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Abstrat. O�-plane sattering of time-harmoni plane waves by a di�ration grating witharbitrary ondutivity and general border pro�le is onsidered in a rigorous eletromagnetiformulation. The integral equations for onial di�ration were obtained using the boundaryintegrals of the single and double layer potentials inluding the tangential derivative of singlelayer potentials interpreted as singular integrals. We derive an important formula for thealulation of the absorption in onial di�ration. Some rules whih are expedient for thenumerial implementation of the theory are presented. The e�ienies and polarizationangles ompared with those obtained by Lifeng Li for transmission and re�etion gratingsare in a good agreement. The ode developed and tested is found to be aurate and e�ientfor solving o�-plane di�ration problems inluding high-ondutive surfaes, borders withedges, real border pro�les, and gratings working at short wavelengths.1. IntrodutionToday a lot of optial appliations of onial di�ration (o�-plane) by gratings are wellknown, in partiular: gratings working in the x-ray and extreme ultraviolet (EUV) rangesat grazing angles; shallow and deep high-ondutive, anomalously absorbing gratings illu-minated at near normal and grazing inidene; high-spatial-frequeny, deep transmissiongratings having high anti-re�etion and polarization onversion properties; generalized spe-trosopi ellipsometry and satterometry tehniques. For the numerial simulation of onialdi�ration by optial gratings of arbitrary groove pro�les and ondutivity several rigorousmethods have been proposed. Among them we know: di�erential [1, 2℄, oordinate transfor-mation [3, 4, 5, 6℄, modal [7℄, �titious soures [8, 9℄, and �nite element [10, 11℄ methods. InRef. [12℄ T-matrix and integral equation methods were desribed for o�-plane transmissionand low-onduting sine-pro�led gratings.For the lassial (in-plane) di�ration problems integral equation methods have been es-tablished as an e�ient and aurate numerial tool. Many di�erent, quite sophistiatedintegral formulations have been proposed and implemented, f. e.g. [13, 14, 15, 16, 17, 18,19, 20, 21, 22℄. The methods are used to takle suessfully high-ondutive deep-groovegratings in the TM polarization, pro�le urves with orners, ehelles, gratings with thinoated layers, randomly rough mirrors and gratings, and di�ration problems at very smallwavelength-to-period ratios [23, 24, 25, 26, 27, 28, 29, 30℄. The aim of this paper is to studyan integral method for onial di�ration on the simplest model, the di�ration of a time-harmoni plane wave by a surfae, whih in Cartesian oordinates (x, y, z) is periodi in x-and invariant in z-diretion and separates two di�erent materials. Speial attention is paidto the main aspets of the integral equation method for arbitrarily polarized plane wavesand gratings with one border having any outline and ondutivity.The eletromagneti formulation of the di�ration by general gratings, whih are modeledas in�nite periodi strutures, an be redued to a system of Helmholtz equations for thez-omponents of the eletri and magneti �elds in R2, where the solutions have to bequasiperiodi in one variable, subjet to radiation onditions with respet to the other andsatisfy ertain jump onditions at the interfae between di�erent materials of the di�rationgrating. In the ase of lassial di�ration, when the inident wave vetor is orthogonal to the
z-diretion, the system degenerates to independent transmission problems for the two basipolarizations of the inident wave, whereas for the ase of onial di�ration the boundaryvalues of the z-omponents as well as their normal and tangential derivatives at the interfaeare oupled. Thus the unknowns are salar funtions in the ase of lassial di�ration andthey are two-omponent vetor funtions in the onial ase.1



In the ase of one border we redue the system of Helmholtz equations to a 2 × 2 system ofintegral equations, whih ontain, besides the boundary integrals of the single and doublelayer potentials, also the tangential derivative of single layer potentials whih are singularintegrals. The orresponding theory is desribed in Setion 2. The di�ration problem andboundary relations between values of the �elds aross the boundary are formulated in theexpliit form in Subsetion 2.1 The respetive integral equations in terms of boundary po-tentials with detailed disussions, formulas, and jump relations an be found in Subsetion2.2 A more general treatment of the energy onservation law appliable to o�-plane ab-sorption gratings is onsidered in Subsetion 2.3. The numerial implementation approahexpedient for the alulation of far-�elds and polarization properties of onial di�rationby gratings is desribed brie�y in Setion 3. Diverse numerial tests devoted to omparing,onvergene, auray, omputation time, and obtaining results for an important ase aregiven in Setion 4. In Subsetion 4.1 we ompare some of our results with data obtainedby other well-established onial approahes for di�erent groove pro�le and ondutivitygratings. Some information about onvergene, auray, and omplexity of the presentedmethod is inluded in Subsetion 4.2. Finally, in Subetion 4.3 a numerial experiment forthe o�-plane grazing-inident real-groove-pro�le grating working in the soft x-ray range isdemonstrated as an illustration of possibilities of the software developed.2. Theory2.1. Di�ration problem. We denote by ex, ez and ez the unit vetors of the axes of theCartesian oordinates. The grating is a ylindrial surfae whose generatries are parallelto the z-axis and whose ross setion is desribed by the urve Σ (see Fig. 1). We supposethat Σ is not self-interseting and d-periodi in x-diretion. The grating surfae is theboundary between two regions G± × R ⊂ R3 whih are �lled with materials of onstanteletri permittivity ε± and magneti permeability µ±.
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Figure 1. Shemati ross setion of a simple gratingWe deal only with time-harmoni �elds; onsequently, the eletri and magneti �elds arerepresented by the omplex vetors E and H, with a time dependene exp(−iωt) taken intoaount. The wave vetor k+ of the inident wave in G+ × R, where ε+, µ+ > 0, is ingeneral not perpendiular to the grooves (k+ · ez 6= 0). Setting k+ = (α,−β, γ) the surfaeis illuminated by a eletromagneti plane wave
Ei = p e i(αx−βy+γz) , Hi = s e i(αx−βy+γz) ,whih due to the periodiity of Σ is sattered into a �nite number of plane waves in G+ ×Rand possibly in G− × R. The wave vetors of these outgoing modes lie on the surfae of aone whose axis is parallel to the z�axis. Therefore one speaks of onial di�ration.2



The omponents of k+ satisfy
β > 0 and α2 + β2 + γ2 = ω2ε+µ+ ,and they are expressed using the inidene angles |θ|, |φ| < π/2

(α,−β, γ) = ω
√

ε+µ+ (sin θ cosφ,− cos θ cosφ, sinφ) .Classial di�ration orresponds to k+ · ez = 0, whereas φ 6= 0 haraterizes onial di�ra-tion.Sine the geometry is invariant with respet to any translation parallel to the z-axis, wemake the ansatz for the total �eld(1) (E,H)(x, y, z) = (E,H)(x, y) e iγzwith E,H : R2 → C3. This transforms the time-harmoni Maxwell equations in R3

∇ × E = iωµH and ∇ × H = −iωεE ,(2)with pieewise onstant funtions ε(x, y) = ε±, µ(x, y) = µ± for (x, y) ∈ G±, into a two-dimensional problem. This was desribed in [9℄ and analytially justi�ed in [31℄. Introduingthe transverse omponents
ET = E − Ezez , HT = H −Hzez ,representation (1) and equations (2) lead to

∇Ez = iγET + iωµ ez ×HT , ∇Hz = iγHT − iωε ez × ET .This shows that the �eld has loally a �nite energy, i.e.
E , H , ∇ × E , ∇ × H ∈

(

L2
loc(R

3)
)3
,if and only if the z-omponents of E,H satisfy ∇Ez,∇Hz ∈ L2

loc(R
2). Moreover, fromMaxwell's equations (2) one gets(3) (ω2εµ− γ2)ET = iγ∇Ez + iωµ∇×Hz , (ω2εµ− γ2)HT = iγ∇Hz − iωε∇× Ez .Noting γ = ω(ε+µ+)1/2 sinφ, we introdue the pieewise onstant funtion

κ(x, y) =

{

(ε+µ+ − ε+µ+ sin2 φ)1/2 = κ+ , (x, y) ∈ G+ ,

(ε−µ− − ε+µ+ sin2 φ)1/2 = κ− , (x, y) ∈ G− ,
(4)with the square root z1/2 = r1/2 exp(iϕ/2) for z = r exp(iϕ), 0 ≤ ϕ < 2π. Hene (3) showsthat under the ondition κ 6= 0, whih will be assumed throughout, the omponents Ez, Hzdetermine the eletromagneti �eld (E,H).The equations (2) imply that Ez, Hz satisfy the Helmholtz equations(5) (∆ + ω2κ2)Ez = (∆ + ω2κ2)Hz = 0in G±. The ontinuity of the tangential omponents of E and H on the surfae takes theform

[

(n, 0) × E
]

Σ×R
=

[

(n, 0) ×H
]

Σ×R
= 0 ,where (n, 0) = (nx, ny, 0) is the normal vetor on Σ × R and [

(n, 0) × E
]

Σ×R
denotes thejump of the funtion (n, 0) × E aross the surfae. This leads to the jump onditions

[

Ez

]

Σ
=

[

Hz

]

Σ
= 0 ,

[ γ

ω2κ2
∂tHz +

ωε

ω2κ2
∂nEz

]

Σ
=

[ γ

ω2κ2
∂tEz −

ωµ

ω2κ2
∂nHz

]

Σ
= 0 .3



Here ∂n = nx∂x + ny∂y and ∂t = −ny∂x + nx∂y are the normal and tangential derivatives on
Σ, respetively. We introdue Bz = (µ+/ε+)1/2 Hz and use γ = ω(ε+µ+)1/2 sinφ to rewritethe jump onditions in the form

[

Ez

]

Σ
=

[

Hz

]

Σ
= 0 ,

[ε ∂nEz

κ2

]

Σ
= −ε+ sinφ

[∂tBz

κ2

]

Σ
,
[µ ∂nBz

κ2

]

Σ
= µ+ sinφ

[∂tEz

κ2

]

Σ
.(6)The z-omponents of the inoming �eld

Ei
z(x, y) = pz ei(αx−βy) , Bi

z(x, y) = qz ei(αx−βy) ,(7)are α-quasiperiodi in x of period d, i.e. satisfy the relation
u(x+ d, y) = eidα u(x, y) .In view of the periodiity of ε and µ this motivates to seek α-quasiperiodi solutions Ez, Bz.Furthermore, the di�rated �elds must remain bounded at in�nity, whih implies the wellknown outgoing wave ondition(8) (Ez, Bz)(x, y) = (Ei
z, B

i
z) +

∑

n∈Z

(E+
n , B

+
n ) e i(αnx+β+

n y), y ≥ H,

(Ez, Bz)(x, y) =
∑

n∈Z

(E−
n , B

−
n ) e i(αnx−β−

n y), y ≤ −H,where Σ ⊂ {(x, y) : |y| < H}, and αn, β±
n are given by

αn = α +
2πn

d
, β±

n =
√

ω2κ2
± − α2

n with 0 ≤ arg β±
n < π .In the following it is always assumed that(9) 0 ≤ arg ε−, argµ− ≤ π with arg (ε−µ−) < 2π ,whih holds for all existing optial (meta)materials. Then 0 ≤ arg κ2

− < 2π and β−
n areproperly de�ned for all n.Denoting the z-omponents of the total �elds

Ez =

{

u+ + Ei
z

u−
, Bz =

{

v+ +Bi
z in G+,

v− in G− ,the problem (5), (6), (8) an be written as
∆u± + ω2κ2

±u± = ∆v± + ω2κ2
±v± = 0 in G±,(10)

u− = u+ + Ei
z,

ε− ∂nu−
κ2
−

−
ε+∂n(u+ + Ei

z)

κ2
+

= ε+ sin φ
( 1

κ2
+

−
1

κ2
−

)

∂tv−,

v− = v+ +Bi
z,

µ−∂nv−
κ2
−

−
µ+∂n(v+ +Bi

z)

κ2
+

= −µ+ sin φ
( 1

κ2
+

−
1

κ2
−

)

∂tu−,















on Σ(11)
(u+, v+)(x, y) =

∞
∑

n=−∞

(E+
n , B

+
n ) e i(αnx+β+

n y) for y ≥ H,

(u−, v−)(x, y) =
∞

∑

n=−∞

(E−
n , B

−
n ) e i(αnx−β−

n y) for y ≤ −H.

(12)
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2.2. Integral equations. There exist di�erent ways to transform the transmission problemfor the Helmholtz equations in R
2 (10) - (12) to integral equations. We ombine here thediret and indiret approah as proposed in [23, 24℄ for the ase of lassial di�ration. Let

Σ be given by a pieewise C2 parametrization(13) σ(t) = (X(t), Y (t)), X(t+ 1) = X(t) + d, Y (t+ 1) = Y (t) , t ∈ R ,i.e. the ontinuous funtions X, Y are pieewise C2 and σ(t1) 6= σ(t2) if t1 6= t2. If the pro�le
Σ has orners, then we suppose additionally that the angles between adjaent tangents atthe orners are stritly between 0 and 2π.The potentials whih provide α-quasiperiodi solutions of the Helmholtz equation(14) ∆u+ k2u = 0 with 0 ≤ arg k2 < 2πare based on the quasiperiodi fundamental solution of period d

Ψk,α(P ) = lim
N→∞

i

2d

N
∑

n=−N

e iαnX+iβn|Y |

βn

, P = (X, Y ) .Here we assume that βn = (k2 − α2
n)1/2 6= 0 for all n. The single and double layer potentialsare de�ned by

Sk,αϕ(P ) = 2

∫

Γ

ϕ(Q) Ψk,α(P −Q) dσQ ,

Dk,αϕ(P ) = 2

∫

Γ

ϕ(Q) ∂n(Q)Ψk,α(P −Q) dσQ ,

(15)where Γ is one period of the interfae Σ, i.e. Γ = {σ(t) : t ∈ [t0, t0 + 1]} for some t0. In (15)
dσQ denotes the integration with respet to the ar length and n(Q) is the normal to Σ at
Q ∈ Σ pointing into G−. Obviously, for α-quasiperiodi densities ϕ on Σ the value of thepotentials does not depend on the hoie of Γ.The potentials provide the usual representation formulas. Any α-quasiperiodi funtion uwhih satis�es in G+ the Helmholtz equation (14) and the radiation ondition

u(x, y) =

∞
∑

n=−∞

un e iαnx+iβn|y| , |y| ≥ H .admits the representation(16) 1

2

(

Sk,α∂nu−Dk,αu
)

=

{

u in G+,
0 in G−,where the normal n points into G−. Under the same assumptions for a funtion u in G− therepresentation(17) 1

2

(

Dk,αu− Sk,α∂nu
)

=

{

0 in G+,
u in G−,is valid.Restrition of the potentials Sk,α and Dk,α to the pro�le urve Σ are the so alled boundaryintegral operators. The potentials provide the usual jump relations of lassial potentialtheory. The single layer potential is ontinuous aross Σ

(Sk,αϕ)+(P ) = (Sk,αϕ)−(P ) = Vk,αϕ(P ) ,5



where the upper sign + resp. − denotes the limits of the potentials for points inG± tending innon-tangential diretion to P ∈ Σ, and Vk,α is a integral operator with logarithmi singularity
Vk,αϕ(P ) = 2

∫

Γ

Ψk,α(P −Q)ϕ(Q) dσQ , P ∈ Σ .The double layer potential has a jump if rossing Γ:(18) (

Dk,αϕ
)+

= (Kk,α − I)ϕ,
(

Dk,αϕ
)−

= (Kk,α + I)ϕwith the boundary double layer potential
Kk,αϕ(P ) = 2

∫

Γ

ϕ(Q) ∂n(Q)Ψk,α(P −Q) dσQ + (δ(P ) − 1)ϕ(P ) .Here δ(P ) ∈ (0, 2), P ∈ Σ, denotes the ratio of the angle in G+ at P and π, i.e. δ(P ) = 1outside orner points of Σ. The normal derivative of Sk,αϕ at Σ exists outside orners andhas the limits(19) (

∂nSk,αϕ
)+

= (Lk,α + I)ϕ,
(

∂nSk,αϕ
)−

= (Lk,α − I)ϕ,where Lk,α is the integral operator on Γ with the kernel ∂n(P )Ψk,α(P −Q),
Lk,αϕ(P ) = 2

∫

Γ

ϕ(Q) ∂n(P )Ψk,α(P −Q) dσQ , P ∈ Σ .In the following also the tangential derivative of single layer potentials
∂t

(

Vk,αϕ
)

(P ) = 2 ∂t

∫

Γ

Ψk,α(P −Q)ϕ(Q) dσQ , P ∈ Σ ,ours. Interhanging di�erentiation and integration leads to a kernel with the main singu-larity
t(P ) · (P −Q)

|P −Q|2
,therefore the tangential derivative of single layer potentials annot be expressed as usualintegral. But it an be interpreted as Cauhy prinipal value or singular integral

Jk,αϕ(P ) = 2 lim
δ→0

∫

Γ\Γ(P,δ)

ϕ(Q) ∂t(P )Ψk,α(P −Q) dσQ = ∂t

(

Vk,αϕ
)

(P ) ,(20)where Γ(P, δ) is the subar of Γ of length 2δ with the mid point P . Similarly, one an de�nethe singular integral(21) Hk,αϕ(P ) = 2 lim
δ→0

∫

Γ\Γ(P,δ)

ϕ(Q) ∂t(Q)Ψk,α(P −Q) dσQ ,whih by using integration by parts gives for α-quasiperiodi ϕ
Hk,αϕ(P ) = −2

∫

Γ

Ψk,α(P −Q) ∂tϕ(Q) dσQ = −Vk,α

(

∂tϕ
)

(P ) , P ∈ Σ .Note that Vk,α∂tVk,α = Vk,αJk,α = −Hk,αVk,α.Now we are in the position to formulate the integral equations for solving the onial di�ra-tion problem (10) � (12). In order to represent u± and v± as layer potentials we assume inwhat follows that the parameters are suh that β±
n = (ω2κ2

± − α2
n)1/2 6= 0 for all n. Sine6



arg κ− ∈ [0, π) (see assumption (9)) the boundary integral operators orresponding to thefundamental solution Ψωκ±,α are well de�ned and by the representation formulas (16), (17)
u+ =

1

2

(

S+
α ∂nu+ −D+

α u+

)

, v+ =
1

2

(

S+
α ∂nv+ −D+

α v+

) in G+ ,

Ei
z =

1

2

(

D+
αE

i
z − S+

α ∂nE
i
z

)

, Bi
z =

1

2

(

D+
αB

i
z − S+

α ∂nB
i
z

) in G− .Here we denote by S±
α the single layer potential de�ned on Γ with the fundamental solution

Ψωκ±,α. Correspondingly D±
α is the double layer potential over Γ with the normal derivativeof Ψωκ±,α as kernel funtion. Taking the limits on Σ the jump relations (18) lead to

V +
α ∂n(u+ + Ei

z) −
(

I +K+
α

)

(u+ + Ei
z) = 2Ei

z|Σ ,

V +
α ∂n(v+ +Bi

z) −
(

I +K+
α

)

(v+ +Bi
z) = 2Bi

z|Σ ,
(22)where V ±

α denote the boundary single layer potentials
V ±

α ϕ(P ) = 2

∫

Γ

ϕ(Q) Ψωκ±,α(P −Q) dσQ , P ∈ Σ ,and the operators K±
α and L±

α are de�ned analogously. The solutions in G− are sought assingle layer potentials
u− = S−

αw , v− = S−
α τwith ertain auxiliary densities w, τ . Sine by Eq. (19)

u−|Σ = V −
α w, ∂nu−|Σ = (L−

α − I)w, v−|Σ = V −
α τ, ∂nv−|Σ = (L−

α − I)τ,we see from the equations (22) that the jump onditions (11) are valid, when the unknowns
w, τ satisfy the system of integral equations

ε−κ
2
+

ε+κ2
−

V +
α (L−

α − I)w −
(

I +K+
α

)

V −
α w − sinφ

(

1 −
κ2

+

κ2
−

)

V +
α ∂tV

−
α τ = 2Ei

z,

µ−κ
2
+

µ+κ2
−

V +
α (L−

α − I)τ −
(

I +K+
α

)

V −
α τ + sinφ

(

1 −
κ2

+

κ2
−

)

V +
α ∂tV

−
α w = 2Bi

z.

(23)Reall that we suppose κ2
− 6= 0 and ω2κ2

± − α2
n 6= 0 for all n.For the analytial and numerial treatment of the integral equation system (23) it is advan-tageous to use the relations

V +
α ∂tV

−
α = −H+

α V
−
α = V +

α J
−
α(see the de�nitions (20), (21)). Then (23) beomes a system of singular integral equations,for whih exist powerful analytial and numerial methods.If the solution of the system (23) is found, then the solution of the onial di�ration problem(10) - (12) an be determined by the relations

u+ = −
1

2

(ε−κ
2
+

ε+κ2
−

S+
α (I − L−

α )w + D+
αV

−
α w +

sin φ(κ2
− − κ2

+)

κ2
−

S+
α J

−
α τ

)

, u− = S−
α w ,

v+ = −
1

2

(µ−κ
2
+

µ+κ
2
−

S+
α (I − L−

α )τ + D+
αV

−
α τ −

sinφ(κ2
− − κ2

+)

κ2
−

S+
α J

−
α w

)

, v− = S−
α τ .A detailed mathematial analysis of the system of singular integral equations (23) is givenin [32℄. In partiular, the following properties have been established:1. The integral equations are equivalent to the Helmholtz system if the operators V +

αand V −
α are invertible. 7



2. If the pro�le Σ has no orners, then (23) is solvable if ε− + ε+ 6= 0 and µ− + µ+ 6= 0.3. If the pro�le Σ has orners, then (23) is solvable if ε−/ε+ and µ−/µ+ /∈ [−ρ,−1/ρ]for some ρ > 1, depending on the angles at these orners.4. The solution of (23) is unique if Im ε− ≥ 0 and Imµ− ≥ 0 with Im(ε− + µ−) > 02.3. Energy balane for onial di�ration. Suppose that Ez, Bz are a solution of thepartial di�erential formulation of onial di�ration (5), (6) and (8). The expression of theonservation of energy is based on a variational equality for Ez and Bz in a periodi ell
ΩH , whih has in x-diretion the width d, is bounded by the straight lines {y = ±H} andontains Γ. We multiply the Helmholtz equations (5) respetively with

ε

ε+κ2
Ez and µ

µ+κ2
Bz ,and apply Green's formula in the subdomains ΩH ∩G±. Then by using the quasiperiodiityof Ez, Bz and the jump relations (6) one derives

∫

ΩH

ε

ε+

( 1

κ2
|∇Ez|

2 − ω2 |Ez|
2
)

+ sin φ
( 1

κ2
+

−
1

κ2
−

)

∫

Γ

∂tBz Ez

−
1

κ2
+

∫

Γ(H)

∂nEz Ez −
ε−
ε+κ2

−

∫

Γ(−H)

∂nEz Ez = 0 ,(24)
∫

ΩH

µ

µ+

( 1

κ2
|∇Bz|

2 − ω2 |Bz|
2
)

− sinφ
( 1

κ2
+

−
1

κ2
−

)

∫

Γ

∂tEz Bz

−
1

κ2
+

∫

Γ(H)

∂nBz Bz −
µ−

µ+κ2
−

∫

Γ(−H)

∂nBz Bz = 0 ,(25)where Γ(±H) denotes the upper and lower straight boundary of ΩH , respetively. Theoutgoing wave ondition (7) and (8) implies
∫

Γ(H)

∂nEz Ez = iβ
(

|E+
0 |

2 − |pz|
2 + 2i Im

(

E+
0 pz e iβH

)

)

+ i
∑

n 6=0

β+
n |E

+
n |

2 e−2H Im β+
n ,

∫

Γ(−H)

∂nEz Ez = i
∑

n∈Z

β−
n |E

−
n |

2 e−2H Im β−
n ,and similar expressions for the boundary integrals involving Bz. Note that ε+ and µ+ arepositive.Let ε− and µ− be real. Taking the imaginary part of Eqs. (24) and (25) leads to theequations

β

κ2
+

|pz|
2 −

1

κ2
+

∑

β+
n >0

β+
n |E

+
n |

2 −
ε−
ε+κ

2
−

∑

β−
n >0

β−
n |E

−
n |

2 = − sin φ
( 1

κ2
+

−
1

κ2
−

)

Im

∫

Γ

∂tBz Ez ,

β

κ2
+

|qz|
2 −

1

κ2
+

∑

β+
n >0

β+
n |B

+
n |

2 −
µ−

µ+κ
2
−

∑

β−
n >0

β−
n |B

−
n |

2 = sinφ
( 1

κ2
+

−
1

κ2
−

)

Im

∫

Γ

∂tEz Bz .Sine
Im

∫

Γ

∂tBz Ez = Im

∫

Γ

∂tEz Bzwe derive
|pz|

2 + |qz|
2 =

∑

β+
n >0

β+
n

β

(

|E+
n |

2 + |B+
n |

2
)

+
κ2

+

κ2
−

∑

β−
n >0

β−
n

β

(ε−
ε+

|E−
n |

2 +
µ−

µ+
|B−

n |
2
)

.
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Thus for lossless gratings the energy of the inident wave |pz|
2 + |qz|

2 equals the sum ofre�etion order e�ienies
R =

∑

β+
n >0

β+
n

β

(

|E+
n |

2 + |B+
n |

2
)plus the sum of transmission order e�ienies

T =
∑

β−
n >0

β−
n

β

(ε−
ε+

|E−
n |

2 +
µ−

µ+

|B−
n |

2
)

.If Im ε− 6= 0 or Imµ− 6= 0, then T = 0 and |pz|
2 + |qz|

2 > R, i.e. the usual onservation ofenergy does not hold. Instead, one part of the energy is absorbed in the substrate. This heatabsorption energy plus the energy of the re�eted modes equals the energy of the inidentwave.Therefore, one tool to hek the quality of the numerial solution for absorbing gratings isthe requirement, that the sum of the re�eted energy and the absorption energy should beequal to the energy of the inident wave.To obtain an expression for the absorption energy we note that by Green's formula
∫

ΩH∩G−

ε−
ε+

( 1

κ2
−

|∇Ez|
2 − ω2 |Ez|

2
)

−
ε−
ε+κ2

−

∫

Γ(−H)

∂nEz Ez = −
ε−
ε+κ2

−

∫

Γ

∂nEz Ez ,

∫

ΩH∩G−

µ−

µ+

( 1

κ2
−

|∇Bz|
2 − ω2 |Bz|

2
)

−
µ−

µ+κ2
−

∫

Γ(−H)

∂nBz Bz = −
µ−

µ+κ2
−

∫

Γ

∂nBz Bz ,suh that the imaginary parts of Eqs. (24), (25) beome
− Im

ε−
ε+κ2

−

∫

Γ

∂nEz Ez + sin φ Im
( 1

κ2
+

−
1

κ2
−

)

∫

Γ

∂tBz Ez

−
β

κ2
+

(

|E+
0 |

2 − |pz|
2
)

−
∑

β+
n >0

β+
n

κ2
+

|E+
n |

2 = 0 ,

− Im
µ−

µ+κ2
−

∫

Γ

∂nBz Bz − sinφ Im
( 1

κ2
+

−
1

κ2
−

)

∫

Γ

∂tEz Bz

−
β

κ2
+

(

|B+
0 |

2 − |qz|
2
)

−
∑

β+
n >0

β+
n

κ2
+

|B+
n |

2 = 0 .Hene
|pz|

2 + |qz|
2 =

∑

β+
n >0

β+
n

β

(

|E+
n |

2 + |B+
n |

2
)

+ Im
ε−κ

2
+

ε+κ2
−β

∫

Γ

∂nEz Ez + Im
µ−κ

2
+

µ+κ2
−β

∫

Γ

∂nBz Bz

−
sinφ

β

(

Im
(

1 −
κ2

+

κ2
−

)

∫

Γ

(∂tBz Ez − ∂tEz Bz)
)

=
∑

β+
n >0

β+
n

β

(

|E+
n |

2 + |B+
n |

2
)

+
κ2

+

β
Im

∫

Γ

( ε−
ε+κ

2
−

∂nEz Ez +
µ−

µ+κ
2
−

∂nBz Bz

)

+
2κ2

+ sinφ

β
Im

1

κ2
−

Re

∫

Γ

Ez ∂tBz .Thus we derive the onservation of energy for absorbing gratings
|pz|

2 + |qz|
2 = R+ A9



with the absorption energy of onial di�ration(26) A =
κ2

+

β
Im

(

1

κ2
−

(ε−
ε+

∫

Γ

∂nEz Ez +
µ−

µ+

∫

Γ

∂nBz Bz + 2 sinφRe

∫

Γ

Ez ∂tBz

)

)

.In the ase φ = 0 formula (26) provides the expressions of the heat absorption energy forin-plane di�ration derived in [29℄.3. Numerial implementationWe disuss brie�y the numerial solution of the system (23). Let Γ be parametrized by(13). In the ase of a smooth pro�le Σ a trigonometri olloation method is used, i.e. weapproximate
w(σ(t)) e−iαX(t) |σ′(t)| ≈ wN(t) =

N
∑

k=−N

ak e 2πikt ,

τ(σ(t)) e−iαX(t) |σ′(t)| ≈ τN (t) =
N

∑

k=−N

bk e 2πikt ,

(27)and the oe�ients {ak}, {bk} are suh that the system (23) is satis�ed at the 2N + 1olloation points tk = k/(2N + 1), k = 0, . . . , 2N .Similar to [16℄ the advantage of trigonometri methods is utilized that the integral operators
V ±

α , H+
α and J−

α with singular kernels an be approximated properly. For example, usingthe parametrization σ(t) the single layer potential operator of w an be approximated by
V ±

α w(σ(t)) ≈ −2 eiαX(t)
(

∫ 1

0

log |2 sin π(t− s)|wN(s) ds+

∫ 1

0

g±α (t, s)wN(s) ds
)and the singular integral J±

α w by
J±

α w(σ(t)) ≈ eiαX(t)
(

∫ 1

0

cot π(t− s)wN(s) ds+

∫ 1

0

j±α (t, s)wN(s) ds
)

,where the funtions g±α (t, s), j±α (t, s) are ontinuous and periodi in t and s. The ation ofthe integral operators with the kernels log |2 sin π(t − s)| and cot π(t − s) on trigonometripolynomials is given analytially. All other integrals have ontinuous kernels and they areapproximated by the trapezoidal rule like in Nyström's method. So the disretization errordepends only on the error made in omputing the funtions g±α (t, s), j±α (t, s) and the ontinu-ous kernels of K+
α and L−

α , i.e. in omputing the fundamental solution and there derivatives.Here we use the exat Ewald method (f. [22℄) with a number of summation terms to ensuredisretization errors of order N−3. Finally the operator produts V +
α L

−
α , K+

α V
−
α , H+

α V
−
α or

V +
α J

−
α are approximated by the produts of the orresponding disretization matries. Notethat instead of H+

α V
−
α or V +

α J
−
α one an also perform the disretization of V +

α ∂tV
−
α , involvinga numerial di�erentiation. Numerial tests and further investigations an show whih oneis preferable for given e�ieny alulations.For the solution of the disrete system we use a preonditioned GMRES method similar tothat desribed in [22℄. The number of iterations until a presribed residual error is reahed,depends of ourse on the refration indies and the pro�le, but it is nearly independent ofthe number of unknowns. However, it should be noted that modern implementations of theLAPACK and BLAS software pakages on multiproessor mahines make diret solving toa ompetitive alternative to iterative solution methods even for rather large systems.10



If the pro�le urve has orners, then the onvergene properties of methods with only trigono-metri trial funtions deteriorate due to singularities of the densities w and τ of the form
O(ρ−δ), 0 < δ < 1, where ρ is the distane to the losest edge. In boundary element methodsit is ommon to use pieewise polynomial trial funtions on meshes graded towards ornerpoints. But due to the ompliated form of their kernels the quadrature of the integral op-erators ating on pieewise polynomials is very expensive. Therefore we use a modi�ationof the trigonometri olloation sheme with a �xed number of pieewise polynomial trialfuntions. First we introdue meshes of olloation points, whih ontain the orners andare graded towards the orner points. This an be derived by hanging the parametrization(13), for example, if σ(tj) is a orner point, then σ′(tj) = σ′′(tj) = 0 implies grading towardsthe orner. Further, for eah olloation point tk there exists a Lagrangian trigonometripolynomial pk(t) of degree 2N + 1 suh that

pk(tj) = δkj , k, j = 0, . . . , 2N ,

δkj is Kroneker's delta. For eah edge and a �xed number of olloation points tk around itwe replae the orresponding Lagrangian trigonometri polynomial pk(t) by a ubi spline
sk(t) on the graded mesh with sk(tj) = δkj . Thus we get a hybrid trigonometri-spline ollo-ation method, whih ombines the e�ient omputation of the integrals for trigonometripolynomials with the good approximation properties of pieewise polynomials on gradedmeshes near edges. The values at the olloation point tj of the integrals on the basis spline
sk are omputed by a omposite Gauss-quadrature with a quadrature mesh geometriallygraded towards tj and depending on the distane |σ(tk)− σ(tj)|. This leads to a �xed num-ber of additional alulations of the fundamental solutions Ψωκ±,α for eah disretisationlevel ompared with the pure trigonometri method, whih is however ompensated by asigni�antly higher auray. 4. Numerial resultsThe workability of the ode developed has been on�rmed by numerous tests usually em-ployed in lassial and onial di�ration ases, more spei�ally: the reiproity theorem;stabilization of results under doubling of the number of olloation points and varying ofthe alulation auray of kernel funtions; omparison with analytially amenable asesof plane interfaes; onsideration of the inverse (non-physial) radiation ondition; use ofdi�erent variants of olloation point distribution on boundaries (mesh re�nements); om-parison with the results obtained by another of our odes or with published data, or withinformation orresponded to us by other researhers, inluding results of measurements. Asmall part of suh numerial tests is demonstrated in this Setion.4.1. Comparing. In Table 1 the numerial results of the present boundary integral equationmethod (IM) for a dieletri lamellar grating with the ridge c in a onial mounting areompared with those of Table 2 of Li who uses the modal method (MM) [33℄. All gratingand light parameters are listed in the table aption. The agreement between the MM andthe IM for the e�ienies and polarization angles is almost perfet for all re�etion andtransmission orders despite of very di�erent methods ompared. Note that we use the samede�nitions for polarization angles as in Refs. [30, 33℄. We used 400 olloation points, meshgrading, and the diret disretization of J−

α to alulate this example that alloates 188MByte memory. The energy balane error alulated from (26) is about 10−5. The averagetime taken up by the example on a portable workstation IBM ThinkPadr R50p with anIntelr Pentiumr M 1.7 GHz proessor and 2 GByte of RAM is about 4 se when operatingon Linux (kernel 2.6.17). 11



In Table 2 the numerial results of a similar omparison as in Table 1 between the IM andthe MM are demonstrated for a onduting lamellar grating in a onial mounting (omparewith Table 3 of [33℄). All grating and light parameters are listed in the table aption. Theagreement between the MM and the IM for the e�ienies and polarization angles is, ingeneral, good. The same auray parameters as in the previous example have been usedand similar alulation times have been obtained on the above mentioned laptop. The energybalane error alulated from (26) is about 10−6.In Tables 3 and 4 the numerial results of the IM for a dieletri sine grating in a onialmounting are ompared with those of Table 2 of Ref. [7℄ of Li who used for the presented datathe oordinate transformation method (CM) [5℄. All grating and light parameters are listedin the table aptions. The agreement between the CM and the IM for the e�ienies is verygood. We used 100 olloation points and the numerial di�erentiation of V +
α to alulatethis example that alloates 10 MByte of RAM. The energy balane error alulated from(26) is about 10−5 for both omponents of the inident radiation. The average omputationtime taken up by the example on the above mentioned laptop is about 0.2 se.The results of another omparison for a metal ehelette grating with the blaze angle ζ ina onial mounting are demonstrated in Tables 5 and 6 ompared with those [34℄ updatedby Li who has used again the CM to alulate the e�ieny of the grating having edges[35℄. All grating and light parameters are listed in the table aptions. As one an see inTables 5 and 6, again the agreement between the CM and the IM is very good for the allorder e�ienies and polarization angles. One has used 800 olloation points, mesh salingnear edges, and the di�erentiation of V +

α to alulate this example alloating 196 MByte ofRAM. The average energy balane error alulated from Eq. (26) is about 10−5 for bothpolarization states of the inident radiation. The average omputation time taken up by twovalues of the polarization angle on the above mentioned laptop is about 18 se.4.2. Convergene, auray, and omputation time. We will examine the onvergenerate and the auray of di�ration e�ienies with respet to the number of olloationpoints N . For the e�ieny onvergene testing, a magnitude of omputational error annotbe reliably dedued from auray riteria based on a single omputation suh as the energybalane and the inverse radiation ondition tests. For this purpose omparative studiesshould be used, i.e. N-doubling or hanging the on�guration of olloation points. Weintrodue a parameter ∆N,k as an integral measure of the e�ieny error under N-doublingtests. It is equal to the sum of absolute di�erenes of respetive di�ration order e�ieniesfor two suessive iterations with the number of olloation points for eah iteration of
N = N0 × 2k−1, where N0 is the initial number of olloation points, k = 1, ..., K, and K isthe total number of iterations. The magnitude of ∆N,k gives approximately the orret digitsin the numerial results if the number of propagating di�ration orders is small enough oronly a few valuable orders exist. For many propagating orders it an give a more pessimistierror value.To examine the onvergene of di�ration e�ienies, we hoose as a sample the slantedlamellar highly-onduting grating similar to that from Figs. 10 and 11 of Ref. [36℄, but for
ε− = (−104, 0) That means that we study almost perfetly onduting non-funtion-pro�ledgrating with the zero real part of the refrative index and its imaginary part of 102 using oursolver for the �nite ondutivity, the ase probably not possible for many rigorous methods,even with all known improvements and arti�ial inlusions [36℄. Note that using the refrativeindex of (10−2, 10) from the example of Ref. [36℄ the onvergene rate of our solver is sofast that no interesting data to disuss an be seen even for small values of N . So in Fig.12



2 the onvergene of the di�ration e�ienies with respet to the trunation parameter Nunder N-doubling is demonstrated for N0 = 15 and K = 9 using the muh harder refrativeindex mentioned above. The e�ieny values stabilize and the onvergene is starting at
N = 60 and ahieved with the high auray at N = 960. Note that ∆1920,8 = 4.21 × 10−4and ∆3840,9 = 1.50 × 10−4 and the energy balane error is about 10−4 for these values of N .
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Figure 2. Di�ration e�ienies of a lamellar highly-onduting grating with
c/d = 0.5 and 2H/d = 0.3 having the grooves slanted at angle of 45◦ vs.number of olloation points N . Other parameters: ǫ+ = 1, ǫ− = (−104, 0),
µ± = 1, λ/d = 0.8, θi = 26.565◦, φi = 14.478◦, δi = 0, and ψi = 0.Thus, the onvergene rate is fast enough taking into aount the di�ult ase tested. More-over, due to solution peuliarities for pro�les with edges the onvergene rate even is betterfor ε− = (−105, 0), but the alulation time is longer. The absorption alulated from Eq.(26) is very small for a suh grating (∼ 10−5) and its non-negative magnitude and dereasingare also a good measure of the onvergene and the alulation auray. One an also hekof the absolute auray of alulation results for this example using the perfet ondutivityapproximation. The asymptoti e�ieny values alulated using this approximation di�erfrom those obtained using the �nite ondutivity approah (0.9105 and 0.0894 for −1 and

0 orders, respetively) by not more than a few hundredths of a %. The total omputationtime of all results presented in Fig. 3 is about 35 minutes on the above mentioned PC andthe required RAM is about 2 GB. Non-using a mesh re�nement and using the di�erentiationof V +
α are most suitable for this sort of alulations.The omputation time T for the onsidered one-border onial di�ration solver is essentiallya funtion of the trunation parameter N only. The general dependene T (N) of boundaryintegral equation formalisms is proportional to N3 due to a square dependene on N forthe Green funtions and their derivatives alulations and the summation of these omputedvalues that is proportional to N [15, 16, 17℄. In addition, a diret linear equation solverrequires a time that is also proportional to N3. To speed-up the presented alulation solvertwo substantial aelerations have been used. The �rst one is the Ewald's method for thekernel omputation; the seond one is solving systems of linear equations iteratively. Asa result, the omputation time is proportional to N2 that learly seen in Fig. 3 for thetypial example desribed in Table 2. If the iterative solver annot give orret results afterthe given number of iterations, then the diret solver is applied. Fortunately, this situationours in infrequent or hard ases only. 13
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Number of collocation points NFigure 3. The omputation time for the example desribed in Table 2.4.3. E�ieny of a grazing-inidene real-groove-pro�le o�-plane grating in x-rays. Grazing-inidene o�-plane gratings have been suggested for the International X-rayObservatory (IXO) [37℄. Compared with gratings in the lassial in-plane mount, x-raygratings in the o�-plane mount have the potential for superior resolution and e�ieny forthe IXO mission. The results of e�ieny alulations for suh a gold blazed soft x-raygrating in a onial mount using the groove pro�le derived from Atomi Fore Mirosopy(AFM) measurements are shown in Fig. 4. The average border shape having 123 nodes ispresented in Fig. 5. All grating and light parameters are listed in the �gure aption. Theinident beam in the rigorous alulations was assumed to be 81% TM-polarized that meansthe eletri vetors of the inident wave and the di�rated waves are approximately parallelto the surfae of the grating at the given di�ration angles. In Fig. 5 the numerial results ofthe presented BIEM for a �nite boundary ondutivity are ompared with those based on theBIEM with the perfet ondutivity approximation. The inident beam in the omputationsbased on the perfet ondutivity approximation was assumed to be 100% TE-polarized.Rigorous omputations arried out by the presented method show that for the onsideredgrating model all the order e�ienies are not sensitive to a polarization state and e�ienyjumps do not our in the wavelength range investigated. For any polarization state ordere�ienies di�er from those presented in Fig. 4 not more than a few tenths of a %. Contrary,alulations based on the perfetly onduting boundary approximation are very sensitive tothe polarization state and sharp Rayleigh anomalies for the TM-polarized inident radiationour. They were predited earlier for suh a grating using the in-plane boundary integralequation method and the Invariane theorem [39℄. As it an be seen in Fig. 4, the agreementbetween rigorously alulated data and those obtained by the perfet ondutivity approxi-mation multiplied by Fresnel re�etanes is good only if the TE-polarized inident radiationis used for the approximation.It has been used 800 olloation points, no mesh saling, and the di�erentiation of V +
α toalulate rigorously this real groove pro�le example that alloates a spae of 144 MByte. Theenergy balane error alulated from Eq. (26) is about 10−4 in the investigated wavelengthrange. The average omputation time taken up by one wavelength on the above mentionedlaptop is about 40 se. The time of an approximate omputation is about �ve times shorterfor the same auray. 14
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Figure 4. Di�ration e�ienies of a gold polygonal grating with 123 nodes,
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derived an important formula for diret alulation of the absorption of gratings in onialdi�ration mounts. Some rules whih are expedient for the numerial implementation of thedesribed theory were presented.The results of e�ienies and polarization angles omparing with the data obtained by Liusing the modal (lamellar pro�les) and the oordinate transformation (sinus and ehelettepro�les) onial solvers for transmission and re�etion gratings are in a good agreement.The high rate of onvergene, the high auray, and the short omputation time of thepresented solver were demonstrated for various samples. An example of rigorous e�ienyomputations of the soft x-ray grazing-inidene o�-plane grating suggested for the IXOmission was demonstrated using the 123-node AFM-measured border pro�le and realistirefrative indies data.The solver developed and tested is found to be aurate and e�ient for solving onialdi�ration problems inluding di�ult ases of high-ondutive surfaes, borders with edges,real border pro�les, and gratings working at very short wavelengths.Table 1. Di�ration Angles (θ, φ), Di�ration E�ienies (η), and Polariza-tion Angles (δ, ψ) of a Dieletri Lamellar GratingaDOb θ(IM),◦ φ(IM),◦ η(MM),% η(IM),% δ(MM),◦ δ(IM),◦ ψ(MM),◦ ψ(IM),◦
R−2 35.265 −30 0.1614 0.1612 64.32 64.32 −30.30 −30.24
R−1 0 −30 0.3807 0.3807 65.97 66.0 −157.20 −157.22
R0 35.264 −30 1.855 1.854 70.49 70.43 −148.46 −148.60
T−3 −45 −19.471 3.363 3.363 51.06 51.05 32.28 32.28
T−2 −20.705 −19.471 10.34 10.35 56.24 56.24 110.21 110.23
T−1 0 −19.471 31.87 31.87 46.55 46.54 99.03 99.02
T0 20.705 −19.471 14.19 14.19 34.26 34.26 68.37 68.38
T1 45 −19.471 37.83 37.83 46.33 46.34 86.81 86.83

ac/d = 0.5, 2H/d = 0.5, ǫ+ = 1, ǫ− = 2.25, µ± = 1, λ/d = 0.5, θi = 35.264◦, φi = 30◦, δi = 45◦, and
ψi = 90◦. IM stands for the present integral method, MM stands for the Li's modal method.
bDi�ration order.Table 2. Di�ration Angles (θ, φ), Di�ration E�ienies (η), and Polariza-tion Angles (δ, ψ) of a Metalli Lamellar GratingaDOb θ(IM),◦ φ(IM),◦ η(MM),% η(IM),% δ(MM),◦ δ(IM),◦ ψ(MM),◦ ψ(IM),◦
R−2 −43.715 −20.705 7.31 7.52 62.48 61.85 52.74 48.30
R−1 −9.007 −20.705 13.51 13.25 15.35 15.79 −12.05 −12.23
R0 22.208 −20.705 42.99 44.27 41.25 41.33 171.21 170.15
R1 65.852 −20.705 30.24 31.05 75.23 75.64 168.78 166.30

ac/d = 0.5, 2H/d = 1, ǫ+ = 1, ǫ− = (−24.99, 1), µ± = 1, λ/d = 0.5, θi = 22.208◦, φi = 20.705◦, δi = 45◦,and ψi = 0. IM stands for the present integral method, MM stands for the Li's modal method.
bDi�ration order.
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Table 3. Di�ration Angles (θ, φ), Di�ration E�ienies (η), and Polariza-tion Angles (δ, ψ) of a Dieletri Sine Grating for Bz = 0aDOb θ(IM),◦ φ(IM),◦ η(CM),% η(IM),% δ(CM),◦ δ(IM),◦ ψ(CM),◦ ψ(IM),◦
R−3 −43.384 −15 1.121 1.121 71.01 70.99 3.62 3.60
R−2 −9.744 −15 3.741 3.741 26.91 26.90 0.93 0.93
R−1 20.389 −15 3.873 3.873 63.25 63.25 178.16 178.18
R0 60 −15 10.33 10.33 88.93 88.93 178.06 178.05
T−5 −57.013 −7.435 .01858 .01855 80.18 80.19 −114.16 −114.68
T−4 −35.921 −7.435 .002466 .002482 52.39 52.58 99.81 100.24
T−3 −19.545 −7.435 .7396 .7394 57.62 57.61 −179.23 −179.28
T−2 −4.729 −7.435 4.922 4.922 22.89 22.90 174.83 174.84
T−1 9.770 −7.435 9.925 9.923 60.39 60.39 4.71 4.72
T0 24.949 −7.435 7.146 7.145 77.33 77.32 6.83 6.84
T1 42.371 −7.435 51.83 51.83 84.43 84.43 −5.77 −5.78
T2 67.826 −7.435 6.351 6.351 84.85 84.85 −11.33 −11.39

a 2H/d = 0.3, ǫ+ = 1, ǫ− = 4, µ± = 1, λ/d = 0.5, θi = 60◦, φi = 15◦, δi = 81.501◦, and ψi = 0. IM standsfor the present integral method, CM stands for the Li's oordinate transformation method.
bDi�ration order.Table 4. Di�ration Angles (θ, φ), Di�ration E�ienies (η), and Polariza-tion Angles (δ, ψ) of a Dieletri Sine Grating for Ez = 0aDOb θ(IM),◦ φ(IM),◦ η(CM),% η(IM),% δ(CM),◦ δ(IM),◦ ψ(CM),◦ ψ(IM),◦
R−3 −43.384 −15 1.121 1.121 71.01 70.99 3.62 3.60
R−2 −9.744 −15 3.741 3.741 26.91 26.90 0.93 0.93
R−1 20.389 −15 3.873 3.873 63.25 63.25 178.16 178.18
R0 60 −15 10.33 10.33 88.93 88.93 178.06 178.05
T−5 −57.013 −7.435 .01858 .01855 80.18 80.19 −114.16 −114.68
T−4 −35.921 −7.435 .002466 .002482 52.39 52.58 99.81 100.24
T−3 −19.545 −7.435 .7396 .7394 57.62 57.61 −179.23 −179.28
T−2 −4.729 −7.435 4.922 4.922 22.89 22.90 174.83 174.84
T−1 9.770 −7.435 9.925 9.923 60.39 60.39 4.71 4.72
T0 24.949 −7.435 7.146 7.145 77.33 77.32 6.83 6.84
T1 42.371 −7.435 51.83 51.83 84.43 84.43 −5.77 −5.78
T2 67.826 −7.435 6.351 6.351 84.85 84.85 −11.33 −11.39

a 2H/d = 0.3, ǫ+ = 1, ǫ− = 4, µ± = 1, λ/d = 0.5, θi = 60◦, φi = 15◦, δi = 8.499◦, and ψi = 180◦. IMstands for the present integral method, CM stands for the Li's oordinate transformation method.
bDi�ration order.
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Table 5. Di�ration Angles (θ, φ), Di�ration E�ienies (η), and Polariza-tion Angles (δ, ψ) of a Metalli Ehelette Grating for δi = 0aDOb θ(IM),◦ φ(IM),◦ η(CM),% η(IM),% δ(CM),◦ δ(IM),◦ ψ(CM),◦ ψ(IM),◦
R−1 −40.746 −40 12.99 12.97 39.409 39.447 −175.87 −175.93
R0 0 −40 28.49 28.45 86.449 86.414 −51.16 −50.97
R1 40.746 −40 24.77 24.81 39.237 39.209 7.58 7.67

a ζ = 30◦, ǫ+ = 1, ǫ− = (−45, 28), µ± = 1, λ/d = 0.5, θi = 0, φi = 40◦, and ψi = 0. IM stands for thepresent integral method, CM stands for the Li's oordinate transformation method.
bDi�ration order.Table 6. Di�ration Angles (θ, φ), Di�ration E�ienies (η), and Polariza-tion Angles (δ, ψ) of a Metalli Ehelette Grating for δi = 90◦aDOb θ(IM),◦ φ(IM),◦ η(CM),% η(IM),% δ(CM),◦ δ(IM),◦ ψ(CM),◦ ψ(IM),◦
R−1 −40.746 −40 53.15 53.15 54.0 54.0 13.31 13.37
R0 0 −40 17.51 17.48 4.53 4.58 95.49 95.21
R1 40.746 −40 9.423 9.444 49.47 49.41 −171.24 −171.22

a ζ = 30◦, ǫ+ = 1, ǫ− = (−45, 28), µ± = 1, λ/d = 0.5, θi = 0, φi = 40◦, and ψi = 0. IM stands for thepresent integral method, CM stands for the Li's oordinate transformation method.
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