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Abstra
t. O�-plane s
attering of time-harmoni
 plane waves by a di�ra
tion grating witharbitrary 
ondu
tivity and general border pro�le is 
onsidered in a rigorous ele
tromagneti
formulation. The integral equations for 
oni
al di�ra
tion were obtained using the boundaryintegrals of the single and double layer potentials in
luding the tangential derivative of singlelayer potentials interpreted as singular integrals. We derive an important formula for the
al
ulation of the absorption in 
oni
al di�ra
tion. Some rules whi
h are expedient for thenumeri
al implementation of the theory are presented. The e�
ien
ies and polarizationangles 
ompared with those obtained by Lifeng Li for transmission and re�e
tion gratingsare in a good agreement. The 
ode developed and tested is found to be a

urate and e�
ientfor solving o�-plane di�ra
tion problems in
luding high-
ondu
tive surfa
es, borders withedges, real border pro�les, and gratings working at short wavelengths.1. Introdu
tionToday a lot of opti
al appli
ations of 
oni
al di�ra
tion (o�-plane) by gratings are wellknown, in parti
ular: gratings working in the x-ray and extreme ultraviolet (EUV) rangesat grazing angles; shallow and deep high-
ondu
tive, anomalously absorbing gratings illu-minated at near normal and grazing in
iden
e; high-spatial-frequen
y, deep transmissiongratings having high anti-re�e
tion and polarization 
onversion properties; generalized spe
-tros
opi
 ellipsometry and s
atterometry te
hniques. For the numeri
al simulation of 
oni
aldi�ra
tion by opti
al gratings of arbitrary groove pro�les and 
ondu
tivity several rigorousmethods have been proposed. Among them we know: di�erential [1, 2℄, 
oordinate transfor-mation [3, 4, 5, 6℄, modal [7℄, �
titious sour
es [8, 9℄, and �nite element [10, 11℄ methods. InRef. [12℄ T-matrix and integral equation methods were des
ribed for o�-plane transmissionand low-
ondu
ting sine-pro�led gratings.For the 
lassi
al (in-plane) di�ra
tion problems integral equation methods have been es-tablished as an e�
ient and a

urate numeri
al tool. Many di�erent, quite sophisti
atedintegral formulations have been proposed and implemented, 
f. e.g. [13, 14, 15, 16, 17, 18,19, 20, 21, 22℄. The methods are used to ta
kle su

essfully high-
ondu
tive deep-groovegratings in the TM polarization, pro�le 
urves with 
orners, e
helles, gratings with thin
oated layers, randomly rough mirrors and gratings, and di�ra
tion problems at very smallwavelength-to-period ratios [23, 24, 25, 26, 27, 28, 29, 30℄. The aim of this paper is to studyan integral method for 
oni
al di�ra
tion on the simplest model, the di�ra
tion of a time-harmoni
 plane wave by a surfa
e, whi
h in Cartesian 
oordinates (x, y, z) is periodi
 in x-and invariant in z-dire
tion and separates two di�erent materials. Spe
ial attention is paidto the main aspe
ts of the integral equation method for arbitrarily polarized plane wavesand gratings with one border having any outline and 
ondu
tivity.The ele
tromagneti
 formulation of the di�ra
tion by general gratings, whi
h are modeledas in�nite periodi
 stru
tures, 
an be redu
ed to a system of Helmholtz equations for thez-
omponents of the ele
tri
 and magneti
 �elds in R2, where the solutions have to bequasiperiodi
 in one variable, subje
t to radiation 
onditions with respe
t to the other andsatisfy 
ertain jump 
onditions at the interfa
e between di�erent materials of the di�ra
tiongrating. In the 
ase of 
lassi
al di�ra
tion, when the in
ident wave ve
tor is orthogonal to the
z-dire
tion, the system degenerates to independent transmission problems for the two basi
polarizations of the in
ident wave, whereas for the 
ase of 
oni
al di�ra
tion the boundaryvalues of the z-
omponents as well as their normal and tangential derivatives at the interfa
eare 
oupled. Thus the unknowns are s
alar fun
tions in the 
ase of 
lassi
al di�ra
tion andthey are two-
omponent ve
tor fun
tions in the 
oni
al 
ase.1



In the 
ase of one border we redu
e the system of Helmholtz equations to a 2 × 2 system ofintegral equations, whi
h 
ontain, besides the boundary integrals of the single and doublelayer potentials, also the tangential derivative of single layer potentials whi
h are singularintegrals. The 
orresponding theory is des
ribed in Se
tion 2. The di�ra
tion problem andboundary relations between values of the �elds a
ross the boundary are formulated in theexpli
it form in Subse
tion 2.1 The respe
tive integral equations in terms of boundary po-tentials with detailed dis
ussions, formulas, and jump relations 
an be found in Subse
tion2.2 A more general treatment of the energy 
onservation law appli
able to o�-plane ab-sorption gratings is 
onsidered in Subse
tion 2.3. The numeri
al implementation approa
hexpedient for the 
al
ulation of far-�elds and polarization properties of 
oni
al di�ra
tionby gratings is des
ribed brie�y in Se
tion 3. Diverse numeri
al tests devoted to 
omparing,
onvergen
e, a

ura
y, 
omputation time, and obtaining results for an important 
ase aregiven in Se
tion 4. In Subse
tion 4.1 we 
ompare some of our results with data obtainedby other well-established 
oni
al approa
hes for di�erent groove pro�le and 
ondu
tivitygratings. Some information about 
onvergen
e, a

ura
y, and 
omplexity of the presentedmethod is in
luded in Subse
tion 4.2. Finally, in Sube
tion 4.3 a numeri
al experiment forthe o�-plane grazing-in
ident real-groove-pro�le grating working in the soft x-ray range isdemonstrated as an illustration of possibilities of the software developed.2. Theory2.1. Di�ra
tion problem. We denote by ex, ez and ez the unit ve
tors of the axes of theCartesian 
oordinates. The grating is a 
ylindri
al surfa
e whose generatri
es are parallelto the z-axis and whose 
ross se
tion is des
ribed by the 
urve Σ (see Fig. 1). We supposethat Σ is not self-interse
ting and d-periodi
 in x-dire
tion. The grating surfa
e is theboundary between two regions G± × R ⊂ R3 whi
h are �lled with materials of 
onstantele
tri
 permittivity ε± and magneti
 permeability µ±.
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y

G

G

Σ

−

+

(E , H  )  ii
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Figure 1. S
hemati
 
ross se
tion of a simple gratingWe deal only with time-harmoni
 �elds; 
onsequently, the ele
tri
 and magneti
 �elds arerepresented by the 
omplex ve
tors E and H, with a time dependen
e exp(−iωt) taken intoa

ount. The wave ve
tor k+ of the in
ident wave in G+ × R, where ε+, µ+ > 0, is ingeneral not perpendi
ular to the grooves (k+ · ez 6= 0). Setting k+ = (α,−β, γ) the surfa
eis illuminated by a ele
tromagneti
 plane wave
Ei = p e i(αx−βy+γz) , Hi = s e i(αx−βy+γz) ,whi
h due to the periodi
ity of Σ is s
attered into a �nite number of plane waves in G+ ×Rand possibly in G− × R. The wave ve
tors of these outgoing modes lie on the surfa
e of a
one whose axis is parallel to the z�axis. Therefore one speaks of 
oni
al di�ra
tion.2



The 
omponents of k+ satisfy
β > 0 and α2 + β2 + γ2 = ω2ε+µ+ ,and they are expressed using the in
iden
e angles |θ|, |φ| < π/2

(α,−β, γ) = ω
√

ε+µ+ (sin θ cosφ,− cos θ cosφ, sinφ) .Classi
al di�ra
tion 
orresponds to k+ · ez = 0, whereas φ 6= 0 
hara
terizes 
oni
al di�ra
-tion.Sin
e the geometry is invariant with respe
t to any translation parallel to the z-axis, wemake the ansatz for the total �eld(1) (E,H)(x, y, z) = (E,H)(x, y) e iγzwith E,H : R2 → C3. This transforms the time-harmoni
 Maxwell equations in R3

∇ × E = iωµH and ∇ × H = −iωεE ,(2)with pie
ewise 
onstant fun
tions ε(x, y) = ε±, µ(x, y) = µ± for (x, y) ∈ G±, into a two-dimensional problem. This was des
ribed in [9℄ and analyti
ally justi�ed in [31℄. Introdu
ingthe transverse 
omponents
ET = E − Ezez , HT = H −Hzez ,representation (1) and equations (2) lead to

∇Ez = iγET + iωµ ez ×HT , ∇Hz = iγHT − iωε ez × ET .This shows that the �eld has lo
ally a �nite energy, i.e.
E , H , ∇ × E , ∇ × H ∈

(

L2
loc(R

3)
)3
,if and only if the z-
omponents of E,H satisfy ∇Ez,∇Hz ∈ L2

loc(R
2). Moreover, fromMaxwell's equations (2) one gets(3) (ω2εµ− γ2)ET = iγ∇Ez + iωµ∇×Hz , (ω2εµ− γ2)HT = iγ∇Hz − iωε∇× Ez .Noting γ = ω(ε+µ+)1/2 sinφ, we introdu
e the pie
ewise 
onstant fun
tion

κ(x, y) =

{

(ε+µ+ − ε+µ+ sin2 φ)1/2 = κ+ , (x, y) ∈ G+ ,

(ε−µ− − ε+µ+ sin2 φ)1/2 = κ− , (x, y) ∈ G− ,
(4)with the square root z1/2 = r1/2 exp(iϕ/2) for z = r exp(iϕ), 0 ≤ ϕ < 2π. Hen
e (3) showsthat under the 
ondition κ 6= 0, whi
h will be assumed throughout, the 
omponents Ez, Hzdetermine the ele
tromagneti
 �eld (E,H).The equations (2) imply that Ez, Hz satisfy the Helmholtz equations(5) (∆ + ω2κ2)Ez = (∆ + ω2κ2)Hz = 0in G±. The 
ontinuity of the tangential 
omponents of E and H on the surfa
e takes theform

[

(n, 0) × E
]

Σ×R
=

[

(n, 0) ×H
]

Σ×R
= 0 ,where (n, 0) = (nx, ny, 0) is the normal ve
tor on Σ × R and [

(n, 0) × E
]

Σ×R
denotes thejump of the fun
tion (n, 0) × E a
ross the surfa
e. This leads to the jump 
onditions

[

Ez

]

Σ
=

[

Hz

]

Σ
= 0 ,

[ γ

ω2κ2
∂tHz +

ωε

ω2κ2
∂nEz

]

Σ
=

[ γ

ω2κ2
∂tEz −

ωµ

ω2κ2
∂nHz

]

Σ
= 0 .3



Here ∂n = nx∂x + ny∂y and ∂t = −ny∂x + nx∂y are the normal and tangential derivatives on
Σ, respe
tively. We introdu
e Bz = (µ+/ε+)1/2 Hz and use γ = ω(ε+µ+)1/2 sinφ to rewritethe jump 
onditions in the form

[

Ez

]

Σ
=

[

Hz

]

Σ
= 0 ,

[ε ∂nEz

κ2

]

Σ
= −ε+ sinφ

[∂tBz

κ2

]

Σ
,
[µ ∂nBz

κ2

]

Σ
= µ+ sinφ

[∂tEz

κ2

]

Σ
.(6)The z-
omponents of the in
oming �eld

Ei
z(x, y) = pz ei(αx−βy) , Bi

z(x, y) = qz ei(αx−βy) ,(7)are α-quasiperiodi
 in x of period d, i.e. satisfy the relation
u(x+ d, y) = eidα u(x, y) .In view of the periodi
ity of ε and µ this motivates to seek α-quasiperiodi
 solutions Ez, Bz.Furthermore, the di�ra
ted �elds must remain bounded at in�nity, whi
h implies the wellknown outgoing wave 
ondition(8) (Ez, Bz)(x, y) = (Ei
z, B

i
z) +

∑

n∈Z

(E+
n , B

+
n ) e i(αnx+β+

n y), y ≥ H,

(Ez, Bz)(x, y) =
∑

n∈Z

(E−
n , B

−
n ) e i(αnx−β−

n y), y ≤ −H,where Σ ⊂ {(x, y) : |y| < H}, and αn, β±
n are given by

αn = α +
2πn

d
, β±

n =
√

ω2κ2
± − α2

n with 0 ≤ arg β±
n < π .In the following it is always assumed that(9) 0 ≤ arg ε−, argµ− ≤ π with arg (ε−µ−) < 2π ,whi
h holds for all existing opti
al (meta)materials. Then 0 ≤ arg κ2

− < 2π and β−
n areproperly de�ned for all n.Denoting the z-
omponents of the total �elds

Ez =

{

u+ + Ei
z

u−
, Bz =

{

v+ +Bi
z in G+,

v− in G− ,the problem (5), (6), (8) 
an be written as
∆u± + ω2κ2

±u± = ∆v± + ω2κ2
±v± = 0 in G±,(10)

u− = u+ + Ei
z,

ε− ∂nu−
κ2
−

−
ε+∂n(u+ + Ei

z)

κ2
+

= ε+ sin φ
( 1

κ2
+

−
1

κ2
−

)

∂tv−,

v− = v+ +Bi
z,

µ−∂nv−
κ2
−

−
µ+∂n(v+ +Bi

z)

κ2
+

= −µ+ sin φ
( 1

κ2
+

−
1

κ2
−

)

∂tu−,















on Σ(11)
(u+, v+)(x, y) =

∞
∑

n=−∞

(E+
n , B

+
n ) e i(αnx+β+

n y) for y ≥ H,

(u−, v−)(x, y) =
∞

∑

n=−∞

(E−
n , B

−
n ) e i(αnx−β−

n y) for y ≤ −H.

(12)
4



2.2. Integral equations. There exist di�erent ways to transform the transmission problemfor the Helmholtz equations in R
2 (10) - (12) to integral equations. We 
ombine here thedire
t and indire
t approa
h as proposed in [23, 24℄ for the 
ase of 
lassi
al di�ra
tion. Let

Σ be given by a pie
ewise C2 parametrization(13) σ(t) = (X(t), Y (t)), X(t+ 1) = X(t) + d, Y (t+ 1) = Y (t) , t ∈ R ,i.e. the 
ontinuous fun
tions X, Y are pie
ewise C2 and σ(t1) 6= σ(t2) if t1 6= t2. If the pro�le
Σ has 
orners, then we suppose additionally that the angles between adja
ent tangents atthe 
orners are stri
tly between 0 and 2π.The potentials whi
h provide α-quasiperiodi
 solutions of the Helmholtz equation(14) ∆u+ k2u = 0 with 0 ≤ arg k2 < 2πare based on the quasiperiodi
 fundamental solution of period d

Ψk,α(P ) = lim
N→∞

i

2d

N
∑

n=−N

e iαnX+iβn|Y |

βn

, P = (X, Y ) .Here we assume that βn = (k2 − α2
n)1/2 6= 0 for all n. The single and double layer potentialsare de�ned by

Sk,αϕ(P ) = 2

∫

Γ

ϕ(Q) Ψk,α(P −Q) dσQ ,

Dk,αϕ(P ) = 2

∫

Γ

ϕ(Q) ∂n(Q)Ψk,α(P −Q) dσQ ,

(15)where Γ is one period of the interfa
e Σ, i.e. Γ = {σ(t) : t ∈ [t0, t0 + 1]} for some t0. In (15)
dσQ denotes the integration with respe
t to the ar
 length and n(Q) is the normal to Σ at
Q ∈ Σ pointing into G−. Obviously, for α-quasiperiodi
 densities ϕ on Σ the value of thepotentials does not depend on the 
hoi
e of Γ.The potentials provide the usual representation formulas. Any α-quasiperiodi
 fun
tion uwhi
h satis�es in G+ the Helmholtz equation (14) and the radiation 
ondition

u(x, y) =

∞
∑

n=−∞

un e iαnx+iβn|y| , |y| ≥ H .admits the representation(16) 1

2

(

Sk,α∂nu−Dk,αu
)

=

{

u in G+,
0 in G−,where the normal n points into G−. Under the same assumptions for a fun
tion u in G− therepresentation(17) 1

2

(

Dk,αu− Sk,α∂nu
)

=

{

0 in G+,
u in G−,is valid.Restri
tion of the potentials Sk,α and Dk,α to the pro�le 
urve Σ are the so 
alled boundaryintegral operators. The potentials provide the usual jump relations of 
lassi
al potentialtheory. The single layer potential is 
ontinuous a
ross Σ

(Sk,αϕ)+(P ) = (Sk,αϕ)−(P ) = Vk,αϕ(P ) ,5



where the upper sign + resp. − denotes the limits of the potentials for points inG± tending innon-tangential dire
tion to P ∈ Σ, and Vk,α is a integral operator with logarithmi
 singularity
Vk,αϕ(P ) = 2

∫

Γ

Ψk,α(P −Q)ϕ(Q) dσQ , P ∈ Σ .The double layer potential has a jump if 
rossing Γ:(18) (

Dk,αϕ
)+

= (Kk,α − I)ϕ,
(

Dk,αϕ
)−

= (Kk,α + I)ϕwith the boundary double layer potential
Kk,αϕ(P ) = 2

∫

Γ

ϕ(Q) ∂n(Q)Ψk,α(P −Q) dσQ + (δ(P ) − 1)ϕ(P ) .Here δ(P ) ∈ (0, 2), P ∈ Σ, denotes the ratio of the angle in G+ at P and π, i.e. δ(P ) = 1outside 
orner points of Σ. The normal derivative of Sk,αϕ at Σ exists outside 
orners andhas the limits(19) (

∂nSk,αϕ
)+

= (Lk,α + I)ϕ,
(

∂nSk,αϕ
)−

= (Lk,α − I)ϕ,where Lk,α is the integral operator on Γ with the kernel ∂n(P )Ψk,α(P −Q),
Lk,αϕ(P ) = 2

∫

Γ

ϕ(Q) ∂n(P )Ψk,α(P −Q) dσQ , P ∈ Σ .In the following also the tangential derivative of single layer potentials
∂t

(

Vk,αϕ
)

(P ) = 2 ∂t

∫

Γ

Ψk,α(P −Q)ϕ(Q) dσQ , P ∈ Σ ,o

urs. Inter
hanging di�erentiation and integration leads to a kernel with the main singu-larity
t(P ) · (P −Q)

|P −Q|2
,therefore the tangential derivative of single layer potentials 
annot be expressed as usualintegral. But it 
an be interpreted as Cau
hy prin
ipal value or singular integral

Jk,αϕ(P ) = 2 lim
δ→0

∫

Γ\Γ(P,δ)

ϕ(Q) ∂t(P )Ψk,α(P −Q) dσQ = ∂t

(

Vk,αϕ
)

(P ) ,(20)where Γ(P, δ) is the subar
 of Γ of length 2δ with the mid point P . Similarly, one 
an de�nethe singular integral(21) Hk,αϕ(P ) = 2 lim
δ→0

∫

Γ\Γ(P,δ)

ϕ(Q) ∂t(Q)Ψk,α(P −Q) dσQ ,whi
h by using integration by parts gives for α-quasiperiodi
 ϕ
Hk,αϕ(P ) = −2

∫

Γ

Ψk,α(P −Q) ∂tϕ(Q) dσQ = −Vk,α

(

∂tϕ
)

(P ) , P ∈ Σ .Note that Vk,α∂tVk,α = Vk,αJk,α = −Hk,αVk,α.Now we are in the position to formulate the integral equations for solving the 
oni
al di�ra
-tion problem (10) � (12). In order to represent u± and v± as layer potentials we assume inwhat follows that the parameters are su
h that β±
n = (ω2κ2

± − α2
n)1/2 6= 0 for all n. Sin
e6



arg κ− ∈ [0, π) (see assumption (9)) the boundary integral operators 
orresponding to thefundamental solution Ψωκ±,α are well de�ned and by the representation formulas (16), (17)
u+ =

1

2

(

S+
α ∂nu+ −D+

α u+

)

, v+ =
1

2

(

S+
α ∂nv+ −D+

α v+

) in G+ ,

Ei
z =

1

2

(

D+
αE

i
z − S+

α ∂nE
i
z

)

, Bi
z =

1

2

(

D+
αB

i
z − S+

α ∂nB
i
z

) in G− .Here we denote by S±
α the single layer potential de�ned on Γ with the fundamental solution

Ψωκ±,α. Correspondingly D±
α is the double layer potential over Γ with the normal derivativeof Ψωκ±,α as kernel fun
tion. Taking the limits on Σ the jump relations (18) lead to

V +
α ∂n(u+ + Ei

z) −
(

I +K+
α

)

(u+ + Ei
z) = 2Ei

z|Σ ,

V +
α ∂n(v+ +Bi

z) −
(

I +K+
α

)

(v+ +Bi
z) = 2Bi

z|Σ ,
(22)where V ±

α denote the boundary single layer potentials
V ±

α ϕ(P ) = 2

∫

Γ

ϕ(Q) Ψωκ±,α(P −Q) dσQ , P ∈ Σ ,and the operators K±
α and L±

α are de�ned analogously. The solutions in G− are sought assingle layer potentials
u− = S−

αw , v− = S−
α τwith 
ertain auxiliary densities w, τ . Sin
e by Eq. (19)

u−|Σ = V −
α w, ∂nu−|Σ = (L−

α − I)w, v−|Σ = V −
α τ, ∂nv−|Σ = (L−

α − I)τ,we see from the equations (22) that the jump 
onditions (11) are valid, when the unknowns
w, τ satisfy the system of integral equations

ε−κ
2
+

ε+κ2
−

V +
α (L−

α − I)w −
(

I +K+
α

)

V −
α w − sinφ

(

1 −
κ2

+

κ2
−

)

V +
α ∂tV

−
α τ = 2Ei

z,

µ−κ
2
+

µ+κ2
−

V +
α (L−

α − I)τ −
(

I +K+
α

)

V −
α τ + sinφ

(

1 −
κ2

+

κ2
−

)

V +
α ∂tV

−
α w = 2Bi

z.

(23)Re
all that we suppose κ2
− 6= 0 and ω2κ2

± − α2
n 6= 0 for all n.For the analyti
al and numeri
al treatment of the integral equation system (23) it is advan-tageous to use the relations

V +
α ∂tV

−
α = −H+

α V
−
α = V +

α J
−
α(see the de�nitions (20), (21)). Then (23) be
omes a system of singular integral equations,for whi
h exist powerful analyti
al and numeri
al methods.If the solution of the system (23) is found, then the solution of the 
oni
al di�ra
tion problem(10) - (12) 
an be determined by the relations

u+ = −
1

2

(ε−κ
2
+

ε+κ2
−

S+
α (I − L−

α )w + D+
αV

−
α w +

sin φ(κ2
− − κ2

+)

κ2
−

S+
α J

−
α τ

)

, u− = S−
α w ,

v+ = −
1

2

(µ−κ
2
+

µ+κ
2
−

S+
α (I − L−

α )τ + D+
αV

−
α τ −

sinφ(κ2
− − κ2

+)

κ2
−

S+
α J

−
α w

)

, v− = S−
α τ .A detailed mathemati
al analysis of the system of singular integral equations (23) is givenin [32℄. In parti
ular, the following properties have been established:1. The integral equations are equivalent to the Helmholtz system if the operators V +

αand V −
α are invertible. 7



2. If the pro�le Σ has no 
orners, then (23) is solvable if ε− + ε+ 6= 0 and µ− + µ+ 6= 0.3. If the pro�le Σ has 
orners, then (23) is solvable if ε−/ε+ and µ−/µ+ /∈ [−ρ,−1/ρ]for some ρ > 1, depending on the angles at these 
orners.4. The solution of (23) is unique if Im ε− ≥ 0 and Imµ− ≥ 0 with Im(ε− + µ−) > 02.3. Energy balan
e for 
oni
al di�ra
tion. Suppose that Ez, Bz are a solution of thepartial di�erential formulation of 
oni
al di�ra
tion (5), (6) and (8). The expression of the
onservation of energy is based on a variational equality for Ez and Bz in a periodi
 
ell
ΩH , whi
h has in x-dire
tion the width d, is bounded by the straight lines {y = ±H} and
ontains Γ. We multiply the Helmholtz equations (5) respe
tively with

ε

ε+κ2
Ez and µ

µ+κ2
Bz ,and apply Green's formula in the subdomains ΩH ∩G±. Then by using the quasiperiodi
ityof Ez, Bz and the jump relations (6) one derives

∫

ΩH

ε

ε+

( 1

κ2
|∇Ez|

2 − ω2 |Ez|
2
)

+ sin φ
( 1

κ2
+

−
1

κ2
−

)

∫

Γ

∂tBz Ez

−
1

κ2
+

∫

Γ(H)

∂nEz Ez −
ε−
ε+κ2

−

∫

Γ(−H)

∂nEz Ez = 0 ,(24)
∫

ΩH

µ

µ+

( 1

κ2
|∇Bz|

2 − ω2 |Bz|
2
)

− sinφ
( 1

κ2
+

−
1

κ2
−

)

∫

Γ

∂tEz Bz

−
1

κ2
+

∫

Γ(H)

∂nBz Bz −
µ−

µ+κ2
−

∫

Γ(−H)

∂nBz Bz = 0 ,(25)where Γ(±H) denotes the upper and lower straight boundary of ΩH , respe
tively. Theoutgoing wave 
ondition (7) and (8) implies
∫

Γ(H)

∂nEz Ez = iβ
(

|E+
0 |

2 − |pz|
2 + 2i Im

(

E+
0 pz e iβH

)

)

+ i
∑

n 6=0

β+
n |E

+
n |

2 e−2H Im β+
n ,

∫

Γ(−H)

∂nEz Ez = i
∑

n∈Z

β−
n |E

−
n |

2 e−2H Im β−
n ,and similar expressions for the boundary integrals involving Bz. Note that ε+ and µ+ arepositive.Let ε− and µ− be real. Taking the imaginary part of Eqs. (24) and (25) leads to theequations

β

κ2
+

|pz|
2 −

1

κ2
+

∑

β+
n >0

β+
n |E

+
n |

2 −
ε−
ε+κ

2
−

∑

β−
n >0

β−
n |E

−
n |

2 = − sin φ
( 1

κ2
+

−
1

κ2
−

)

Im

∫

Γ

∂tBz Ez ,

β

κ2
+

|qz|
2 −

1

κ2
+

∑

β+
n >0

β+
n |B

+
n |

2 −
µ−

µ+κ
2
−

∑

β−
n >0

β−
n |B

−
n |

2 = sinφ
( 1

κ2
+

−
1

κ2
−

)

Im

∫

Γ

∂tEz Bz .Sin
e
Im

∫

Γ

∂tBz Ez = Im

∫

Γ

∂tEz Bzwe derive
|pz|

2 + |qz|
2 =

∑

β+
n >0

β+
n

β

(

|E+
n |

2 + |B+
n |

2
)

+
κ2

+

κ2
−

∑

β−
n >0

β−
n

β

(ε−
ε+

|E−
n |

2 +
µ−

µ+
|B−

n |
2
)

.

8



Thus for lossless gratings the energy of the in
ident wave |pz|
2 + |qz|

2 equals the sum ofre�e
tion order e�
ien
ies
R =

∑

β+
n >0

β+
n

β

(

|E+
n |

2 + |B+
n |

2
)plus the sum of transmission order e�
ien
ies

T =
∑

β−
n >0

β−
n

β

(ε−
ε+

|E−
n |

2 +
µ−

µ+

|B−
n |

2
)

.If Im ε− 6= 0 or Imµ− 6= 0, then T = 0 and |pz|
2 + |qz|

2 > R, i.e. the usual 
onservation ofenergy does not hold. Instead, one part of the energy is absorbed in the substrate. This heatabsorption energy plus the energy of the re�e
ted modes equals the energy of the in
identwave.Therefore, one tool to 
he
k the quality of the numeri
al solution for absorbing gratings isthe requirement, that the sum of the re�e
ted energy and the absorption energy should beequal to the energy of the in
ident wave.To obtain an expression for the absorption energy we note that by Green's formula
∫

ΩH∩G−

ε−
ε+

( 1

κ2
−

|∇Ez|
2 − ω2 |Ez|

2
)

−
ε−
ε+κ2

−

∫

Γ(−H)

∂nEz Ez = −
ε−
ε+κ2

−

∫

Γ

∂nEz Ez ,

∫

ΩH∩G−

µ−

µ+

( 1

κ2
−

|∇Bz|
2 − ω2 |Bz|

2
)

−
µ−

µ+κ2
−

∫

Γ(−H)

∂nBz Bz = −
µ−

µ+κ2
−

∫

Γ

∂nBz Bz ,su
h that the imaginary parts of Eqs. (24), (25) be
ome
− Im

ε−
ε+κ2

−

∫

Γ

∂nEz Ez + sin φ Im
( 1

κ2
+

−
1

κ2
−

)

∫

Γ

∂tBz Ez

−
β

κ2
+

(

|E+
0 |

2 − |pz|
2
)

−
∑

β+
n >0

β+
n

κ2
+

|E+
n |

2 = 0 ,

− Im
µ−

µ+κ2
−

∫

Γ

∂nBz Bz − sinφ Im
( 1

κ2
+

−
1

κ2
−

)

∫

Γ

∂tEz Bz

−
β

κ2
+

(

|B+
0 |

2 − |qz|
2
)

−
∑

β+
n >0

β+
n

κ2
+

|B+
n |

2 = 0 .Hen
e
|pz|

2 + |qz|
2 =

∑

β+
n >0

β+
n

β

(

|E+
n |

2 + |B+
n |

2
)

+ Im
ε−κ

2
+

ε+κ2
−β

∫

Γ

∂nEz Ez + Im
µ−κ

2
+

µ+κ2
−β

∫

Γ

∂nBz Bz

−
sinφ

β

(

Im
(

1 −
κ2

+

κ2
−

)

∫

Γ

(∂tBz Ez − ∂tEz Bz)
)

=
∑

β+
n >0

β+
n

β

(

|E+
n |

2 + |B+
n |

2
)

+
κ2

+

β
Im

∫

Γ

( ε−
ε+κ

2
−

∂nEz Ez +
µ−

µ+κ
2
−

∂nBz Bz

)

+
2κ2

+ sinφ

β
Im

1

κ2
−

Re

∫

Γ

Ez ∂tBz .Thus we derive the 
onservation of energy for absorbing gratings
|pz|

2 + |qz|
2 = R+ A9



with the absorption energy of 
oni
al di�ra
tion(26) A =
κ2

+

β
Im

(

1

κ2
−

(ε−
ε+

∫

Γ

∂nEz Ez +
µ−

µ+

∫

Γ

∂nBz Bz + 2 sinφRe

∫

Γ

Ez ∂tBz

)

)

.In the 
ase φ = 0 formula (26) provides the expressions of the heat absorption energy forin-plane di�ra
tion derived in [29℄.3. Numeri
al implementationWe dis
uss brie�y the numeri
al solution of the system (23). Let Γ be parametrized by(13). In the 
ase of a smooth pro�le Σ a trigonometri
 
ollo
ation method is used, i.e. weapproximate
w(σ(t)) e−iαX(t) |σ′(t)| ≈ wN(t) =

N
∑

k=−N

ak e 2πikt ,

τ(σ(t)) e−iαX(t) |σ′(t)| ≈ τN (t) =
N

∑

k=−N

bk e 2πikt ,

(27)and the 
oe�
ients {ak}, {bk} are su
h that the system (23) is satis�ed at the 2N + 1
ollo
ation points tk = k/(2N + 1), k = 0, . . . , 2N .Similar to [16℄ the advantage of trigonometri
 methods is utilized that the integral operators
V ±

α , H+
α and J−

α with singular kernels 
an be approximated properly. For example, usingthe parametrization σ(t) the single layer potential operator of w 
an be approximated by
V ±

α w(σ(t)) ≈ −2 eiαX(t)
(

∫ 1

0

log |2 sin π(t− s)|wN(s) ds+

∫ 1

0

g±α (t, s)wN(s) ds
)and the singular integral J±

α w by
J±

α w(σ(t)) ≈ eiαX(t)
(

∫ 1

0

cot π(t− s)wN(s) ds+

∫ 1

0

j±α (t, s)wN(s) ds
)

,where the fun
tions g±α (t, s), j±α (t, s) are 
ontinuous and periodi
 in t and s. The a
tion ofthe integral operators with the kernels log |2 sin π(t − s)| and cot π(t − s) on trigonometri
polynomials is given analyti
ally. All other integrals have 
ontinuous kernels and they areapproximated by the trapezoidal rule like in Nyström's method. So the dis
retization errordepends only on the error made in 
omputing the fun
tions g±α (t, s), j±α (t, s) and the 
ontinu-ous kernels of K+
α and L−

α , i.e. in 
omputing the fundamental solution and there derivatives.Here we use the exa
t Ewald method (
f. [22℄) with a number of summation terms to ensuredis
retization errors of order N−3. Finally the operator produ
ts V +
α L

−
α , K+

α V
−
α , H+

α V
−
α or

V +
α J

−
α are approximated by the produ
ts of the 
orresponding dis
retization matri
es. Notethat instead of H+

α V
−
α or V +

α J
−
α one 
an also perform the dis
retization of V +

α ∂tV
−
α , involvinga numeri
al di�erentiation. Numeri
al tests and further investigations 
an show whi
h oneis preferable for given e�
ien
y 
al
ulations.For the solution of the dis
rete system we use a pre
onditioned GMRES method similar tothat des
ribed in [22℄. The number of iterations until a pres
ribed residual error is rea
hed,depends of 
ourse on the refra
tion indi
es and the pro�le, but it is nearly independent ofthe number of unknowns. However, it should be noted that modern implementations of theLAPACK and BLAS software pa
kages on multipro
essor ma
hines make dire
t solving toa 
ompetitive alternative to iterative solution methods even for rather large systems.10



If the pro�le 
urve has 
orners, then the 
onvergen
e properties of methods with only trigono-metri
 trial fun
tions deteriorate due to singularities of the densities w and τ of the form
O(ρ−δ), 0 < δ < 1, where ρ is the distan
e to the 
losest edge. In boundary element methodsit is 
ommon to use pie
ewise polynomial trial fun
tions on meshes graded towards 
ornerpoints. But due to the 
ompli
ated form of their kernels the quadrature of the integral op-erators a
ting on pie
ewise polynomials is very expensive. Therefore we use a modi�
ationof the trigonometri
 
ollo
ation s
heme with a �xed number of pie
ewise polynomial trialfun
tions. First we introdu
e meshes of 
ollo
ation points, whi
h 
ontain the 
orners andare graded towards the 
orner points. This 
an be derived by 
hanging the parametrization(13), for example, if σ(tj) is a 
orner point, then σ′(tj) = σ′′(tj) = 0 implies grading towardsthe 
orner. Further, for ea
h 
ollo
ation point tk there exists a Lagrangian trigonometri
polynomial pk(t) of degree 2N + 1 su
h that

pk(tj) = δkj , k, j = 0, . . . , 2N ,

δkj is Krone
ker's delta. For ea
h edge and a �xed number of 
ollo
ation points tk around itwe repla
e the 
orresponding Lagrangian trigonometri
 polynomial pk(t) by a 
ubi
 spline
sk(t) on the graded mesh with sk(tj) = δkj . Thus we get a hybrid trigonometri
-spline 
ollo-
ation method, whi
h 
ombines the e�
ient 
omputation of the integrals for trigonometri
polynomials with the good approximation properties of pie
ewise polynomials on gradedmeshes near edges. The values at the 
ollo
ation point tj of the integrals on the basis spline
sk are 
omputed by a 
omposite Gauss-quadrature with a quadrature mesh geometri
allygraded towards tj and depending on the distan
e |σ(tk)− σ(tj)|. This leads to a �xed num-ber of additional 
al
ulations of the fundamental solutions Ψωκ±,α for ea
h dis
retisationlevel 
ompared with the pure trigonometri
 method, whi
h is however 
ompensated by asigni�
antly higher a

ura
y. 4. Numeri
al resultsThe workability of the 
ode developed has been 
on�rmed by numerous tests usually em-ployed in 
lassi
al and 
oni
al di�ra
tion 
ases, more spe
i�
ally: the re
ipro
ity theorem;stabilization of results under doubling of the number of 
ollo
ation points and varying ofthe 
al
ulation a

ura
y of kernel fun
tions; 
omparison with analyti
ally amenable 
asesof plane interfa
es; 
onsideration of the inverse (non-physi
al) radiation 
ondition; use ofdi�erent variants of 
ollo
ation point distribution on boundaries (mesh re�nements); 
om-parison with the results obtained by another of our 
odes or with published data, or withinformation 
orresponded to us by other resear
hers, in
luding results of measurements. Asmall part of su
h numeri
al tests is demonstrated in this Se
tion.4.1. Comparing. In Table 1 the numeri
al results of the present boundary integral equationmethod (IM) for a diele
tri
 lamellar grating with the ridge c in a 
oni
al mounting are
ompared with those of Table 2 of Li who uses the modal method (MM) [33℄. All gratingand light parameters are listed in the table 
aption. The agreement between the MM andthe IM for the e�
ien
ies and polarization angles is almost perfe
t for all re�e
tion andtransmission orders despite of very di�erent methods 
ompared. Note that we use the samede�nitions for polarization angles as in Refs. [30, 33℄. We used 400 
ollo
ation points, meshgrading, and the dire
t dis
retization of J−

α to 
al
ulate this example that allo
ates 188MByte memory. The energy balan
e error 
al
ulated from (26) is about 10−5. The averagetime taken up by the example on a portable workstation IBM ThinkPadr R50p with anIntelr Pentiumr M 1.7 GHz pro
essor and 2 GByte of RAM is about 4 se
 when operatingon Linux (kernel 2.6.17). 11



In Table 2 the numeri
al results of a similar 
omparison as in Table 1 between the IM andthe MM are demonstrated for a 
ondu
ting lamellar grating in a 
oni
al mounting (
omparewith Table 3 of [33℄). All grating and light parameters are listed in the table 
aption. Theagreement between the MM and the IM for the e�
ien
ies and polarization angles is, ingeneral, good. The same a

ura
y parameters as in the previous example have been usedand similar 
al
ulation times have been obtained on the above mentioned laptop. The energybalan
e error 
al
ulated from (26) is about 10−6.In Tables 3 and 4 the numeri
al results of the IM for a diele
tri
 sine grating in a 
oni
almounting are 
ompared with those of Table 2 of Ref. [7℄ of Li who used for the presented datathe 
oordinate transformation method (CM) [5℄. All grating and light parameters are listedin the table 
aptions. The agreement between the CM and the IM for the e�
ien
ies is verygood. We used 100 
ollo
ation points and the numeri
al di�erentiation of V +
α to 
al
ulatethis example that allo
ates 10 MByte of RAM. The energy balan
e error 
al
ulated from(26) is about 10−5 for both 
omponents of the in
ident radiation. The average 
omputationtime taken up by the example on the above mentioned laptop is about 0.2 se
.The results of another 
omparison for a metal e
helette grating with the blaze angle ζ ina 
oni
al mounting are demonstrated in Tables 5 and 6 
ompared with those [34℄ updatedby Li who has used again the CM to 
al
ulate the e�
ien
y of the grating having edges[35℄. All grating and light parameters are listed in the table 
aptions. As one 
an see inTables 5 and 6, again the agreement between the CM and the IM is very good for the allorder e�
ien
ies and polarization angles. One has used 800 
ollo
ation points, mesh s
alingnear edges, and the di�erentiation of V +

α to 
al
ulate this example allo
ating 196 MByte ofRAM. The average energy balan
e error 
al
ulated from Eq. (26) is about 10−5 for bothpolarization states of the in
ident radiation. The average 
omputation time taken up by twovalues of the polarization angle on the above mentioned laptop is about 18 se
.4.2. Convergen
e, a

ura
y, and 
omputation time. We will examine the 
onvergen
erate and the a

ura
y of di�ra
tion e�
ien
ies with respe
t to the number of 
ollo
ationpoints N . For the e�
ien
y 
onvergen
e testing, a magnitude of 
omputational error 
annotbe reliably dedu
ed from a

ura
y 
riteria based on a single 
omputation su
h as the energybalan
e and the inverse radiation 
ondition tests. For this purpose 
omparative studiesshould be used, i.e. N-doubling or 
hanging the 
on�guration of 
ollo
ation points. Weintrodu
e a parameter ∆N,k as an integral measure of the e�
ien
y error under N-doublingtests. It is equal to the sum of absolute di�eren
es of respe
tive di�ra
tion order e�
ien
iesfor two su

essive iterations with the number of 
ollo
ation points for ea
h iteration of
N = N0 × 2k−1, where N0 is the initial number of 
ollo
ation points, k = 1, ..., K, and K isthe total number of iterations. The magnitude of ∆N,k gives approximately the 
orre
t digitsin the numeri
al results if the number of propagating di�ra
tion orders is small enough oronly a few valuable orders exist. For many propagating orders it 
an give a more pessimisti
error value.To examine the 
onvergen
e of di�ra
tion e�
ien
ies, we 
hoose as a sample the slantedlamellar highly-
ondu
ting grating similar to that from Figs. 10 and 11 of Ref. [36℄, but for
ε− = (−104, 0) That means that we study almost perfe
tly 
ondu
ting non-fun
tion-pro�ledgrating with the zero real part of the refra
tive index and its imaginary part of 102 using oursolver for the �nite 
ondu
tivity, the 
ase probably not possible for many rigorous methods,even with all known improvements and arti�
ial in
lusions [36℄. Note that using the refra
tiveindex of (10−2, 10) from the example of Ref. [36℄ the 
onvergen
e rate of our solver is sofast that no interesting data to dis
uss 
an be seen even for small values of N . So in Fig.12



2 the 
onvergen
e of the di�ra
tion e�
ien
ies with respe
t to the trun
ation parameter Nunder N-doubling is demonstrated for N0 = 15 and K = 9 using the mu
h harder refra
tiveindex mentioned above. The e�
ien
y values stabilize and the 
onvergen
e is starting at
N = 60 and a
hieved with the high a

ura
y at N = 960. Note that ∆1920,8 = 4.21 × 10−4and ∆3840,9 = 1.50 × 10−4 and the energy balan
e error is about 10−4 for these values of N .
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Figure 2. Di�ra
tion e�
ien
ies of a lamellar highly-
ondu
ting grating with
c/d = 0.5 and 2H/d = 0.3 having the grooves slanted at angle of 45◦ vs.number of 
ollo
ation points N . Other parameters: ǫ+ = 1, ǫ− = (−104, 0),
µ± = 1, λ/d = 0.8, θi = 26.565◦, φi = 14.478◦, δi = 0, and ψi = 0.Thus, the 
onvergen
e rate is fast enough taking into a

ount the di�
ult 
ase tested. More-over, due to solution pe
uliarities for pro�les with edges the 
onvergen
e rate even is betterfor ε− = (−105, 0), but the 
al
ulation time is longer. The absorption 
al
ulated from Eq.(26) is very small for a su
h grating (∼ 10−5) and its non-negative magnitude and de
reasingare also a good measure of the 
onvergen
e and the 
al
ulation a

ura
y. One 
an also 
he
kof the absolute a

ura
y of 
al
ulation results for this example using the perfe
t 
ondu
tivityapproximation. The asymptoti
 e�
ien
y values 
al
ulated using this approximation di�erfrom those obtained using the �nite 
ondu
tivity approa
h (0.9105 and 0.0894 for −1 and

0 orders, respe
tively) by not more than a few hundredths of a %. The total 
omputationtime of all results presented in Fig. 3 is about 35 minutes on the above mentioned PC andthe required RAM is about 2 GB. Non-using a mesh re�nement and using the di�erentiationof V +
α are most suitable for this sort of 
al
ulations.The 
omputation time T for the 
onsidered one-border 
oni
al di�ra
tion solver is essentiallya fun
tion of the trun
ation parameter N only. The general dependen
e T (N) of boundaryintegral equation formalisms is proportional to N3 due to a square dependen
e on N forthe Green fun
tions and their derivatives 
al
ulations and the summation of these 
omputedvalues that is proportional to N [15, 16, 17℄. In addition, a dire
t linear equation solverrequires a time that is also proportional to N3. To speed-up the presented 
al
ulation solvertwo substantial a

elerations have been used. The �rst one is the Ewald's method for thekernel 
omputation; the se
ond one is solving systems of linear equations iteratively. Asa result, the 
omputation time is proportional to N2 that 
learly seen in Fig. 3 for thetypi
al example des
ribed in Table 2. If the iterative solver 
annot give 
orre
t results afterthe given number of iterations, then the dire
t solver is applied. Fortunately, this situationo

urs in infrequent or hard 
ases only. 13
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omputation time for the example des
ribed in Table 2.4.3. E�
ien
y of a grazing-in
iden
e real-groove-pro�le o�-plane grating in x-rays. Grazing-in
iden
e o�-plane gratings have been suggested for the International X-rayObservatory (IXO) [37℄. Compared with gratings in the 
lassi
al in-plane mount, x-raygratings in the o�-plane mount have the potential for superior resolution and e�
ien
y forthe IXO mission. The results of e�
ien
y 
al
ulations for su
h a gold blazed soft x-raygrating in a 
oni
al mount using the groove pro�le derived from Atomi
 For
e Mi
ros
opy(AFM) measurements are shown in Fig. 4. The average border shape having 123 nodes ispresented in Fig. 5. All grating and light parameters are listed in the �gure 
aption. Thein
ident beam in the rigorous 
al
ulations was assumed to be 81% TM-polarized that meansthe ele
tri
 ve
tors of the in
ident wave and the di�ra
ted waves are approximately parallelto the surfa
e of the grating at the given di�ra
tion angles. In Fig. 5 the numeri
al results ofthe presented BIEM for a �nite boundary 
ondu
tivity are 
ompared with those based on theBIEM with the perfe
t 
ondu
tivity approximation. The in
ident beam in the 
omputationsbased on the perfe
t 
ondu
tivity approximation was assumed to be 100% TE-polarized.Rigorous 
omputations 
arried out by the presented method show that for the 
onsideredgrating model all the order e�
ien
ies are not sensitive to a polarization state and e�
ien
yjumps do not o

ur in the wavelength range investigated. For any polarization state ordere�
ien
ies di�er from those presented in Fig. 4 not more than a few tenths of a %. Contrary,
al
ulations based on the perfe
tly 
ondu
ting boundary approximation are very sensitive tothe polarization state and sharp Rayleigh anomalies for the TM-polarized in
ident radiationo

ur. They were predi
ted earlier for su
h a grating using the in-plane boundary integralequation method and the Invarian
e theorem [39℄. As it 
an be seen in Fig. 4, the agreementbetween rigorously 
al
ulated data and those obtained by the perfe
t 
ondu
tivity approxi-mation multiplied by Fresnel re�e
tan
es is good only if the TE-polarized in
ident radiationis used for the approximation.It has been used 800 
ollo
ation points, no mesh s
aling, and the di�erentiation of V +
α to
al
ulate rigorously this real groove pro�le example that allo
ates a spa
e of 144 MByte. Theenergy balan
e error 
al
ulated from Eq. (26) is about 10−4 in the investigated wavelengthrange. The average 
omputation time taken up by one wavelength on the above mentionedlaptop is about 40 se
. The time of an approximate 
omputation is about �ve times shorterfor the same a

ura
y. 14
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Figure 4. Di�ra
tion e�
ien
ies of a gold polygonal grating with 123 nodes,
µ± = 1 and d = 200 nm for the in
ident wave with θi = −30◦ and φi =
88◦: rigorously (δi = 34.143◦ and ψi = 0) or using the perfe
t 
ondu
tivityapproximation (Bz ≈ 0: δi = 30.015◦ and ψi = 180◦) vs. wavelength λ.Refra
tive indi
es of Au were taken from Ref. [38℄

 

0

0.05

0.1

0.15

0 1

D
e
p
th
, 
re
la
ti
v
e
 t
o
 p
e
ri
o
d

Normalized periodFigure 5. AFM-measured average groove pro�le.5. Summary and 
on
lusionsO�-plane s
attering of time-harmoni
 plane waves by 1D stru
tures has been 
onsidered.The term '1D' refers to a general di�ra
tion grating or a rough mirror having arbitrary 
on-du
tivity on a planar surfa
e in R3, whi
h is periodi
 in one surfa
e dire
tion, 
onstant in these
ond, and has an arbitrary border pro�le in
luding edges and non-fun
tions. The ele
tro-magneti
 formulation of 
oni
al di�ra
tion by gratings redu
ed to a system of 2 Helmholtzequations in R2, whi
h are 
oupled by transmission 
onditions at the interfa
es betweendi�erent materials, was presented.The integral equations for 
oni
al di�ra
tion were obtained using the boundary integralsof the single and double layer potentials in
luding the tangential derivative of single layerpotentials interpreted as singular integrals. A full rigorous theoreti
al foundation of the
oni
al boundary integral equation method was established for the �rst time. Besides, we15



derived an important formula for dire
t 
al
ulation of the absorption of gratings in 
oni
aldi�ra
tion mounts. Some rules whi
h are expedient for the numeri
al implementation of thedes
ribed theory were presented.The results of e�
ien
ies and polarization angles 
omparing with the data obtained by Liusing the modal (lamellar pro�les) and the 
oordinate transformation (sinus and e
helettepro�les) 
oni
al solvers for transmission and re�e
tion gratings are in a good agreement.The high rate of 
onvergen
e, the high a

ura
y, and the short 
omputation time of thepresented solver were demonstrated for various samples. An example of rigorous e�
ien
y
omputations of the soft x-ray grazing-in
iden
e o�-plane grating suggested for the IXOmission was demonstrated using the 123-node AFM-measured border pro�le and realisti
refra
tive indi
es data.The solver developed and tested is found to be a

urate and e�
ient for solving 
oni
aldi�ra
tion problems in
luding di�
ult 
ases of high-
ondu
tive surfa
es, borders with edges,real border pro�les, and gratings working at very short wavelengths.Table 1. Di�ra
tion Angles (θ, φ), Di�ra
tion E�
ien
ies (η), and Polariza-tion Angles (δ, ψ) of a Diele
tri
 Lamellar GratingaDOb θ(IM),◦ φ(IM),◦ η(MM),% η(IM),% δ(MM),◦ δ(IM),◦ ψ(MM),◦ ψ(IM),◦
R−2 35.265 −30 0.1614 0.1612 64.32 64.32 −30.30 −30.24
R−1 0 −30 0.3807 0.3807 65.97 66.0 −157.20 −157.22
R0 35.264 −30 1.855 1.854 70.49 70.43 −148.46 −148.60
T−3 −45 −19.471 3.363 3.363 51.06 51.05 32.28 32.28
T−2 −20.705 −19.471 10.34 10.35 56.24 56.24 110.21 110.23
T−1 0 −19.471 31.87 31.87 46.55 46.54 99.03 99.02
T0 20.705 −19.471 14.19 14.19 34.26 34.26 68.37 68.38
T1 45 −19.471 37.83 37.83 46.33 46.34 86.81 86.83

ac/d = 0.5, 2H/d = 0.5, ǫ+ = 1, ǫ− = 2.25, µ± = 1, λ/d = 0.5, θi = 35.264◦, φi = 30◦, δi = 45◦, and
ψi = 90◦. IM stands for the present integral method, MM stands for the Li's modal method.
bDi�ra
tion order.Table 2. Di�ra
tion Angles (θ, φ), Di�ra
tion E�
ien
ies (η), and Polariza-tion Angles (δ, ψ) of a Metalli
 Lamellar GratingaDOb θ(IM),◦ φ(IM),◦ η(MM),% η(IM),% δ(MM),◦ δ(IM),◦ ψ(MM),◦ ψ(IM),◦
R−2 −43.715 −20.705 7.31 7.52 62.48 61.85 52.74 48.30
R−1 −9.007 −20.705 13.51 13.25 15.35 15.79 −12.05 −12.23
R0 22.208 −20.705 42.99 44.27 41.25 41.33 171.21 170.15
R1 65.852 −20.705 30.24 31.05 75.23 75.64 168.78 166.30

ac/d = 0.5, 2H/d = 1, ǫ+ = 1, ǫ− = (−24.99, 1), µ± = 1, λ/d = 0.5, θi = 22.208◦, φi = 20.705◦, δi = 45◦,and ψi = 0. IM stands for the present integral method, MM stands for the Li's modal method.
bDi�ra
tion order.
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Table 3. Di�ra
tion Angles (θ, φ), Di�ra
tion E�
ien
ies (η), and Polariza-tion Angles (δ, ψ) of a Diele
tri
 Sine Grating for Bz = 0aDOb θ(IM),◦ φ(IM),◦ η(CM),% η(IM),% δ(CM),◦ δ(IM),◦ ψ(CM),◦ ψ(IM),◦
R−3 −43.384 −15 1.121 1.121 71.01 70.99 3.62 3.60
R−2 −9.744 −15 3.741 3.741 26.91 26.90 0.93 0.93
R−1 20.389 −15 3.873 3.873 63.25 63.25 178.16 178.18
R0 60 −15 10.33 10.33 88.93 88.93 178.06 178.05
T−5 −57.013 −7.435 .01858 .01855 80.18 80.19 −114.16 −114.68
T−4 −35.921 −7.435 .002466 .002482 52.39 52.58 99.81 100.24
T−3 −19.545 −7.435 .7396 .7394 57.62 57.61 −179.23 −179.28
T−2 −4.729 −7.435 4.922 4.922 22.89 22.90 174.83 174.84
T−1 9.770 −7.435 9.925 9.923 60.39 60.39 4.71 4.72
T0 24.949 −7.435 7.146 7.145 77.33 77.32 6.83 6.84
T1 42.371 −7.435 51.83 51.83 84.43 84.43 −5.77 −5.78
T2 67.826 −7.435 6.351 6.351 84.85 84.85 −11.33 −11.39

a 2H/d = 0.3, ǫ+ = 1, ǫ− = 4, µ± = 1, λ/d = 0.5, θi = 60◦, φi = 15◦, δi = 81.501◦, and ψi = 0. IM standsfor the present integral method, CM stands for the Li's 
oordinate transformation method.
bDi�ra
tion order.Table 4. Di�ra
tion Angles (θ, φ), Di�ra
tion E�
ien
ies (η), and Polariza-tion Angles (δ, ψ) of a Diele
tri
 Sine Grating for Ez = 0aDOb θ(IM),◦ φ(IM),◦ η(CM),% η(IM),% δ(CM),◦ δ(IM),◦ ψ(CM),◦ ψ(IM),◦
R−3 −43.384 −15 1.121 1.121 71.01 70.99 3.62 3.60
R−2 −9.744 −15 3.741 3.741 26.91 26.90 0.93 0.93
R−1 20.389 −15 3.873 3.873 63.25 63.25 178.16 178.18
R0 60 −15 10.33 10.33 88.93 88.93 178.06 178.05
T−5 −57.013 −7.435 .01858 .01855 80.18 80.19 −114.16 −114.68
T−4 −35.921 −7.435 .002466 .002482 52.39 52.58 99.81 100.24
T−3 −19.545 −7.435 .7396 .7394 57.62 57.61 −179.23 −179.28
T−2 −4.729 −7.435 4.922 4.922 22.89 22.90 174.83 174.84
T−1 9.770 −7.435 9.925 9.923 60.39 60.39 4.71 4.72
T0 24.949 −7.435 7.146 7.145 77.33 77.32 6.83 6.84
T1 42.371 −7.435 51.83 51.83 84.43 84.43 −5.77 −5.78
T2 67.826 −7.435 6.351 6.351 84.85 84.85 −11.33 −11.39

a 2H/d = 0.3, ǫ+ = 1, ǫ− = 4, µ± = 1, λ/d = 0.5, θi = 60◦, φi = 15◦, δi = 8.499◦, and ψi = 180◦. IMstands for the present integral method, CM stands for the Li's 
oordinate transformation method.
bDi�ra
tion order.
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Table 5. Di�ra
tion Angles (θ, φ), Di�ra
tion E�
ien
ies (η), and Polariza-tion Angles (δ, ψ) of a Metalli
 E
helette Grating for δi = 0aDOb θ(IM),◦ φ(IM),◦ η(CM),% η(IM),% δ(CM),◦ δ(IM),◦ ψ(CM),◦ ψ(IM),◦
R−1 −40.746 −40 12.99 12.97 39.409 39.447 −175.87 −175.93
R0 0 −40 28.49 28.45 86.449 86.414 −51.16 −50.97
R1 40.746 −40 24.77 24.81 39.237 39.209 7.58 7.67

a ζ = 30◦, ǫ+ = 1, ǫ− = (−45, 28), µ± = 1, λ/d = 0.5, θi = 0, φi = 40◦, and ψi = 0. IM stands for thepresent integral method, CM stands for the Li's 
oordinate transformation method.
bDi�ra
tion order.Table 6. Di�ra
tion Angles (θ, φ), Di�ra
tion E�
ien
ies (η), and Polariza-tion Angles (δ, ψ) of a Metalli
 E
helette Grating for δi = 90◦aDOb θ(IM),◦ φ(IM),◦ η(CM),% η(IM),% δ(CM),◦ δ(IM),◦ ψ(CM),◦ ψ(IM),◦
R−1 −40.746 −40 53.15 53.15 54.0 54.0 13.31 13.37
R0 0 −40 17.51 17.48 4.53 4.58 95.49 95.21
R1 40.746 −40 9.423 9.444 49.47 49.41 −171.24 −171.22

a ζ = 30◦, ǫ+ = 1, ǫ− = (−45, 28), µ± = 1, λ/d = 0.5, θi = 0, φi = 40◦, and ψi = 0. IM stands for thepresent integral method, CM stands for the Li's 
oordinate transformation method.
bDi�ra
tion order. A
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