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Abstract

The paper is concerned with a class of optimal heating problems in semi-
conductor single crystal growth processes. To model the heating process,
time-harmonic Maxwell equations are considered in the system of the state.
Due to the high temperatures characterizing crystal growth, it is necessary to
include nonlocal radiation boundary conditions and a temperature-dependent
heat conductivity in the description of the heat transfer process. The first
goal of this paper is to prove the existence and uniqueness of the solution
to the state equation. The regularity analysis associated with the time har-
monic Maxwell equations is also studied. In the second part of the paper,
the existence and uniqueness of the solution to the corresponding linearized
equation is shown. With this result at hand, the differentiability of the
control-to-state mapping operator associated with the state equation is de-
rived. Finally, based on the theoretical results, first oder necessary optimality
conditi! ons for an associated optimal control problem are established.

1 Introduction

In the present paper, a class of optimal control problems arising in the context of
crystal growth of semiconductor single crystals is studied. Optimizing the tem-
perature – the state of the system – within a desirable range is one of important
goals in crystal growth, to improve techniques such as the sublimation growth of
silicon carbide (SiC) or aluminum nitrite (AlN), or the growth from the melt of
silicon (Si) or gallium-arsenide (GaAs). Heat transfer problems in crystal growth
are mathematically challenging. Due to the high temperatures and the complex
geometries involved, heat radiation has to be included in the model and leads to
a class of nonlinear and nonlocal boundary conditions (cf. [Voi01, Tii97, KPS04]).
Such problems have not yet been widely studied from the mathematical point of
view. On the other hand, to adequately describe the heating system, inductive
heating is used in crystal growth which involves a coupling to the 3D Maxwell
equations.

In a fairly simplified setting, the study of optimal control problems involving non-
local boundary conditions was initiated in [MPT06]. Further contributions on
such problems with pointwise control- and state-constraints were made in [MY08a,
MY08b]. The analysis of the aforementioned papers relied on the assumption that
the heat sources can be controlled directly. In other words, Maxwell equations were
not included in the system of the state. In addition, the temperature-dependence
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of the material properties that becomes significant at high temperatures was not
included in the model. The present paper is aimed at the analysis of a more realistic
model: First, to describe the heating process, Maxwell equations are considered.
Second, we assume that the heat conductivity in the state equation depends on
temperature, so that temperature distribution is governed by a quasilinear elliptic
equation.

Our focus is set on a quasi-static description of induction heating [KPS04]. The
model is based on the assumption that all electromagnetic quantities are harmonic
in time and given as the imaginary part of a complex extension, according to the
usual ansatz

H(x, t) = Im(Hcomp(x) exp(i ω t)) , E(x, t) = Im(Ecomp(x) exp(i ω t)),

where H denotes the magnetic field intensity, and E the electric field strength.
Similar representations are assumed for the remaining electromagnetic fields. In the
above context, Hcomp, Ecomp denote the complex-valued amplitude of the complex
extension of the vector fields H, E, and ω > 0 is the angular frequency of an
applied alternating current. The period 2 π/ω of oscillation of the electromagnetic
fields is assumed to be much smaller than the typical time for heat diffusion. In
this way, the Joule heat source density can be approximated by its averaged value
over a period according to

f(x, t) ≈ ω

2 π

∫ 2 π
ω

0

f(·, t) dt .

Thus, assuming a stationary temperature distribution in the furnace, we attain
a time-independent description of the problem, which allows to work with the
complex amplitudes instead of the electromagnetic fields themselves.

Problem formulation. We denote by Ω ⊆ R3 with boundary Γ the bounded
domain of interest for the temperature distribution – typically the crystal growth
furnace. The global temperature distribution in Ω is governed by the stationary
heat equation with radiation boundary conditions⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−div(κ(x, y)∇y) =
1

2s
|curl H|2 in Ω ,

[−κ(x, y)∂y
∂�n

] = G(σ |y|3y) on Σ ,

κ(x, y)
∂y

∂�n
+ εσ |y|3y = εσ y4

0 on Γ ,

(1)

where y denotes the absolute temperature and y0 is the given external temperature.
The vector field H represents the complex-valued magnetic intensity. Furthermore,
σ denotes the Boltzmann radiation constant; ε is the emissivity; κ is the thermal
conductivity; s is the electrical conductivity; [·] denotes the jump of a quantity
across boundaries, and �n is the outward unit normal to the corresponding surface.
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The surface Σ and the nonlocal radiation operator G are related to the modeling of
the radiative heat transfer. Heat radiation is incoming and outgoing at the surface
of each body located next to a transparent medium. To describe this phenomenon,
we assume that a part of the region Ωtransparent ⊂ Ω is occupied by transparent
materials. We set Σ := ∂Ωtransparent . A schematic geometrical example is given
in Figure 1. The operator G in (1) is a linear and continuous operator (see e.g.
[LT01, KPS04] for in-depth discussions on G and its physical background). For the
convenience of the reader, we recall the definition of G and its essential properties
in Appendix B.

coil ring 1

coil ring 2

coil ring 3

gas

melt

insulation
Γ

Ωtransparent

Σ

Ωopaque

Figure 1: Two-dimensional schematic cut of the domain Ω. Left-hand: The furnace
components and the outer boundary Γ (thick black line). Right-hand: Description
of Ω from the point of view of heat radiation, with the transparent cavity Ωtransparent

(white), its boundary Σ, (thick black line) and the opaque materials Ωopaque (grey).

It is not to be expected that the electromagnetic fields generated to heat the re-
gion Ω will be confined to it. We therefore introduce a bounded ’hold all domain’
O ⊂ R3, that contains Ω and is typically much larger, to represent the region in
which the electromagnetic fields are acting. To adequately describe the electro-
magnetic phenomena taking place in the larger region O, we denote by Oc ⊆ O the
region occupied by electrically conducting materials. We set Onc := O \Oc for the
nonconductors. The complex-valued magnetic field intensity H appearing in (1) is
given by the solution to a time-harmonic Maxwell system posed in O⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i ω B + curl E = 0 in O
curl H = J in O

J = sE + χ
Oc0
jg in Oc

div D = 0 in Onc

B = μH D = eE div B = 0 in O
B · �n = 0 E × �n = 0 on ∂O

[H × �n]i,j = 0 [B · �n]i,j = 0 [E × �n]i,j = 0 on ∂Oi ∩ ∂Oj .

(2)

Here, E and B denote the electric field and the magnetic induction, respectively,
whereas D is the electric displacement and J the current density, which we assume
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to be complex-valued vector quantities, as explained at the beginning of the paper.
The functions e, μ are the electric permittivity and the magnetic permeability;
the electrical conductivity is denoted, as above, by s. The constant ω > 0 is
the angular frequency of the applied alternating current. We have assumed a
decomposition O :=

⋃m
i=0Oi, with disjoint domains Oi that represent the different

material subdomains filling the region O1. With the notation, [·]i,j, we denote the
jump of a quantity across the interface ∂Oi ∩ ∂Oj , i, j = 0, . . . , m, i �= j.

The vector jg is the given density of an applied current acting in a set Oc0 ⊆ Oc.
Typically Oc0 represents an induction coil.

Optimal control problem. It is not realistic to assume that we can control the
density of current at each point of space. For the optimal control problem, we
therefore make stronger assumptions:

(A1) We make the customary idealization that the coil Oc0 can be represented as
Oc0 =

⋃n
i=1Ri (n ≥ 1), where R1, . . . , Rn, are disjoint bounded domains in

positive distance from each other, which we assume to be rings (see Figure 2)2.

(A2) The voltage uj ∈ R+ in each coil ring Rj ⊆ Oc0 (j = 1, . . . , n) can be main-
tained constant.

(A3) The given current jg in the ring Rj (j = 1, . . . , n) results only from applying
the voltage uj to the loop Rj.

Due to the hypotheses (A2) and (A3), the current jg is more precisely given by the
ansatz jg =

∑n
j=1 uj vj , where u ∈ Rn, and {v1, . . . , vn} is a given system of vector

fields such that vj : Rj → R3. Notice that since the density jg in the conductor
Oc0 represents a current, we have to make the consistency assumption

div jg = 0 in Oc0, jg · �n = 0 on ∂Oc0 . (3)

Thus, the vector fields {vj}j=1,...,n in turn must satisfy

div vj = 0 in Rj , vj · �n = 0 on ∂Rj , for j = 1, . . . , n.

1This means that for each i = 0, . . . , m, the set Oi is a domain (a connected open set), in which
the material properties are uniformely continuous. Observe that in this way, several domains Oi

can consist of the same material, provided that they are in positive distance from each other.
2For each j ∈ {1, . . . , n}, there exist numbers rj,1 > rj,2 > 0 and a fixed vector zj ∈ R3, such

that the set Rj is the torus

Rj =

⎧⎨⎩zj +

⎛⎝ (rj,1 + s cosφ) cos θ
(rj,1 + s cosφ) sin θ
s sin φ

⎞⎠ : s ∈ [0, rj,2], φ, θ ∈]0, 2π]

⎫⎬⎭ .
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Figure 2: Two-dimension cut of the Maxwell ’hold all domain’ O, with the electrical
conductors Oc (gray), the nonconductors Onc (white), and the coil rings R1, . . . , R3

indicated by arrows.

Under the simplifying assumption (A1), and assuming a constant electrical con-
ductivity in Rj , we can set

vj = s

⎛⎝ −x2/
√
x2

1 + x2
2

x1/
√
x2

1 + x2
2

0

⎞⎠ . (4)

For more general forms of the inductor Oc0, we construct a particular system
{vj}j=1,...,n in Remark 2.1 below.

Given fixed data z ∈ L2(Ω)3, Hd ∈ L2(O; C)3, ρ ≥ 0 and β > 0, we focus on the
following optimal control problem:

minimize J(u,H, y) :=
1

2

∫
Ω

|∇y − z|2 +
ρ

2

∫
O

|H −Hd|2 +
β

2
|u|2 , (P)

where (H, y, u) solves the equations (1)–(2). In addition, the optimization problem
(P) is subject to the following state and control constraints:

ya(x) ≤ y(x) ≤ yb(x), for almost all x ∈ Ω,
ua ≤ uj ≤ ub, for all j ∈ {1, . . . , n}. (5)

Notice that including the state-constraints (5) into the model is necessary. They
are assigned for instance to avoid melting of the apparatus and to keep the crys-
tallization process within a desirable temperature range.

The analysis of the control problem (P) turns out to be delicate in some aspects.
First, we are confronted here with a state equation of quasilinear type with source
terms generated by the Maxwell equations. Second, the pointwise state constraints
in the set of explicit constraints (5) considerably complicate the analysis. In ad-
dition, the nonlinearity in the state equation (1) is not monotone. Standard tech-
niques are therefore not applicable to devise the analysis of the optimal control
problem (P).
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Objective. The first contribution of the present paper is the existence and
uniqueness result for the state of the system (1)–(2). Also, the regularity anal-
ysis associated with the solution to (1)–(2) forms the main emphasize of the pa-
per. The regularity result relies mainly on recent advances in regularity theory
[ERS07, HDMR08] and may interest the reader in its own right. The second part
of the paper is concerned with the linearized equation of (1)–(2). Our main goal is
to prove the existence and uniqueness result of the corresponding linearized system
which leads mainly to the differentiability of the control-to-state mapping associ-
ated with (1)–(2). These points represent the mainstream of the paper and, up to
the best of our knowledge, no study on this topic has been carried out so far. The
optimization theory for (P), on the othe! r hand, is devised based on the men-
tioned theoretical results and serves significantly for a basis for our forthcoming
paper on the numerical computation of (P). Note that some contributions related
to our context have been made by Griesse and Kunisch [GK08] concerning opti-
mal control in the stationary magnetohydrodynamics problem. Also, let us draw
particular attention to Hömberg [H04] concerning the modeling and analysis of
induction hardening of steel.

As to the outline of the paper, we begin by introducing in Section 2 our main
assumptions and notations. In the Section 3, we conduct a study concerning ex-
istence and uniqueness of the weak solution to (1)–(2). Higher regularity of the
solution will also be discussed. Section 4 is devoted to the linearized equation
of (1)–(2). Based on the theoretical results in Sections 3 and 4, we derive the
first-order optimality conditions for (P) in Section 5.

2 General assumptions and notation

2.1 Notations

We at first introduce some spaces that will be needed for the analysis of the state
equation. For 1 < q < ∞, we denote by q′ := q/(q − 1) the conjugated exponent
to q. We denote

Lq
curl (O) := {ψ ∈ [Lq(O)]3

∣∣∣ curl ψ ∈ [Lq(O)]3},

Lq
div(O) := {ψ ∈ [Lq(O)]3

∣∣∣ divψ ∈ Lq(O)} ,

where the well-known differential operators curl and div are intended in the weak
(distributional) sense. The spaces Lq

curl (O) and Lq
div(O) are Banach-spaces with

respect to the graph norm. The linear operator γn : Lq
div(O) → W 1,q′(O)∗, given

by

〈γn(ψ), φ〉 :=

∫
O

divψ φ+

∫
O

ψ · ∇φ , ∀ φ ∈W 1,q′(O) (6)
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is a generalization of the trace ψ · �n (�n = outward unit normal to ∂O), which is
well-defined for ψ ∈ Lq

div(O). Analogously, the linear operator γt : Lq
curl (O) →

Lq′
curl (O)∗, given by

〈γt(ψ), φ〉 :=

∫
O

ψ · curl φ−
∫

O

φ · curl ψ , ∀ φ ∈ Lq′
curl (O), (7)

generalizes the trace −ψ × �n for ψ ∈ Lq
curl (O).

In order to represent current vectors, we need the spaces

Hq(O) :=
{
H ∈ Lq

curl(O)
∣∣∣ curl H = 0 in Onc

}
, (8)

and set H(O) := H2(O).

The spaces of complex-valued vector fields associated with Lq
curl (O) and Hq(O)

are denoted by Lq
curl (O; C3) and Hq(O; C3), respectively. The linear constraints

characterizing these spaces are then intended to hold for both real and imaginary
part of the vector field.

The inner product on the Hilbert space L2
curl (O; C3) is given by

(H1 , H2)L2
curl(O) :=

∫
O

(
curl H1 · curl H2 +H1 ·H2

)
, (9)

where a denotes the complex conjugate of a ∈ C.

2.2 Main assumptions on the data

The data of the problem are, on the one hand, the geometry, and, on the other
hand, the coefficients κ, ε, μ, e, s, the vector fields vj , and the external temperature
y0.

Geometrical assumptions. In order to describe complex electromagnetic and
thermodynamical phenomena, we have to account for the multimaterial structure
of the domains O and Ω: A decomposition O :=

⋃m
i=0Oi is assumed, with disjoint

open sets Oi that represent the different material subdomains (see the footnote
(1)) that fill the ’hold all’ region O. As to the smaller region Ω of interest for
the temperature computations (the crystal growth furnace), we can define Ωi :=
Oi ∩ Ω, and we then have Ω :=

⋃m
i=0 Ωi, where Ωi represent the different material

subdomains that fill the region Ω. We refer the reader to the figures 1 and 2 to
help representation.

For simplicity, we from now on assume that there is only one connected trans-
parent cavity in Ω, and denote this set by Ω0. Therefore, the boundary Σ of the
transparent materials is simply given by Σ := ∂Ω0. The enclosure property has
to be satisfied, meaning that the cavity Ω0 is enclosed by the remaining (opaque)
materials (Ωopaque :=

⋃m
i=1 Ωi), that is,

Every x ∈ Σ is an interior point of Ω . (10)

7



We further assume that the domain O is simply connected and Lipschitzian. In
order to obtain regular magnetic fields, the main geometrical restriction considered
throughout the paper is the following:

∂Oi ∈ C1, for i = 0, . . . , m , ∂O ∈ C0,1 . (11)

From (11), it also follows that

∂Ωi ∈ C1, for i = 0, . . . , m , (12)

since Ωi = Oi ∩ Ω. This fact will be exploited in order to obtain a temperature
field in W 1,q(Ω) for some q > 3.

For formal simplicity, we make the assumption that each conductor is isolated

dist(Oi, Oj) > 0 for all Oi, Oj ⊆ Oc, with j �= i . (13)

Source fields and coefficients. As mentioned previously, the applied current jg
is given by the ansatz:

jg =
n∑

j=1

uj vj (14)

and we assume that there exists some q̄ > 3 such that

vj ∈ [Lq̄(Rj)]
3, div vj = 0 in Rj, vj · �n = 0 on ∂Rj , for j = 1, . . . , n .

(15)

If the subdomains Rj are the rings defined as in (A1), the assumption (15) is
trivially satisfied in view of (4).

Remark 2.1. If Rj is an arbitrary once connected Lipschitz domain, and the
electrical conductivity s is constant in Rj , the field vj can also be computed in
advance and satisfy (15). Denote by P ⊂ Rj an hypersurface that cuts the ring
Rj transversally, such that the domain R̃j := Rj \P is simply connected3 .. Under
the assumptions (A2), (A3), we have vj = s∇p̃j in R̃j , where p̃j is the solution to
the problem ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�p̃j = 0 in R̃j

∂p̃j

∂�n
= 0 on ∂R̃j \ P[

∂p̃j

∂�n

]
= 0 on P

[p̃j] = 1 on P ,

(16)

3To help the representation, let us note that if Rj is the torus characterized by the radii
rj,1 > rj2 , then the surface P is any of the disks

P = zj +

⎧⎨⎩
⎛⎝ (rj,1 + s cosφ0) cos θ

(rj,1 + s cosφ0) sin θ
s sin φ

⎞⎠ : s ∈ [0, rj,2], θ ∈]0, 2π]

⎫⎬⎭ ,

where φ0 ∈]0, 2π] is arbitrary, but fixed, and zj ∈ R3.
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where [·] denotes the jump of a quantity across the surface P . It is well-known (cf.
[FT78]) that (16) admits a unique solution p̃j ∈W 1,2(R̃j), and vj = s∇p̃j satisfies

div vj = 0 in Rj , vj · �n = 0 on ∂Rj .

Furthermore, vj = s∇p̃j belongs to [Lq̄(R̃j)]
3 for some q̄ > 3 (see [Mon03, Theorem

3.50]).

For the boundary data y0, we assume that

y0 ∈ L∞(Γ), ess inf
Γ

y0 > 0 . (17)

Throughout the paper, we assume that there exist positive constants sl, su, μl, μu

such that

0 < sl ≤ s ≤ su < +∞ a. e. in Oc , 0 < μl ≤ μ ≤ μu < +∞ a. e. in O . (18)

In addition, we require the continuity of the coefficients in each material

si, μi ∈ C(Oi) , (19)

where si, μi are the restrictions of s, μ to the set Oi.

We now formulate assumptions for the heat conductivity: Let κ : Ω × R → R be
measurable, and assume that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ = κi in Ωi × R, with κi : Ωi × R → R, continuous for all i = 0, . . . , m.

∃κl, κu ∈ R with 0 < κl < κu : κl ≤ κ(x, y) ≤ κu for a.a. (x, y) ∈ Ω × R.

∀M > 0, ∃CM > 0 such that |κi(x, y1) − κi(x, y2)| ≤ CM |y1 − y2|

for all y1, y2 ∈ [−M,M ], for all i ∈ {0, . . . , m}, and a.a. x ∈ Ωi.
(20)

We recall that the surface Σ ∪ Γ is an interface between transparent and opaque
material: Σ is the boundary of a transparent cavity located in the furnace Ω,
whereas Γ denotes the boundary of Ω, which is surrounded by air in the ’hold all’
region O. Thus, heat radiation has to be modeled at the surface Σ ∪ Γ, and we
have to introduce the emissivity parameter on Σ∪Γ, denoted by ε. The emissivity
is a function of the position. We assume that ε : Σ ∪ Γ −→ R is measurable.
There exist continuous functions εi ∈ C(∂Ωi ∩ Σ) such that ε = εi in ∂Ωi ∩ Σ for
all i = 1, . . . , m. Moreover, we rely on the following boundedness assumption:

∃εl ∈ R such that 0 < εl ≤ εi ≤ 1 on ∂Ωi ∩ Σ for i = 1, . . . , m . (21)

The above condition ensures in particular that the operator G is well defined (see
Appendix B).
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In order to improve the readability, we introduce the auxiliary function of electric
resistivity, which is extended by unity to the nonconductors,

r :=

{
1
s

on Oc

1 on Onc

, rl := s−1
u ru := s−1

l , (22)

with sl, su from (18).

Remark 2.2. The geometrical assumption (11) is too restrictive for dealing with
the realistic geometries given in industrial crystal growth. As a matter of fact,
jumps of the material properties are allowed only between at most two materials.
In order to deal more general junctions, we rely on continuous approximations of the
material parameters. It is therefore particularly important to admit a dependence
of the functions s, κ, μ on the space variable (cf. the assumptions (19), (20)).

The simplifying assumption (13) is also to be understood in this context: we could
allow for the junction of two conductors, provided that one of them is embedded
in the second and has a C1 boundary. This would however increase the technicality
without being an essential progress.

3 State equation

Associated with the system (1)–(2), we introduce the notion of weak solutions.

Definition 3.1 (Weak solution to (1)–(2)). Let 3 < q < ∞ and let q′ be the
conjugate index of q.

(i) We introduce an operatorAq : Hq(O; C3)×W 1,q(Ω) → Hq′(O; C3)∗×W 1,q′(Ω)∗,
defined by

〈Aq(H, y), (ψ, ξ)〉 := i

∫
O

ω μH · ψ +

∫
O

r curl H · curl ψ

+

∫
Ω

κ(·, y)∇y · ∇ξ +

∫
Σ

G(σ|y|3y)ξ +

∫
Γ

εσ|y|3yξ − 1

2

∫
Ω

r|curl H|2 ξ

for all (ψ, ξ) ∈ Hq′(O; C3) ×W 1,q′(Ω).

(ii) We further introduce an operator Eq : Rn → Hq′(O; C3)∗×W 1,q′(Ω)∗, defined
by

〈Equ, (ψ, ξ)〉 :=

∫
Oc0

n∑
j=1

ujvj · curl ψ +

∫
Γ

εσ y4
0 ξ ,

forall (ψ, ξ) ∈ Hq′(O; C3) ×W 1,q′(Ω).

(iii) For given u ∈ R
n, we call a pair (H, y) ∈ Hq(O; C3)×W 1,q(Ω) weak solution

to (1)–(2) if

Aq(H, y) = Equ in Hq′(O; C3)∗ ×W 1,q′(Ω)∗. (23)
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Remark 3.2. (1) Let (H, y) be a weak solution in the sense of Definition 3.1.
For every φ ∈W 1,q′(O; C3), the vector field ∇φ belongs to Hq′(O; C3). Tak-
ing in (23) the pair (∇φ, 0) as a testfunction, and observing that curl ∇φ = 0,
we have

i

∫
O

μωH · ∇φ = 0 .

Therefore, every weak solution H ∈ Hq(O; C3) in the sense of Definition 3.1
satisfies the conditions div(μH) = 0 and γn(μH) = 0 in the weak sense.

(2) Let (H, y) be a weak solution in the sense of Definition 3.1. The continuous
embedding W 1,q′(Ω) ↪→ Ls(Ω) is valid for all 1 ≤ s ≤ 3q′

3−q′ . Since q
q−2

≤ 3q′
3−q′ ,

we can apply Hölder’s inequality and Sobolev’s embedding theorem to verify
that ∣∣∣∣∫

Ω

r |curl H|2ξ
∣∣∣∣ ≤ ru ‖curl H‖2

[Lq(Ω;C)]3 ‖ξ‖Lq/(q−2)(Ω)

≤ ru c0 ‖curl H‖2
[Lq(O;C)]3 ‖ξ‖W 1,q′(Ω) .

Analogously, since the embedding W 1,q(Ω) ↪→ C(Ω) is continuous, we can
verify that under the assumptions (18), (20), (21) and (22), the operator Aq

is well defined. Due to the validity of (15) with q̄ > 3 and Hölder’s inequality,
the operator Eq is well defined for q ≤ q̄.

For the proof of the existence and uniqueness of a weak solution in the sense of
Definition 3.1, we rely on the following assumption:

Assumption 3.3. Let O ⊂ R3 satisfy the assumptions formulated in the section
2.2, in particular (11). Let the function κ fulfill the condition (20), and let y0

satisfy (17). Assume further that the functions si, μi ∈ C(Oi) and εi ∈ C(∂Ωi ∩Σ)
satisfy (18) and (21), respectively.

Theorem 3.4. Let Assumption 3.3 be satisfied. Assume further that (15) is valid
with some q̄ > 3. Then there exists 3 < q ≤ q̄ such that, for all u ∈ Rn, the
problem (1)–(2) possesses a unique weak solution (H, y) ∈ Hq(O; C3) ×W 1,q(Ω)
satisfying y ≥ ess inf

Γ
y0 > 0.

We split the proof of Theorem 3.4 into the two following lemmata.

Lemma 3.5. Let O ⊂ R
3 satisfy the assumptions formulated in the section 2.2,

in particular (11). Assume further that the functions si, μi ∈ C(Oi) satisfy (18).
Let jg ∈ [Lq̄(Oc0; C)]3 with q̄ > 3. Then, there exist a 3 < q ≤ q̄ and a unique
H ∈ Hq(O; C3) such that div(μH) = 0, γn(μH) = 0 in the weak sense, and

i ω

∫
O

μH · ψ̄ +

∫
O

r curl H · curl ψ̄ =

∫
O

r jg · curl ψ̄ , (24)

for all ψ ∈ Hq′(O; C3).
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Proof. Introducing the abbreviations H(1) := ReH and H(2) := ImH , we first
observe that (24) is equivalent to the validity of the system

−ω
∫

O

μH(2) · ψ +

∫
O

r curl H(1) · curl ψ =

∫
Oc0

r Re jg · curl ψ , (25)

ω

∫
O

μH(1) · ψ +

∫
O

r curl H(2) · curl ψ =

∫
Oc0

r Im jg · curl ψ , (26)

for all real-valued ψ ∈ H(O). To obtain (25) and (26), we simply have inserted the
field ψ + 0 i, ψ ∈ H(O), in the relation (24), and we have then equated real and
imaginary part respectively.

We consider the linear subspace of H(O)

Hμ(O) :=
{
ψ ∈ H(O)

∣∣∣ div(μψ) = 0, γn(μψ) = 0
}
,

where the constraints on div and γn are intended in the weak sense of these oper-
ators, explained in Section 2. The space Hμ(O) is a Hilbert space if endowed with
the inner product (9). Moreover, there exists a constant C > 0 such that for all
ψ ∈ Hμ(O) it holds

‖ψ‖[L2(O)]3 ≤ C ‖curl ψ‖[L2(O)]3 ,

so that the space Hμ(O) is equivalently normed by the expression ‖curl · ‖[L2(O)]3 .
This fact is widely known, and a proof is given for example in [Dru07].

With the standard isomorphism C ∼= R2, we can identify H ∈ Hμ(O; C3) with the
pair (H(1), H(2)) ∈ Hμ(O) × Hμ(O). On the Hilbert-space Hμ(O) × Hμ(O), we
introduce the bilinear form

a(H, φ) := − ω

∫
O

μH(2) · φ(1) +

∫
O

r curl H(1) · curl φ(1)

+ ω

∫
O

μH(1) · φ(2) +

∫
O

r curl H(2) · curl φ(2) , (27)

which is continuous and bounded in view of (18). On the other hand, the bilinear
form a satisfies

a(H, H) =

∫
O

r (|curl H(1)|2 + |curl H(2)|2) ≥ rl ‖H‖2
Hμ(O)×Hμ(O) .

The functional

F (φ) :=

∫
O

r Re jg · curl φ(1) +

∫
O

r Im jg · curl φ(2)

is clearly a well-defined element of [Hμ(O) × Hμ(O)]∗, since jg ∈ [L2(Oc0)]
3. The

Lax-Milgram lemma gives the existence of a unique H ∈ Hμ(O)×Hμ(O) such that
a(H, φ) = F (φ) for all φ ∈ Hμ(O) ×Hμ(O).
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Taking in the equation (27) φ(1) = ψ, with ψ ∈ Hμ(O) arbitrary, and φ(2) = 0, we
obtain (25). Taking φ(1) = 0, φ(2) = ψ, we obtain (26). We thus easily verify that
(25) and (26) are valid for all ψ ∈ Hμ(O), and so we have also proved that (24) is
valid for all ψ ∈ Hμ(O; C3).

At last, we verify that (24) is even valid for all ψ ∈ H(O; C3). As a matter of fact,
if ψ ∈ H(O; C3), then ψ1 := ψ −∇ζ ∈ Hμ(O; C3) if we take ζ ∈W 1,2(O; C) as the
weak solution to ∫

O

μ∇ζ · ∇φ =

∫
O

μψ · ∇φ ,

for all φ ∈W 1,2(O; C). It follows that

i ω

∫
O

μH · ψ̄ +

∫
O

r curl H · curl ψ̄ = i ω

∫
O

μH · (ψ −∇ζ)

+

∫
O

r curl H · curl (ψ −∇ζ) =
(24)

∫
O

r jg · curl (ψ −∇ζ) =

∫
O

r jg · curl ψ̄ .

Here, in the first line, we used div(μH) = 0 and γn(μH) = 0, which implies that∫
O
μH · ∇ζ = 0. In the second line, we used the validity of (24) for ψ − ∇ζ ∈

Hμ(O; C3).

We now prove the existence of some q > 3 such that H ∈ Lq
curl (O; C3). Applying

at first the embedding result of Lemma A.2, it follows that H ∈ [Ls(O; C)]3 for
some s > 3, and that

‖H‖[Ls(O; C)]3 ≤ c̃ ‖curl H‖[L2(O; C)]3 ≤ c ‖jg‖[L2(Oc0 ; C)]3 . (28)

Next, we prove that curl H(1) and curl H(2) belong to [Lq(O)]3 for q := min{q̄, s}.
We consider an arbitrary f ∈ [L2(O)]3 with f = 0 almost everywhere in Onc.
According to Lemma A.4, we can decompose

f = curl A +
∑
i∈Ic

∇pi χOi
,

where A ∈ H(O), i ∈ Ic if Oi is a conductor, and pi ∈ W 1,2(Oi). Thanks to the
equivalent formulation (25), we can write∫

O

r curl H(1) · f =

∫
O

r curl H(1) · curl A +
∑
i∈Ic

∫
Oi

curl H(1) · ∇pi

=
(25)

∫
Oc0

r Re jg · curl A + ω

∫
O

μH(2) · A . (29)

Here, we used the fact that A ∈ H(O) can be inserted in (25). For the vanishing
of the terms involving the pi, we have used Lemma A.3 which implies that∫

Oi

curl H(1) · ∇pi = 〈γn(curl H(1)), pi〉∂Oi
= 0 .

13



Due to (29) and the continuity estimate (86) associated with the decomposition of
Lemma A.4, we then have∣∣∣∣∫

O

curl H(1) · f
∣∣∣∣ ≤ c (‖Re jg‖[Lq(O)]3 + ‖H(2)‖[Ls(O)]3) ‖A‖Lq′

curl (O; C3)

≤ c (‖Re jg‖[Lq(O)]3 + ‖H(2)‖[Ls(O)]3) ‖f‖[Lq′(O)]3 .

Consider now the functional

F̃ (f) :=

∫
O

r curl H(1) · f, f ∈ [L2(O)]3, f = 0 almost everywhere in Onc .

With the Hahn-Banach theorem, we can extend the functional F̃ to the whole
space [Lq′(O)]3, by preserving its norm. Still denoting the extension F̃ , we apply
the Riesz representation theorem for Lq′(O)∗, q′ > 1, to find some Φ ∈ [Lq(O)]3

such that F̃ (f) =
∫

O
Φ · f , for all f ∈ [Lq′(O)]3. But then,∫

O

(r curl H(1) − Φ) · f = 0 for all f ∈ [L2(O)]3, f = 0 almost everywhere in Onc.

We conclude that r curl H(1) − Φ = 0 almost everywhere in Oc. Thus, we see that
curl H(1) ∈ [Lq(O)]3, and due to (28), we have

‖curl H(1)‖[Lq(O)]3 ≤ c (‖jg‖[Lq̄(O;C)]3 + ‖jg‖[L2(O;C)]3) .

We obtain the result for curl H(2) in exactly the same way. The lemma is proved.

We now prove the second lemma. For the heat equation with radiation terms, we
introduce the space

V 2,5(Ω) :=
{
u ∈W 1,2(Ω)

∣∣∣ τΓu ∈ L5(Γ), τΣu ∈ L5(Σ)
}
,

where the operators τΓ and τΣ denote the trace operators on Γ and Σ, respectively.

Lemma 3.6. Let H ∈ Hq(O; C3) satisfy (24), with q given by Lemma 3.5. Then
for some γ > 0, there exists a unique y ∈ V 2,5(Ω) ∩Cγ(Ω) such that y ≥ ess inf

Γ
y0

almost everywhere in Ω and such that∫
Ω

κ(·, y)∇y · ∇ξ +

∫
Γ

ε σ (y4 − y4
0) ξ +

∫
Σ

G(σ y4) ξ =

∫
Ω

r/2 |curl H|2 ξ , (30)

for all ξ ∈ V 2,5(Ω). Assuming that the domain Ω satisfies (12), we even obtain
that y ∈W 1,q(Ω), with the q of Lemma 3.5.
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Proof. The existence of y in the class V 2,5(Ω) ∩ L∞(Ω) was proved in [LT01] for
cavities with the smoothness Σ ∈ C1,α, α > 0. Notice that the boundedness has
also been shown in [MPT06] by invoking the truncation method of Kinderlehrer
and Stampacchia (see [KS80]). The existence result has been extended in [Dru09]
to the case of a temperature-dependent heat conductivity and piecewise smooth
surfaces. From the aforementioned references, we derive the estimate

‖y‖L∞(Ω) ≤ ‖y0‖L∞(Γ) + C ‖curl H‖2
[Lq(Ω;C)]3 , (31)

where q is given by Lemma 3.5. The uniqueness has been proved in [LT01], using an
interesting comparison principle for the case that κi is a positive constant in Ωi, for
all i ∈ {0, . . . , m}. Here we have to extend the result to the case of a temperature-
dependent heat conductivity. This can be done with similar comparison techniques
exposed in the second part of the paper (see the proof of Theorem 4.4).

We now want to show that y ∈ C(Ω). Observe that under the assumption (20),
the coefficient κ = κ(x, y) belongs to L∞(Ω). The function y solves the problem

− div(κ(·, y)∇y) = F in Ω , (32)

where F is the functional

F (ξ) := −
∫

Γ

ε σ (y4 − y4
0) ξ −

∫
Σ

G(σ y4) ξ +

∫
Ω

r/2 |curl H|2 ξ .

Let q > 3 be the exponent obtained in Lemma 3.5. Invoking Hölder’s inequality,
observe that∣∣∣∣∫

Ω

r/2 |curl H|2 ξ
∣∣∣∣ ≤ (ru/2) ‖curl H‖2

Lq(Ω;C3) ‖ξ‖[Lq/(q−2)(Ω)]3 . (33)

We now look for the minimal 1 < p′ < 3 such that the continuous embedding
W 1,p′(Ω) ↪→ Lq/(q−2)(Ω) is valid. Short computations give p′ := 3 q/(4 q−6). Using
in particular (33) combined with Sobolev’s embedding theorems, we now obtain
the estimate

|F (ξ)| ≤ c (‖y4 − y4
0‖L∞(Γ) + σ ‖y‖4

L∞(Σ) + ru ‖curl H‖2
Lq(Ω;C3)) ‖ξ‖W 1,p′(Ω) ,

which proves that F ∈W 1,p′(Ω)∗.

The conjugate exponent to p′ is p := 3q
6−q

, and we observe that p > 3, since q > 3.
In view of Theorem 3.3 in [HDMR08], we thus obtain the Hölder continuity of y
in Ω.

It remains to prove that y ∈ W 1,q(Ω) under the assumption (12). Thanks to the
hypothesis (20), and to the fact that y ∈ C(Ω), we now see that κ(·, y) ∈ C(Ωi)
for all subdomains Ωi, i = 0, . . . , m. Observe on the other hand that ∂Ωi ∈ C1,
i = 0, . . . , m, in view of (12). Thus, the coefficient κ is uniformly continuous on
both sides of the surfaces ∂Ωi for i = 0, . . . , m.
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Using again the fact that y is a solution to (32), we can apply the Remark 3.18
of the paper [ERS07] to find the existence of q1 > 3 such that y ∈ W 1,q̃(Ω) for all
3 < q̃ ≤ min{p, q1}. Assuming without loss of generality that the exponent q given
in Lemma 3.5 satisfies q ≤ q1, and observing that min{p, q1} ≤ min{q, q1}, we find
that the choice q̃ = q is possible.

Theorem 3.4 is an immediate consequence of Lemmas 3.5 and 3.6.

Corollary 3.7 (Control-to-state mapping). Let the assumption (15) be satisfied,
with q̄ > 3. Assume that (3.3) holds, and define q as in Theorem 3.4. Then the
solution operator

S : R
n → Hq(O; C3) ×W 1,q(Ω)

which assigns to every control u ∈ Rn the weak solution (H, y) ∈ Hq(O; C3) ×
W 1,q(Ω) of (1)–(2) is well defined and continuous.

4 Linearized equation

Our goal in this section is to establish the differentiability of the control-to-state
mapping S : R

n → Hq(O; C3) ×W 1,q(Ω). For the remainder of the presentation,
let q ∈ R with 3 < q ≤ q̄ be the exponent obtained in Theorem 3.4. We decompose
the control-to-state mapping into S = (S1,S2), where

S1 : R
n →Hq(O; C

3), S1 : u �→ H,

S2 : R
n →W 1,q(Ω), S2 : u �→ y.

(34)

Let us recall that S1(u) = H ∈ Hq(O; C3) is given by the unique solution to

i ω

∫
O

μH · ψ̄ +

∫
O

r curl H · curl ψ̄ =

∫
Oc0

n∑
j=1

ujvj · curl ψ ∀ψ ∈ Hq′(O; C
3).

(35)

Further, S2(u) = y ∈ W 1,q(Ω) is given by the unique solution to∫
Ω

κ(·, y)∇y · ∇ξ +

∫
Σ

G(σ|y|3y)ξ +

∫
Γ

εσ|y|3yξ =
1

2

∫
Ω

r|curl S1(u)|2 ξ ,

for all ξ ∈ W 1,q′(Ω). Note that, thanks to the linearity of S1, we can simplify S1

by making use of the following vector fields:

Definition 4.1. For every j = 1, . . . , n, let Hj ∈ Hq(O; C3) be defined as the
unique solution to

iω

∫
O

μHj · ψ +

∫
O

r curl Hj · curl ψ =

∫
Oc0

vj · curl ψ ∀ψ ∈ Hq′(O; C
3). (36)
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According to Lemma 3.5, (36) for every j ∈ {1, . . . , n} admits a unique solution
Hj ∈ Hq(O; C3). Therefore, by a superposition principle,

S1(u) =
n∑

j=1

ujHj.

Consequently, for every u ∈ Rn, S2(u) = y is given by the unique solution to

〈Xq(y), ξ〉W 1,q′(Ω)∗,W 1,q′(Ω) :=

∫
Ω

κ(·, y)∇y · ∇ξ +

∫
Σ

G(σ|y|3y)ξ +

∫
Γ

εσ|y|3yξ

(37)

=
1

2

∫
Ω

r|
n∑

j=1

ujcurl Hj|2 ξ ∀ ξ ∈W 1,q′(Ω).

Note that S1 is a bounded linear operator and hence it is continuously differentiable.
Its derivative at an arbitrary point u∗ ∈ Rn in an arbitrary direction u ∈ Rn is
given by

S ′
1(u

∗)u =

n∑
j=1

ujHj. (38)

To show the continuous differentiability of S2 : Rn → W 1,q(Ω), we need to establish
the differentiability of Xq : W 1,q(Ω) → W 1,q′(Ω)∗. For this purpose, we impose
further assumptions on the heat conductivity:

Assumption 4.2. The function κ : Ω × R → R is of class C1 with respect to the
second variable. Further, for every positive real number K, there exists a constant
CK such that

∂κ

∂y
(x, y) ≤ CK

for almost all x ∈ Ω and all y ∈ [−K,K].

Notice that the mapping y �→ σ|y|3y is continuously differentiable from L∞(Γ) to
L∞(Γ) (cf. [AZ90]). Since G : L∞(Σ) → L∞(Σ) is linear and continuous (Lemma
B.2), a similar result applies also to the term containing the nonlocal radiation.
Therefore, Assumption 4.2 implies that the operator Xq : W 1,q(Ω) → W 1,q′(Ω)∗ is
continuously differentiable. Its derivative at an arbitrary point y∗ ∈W 1,q(Ω) in an
arbitrary direction y ∈W 1,q(Ω) is given by

〈X ′
q(y

∗)y, ξ〉 =

∫
Ω

κ(·, y∗)∇y · ∇ξ +

∫
Ω

∂κ

∂y
(·, y∗) y∇y∗ · ∇ξ

+ 4

∫
Σ

G(σ|y∗|3 y) ξ + 4

∫
Γ

ε σ |y∗|3 y ξ ∀ξ ∈W 1,q′(Ω).

(39)

In the following, we prove that X ′
q(y

∗) : W 1,q(Ω) → W 1,q′(Ω)∗ is an isomorphism.
In other words, we should demonstrate that, for every given F ∈ W 1,q′(Ω)∗, the
operator equation

X ′
q(y

∗)y = F in W 1,q′(Ω)∗ (40)
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admits a unique solution y ∈W 1,q(Ω).

Remark 4.3. Notice that (40) corresponds to the following (strong) PDE-formulation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−div
(
κ(x, y∗)∇y +

∂κ

∂y
(x, y∗)y · ∇y∗) = F|Ω in Ω ,

[κ(x, y∗)
∂y

∂�n
+
∂κ

∂y
(x, y∗)y

∂y∗

∂�n
] + 4G(σ|y∗|3y) = F|Σ on Σ,

κ(x, y∗)
∂y

∂�n
+
∂κ

∂y
(x, y∗)y

∂y∗

∂�n
+ 4εσ|y∗|3y = F|Γ on Γ,

(41)

where F|Ω, F|Σ, F|Γ are the corresponding restriction of F on Ω,Σ and Γ, respec-
tively.

Theorem 4.4. Let Assumption 3.3 and Assumption 4.2 be satisfied. Suppose
further that u∗ ∈ Rn, and let (H∗, y∗) = S(u∗). Then, for every F ∈ W 1,q′(Ω)∗,
the variational problem

〈X ′
q(y

∗)y, ξ〉 = 〈F , ξ〉 ∀ξ ∈W 1,q′(Ω) (42)

admits a unique solution y ∈ W 1,q(Ω). Moreover, there is a constant c > 0 inde-
pendent of F such that

‖y‖W 1,q(Ω) ≤ c‖F‖W 1,q′(Ω)∗ . (43)

Proof. First of all, let us introduce the following operators:

Bq(y
∗) : W 1,q(Ω) →W 1,q′(Ω)∗,

〈Bq(y
∗)z, ξ〉 =

∫
Ω

κ(x, y∗)∇z · ∇ξ + 4

∫
Γ

εσ|y∗|3zξ ,

and

Qq(y
∗) : L∞(Ω) →W 1,q′(Ω)∗, 〈Qq(y

∗)z, ξ〉 =
∫
Ω

∂κ
∂y

(x, y∗) z∇y∗ · ∇ξ,
Fq(y

∗) : L∞(Σ) →W 1,q′(Ω)∗, 〈Fq(y
∗)z, ξ〉 = 4

∫
Σ
G(σ|y∗|3 z)ξ,

for all ξ ∈W 1,q′(Ω). Recall that, by virtue of Theorem 3.4 and (17), we have

y∗ ≥ ess inf
Γ

y0 := θ0 > 0. (44)

Therefore, as shown in [MY08a, Lemma 2.1], which is based on the result of
[ERS07], there exists some q0 > 3 such that, for all q̃ ∈ (3, q0], the operator
Bq̃(y

∗) : W 1,q̃(Ω) → W 1,q̃′(Ω)∗ is continuously invertible. Without loss of general-
ity, we may assume that the exponent q > 3 of Theorem 3.4 satisfies q ≤ q0.

Now, the operator X ′
q(y

∗) : W 1,q(Ω) → W 1,q′(Ω)∗ as given in (39) can be decom-
posed into

X ′
q(y

∗) = Bq(y
∗) +Qq(y

∗)Eq,∞ + Fq(y
∗)τ

Σ
. (45)
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where the operator Eq,∞ denotes the continuous injection W 1,q(Ω) ↪→ L∞(Ω) and,
as previously mentioned, the operator τ

Σ
: W 1,q(Ω) → L∞(Σ) is the trace operator.

Consequently, (42) can equivalently be written as the following operator equation:

Bq(y
∗)y +Qq(y

∗)Eq,∞y + Fq(y
∗)τ

Σ
y = F in W 1,q′(Ω)∗.

Thus, we arrive at

(I +B(y∗)−1(Q(y∗)Eq,∞ + Fq(y
∗)τ

Σ
))y = B(y∗)−1F in W 1,q(Ω).

Since q > 3, the embedding operator Eq,∞ : W 1,q(Ω) ↪→ L∞(Ω) and the trace
operator τ

Σ
: W 1,q(Ω) → L∞(Σ) are compact. Therefore, by Fredholm’s theorem,

the assertion will be proven once we are able to show that the equation

(I +B(y∗)−1(Q(y∗)Eq,∞ + Fq(y
∗)τ

Σ
))y = 0 (46)

admits only the trivial solution y = 0. Let y ∈ W 1,q(Ω) be a solution to (46).
Applying the operator B(y∗) to (46) and taking (45) into consideration, we infer
that y satisfies

X ′
q(y

∗)y = 0.

According to (39), the above equality is equivalent to∫
Ω

κ(·, y∗)∇y ·∇ξ+4

∫
Γ

ε σ |y∗|3 y ξ = −4

∫
Σ

G(σ|y∗|3 y) ξ−
∫

Ω

∂κ

∂y
(·, y∗) y∇y∗ ·∇ξ

(47)
for all ξ ∈W 1,q′(Ω).

We are now about to show that y = 0. To this aim, we follow the comparison
principle of Casas and Tröltzsch [CT08] which is an extension result of Křížek
and Liu [KL96]. In combination with this technique, we utilize some well-known
properties of the nonlocal radiation operator G. For every δ ≥ 0, let us introduce
the following sets:

Ωδ := {x ∈ Ω | y(x) > δ}, Ω0 := {x ∈ Ω | y(x) > 0},
Σδ := {x ∈ Σ | (τ

Σ
y
)
(x) > δ}, Σ0 := {x ∈ Σ | (τ

Σ
y
)
(x) > 0}. (48)

Notice that, in order to improve the readability, we will neglect the trace operator
in the arguments of boundary integrals, i.e., we always write τ

Σ
y = y on Σ. Further,

we define the function
yδ := min{δ, y+}, (49)

where y+ = max(0, y). For all δ ≥ 0, yδ belongs to W 1,q(Ω). Further, notice that
∇yδ = 0 a.e. in Ωδ. Setting ξ = yδ in (47) and then using the fact that G is
selfadjoint (see Lemma B.2 in the appendix) lead to∫

Ω

κ(·, y∗)∇y · ∇yδ + 4

∫
Γ

ε σ |y∗|3 y yδ

= −
∫

Ω0\Ωδ

∂κ

∂y
(·, y∗) y∇y∗ · ∇yδ − 4

∫
Σ

G(σ|y∗|3 y) yδ

= −
∫

Ω0\Ωδ

∂κ

∂y
(·, y∗) y∇y∗ · ∇yδ − 4

∫
Σ

σ|y∗|3 yG( yδ).

(50)
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Let us investigate the second term in the right-hand side, which involves the non-
local radiation operator G. To this aim, consider now the decomposition

Σ =
(
Σ0 \ Σδ

) ∪ (Σ \ Σ0

) ∪ Σδ.

The surface integral associated with the operator G is investigated in the following
steps:

Step (i): Let us consider the set Σ0 \Σδ. Since 0 < y ≤ δ almost everywhere (a.e.)
on Σ0 \ Σδ, Hölder’s inequality implies that

−4

∫
Σ0\Σδ

σ|y∗|3y G(yδ) ≤ 4 δ σ ‖y∗‖3
L∞(Σ)

∫
Σ0\Σδ

|G(yδ)|

≤ 4 δ σ ‖y∗‖3
L∞(Σ) meas(Σ0 \ Σδ)

1/2‖G(yδ)‖L2(Σ)

≤ c δmeas(Σ0 \ Σδ)
1/2 ‖yδ‖H1(Ω),

(51)

with a constant c > 0 independent of δ. Note that, in the latter inequality, we also
made use of the continuity of G : L2(Σ) → L2(Σ) and the continuity of the trace
operator from H1(Ω) to L2(Σ).

Step (ii): Let us consider the set Σ \ Σ0. According to Lemma B.2, (4), we can
write G = I − H with a positive operator H : L2(Σ) → L2(Σ) in the sense that if
v ≥ 0 a.e. on Σ then H(v) ≥ 0 a.e. on Σ. Moreover, the operator H is selfadjoint.
According to (48)–(49), it holds that yδ ≥ 0 a.e. on Σ, yδ = 0 a.e. on Σ \ Σ0 and
y ≤ 0 a.e. on Σ \ Σ0. These facts along with the positivity of H lead to

−4

∫
Σ\Σ0

σ|y∗|3y G(yδ) = −4

∫
Σ\Σ0

σ|y∗|3y yδ︸ ︷︷ ︸
=0

+4

∫
Σ\Σ0

σ|y∗|3y︸ ︷︷ ︸
≤0

H(yδ)︸ ︷︷ ︸
≥0

≤ 0. (52)

Step (iii): Finally, let us consider the set Σδ. By Lemma B.2 in the appendix, the
operator H also belongs to L(L∞(Σ), L∞(Σ)) and satisfies ‖H‖L(L∞(Σ), L∞(Σ)) ≤ 1.
Consequently

G(yδ) = yδ − H(yδ) ≥ yδ − ‖H‖L(L∞(Σ), L∞(Σ)) ‖yδ‖L∞(Σ) ≥ yδ − δ = 0 on Σδ,

The above inequality, together with the fact that y > δ ≥ 0 a.e. on Σδ, implies
immediately that

−4

∫
Σδ

σ|y∗|3y G(yδ) ≤ 0. (53)

Now applying the inequalities (51)–(53) to (50) yields∫
Ω

κ(·, y∗)∇y · ∇yδ + 4

∫
Γ

εσ|y∗|3yyδ

≤ −
∫

Ω0\Ωδ

∂κ

∂y
(·, y∗) y∇y∗ · ∇yδ + c δmeas(Σ0 \ Σδ)

1/2 ‖yδ‖H1(Ω).
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Since yyδ ≥ y2
δ , y∇yδ = yδ ∇yδ, and ∇y · ∇yδ = |∇yδ|2, it follows that∫

Ω

κ(·, y∗) |∇yδ|2 + 4

∫
Γ

εσ|y∗|3y2
δ

≤ −
∫

Ω0\Ωδ

∂κ

∂y
(·, y∗)∇y∗yδ∇yδ + c δmeas(Σ0 \ Σδ)

1/2 ‖yδ‖H1(Ω)

≤ c δ(‖∇y∗‖L2(Ω0\Ωδ)‖∇yδ‖L2(Ω0\Ωδ) + meas(Σ0 \ Σδ)
1/2‖yδ‖H1(Ω)),

(54)

with a constant c independent of δ. Notice that, in the latter inequality, we have
also used Assumption 4.2 together with the facts that y∗ ∈ C(Ω) and yδ ≤ δ (see
(49)). Hence, along with (20)–(21) and (44), Friedrich’s inequality applied to (54)
yields that

‖yδ‖2
H1(Ω) ≤ c δ (‖∇y∗‖L2(Ω0\Ωδ)‖∇yδ‖L2(Ω0\Ωδ) + meas(Σ0 \ Σδ)

1/2‖yδ‖H1(Ω)),

with a constant c > 0 independent of δ. This implies that

‖yδ‖L2(Ω) ≤ c δ (‖∇y∗‖L2(Ω0\Ωδ) + meas(Σ0 \ Σδ)
1/2)

holds with a constant c > 0 independent of δ. Based on the latter estimate, we
arrive at

meas(Ωδ) =
1

δ2

∫
Ωδ

δ2 ≤ 1

δ2

∫
Ω

y2
δ ≤ c (‖∇y∗‖L2(Ω0\Ωδ) + meas(Σ0 \ Σδ)

1/2)2 . (55)

On the other hand, in view of (48),

meas(Ω0 \ Ωδ) → 0 and meas(Σ0 \ Σδ) → 0, as δ → 0. (56)

Thus, by (55)–(56), we conclude that

meas(Ω0) = lim
δ↘0

meas(Ωδ) ≤ lim
δ↘0

c(‖∇y∗‖L2(Ω0\Ωδ) + meas(Σ0 \ Σδ)
1/2)2 = 0.

The latter equality implies that y ≤ 0 holds almost everywhere in Ω. Applying the
same procedure to the solution −y of (46), we obtain y ≥ 0. In conclusion y = 0.
This completes the proof.

Theorem 4.5. Let Assumption 3.3 and Assumption 4.2 be satisfied. Then, the op-
erator S : Rn → Hq(O; C3)×W 1,q(Ω) is continuously differentiable. Its derivative
at u∗ ∈ Rn in an arbitrary direction u ∈ Rn is given by S ′(u∗)u = (

∑n
j=1 ujHj,S ′

2(u
∗)u)

where Hj is as defined in Definition 4.1 and S ′
2(u

∗)u = y ∈W 1,q(Ω) is given by the
unique solution to∫

Ω

κ(·, y∗)∇y · ∇ξ +

∫
Ω

∂κ

∂y
(·, y∗) y∇y∗ · ∇ξ + 4

∫
Σ

G(σ|y|3y)ξ + 4

∫
Γ

εσ|y∗|3yξ

=

n∑
j=1

uj

∫
Ω

r(Re curl H∗ · Re curl Hj + Im curl H∗ · Im curl Hj)ξ, (57)

forall ξ ∈W 1,q′(Ω). Here, (H∗, y∗) := S(u∗).
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Remark 4.6. Notice that (57) corresponds to the following PDE-formulation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div
(
κ(x, y∗)∇y +

∂κ

∂y
(x, y∗)y∇y∗) =

n∑
j=1

ujr(Re curl H∗ · Re curl Hj

+ Im curl H∗ · Im curl Hj) in Ω ,

[κ(x, y∗)
∂y

∂�n
+
∂κ

∂y
(x, y∗)y

∂y∗

∂�n
] + 4G(σ|y∗|3y) = 0 on Σ,

κ(x, y∗)
∂y

∂�n
+
∂κ

∂y
(x, y∗)y

∂y∗

∂�n
+ 4εσ|y∗|3y = 0 on Γ.

(58)
The system (58) is referred to as the linearized system of (1).

Proof. It suffices to prove that S2 : Rn → W 1,q(Ω) is continuously differentiable.
Let us introduce the operator T : W 1,q(Ω) × Rn →W 1,q′(Ω)∗ by

〈T (y, u), ξ〉W 1,q′(Ω)∗W 1,q′ (Ω) := 〈Xq(y), ξ〉W 1,q′(Ω)∗W 1,q′(Ω)

− 1

2

∫
Ω

r|
n∑

j=1

ujcurl Hj |2 ξ ∀ξ ∈W 1,q′(Ω),

where Xq is as defined in (37). Note that T is well-defined since |curl Hj|2 ∈
L

q
2 (Ω) ↪→ W 1,q′(Ω)∗ (see Remark 3.2). For an arbitrarily fixed u∗ ∈ Rn, we set

y∗ = S2(u
∗), and hence T (y∗, u∗) = 0 (cf. (37)). Furthermore, T is continuously

differentiable with ∂yT (y∗, u∗) = X ′
q(y

∗). Consequently, Theorem 4.4 implies that
∂yT (y∗, u∗) : W 1,q(Ω) → W 1,q′(Ω)∗ is an isomorphism. Thus, by the implicit
function theorem, S2 is continuously differentiable at u∗, and its derivative is given
by

S ′
2(u

∗)u = −∂yT (y∗, u∗)−1∂uT (y∗, u∗)u = −X ′
q(y

∗)−1∂uT (y∗, u∗)u. (59)

The derivative ∂uT (y∗, u∗)u ∈W 1,q′(Ω)∗ on the other hand is given by

〈∂uT (y∗, u∗)u, ξ〉W 1,q′(Ω)∗W 1,q′(Ω) = −
n∑

j=1

uj

∫
Ω

r

(
Re curl

( n∑
j=1

u∗jHj

) · Re curl Hj

+Im curl
( n∑

j=1

u∗jHj

) · Im curl Hj

)
ξ ∀ξ ∈W 1,q′(Ω).

(60)

Using the expression H∗ = S1(u
∗) =

n∑
j=1

u∗jHj, (59)–(60) immediately imply that

S ′
2(u

∗)u = y is given by the unique solution to (57). Hence, the assertion is valid.

Remark 4.7. Note that, since X ′
q(y

∗) is an isomorphism (Theorem 4.4), we also
conclude from (39) and (57) that

S ′
2(u

∗)u =

n∑
j=1

ujX
′
q(y

∗)−1Kj(H
∗), (61)
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where Kj(H
∗) ∈W 1,q′(Ω)∗, j = 1 . . . n, is defined by

〈Kj(H
∗), ξ〉W 1,q′(Ω)∗,W 1,q′(Ω) :=∫

Ω

r(Re curl H∗ · Re curl Hj + Im curl H∗ · Im curl Hj)ξ ∀ξ ∈W 1,q′(Ω).

(62)

5 Optimal control problem

We now focus on the control of the solution to (1)–(2), which shall be established
based on the theoretical results presented in the previous sections. Given fixed
data z ∈ L2(Ω)3, Hd ∈ L2(O; C)3, ρ ≥ 0 and β > 0, we look for solutions of the
following control problem:

minimize J(u,H, y) :=
1

2

∫
Ω

|∇y − z|2 +
ρ

2

∫
O

|H −Hd|2 +
β

2
|u|2, (P)

subject to
Aq(H, y) = Equ, (63)

and
ya(x) ≤ y(x) ≤ yb(x) for a.a. x ∈ Ω,
ua ≤ uj ≤ ub for all j ∈ {1, . . . , n}. (64)

Invoking the control-to-state mapping S, the control problem (P) can be reduced
to {

min
u∈Uad

f(u) := J(u,S1(u),S2(u))

subject to ya(x) ≤ (S2(u))(x) ≤ yb(x) for a.a. x ∈ Ω,
(P)

where the admissible set is defined by

Uad = {u ∈ R
n | ua ≤ uj ≤ ub for all j ∈ {1, . . . , n}}.

In what follows, a control u ∈ Rn is said to be feasible (for (P)) if and only if
u ∈ Uad and ya(x) ≤ (S2(u))(x) ≤ yb(x) holds for a.a. x ∈ Ω.

Theorem 5.1. Let Assumption 3.3 be satisfied and assume that there exists a
feasible control of (P). Then, the optimal control problem (P) admits a solution.

Proof. The assertion follows from the Weierstrass theorem since the set of all fea-
sible controls is compact and the reduced objective functional f is continuous.

Notice that the solution to (P) is not necessarily unique due to the nonlinearities
involved in the state equation. We therefore concentrate in our analysis on local
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solutions in the following sense: A feasible control u∗ ∈ Rn is called a local solution
to (P) with respect to the Rn-topology if there exists some r > 0 such that

f(u∗) ≤ f(u)

holds for all feasible controls u satisfying |u− u∗| ≤ r. Next, by M(Ω), we denote
the space of all regular Borel measures on the compact set Ω. According to the
Riesz-Radon theorem, the space M(Ω) can be isometrically identified with the
dual space C(Ω)∗ with respect to the duality pairing

〈μ, ϕ〉C(Ω)∗,C(Ω) :=

∫
Ω

ϕdμ, ϕ ∈ C(Ω), μ ∈ M(Ω).

Let us now introduce the notion of the Lagrange functional associated with (P).

Definition 5.2 (Lagrange functional associated with (P)). The Lagrange func-
tional associated with (P) is defined by L : Rn ×M(Ω) ×M(Ω) → R,

L (u, μa, μb) = f(u) +

∫
Ω

(
ya − S2(u)

)
dμa +

∫
Ω

(S2(u) − yb

)
dμb.

In what follows, let u∗ stand for a local solution to (P) and y∗ = S2(u
∗). Thanks

to the continuous differentiability of the solution operator S, the reduced objective
functional f : Rn → R, given by

f(u) =
1

2

∫
Ω

|∇S2(u) − z|2 +
ρ

2

∫
O

|S1(u) −Hd|2 +
β

2
|u|2,

is continuously Fréchet differentiable. Its first derivative at u∗ in the direction
u ∈ Rn is given by

f ′(u∗) u =

∫
Ω

(∇y∗ − z) · ∇(S ′
2(u

∗)u) + ρ

∫
O

Re (H∗ −Hd) · Re
(S ′

1(u
∗)u
)

+ ρ

∫
O

Im (H∗ −Hd) · Im
(S ′

1(u
∗)u
)

+ βu∗ · u,

where H∗ = S1(u
∗) and y∗ = S2(u

∗). We now recall from (38) that S ′
1(u

∗)u =∑n
j=1 ujHj, where the vector fields Hj ∈ Hq(O; C3) are as defined in Definition

4.1. Consequently

f ′(u∗) u =

∫
Ω

(∇y∗ − z) · ∇(S ′
2(u

∗)u) + ρ
n∑

j=1

uj

(∫
O

Re (H∗ −Hd) · Re Hj

+

∫
O

Im (H∗ −Hd) · Im Hj

)
+ βu∗ · u

=

∫
Ω

(∇y∗ − z) · ∇(S ′
2(u

∗)u) + (ρh∗ + βu∗) · u,
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with

h∗j :=

∫
O

Re (H∗ −Hd) · Re Hj + Im (H∗ −Hd) · Im Hj j = 1, . . . , n.

Further, let us introduce the linear and continuous operator L : W 1,q(Ω) →
W 1,q(Ω)∗ defined by

〈Ly, v〉W 1,q(Ω)∗,W 1,q(Ω) :=

∫
Ω

(∇y − z) · ∇v ∀v ∈W 1,q(Ω). (65)

Using this operator, we arrive at

f ′(u∗) u = 〈Ly∗,S ′
2(u

∗) u〉W 1,q(Ω)∗,W 1,q(Ω) + (ρh∗ + βu∗) · u. (66)

Notice that, since f and S2 are continuously Fréchet differentiable, L is continu-
ously Fréchet differentiable, so that the following definition makes sense:

Definition 5.3 (Lagrange multiplier associated with (P)). Let u∗ ∈ Rn be a local
solution to (P). Then, (μa, μb) ∈ M(Ω) ×M(Ω) is said to be a pair of Lagrange
multipliers associated with the state constraints of (P) if and only if

∂uL (u∗, μa, μb)(u− u∗) ≥ 0 ∀u ∈ Uad, (67)

μa ≥ 0, μb ≥ 0, (68)∫
Ω

(
ya − S2(u

∗)
)
dμa =

∫
Ω

(S2(u
∗) − yb

)
dμb = 0. (69)

Note that (67) is the so-called variational inequality and (68)–(69) are the comple-
mentarity slackness conditions.

To establish the existence of Lagrange multipliers, we apply the Karush-Kuhn-
Tucker (KKT) theorem (cf. Zowe and Kurcyusz [ZK79]). More precisely, we rely
on a Slater-type constraint qualification with respect to the state constraints in
(P). This assumption is referred to as the linearized Slater condition.

Definition 5.4 (Linearized Slater condition for (P)). A control u∗ ∈ Uad satisfies
the linearized Slater condition for (P) if there exist some u0 ∈ Uad and some
constant c > 0 such that

ya(x) + c ≤ (S2(u
∗)
)
(x) +

(S ′
2(u

∗)(u0 − u∗)
)
(x) ≤ yb(x) − c ∀x ∈ Ω.

The formula for the derivative S ′
2(u

∗)(u0 −u∗) reads as in (57). See also the strong
PDE-formulation in Remark 4.6.

Theorem 5.5 (First-order necessary optimality conditions for (P)). Let Assump-
tion 3.3 and Assumption 4.2 be satisfied. Moreover, let u∗ be a local solution to
(P) satisfying the linearized Slater condition and set (H∗, y∗) = S(u∗). Then, there
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exist Lagrange multipliers μa, μb ∈ M(Ω)and an adjoint state p∗ ∈ W 1,q′(Ω) with
1 ≤ q′ < 3

2
such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−div(κ(x, y∗)∇p∗) +
∂κ

∂y
(x, y∗)∇y∗ · ∇p∗ = −Δy∗ + div z + (μb − μa)|Ω in Ω,

[κ(x, y∗)
∂p∗

∂�n
] + 4σ|y∗|3G(p∗) = −∂y

∗

∂�n
+ z · �n+ (μb − μa)|Σ on Σ,

κ(x, y∗)
∂p∗

∂�n
+ 4εσ|y∗|3p∗ = (μb − μa)|Γ on Γ,

(70)

μa ≥ 0, μb ≥ 0, (71)∫
Ω

(
ya − S2(u

∗)
)
dμa =

∫
Ω

(S2(u
∗) − yb

)
dμb = 0, (72)

u∗ = P[ua,ub]

(− 1

β
(v∗ + ρh∗)

)
, (73)

v∗j =

∫
Ω

p∗r(Re curl H∗ · Re curl Hj + Im curl H∗ · Im curl Hj) ∀j ∈ {1, . . . , n},

(74)

h∗j :=

∫
O

Re (H∗ −Hd) · Re Hj + Im (H∗ −Hd) · Im Hj ∀j ∈ {1, . . . , n}, (75)

where Hj is defined as in Definition 4.1 and P[ua,ub] denotes the standard projection
from Rn onto [ua, ub]

n.

Proof. Since u∗ satisfies the linearized Slater assumption, there exist Lagrange
multipliers μa, μb ∈ M(Ω) satisfying (67)-(69) (cf. [ZK79]). Let us demonstrate
now that (67) is equivalent to the existence of p∗ ∈ W 1,q′(Ω) with 1 ≤ q′ < 3

2
and

h∗, v∗ ∈ Rn satisfying (70) and (73)–(75). In view of Remark 4.7, the derivative of
S2 at u∗ in the direction u ∈ Rn is given by

S ′
2(u

∗)u = y =
n∑

j=1

ujX
′
q(y

∗)−1Kj(H
∗). (76)

Taking (66) and (76) into account, we find that

∂uL (u∗, μa, μb)(u− u∗)

= f ′(u∗)(u− u∗) −
∫
Ω

S ′
2(u

∗)(u− u∗)dμa +

∫
Ω

S ′
2(u

∗)(u− u∗)dμb

=

n∑
j=1

(uj − u∗j)〈Ly∗ − μ̃a + μ̃b, X
′
q(y

∗)−1Kj(H
∗)〉W 1,q(Ω)∗,W 1,q(Ω)

+ (ρh∗ + βu∗) · (u− u∗),
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where μ̃a, and μ̃b denote the elements ofW 1,q(Ω)∗ associated with μa, μb ∈ C(Ω)∗ ↪→
W 1,q(Ω)∗ (for q > 3) in the following sense:

〈μ̃a, v〉W 1,q(Ω)∗,W 1,q(Ω) =

∫
Ω

v dμa, 〈μ̃b, v〉W 1,q(Ω)∗,W 1,q(Ω) =

∫
Ω

v dμb ∀v ∈W 1,q(Ω).

(77)

Thus, by (62), we infer that

∂uL (u∗, μa, μb)(u− u∗)

=

n∑
j=1

(uj − u∗j)〈(X ′
q(y

∗)−1)∗(Ly∗ − μ̃a + μ̃b), Kj(H
∗)〉W 1,q′ (Ω),W 1,q′ (Ω)

∗

+ (ρh∗ + βu∗) · (u− u∗)

=

n∑
j=1

(uj − u∗j)
∫
Ω

(X ′
q(y

∗)−1)∗(Ly∗ − μ̃a + μ̃b)r(Re curl H∗ · Re curl Hj

+ Im curl H∗ · Im curl Hj) + (ρh∗ + βu∗) · (u− u∗).

(78)

On the other hand, the weak formulation of (70) is given by∫
Ω

κ(·, y∗)∇p∗ · ∇v +

∫
Ω

∂κ

∂y
(·, y∗)∇y∗ · ∇p∗ v + 4

∫
Σ

σ|y∗|3G(p∗) v

+4

∫
Γ

εσ|y∗|3p∗v =

∫
Ω

(∇y∗ − z) · ∇v −
∫

Ω

v dμa +

∫
Ω

v dμb ∀v ∈W 1,q(Ω).

(79)

Recall that X ′
q(y

∗) : W 1,q(Ω) → W 1,q′(Ω)∗ is given by

〈X ′
q(y

∗)v, ξ〉W 1,q′(Ω)∗,W 1,q′(Ω) =

∫
Ω

κ(·, y∗)∇v · ∇ξ +

∫
Ω

∂κ

∂y
(·, y∗) v∇y∗ · ∇ξ

+ 4

∫
Σ

G(σ|y∗|3 v) ξ + 4

∫
Γ

ε σ |y∗|3 v ξ ∀ξ ∈ W 1,q′(Ω), ∀v ∈W 1,q(Ω).

Since the operator G is selfadjoint, the adjoint operator X ′
q(y

∗)∗ : W 1,q′(Ω) →
W 1,q(Ω)∗ associated with X ′

q(y
∗) is given by

〈X ′
q(y

∗)∗ξ, v〉W 1,q(Ω)∗,W 1,q(Ω) =

∫
Ω

κ(·, y∗)∇ξ · ∇v +

∫
Ω

∂κ

∂y
(·, y∗)∇y∗ · ∇ξ v

+ 4

∫
Σ

σ|y∗|3G(ξ) v + 4

∫
Γ

ε σ |y∗|3 ξ v ∀ξ ∈ W 1,q′(Ω), ∀v ∈W 1,q(Ω).

Altogether, we can write the weak formulation (79) as the following operator equa-
tion:

X ′
q(y

∗)∗p∗ = Ly∗ − μ̃a + μ̃b, in W 1,q(Ω)∗. (80)
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In view of Theorem 4.4, the operator X ′
q(y

∗) : W 1,q(Ω) → W 1,q′(Ω)∗ is an isomor-
phism such that the adjoint operator X ′

q(y
∗)∗ : W 1,q′(Ω) → W 1,q(Ω)∗ is in turn an

isomorphism. Thus, (80) admits a unique solution p∗ ∈ W 1,q′(Ω) with 1 ≤ q′ < 3
2

given by

p∗ =
(
X ′

q(y
∗)∗
)−1(

Ly∗ − μ̃a + μ̃b

)
=
(
X ′

q(y
∗)−1

)∗(
Ly∗ − μ̃a + μ̃b

)
.

Applying p∗ to (78), we have

∂uL (u∗, μs, μa, μb)(u− u∗) =

n∑
j=1

(uj − u∗j)
∫
Ω

p∗r(Re curl H∗ · Re curl Hj

+ Im curl H∗ · Im curl Hj) + (ρh∗ + βu∗) · (u− u∗)

= (v∗ + ρh∗ + βu∗) · (u− u∗),

where v∗ ∈ R
n is specified by

v∗j =

∫
Ω

p∗r(Re curl H∗ · Re curl Hj + Im curl H∗ · Im curl Hj) ∀j = 1, . . . , n.

Consequently, the variational inequality (67) implies that

0 ≤ ∂uL (u∗, μs, μa, μb)(u− u∗) = (v∗ + ρh∗ + βu∗) · (u− u∗) ∀u ∈ Uad.

By classical arguments, a pointwise evaluation of the above variational inequality
yields the desired projection formula

u∗ = P[ua,ub]

(− 1

β
(v∗ + ρh∗)

)
.

This completes the proof.

A Tools for the Maxwell equations

Throughout this section, we consider a simply connected, bounded Lipschitz do-
main O ⊂ R3 such that

O :=
m⋃

i=0

Oi, (m ≥ 1), O0, . . . , Om ∈ C0,1, Oi ∩Oj = ∅, i �= j . (81)

Let Ic ⊂ {0, . . . , m} be the index set of the conducting materials, and denote
Oc :=

⋃
i∈Ic

Oi, Onc := O \Oc.

We assume that

dist(Oi, Oj) > 0 for i, j ∈ Ic , i �= j . (82)
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A.1 Embedding results

In order to deal with the weak formulation of the Maxwell equations, embedding
results for vector fields that satisfy a curl a div, and a γn or γt constraint are very
important.

For 1 ≤ p, α ≤ ∞, we introduce

Wp,α
n (O) := {ψ ∈ Lp

curl (O) ∩ Lp
div(O) : γn(ψ) ∈ Lα(∂O)} ,

Wp,α
t (O) := {ψ ∈ Lp

curl (O) ∩ Lp
div(O) : γt(ψ) ∈ Lα(∂O)} . (83)

In simply connected domains O, these are Banach spaces with repsect to the graph
norms

‖ψ‖Wp,α
n (O) := ‖curl ψ‖[Lp(O)]3 + ‖ divψ‖Lp(O) + ‖γn(ψ)‖Lα(∂O) ,

‖ψ‖Wp,α
n (O) := ‖curl ψ‖[Lp(O)]3 + ‖ divψ‖Lp(O) + ‖γt(ψ)‖Lα(∂O) .

The following result has been proved in [Dru07].

Lemma A.1. Let O ⊂ R
3 be a simply connected bounded Lipschitz domain. Then

there exists some q1 > 3 such that for all p ∈ [q′1, q1], we have Wp,α
n (O) ↪→ [Ls(O)]3

with continuous embedding, s := min{q1, p∗, 3α/2} (p∗ = Sobolev embedding
exponent). If ∂O ∈ C1, then one can choose q1 = +∞. The same is valid for the
space Wp,α

t (O).

We also need embedding results for the case that one of the constraints is perturbed
by a measurable coefficient. For a function μ satisfying (18), we introduce

Vμ(O) :=
{
ψ ∈ [L2(O)]3

∣∣∣ curl ψ ∈ [L2(O)]3, div(μψ) ∈ L2(O), γn(μψ) = 0 on ∂O
}
.

(84)

We endow Vμ(O) with the graph norm

‖ψ‖Vμ(O) := ‖ψ‖[L2(O)]3 + ‖curl ψ‖[L2(O)]3 + ‖ div(μψ)‖L2(O) .

Obviously, Vμ(O) is a Hilbert space in this topology.

Lemma A.2. Let O be a simply connected Lipschitz domain. Assume that μ
satisfies (18), and that the domain O satisfies (11).

Then there exists a number s > 3 such that Vμ(O) ↪→ [Ls(O)]3 with continuous
embedding. If ∂O ∈ C1, then one can choose s = 6.

The embedding Vμ(O) ↪→ [Lp(O)]3 is compact for all 1 ≤ p < s.

The following property of the spaces Hq(O) (cf. (8)) is easy to derive (see for
example [Dru07] for a proof):

Lemma A.3. Let O ⊂ R3 have the structure (81) considered throughout the paper
and satisfy (82). Then, if H ∈ Hq(O), we have γn(curl H) = 0 on ∂Oi, i ∈ Ic.
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A.2 A decomposition lemma

Lemma A.4. Let O ⊂ R
3 be a simply connected, bounded Lipschitz domain with

the property (82). Let r satisfy, in addition to (22), the condition r ∈ C(Oi), for
i ∈ Ic.

Then there exists a q1 > 3 such that for all q ∈ [q′1, q1], and for all f ∈ [Lq(O)]3 such
that f = 0 almost everywhere in Onc, there exist unique A ∈ {Hq(O) : divA =
0, γt(A) = 0} and pi ∈ W 1,q

M (Oi) (Subscript M = mean-value zero) , i ∈ Ic such
that

f = curl A+
1

r

∑
i∈Ic

∇pi χOi
. (85)

In addition, we can find a positive constant c = c(O, q, r) such that

‖A‖Lq
curl (O) +

∑
i∈Ic

‖pi‖W 1,q(Oi) ≤ c ‖f‖[Lq(O)]3 . (86)

Proof. For each i ∈ Ic, we have Oi ∈ C0,1, and 1/r ∈ C(Oi) is bounded away from
zero and from above.

According to the main result of the paper [ERS07] (cf. also the remark 3.18 of
[ERS07]) there exists q1 > 3 such that for i ∈ Ic and for all q ∈ [q′1, q1], there is a
unique pi ∈ W 1,q

M (Oi) satisfying∫
Oi

1

r
∇pi · ∇ξ =

∫
Oi

f · ∇ξ , (87)

for all ξ ∈W 1,q′
M (Oi), and the estimate

‖p‖W 1,q(Oi) ≤ c(q, Oi, r) ‖f‖[Lq(Oi)]3 .

Define {
w = f − 1/r∇pi in Oi, i ∈ Ic,

0 elsewhere.
(88)

Then w ∈ [Lq1(O)]3, and in view of (87), divw = 0 in O, and γn(w) = 0 on ∂O, in
the weak sense.

We now prove that we can find A ∈ {Lq
curl (O) : divA = 0, γt(A) = 0} such that

curl A = w.

We at first prove that

{ψ ∈ [L2(O)]3 : divψ = 0, γn(ψ) = 0} = {curl A : A ∈ L2
curl (O), γt(A) = 0} .

(89)
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To verify the last identity, consider first ψ := curl A, where A ∈ L2
curl (O), satisfies

γt(A) = 0. It is readily verified that divψ = 0, γn(ψ) = 0 in the weak sense. Thus

{ψ ∈ [L2(O)]3 : divψ = 0, γn(ψ) = 0} ⊇ {curl A : A ∈ L2
curl (O), γt(A) = 0} .

(90)

Consider now ψ ∈ [L2(O)]3 with divψ = 0, γn(ψ) = 0, and assume that∫
O

ψ · curl A = 0 , ∀ A ∈ L2
curl (O), γt(A) = 0 .

Then, by definition, curl ψ = 0 in the weak sense. Since also divψ = 0, γn(ψ) = 0,
and since O is simply connected, it follows ψ = 0. We deduce that

{ψ ∈ [L2(O)]3 : divψ = 0, γn(ψ) = 0} ∩ {curl A : A ∈ L2
curl (O), γt(A) = 0}⊥ = ∅ .

This, combined with (90), achieves to prove (89).

We can further show that

{curl A : A ∈ L2
curl (O), γt(A) = 0}

= {curl A : A ∈ L2
curl (O), div(A) = 0, γt(A) = 0} . (91)

As a matter of fact, given A ∈ L2
curl (O), γt(A) = 0, one finds a unique a ∈W 1,2

0 (O)
such that ∫

O

∇a · ∇ξ =

∫
O

A · ∇ξ ,

for all ξ ∈ W 1,2
0 (O). Define the vector field Ā := A −∇a. Then curl A = curl Ā,

showing that

{curl A : A ∈ L2
curl (O), γt(A) = 0}

⊆ {curl A : A ∈ L2
curl (O), div(A) = 0, γt(A) = 0} .

In view of (89) and (91), there exists A ∈ L2
curl (O) such that divA = 0, γt(A) = 0,

and w = curl A.

From the definition (88) of w, we deduce that curl A belongs to [Lq(O)]3.

Using the notation (83), we can write that A ∈ Wq,∞
t (O). Thus, by the embedding

result of Lemma A.1, A ∈ [Lq(O)]3, and

‖A‖Lq
curl (O) ≤ c(q, O, r) ‖f‖[Lq(O)]3 ,

proving the estimate.

Finally, we easily verify from (88) that curl A = 0 in O \ Oc, which leads to
A ∈ Hq(O).
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B Essential properties of the radiation operators

Let Ω ⊂ R3 be a bounded Lipschitz domain, Ω =
⋃m

i=0 Ωi,m ≥ 1, where {Ωi}i=0,...,m

is a family of bounded Lipschitz domains such that Ωi ∩Ωj = ∅ for i �= j. Assume
that Ω0 is enclosed in Ω in the sense that every x ∈ ∂Ω0 is an interior point of Ω.
Set Σ := ∂Ω0 and Γ = ∂Ω.

We introduce the linear integral operator K defined by(
K(R)

)
(z) :=

∫
Σ

w(z, y)R(y) dSy for z ∈ Σ , (92)

where the kernel w : Σ×Σ → R, called the view factor in the context of radiation
theory, is given by

w(z, y) :=

⎧⎨⎩
�n(z) · (y − z) �n(y) · (z − y)

π|y − z|4 Θ(z, y) if z �= y ,

0 if z = y ,
(93)

where Θ is the visibility function that penalizes the presence of opaque obstacles

Θ(z, y) =

{
1 if ]z, y[⊂ Ω0 ,

0 else.

With the symbol ]z, y[, we denote the set conv{z, y}\{z, y}, and �n is a unit normal
to Σ.

Under mild assumptions on the geometry and on the emissivity ε (cf. Lemma B.2,
(3)), the solution operator of the radiosity equation (I−(1−ε)K)−1 is well defined.
We then can define another linear operator

G := (I −K) (I − (1 − ε)K)−1 ε , (94)

We recall some basics about the nonlocal radiation operators K, G. For Banach
spaces X, Y , we denote by L(X, Y ) the set of all linear bounded operators from X
into Y . The following Lemma has been proved in [Han02] for polyhedral surfaces,
in [Tii97] for piecewise C1−boundaries.

Lemma B.1. Let Σ ∈ C1 piecewise. Let w : Σ × Σ → R denote the view factor
(93). Then, for almost all z ∈ Σ,∫

Σ

w(z, y) dSy ≤ 1 .

In addition, equality almost everywhere is valid if and only if the enclosure condition
(10) is satisfied.

The following lemma states easily derived, but essential consequences of Lemma
B.1.
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Lemma B.2. Let the hypotheses of Lemma B.1 be valid.

(1) For each 1 ≤ p ≤ ∞ the operator K extends to a bounded linear operator from
Lp(Σ) into itself, and the norm estimate ‖K‖L(Lp(Σ), Lp(Σ)) ≤ 1 is valid.

(2) The operator K is positive, in the sense that K(f) ≥ 0 almost everywhere on
Σ, whenever f ≥ 0 almost everywhere on Σ. Moreover, K is positive semi
definite and selfadjoint in L2(Σ).

(3) If ε : Σ → R is such that

0 < εl ≤ ε(z) ≤ 1 on Σ ,

then the operator [I − (1 − ε)K] has an inverse in L(Lp(Σ), Lp(Σ)).

(4) The operator G is positive semi definite and selfadjoint in L2(Σ). The operator
H := I −G is positive, selfadjoint in L2(Σ), and satisfies for all 1 ≤ p ≤ ∞ the
norm estimate ‖H‖L(Lp(Σ),Lp(Σ)) ≤ 1 .

(5) Assume that (10) is valid. Then the kernel of the operator G consists of
the functions constant almost everywhere on Σ. The range of G consists of
functions with mean value zero over Σ.
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