. While achieving

similar performance as or previously developed algorithm Tabelow et al. (2006) it has

several major conceptional advantages:

• It does not rely on an assumption of a local constant contrast γ.

• Signal detection and structural adaptive smoothing are integrated within the con-

secutive steps of the iterative procedure.

• Signal detection is based on multiscale testing rather than Random Field Theory

(RFT).

• The procedure provides a decision at a prespecified significance level rather than

p-values. Color coding can be used to provide information on the estimated size of

the signal γ̂
(hk∗ )
i , which can be easily interpreted, see Figure 6.

• The utilized tests collect information on all scales h0, . . . , hk∗ visited in the algorithm

rather than providing a decision based only on the final smoothing result by RFT.

• In contrast to the PS algorithm the new approach avoids correction terms for spatial

correlation within the fMRI data.

The last two characteristics lead to an improved sensitivity with respect to signal detec-

tion, see Table 1. The new algorithm can be especially helpful in situations with sharp
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discontinuities and effects observed only at high spatial resolution.
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