-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

Weilerstrafl-Institut
fiir Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 8633

The heat treatment of steel — A mathematical

control problem

Dietmar Homberg, Daniela Kern

submitted: February 9, 2009

Weierstrass Institute

for Applied Analysis

and Stochastics

Mohrenstrafe 39

10117 Berlin

Germany

E-Mail: hoemberg@wias-berlin.de
kern@Qwias-berlin.de

No. 1402
Berlin 2009

lwl 11als

2000 Mathematics Subject Classification. 74P10, 80A20, 93C20.

Key words and phrases. Laser surface hardening, optimal control, pyrometer control.

This work has been supported by the DFG Research Center MATHEON “Mathematics for key
technologies” in Berlin.


https://core.ac.uk/display/289298458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Edited by

Weierstrafl-Institut fiir Angewandte Analysis und Stochastik (WIAS)
Mohrenstrafie 39

10117 Berlin

Germany
Fax: -+ 49 30 2044975
E-Mail: preprint@wias-berlin.de

World Wide Web:  http://www.wias-berlin.de/



Abstract

The goal of this paper isto show how the hed treament of sted can be modell ed in terms of a mathematicd optimal
cortrol problem. The approadc is applied to laser surface hardening and the coding of a sted dab including
mechanicd effeds. Finaly, it is shown how the results can be utilized in indwstria pradice by a cougding with
machine-based cortral.

1 Introduction

The aim of this paper isto show that the natural mathematicd description of the hed treament of
sted is given in terms of an optima control problem. The desired goal is described by a cost
functiona. A typicd choicewoud be

Izu) :% [12(xte) ~2(x) P . )

Foravedor z=(f, p,b,m) of phasefradions of ferrite, pealite, bainite and martensite, J(z,u)
measures the distance between the adua phase distribution at end-time te and the desired one,

Z,in the workpiece Q. The gaal of the hed treament then isto find an optimal control u',i.e., an

optimal codling strategy, such that u” isthe solution to the foll owing control problem:

minJ(z,u)
(CP) subjed to equality constraints for temperature T
and phase fradion z.

In the simplest case, the equality constraints are given by the hea equation and a system of rate
laws for the phase fradions. The control parameter u could be the temperature of the codant, the

hed transfer coefficient or the power of alaser source

In the next sedion, we describe a mathematicd model for laser and eledron bean hardening. In
Sedion 3, we show how these planning of the beam treaments can be asssted by the solution of
a correspondng control problem. The last sedion is devoted to some concluding remarks on

future reseach.

2 A Modd of Laser SurfaceHardening

Figure 1 depicts the laser hardening process A laser beam moves aong the surface of a
workpiece The absorbed energy leads to a heaing of the boundry layer followed by the
formation of austenite. Typicd penetration depth is less than one milli meter. Hence by self-
codling the desired martensite layer is produced.
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Figure 1. Sketch of laser hardening process

The basic assumption for our phase trangition model is that al the necessary information are
constrained in the respedive TTT, CCT, and austenitization diagrams. In particular, we do nat
strive for amodd in which all parameters can be given apredse physicd interpretation. Our aim
is to develop a phenomendogcd modd with sufficiently rich parameter structure, such that all

the transformation diagrams can be reproduced well .

To be more predse, we define a temperature field T(x,t) with tempora derivative T and a the

phase fradion of austenite. The expresson [u]. = max {O,u} describes the postive part of a
function u. The principa building block to describe the growth of a phasezis given by the

following rate law:
2(t) = 7 V[ z4(T) - 2,"" g(T)N(T).

Here, z,,(T) denates the equili brium fradion for the phase z that will be attained asymptoticaly
a fixed temperature T. In the case 7z, =1r =0,s=1h=1and g=c with a posiive constant
c,one obtains a typicd Avrami-Kolmogaov kinetics, i.e., z(t) =1-(1-z)e™®. In the case
r =1,s=0,s=1and h =1oneohtainsthe Leblond& Devaux modd [Leblond Devaux 1984.
Figure 2 depicts the phase transitions during laser hardening. The heding leals to a growth of
austenite in a boundxry layer. Upon coding, it is mostly transformed to martensite. Depending

on the workpiecegeometry also smaller amourts of ferrite, pealite, and bainite can be formed.

We cdl these quantities f, p,b,m, relative volume fradions, which grow at the expense of the

austenite formed during heding.



1.4 Tempearatuse {1000 C)
Austanila

Bainite

i Martensita

1
Q.8 ;
0.6
0.4
2 -

EE-.II;IIH - D.l:‘.l1 - - l:l" . . -1 . 1:[! 1-£ID

Tirme (%)
Figure 2: Temporal evolution of temperature and phase fradions
in afixed paint in the workpiece

A straightforward generdlizaion of the previous equetion yields the following model for the

phase transitions during a complete hea treament cycle:

a(0)=m(0) =0, f(0)=f,

p(0) = p,, b(0) =h, (29)
R | _

a(t)-ra(T)[aeqm al, (2b)
f@o)y ="M= 17 g, (Mh,(T) (20)
pt) = p" [ B (T) - P17 g, (T, (T) (2d)
b(t) = b* by, (T) = b]>™ g, (T)h,(T) (2¢)
o1

it) = (AT -, (20

(29) isthe Leblond & Devaux model for the growth of austenite. The equili brium fradion a,, is
zeo below and 1 abowve A, ,inbetween it grows monaonicdly. Hence, the growth of austenite

starts when the temperature has readed A,. Due to the projedion on the paositive part [] , ,
a(t) =0 for deaeasing temperature. Altogether, a(t) is a nondeaeasng function, athoughin
redity, a(t) isdiminished by the growth of the product phases f, p,b,m.
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At any time t, thefradion of ferrite, which can be attained maximally, is given as the sum of the
fradion prodwed so fa, f(t), and the remaning fradion of austenite,

a(t) — f (t) - p(t) —b(t) —m(t). The same hadds true for the other product phases. Hence we

definethefumtiorlsﬂq,ﬁeq,ﬁeq,rﬁeq as

fo(T) =min{ f,(T),a- p-b-m} (39)
Bey(T) = Min{ po(T),a~ f ~b=m} (30)
by, (T) =min{b,,(T),a- f - p-m} (30)

M(T) =min{my,, (T),a- f - p-b}. (3d)

One shoud remark that nonzeo initia condtions for f,p, and b are necessry to ensure

unique solvahility of the system (2a-f). The equili brium fradions a;, f b, can be derived

eq» Peg
from the respedive TTT and austeniti zation diagrams. The function m,,, desribes the fradion of
martensite acording to the Koistinen-Marburger formula[Koistinen, Marburger, 1959, i.e.,

m< :l_e_cm(Ms_T)
M

where ¢, and M, again can be drawn from the TTT diagram. The remaining data functions can

also be identified from the TTT and CCT diagram of the respedive sted usng parameter
identificationtods[Buchwalder et d., 2003.

The temperature field is governed by the hea equation

pe(T)T -0 0K(T)OT) =g, + . (4)
Thefirst hed sourceis due to recdescenceeffeds of the phase transiti ons and can be written as
q=pz
where z=(a, f, p,b,m) and L =(-L,,L;,L,,L,, L), and L,,..., L, are the positive latent heas

of the different phases. Sincel, is positive and a is pasitive during the growth of austenite, we

caninfer —L,a<0, i.e, latent hed is consumed during the formation of austenite, whileit is

released during the growth of the product phases.

The seandhed source g, describes the absorption of laser energy. For ease of presentation, we

restricted ourselves here to the case of a flat workpieceboundxry lying in the plane z=0such
that the rest of the boundxry isin the half space z< 0. Then, we can define



a, = P(O7F (x = }(1),y =~ o (1)e” (5)
as a volumetric laser hea source decaing exporentidly with growing distance from the
impinged surface since « is apaostive constant. In the sequel, the laser power P(t) will serve as
a control parameter, 7 is the absorption coefficient, and F(x,y) anormalized radiation profile

(cf. Figure 3). The path of the laser onthe workpieceis parameterized by U (t) = (J4(t), ,(1)).

Figure 3: Radiation profiles for gas (left) and Nd:YAG laser (right).

The complete model of laser surface hardening consists of the couped system (2)—<5). A

particular mathematicd difficulty liesin the norlineaitiesin T. However, in [Homberg, 1997 it

has aready been shown that a system with asimilar structure admits a unique solution.

For the numericd solution of this system the software WIAS-SHarP has been developed. To
cope with the difficulty that the phase trangition occur only in a boundry layer which is small
compared to the workpiece dimension, the hea equation is solved on an adaptive grid. This
alows a refinement of the grid around the laser focus, whereas the grid is coarser where the
temperature has drealy deaeased. The phase transitions are solved on different grid which is
homogeneoudy refined aongthe traceof the laser. Figure 4 depicts the temperature distribution

and the correspondng grid for two diff erent smulation times.
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Figure 4: Temperature distribution and adaptive grid at two diff erent times.

Figure 5 depicts a screenshot of WIAS-SHarP. Its GUI enables a comfortable input of treament
parameters and all ows for an efficient online graphicd visudizaion.
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Figure 5: Screenshat of WIAS-SHarP.

3 Optimal Cortrol of Hea Treaments
3.1 Temperature control

Figure 6 shows the results of laser hardening with constant laser power and constant feeding

velocity. Asone can seg over-heding at edges and abowve cavities leals to the undesired effed of
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surface melting. To simplify the expostion, we restrict ourselves for a moment to the
temperature field. From mathematica paint of view, the task is to find an optimal laser power
P’ (t) such that \T(x,t)—T(x)\ is smal in a neighbouhood B()(t)) of the laser focus on the
surface T(X) is the desired temperature and the curve J(t) describes the laser track on the

surface In other words, we want to minimizethe cost functional
apy=2* Iw(T—T)dedHﬁT P2,
2 0 Q 2 0

where the weight «(x,T) =1, if (x,t) isin B(){(t)) and a(x,t) =0, else. The semndterm is a
regularization term penalizing high costs. The control problem then is to minimize this cost
functional while T(x,t) satisfiesthe hea equation with hed sourceacordingto (5).

The numericd solution of such a problem requires several iterations in which the time-dependent
hea equation, as well as a so-cdled adjoint equation have to be solved. Figure 7 shows the
results of the numericd solution of the problem.

X90C2

Figure 6: Melting at edges and abowe cavities.
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Figure 7: Initial and optimal temperature distribution above the cavity.



On the left one can seethe initial solution at the time when the laser crosses the cavity, on the
right the solution after 16 iterations is depicted. Both simulations look similar, however, the
scde reveds that the temperature above the hde is 1800K in theinitial iteration while it isjust
1340K inthefina iteration.

3.2 Control of microstructure

The simplest model to describe the effed of distortions due to hea treaments is a cougding
between the phase system (2.af) and the equations of quasi-static lineaized thermoelasticity,
where the couding is redized by a temperature dependent therma expansion. We consider a
coding processfrom the austenite. As a control parameter we can chocse the thermal exchange

coefficient a inthe Newton codlinglaw

T
k= =a(T-T,,).

Here, T, isthetemperature of the codant. To demonstrate the distortion due to phase transitions
we consider a two-dimensiona simulation of the codling of a sted dab from below (cf. Figure
8). At t =0s, the spedmen is homogeneoudy austenitic, after 20s due to codling at the lower
boundry one can observe a downward bending. Findly, after 100s the speamen has nealy
reated room temperature and one can observe a remaining upward bending due to the credion

of martensite in the bottom layer of the spedamen.

P900000000000000000000000

t=0s t=20s

t=100s

Figure 8: Distortion due to codling.



Now we consider the correspondng control problem. We take a cost functional similar to (1),
but using now the hea exchange coefficient a as a control. Figure 9 depicts the initia (left) and
the desired microstructure (right), which is used to define the desired phase distribution z in the
cost functional.

— ——

martensite pearlite martensite pearlite
Figure 9: Initial (Ieft) and desired microstructure (right).

Figure 10 shows 5 iterations of the gradient method for the solution of the optima control
problem. Note that ead picture is the result of a complete solution of the state system and the
adjoint system. One can see how by a coding aong the complete lower boundxry of the
spedmen first the initid phase distribution is creded and then the desired phase profile is

approximate more and more closdly in the course of the iterations.

.
—__|

Figure 10: Fiveiterations of the gradient method

3.3 Interplay with macdhine-based cortrol

The question that arises now is, how one can utili zethe results of such an optimization processin
indwstrial pradice Very often, not al the necessary parameters are known, in laser hardening for
instance, it is nealy impossble to predict the adual absorption coefficient for the laser light,
which impinges the surface In [Homberg,Weiss 2004, [Alder, Homberg, Weiss 200§ we have

shown how the results can be used in combination with a macine based processcontrol. To this



end the optimal laser power is first used to compute the optimal temperature in the laser bean
focus. The latter then serves as a set-paint for the machine based control. Figure 11 ill ustrates
this procedure for the surface hardening above a cavity. The goal is to aciieve a constant
hardening depth. Figure 11 (left) depicts the computed optimal temperature in the laser focus.
Then this temperature is used as the set-paint for the machine based control. The picture on the
right shows that this strategy indeed yields the desired constant hardening depth.
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Figure 11 Optimal temperature in the laser focus and resulti ng simulated martensite depth (l€eft),
experimentall y achieved hardening depth (right).

4 Conclusions

The godl of this contribution was to demonstrate how the hea treament of sted can be described
mathematicdly in terms of an optimal control problem. Its numericd simulation requires severa
iterations of the solution of the field equations and adjoint equations. However, this effort is
mitigated by the development of new model reduction strategies alowing for the efficient
computation of a solutionwithin reasonable time [Ho6mberg, Volkwein, 2003.

A challengng diredion of reseach is to tred the task of distortion engneeing as an optimal
control problem. Here, investigations branch into two diredions. The first is optimal control of
phase transitions to compensate distortion, e.g., to minimize the out-of-roundress of roller
beaing rings [HOmberg, Kern, 200§. This topic is subjed of adua investigations in a
cooperation between IWT and WIAS. The seconddiredionisto find an appropriate initial shape
of the workpiecein order to compensate distortions caused by subsequent hea treaments.
Mathematicdly, this requires the solution of an optima shape design problem and is a
challengingtask for future reseach.
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