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ABSTRACT. Off-plane scattering of time-harmonic plane waves by a diffraction grating with
arbitrary conductivity and general border profile is considered in a rigorous electromagnetic
formulation. The integral equations for conical diffraction were obtained using the boundary
integrals of the single and double layer potentials including the tangential derivative of single
layer potentials interpreted as singular integrals. We derive an important formula for the
calculation of the absorption in conical diffraction. Some rules which are expedient for the
numerical implementation of the theory are presented. The efficiencies and polarization
angles compared with those obtained by Lifeng Li for transmission and reflection gratings
are in a good agreement. The code developed and tested is found to be accurate and efficient
for solving off-plane diffraction problems including high-conductive surfaces, borders with
edges, real border profiles, and gratings working at short wavelengths.

1. INTRODUCTION

Today a lot of optical applications of conical diffraction (off-plane) by gratings are well
known, in particular: gratings working in the x-ray and extreme ultraviolet (EUV) ranges
at grazing angles; shallow and deep high-conductive, anomalously absorbing gratings illu-
minated at near normal and grazing incidence; high-spatial-frequency, deep transmission
gratings having high anti-reflection and polarization conversion properties; generalized spec-
troscopic ellipsometry and scatterometry techniques. For the numerical simulation of conical
diffraction by optical gratings of arbitrary groove profiles and conductivity several rigorous
methods have been proposed. Among them we know: differential |1, 2|, coordinate transfor-
mation [3, 4, 5, 6], modal [7], fictitious sources [8, 9|, and finite element [10, 11] methods. In
Ref. [12] T-matrix and integral equation methods were described for off-plane transmission
and low-conducting sine-profiled gratings.

For the classical (in-plane) diffraction problems integral equation methods have been es-
tablished as an efficient and accurate numerical tool. Many different, quite sophisticated
integral formulations have been proposed and implemented, cf. e.g. [13, 14, 15, 16, 17, 18,
19, 20, 21, 22]. The methods are used to tackle successfully high-conductive deep-groove
gratings in the TM polarization, profile curves with corners, echelles, gratings with thin
coated layers, randomly rough mirrors and gratings, and diffraction problems at very small
wavelength-to-period ratios |23, 24, 25, 26, 27, 28, 29, 30|. The aim of this paper is to study
an integral method for conical diffraction on the simplest model, the diffraction of a time-
harmonic plane wave by a surface, which in Cartesian coordinates (z,y, z) is periodic in -
and invariant in z-direction and separates two different materials. Special attention is paid
to the main aspects of the integral equation method for arbitrarily polarized plane waves
and gratings with one border having any outline and conductivity.

The electromagnetic formulation of the diffraction by general gratings, which are modeled
as infinite periodic structures, can be reduced to a system of Helmholtz equations for the
z-components of the electric and magnetic fields in R?, where the solutions have to be
quasiperiodic in one variable, subject to radiation conditions with respect to the other and
satisfy certain jump conditions at the interface between different materials of the diffraction
grating. In the case of classical diffraction, when the incident wave vector is orthogonal to the
z-direction, the system degenerates to independent transmission problems for the two basic
polarizations of the incident wave, whereas for the case of conical diffraction the boundary
values of the z-components as well as their normal and tangential derivatives at the interface
are coupled. Thus the unknowns are scalar functions in the case of classical diffraction and
they are two-component vector functions in the conical case.



In the case of one border we reduce the system of Helmholtz equations to a 2 x 2 system of
integral equations, which contain, besides the boundary integrals of the single and double
layer potentials, also the tangential derivative of single layer potentials which are singular
integrals. The corresponding theory is described in Section 2. The diffraction problem and
boundary relations between values of the fields across the boundary are formulated in the
explicit form in Subsection 2.1 The respective integral equations in terms of boundary po-
tentials with detailed discussions, formulas, and jump relations can be found in Subsection
2.2 A more general treatment of the energy conservation law applicable to off-plane ab-
sorption gratings is considered in Subsection 2.3. The numerical implementation approach
expedient for the calculation of far-fields and polarization properties of conical diffraction
by gratings is described briefly in Section 3. Diverse numerical tests devoted to comparing,
convergence, accuracy, computation time, and obtaining results for an important case are
given in Section 4. In Subsection 4.1 we compare some of our results with data obtained
by other well-established conical approaches for different groove profile and conductivity
gratings. Some information about convergence, accuracy, and complexity of the presented
method is included in Subsection 4.2. Finally, in Subection 4.3 a numerical experiment for
the off-plane grazing-incident real-groove-profile grating working in the soft x-ray range is
demonstrated as an illustration of possibilities of the software developed.

2. THEORY

2.1. Diffraction problem. We denote by e,, e, and e, the unit vectors of the axes of the
Cartesian coordinates. The grating is a cylindrical surface whose generatrices are parallel
to the z-axis and whose cross section is described by the curve 3 (see Fig. 1). We suppose
that X is not self-intersecting and d-periodic in z-direction. The grating surface is the
boundary between two regions G4 x R C R?® which are filled with materials of constant
electric permittivity 1 and magnetic permeability pi.

(ELH)

0 d X

FIGURE 1. Schematic cross section of a simple grating

We deal only with time-harmonic fields; consequently, the electric and magnetic fields are
represented by the complex vectors E and H, with a time dependence exp(—iwt) taken into
account. The wave vector k, of the incident wave in G, x R, where e,y > 0, is in
general not perpendicular to the grooves (k, - e, # 0). Setting k; = (a, —f3,7) the surface
is illuminated by a electromagnetic plane wave

E' = p e'ler=Byt12)  H = g gilor—fytrz)

which due to the periodicity of ¥ is scattered into a finite number of plane waves in G, x R
and possibly in G_ x R. The wave vectors of these outgoing modes lie on the surface of a
cone whose axis is parallel to the z axis. Therefore one speaks of conical diffraction.



The components of k. satisfy
>0 and o?+ 2+~ =weiu,,
and they are expressed using the incidence angles |0, |¢| < 7/2

(o, =f3,7) = wy/ex iy (sin b cos ¢, — cos B cos ¢, sin @) .

Classical diffraction corresponds to ky - e, = 0, whereas ¢ # 0 characterizes conical diffrac-
tion.

Since the geometry is invariant with respect to any translation parallel to the z-axis, we
make the ansatz for the total field

(1) (B, H)(2,y,2) = (£, H)(x,y) ¢"*
with E, H : R? — C?. This transforms the time-harmonic Maxwell equations in R3
(2) VxE=iwyH and V xH = —iwecE,

with piecewise constant functions e(z,y) = 4, p(x,y) = pg for (z,y) € Gy, into a two-
dimensional problem. This was described in |9] and analytically justified in [31]. Introducing
the transverse components

Er=F—-F,e,, Hr=H-—H.e,,
representation (1) and equations (2) lead to
VE, =iyEr +iwpe, x Hp, VH,=iyHr —iwee, X Er.
This shows that the field has locally a finite energy, i.e.
E,H, VxE, VxHe (L} (R),

if and only if the z-components of F,H satisfy VE,, VH, € L? (R?). Moreover, from
Maxwell’s equations (2) one gets

(3)  (WPeu—HEr =iyVE, +iwpuV x H,, (w*ep—~*)Hy = iyVH, — iweV x E, .

Noting v = w(e;puy)'? sin ¢, we introduce the piecewise constant function

(4) KJ(ZE y) _ { (€+,U«+ — E4l4 qin? ¢)1/2 =Ky, (x7y> € G—i—;

(ep-—erpysin®Q) P =k, (z,y)eG_,
with the square root z'/2 = r'/2 exp(ip/2) for z = r exp(ip), 0 < ¢ < 2. Hence (3) shows

that under the condition xk # 0, which will be assumed throughout, the components E,, H,
determine the electromagnetic field (E, H).

The equations (2) imply that E,, H, satisfy the Helmholtz equations
(5) (A+ W’k E, = (A+Wk) H, =0

in G4. The continuity of the tangential components of E and H on the surface takes the
form

[(n,0) x E]y, = [(n,0) x H|

where (n,0) = (ng,ny,0) is the normal vector on ¥ x R and [(n,0) X E}EX]R denotes the
jump of the function (n,0) x E across the surface. This leads to the jump conditions

Y we ¥ Wi

0,
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Here 0,, = n,0, + n,0, and 0, = —n,0, + n,0, are the normal and tangential derivatives on
3, respectively. We introduce B, = (ug /e4)Y? H, and use v = w(epy)/?sin ¢ to rewrite
the jump conditions in the form

}2’

0) [E:] = [H:]; =0, [Ea"EZ]E = ¢4 sin¢[a;§z]z, [”a"BZL — sinqﬁ[ajfz

K2 K2

The z-components of the incoming field
(7 Ei(r,y) = poo' @ | Bl(a,y) = g e ),
are a-quasiperiodic in z of period d, i.e. satisfy the relation

ulx +d,y) = il u(z,y).

In view of the periodicity of € and p this motivates to seek a-quasiperiodic solutions F,, B,.
Furthermore, the diffracted fields must remain bounded at infinity, which implies the well
known outgoing wave condition

(Ez,Bz)(H?, ) EZ BZ Z E+ B+ zan:c-f—ﬁny) y > H

(8) neL
(E., B:)(z,y) = Z(E B,)e Home=Buy), y < —H,

nel

where X C {(z,v) : |y| < H}, and a,, 3F are given by

2mn

In the following it is always assumed that
9) 0<arge_,argu_ <7 with arg(e_pu_)<2m,

which holds for all existing optical (meta)materials. Then 0 < argx® < 27 and 3, are
properly defined for all n.

Denoting the z-components of the total fields

E:{U++E; B:{U++B; %HG_H

(-

the problem (5), (6), (8) can be written as

(10) Aug + wkiuy = Avy +w?kive =0 in Gy,
. e_Oqu_ On E: : 1 1
u_ =uy + E, < 2u = (u;—l— :) :5+s1n¢<—2——2)8tv_,
(1]‘) g_ a ( /{+ ) K,+ = on X
. p—Oyv—  pyOn(vy + B ) 1 1
v =vy + B, = + /{; = —lysin g </€—2 — /{_2>8tu_’
(e vs)(@y) = Y (BB 0 fory > H,
(12) "o
(u_,v_)(z,y) = Z (E7,By)ell@ne=bny)  fory < —H.



2.2. Integral equations. There exist different ways to transform the transmission problem
for the Helmholtz equations in R? (10) - (12) to integral equations. We combine here the
direct and indirect approach as proposed in |23, 24| for the case of classical diffraction. Let
¥ be given by a piecewise C? parametrization

(13) o) = (X(£),Y (1), X(t+1)=Xt) +d Y(E+1)=Y(), teR,

i.e. the continuous functions X, Y are piecewise C? and o(t1) # o(t3) if t; # to. If the profile
Y. has corners, then we suppose additionally that the angles between adjacent tangents at
the corners are strictly between 0 and 2.

The potentials which provide a-quasiperiodic solutions of the Helmholtz equation
(14) Au+ku=0  with 0 <argk® <2m
are based on the quasiperiodic fundamental solution of period d

Vpa(P) = lim 5 >~ —— =y,
n=—N n

Here we assume that (3, = (k* — a2)¥/2 # 0 for all n. The single and double layer potentials
are defined by

Seap(P) =2 / 2(Q) V(P — Q) dog .
(15) r
Dyap(P) = 2 /F 2(Q) Duy V(P — Q) dorg.

where T" is one period of the interface 3, i.e. T' = {o(t) : t € [to, to + 1]} for some ;. In (15)
dog denotes the integration with respect to the arc length and n(Q) is the normal to X at
@ € X pointing into G_. Obviously, for a-quasiperiodic densities ¢ on X the value of the
potentials does not depend on the choice of T'.

The potentials provide the usual representation formulas. Any a-quasiperiodic function u
which satisfies in G the Helmholtz equation (14) and the radiation condition

o0
U(I,y) _ Z uneianx-l-iﬁﬂy\ 7 |y| > H.

n=—oo
admits the representation

1 u in G,
(16) §(Sk,a8nu — D;Wu) = { 0 in Gi—,

where the normal n points into G_. Under the same assumptions for a function u in GG_ the
representation

O in G+,

(17) u in G_,

|~

(Dkvau - Sk,aanu) = {

is valid.

Restriction of the potentials Sy o and Dy, to the profile curve ¥ are the so called boundary
integral operators. The potentials provide the usual jump relations of classical potential
theory. The single layer potential is continuous across X

(Ska)™(P) = (Skap)” (P) = Viap(P),



where the upper sign + resp. — denotes the limits of the potentials for points in G4 tending in
non-tangential direction to P € X, and V}, , is a integral operator with logarithmic singularity

Viap(P) =2 / UpoP—Q)p(Q)dog, PeX.
r
The double layer potential has a jump if crossing I":

(18) (Dk,a@)—i_ = (Kk,a - ]>907 (Dk,a()p)_ = (Kk,a + ]>90

with the boundary double layer potential

Kpap(P) =2 / Q) Oy Vin(P — Q) dog + (5(P) — 1)p(P) .

Here 6(P) € (0,2), P € ¥, denotes the ratio of the angle in G4 at P and 7, i.e. §(P) =1
outside corner points of . The normal derivative of Sy o at X exists outside corners and
has the limits

(19) (8n3k,a90)+ = (Lk,a + ]>907 (anSk,a(P)_ = (Lk,a - ]>907

where Lj , is the integral operator on I' with the kernel 0,py¥y (P — Q),

Liap(P) =2 /F 0(Q) Onp)Vio(P —Q)dog, PEX.

In the following also the tangential derivative of single layer potentials

O (Veu) (P) = 20, / VolP— Q) p(Q)dog, PEX,

occurs. Interchanging differentiation and integration leads to a kernel with the main singu-
larity

tP)- (P —-Q)
P-QP
therefore the tangential derivative of single layer potentials cannot be expressed as usual
integral. But it can be interpreted as Cauchy principal value or singular integral

(20) Jkap(P) = 21lim @(Q) o) Va(P — Q) dog = 0: (Viay) (P),
=0 J\1r(ps)

where I'(P, §) is the subarc of " of length 2§ with the mid point P. Similarly, one can define
the singular integral

(21) Hk@(p(P) = 2lim QO(Q) 8t(Q)\Ifk7a(P — Q) dO’Q y
=0 J\r(p,s)

which by using integration by parts gives for a-quasiperiodic ¢

Hk@gO(P) = _QA@k7Q(P — Q) &g(p(Q) dO’Q = _Vk,a (ath) (P), PeX.

Note that Vi 00:Via = Viadka = —HiaVia-

Now we are in the position to formulate the integral equations for solving the conical diffrac-

tion problem (10) — (12). In order to represent us and vy as layer potentials we assume in

what follows that the parameters are such that 3F = (w?k% — a?)¥/2 # 0 for all n. Since



arg k_ € [0,7) (see assumption (9)) the boundary integral operators corresponding to the
fundamental solution ¥, , are well defined and by the representation formulas (16), (17)

Uy = %(S;rﬁnu+ —Dluy), vy = %(S;anm —Dlvy) in G, ,
@:gm@_gm@y <g=gmm_gmm) inG_.

Here we denote by ST the single layer potential defined on " with the fundamental solution
WUyns o Correspondingly DE is the double layer potential over I' with the normal derivative
of Wy, « as kernel function. Taking the limits on ¥ the jump relations (18) lead to

Vo, (uy + EL) — (I + K) (uy + E.) = 2El|s,
V50, (vs + BL) — (I + K;r) (v4 + BY) = 2Bl]s,

where V£ denote the boundary single layer potentials

VEp(P) =2 / Q) Vo a(P—Q)dog. PeX,

and the operators K= and LE are defined analogously. The solutions in G_ are sought as
single layer potentials

(22)

u- =S, w, v_=85T1
)

with certain auxiliary densities w, 7. Since by Eq. (19
u_ly =V, w, Oyu_ly = (L, — Hw, v_|s =V, 7, Oyv_|x = (L, — I)T,

[e%
we see from the equations (22) that the jump conditions (11) are valid, when the unknowns
w, T satisfy the system of integral equations

KL o /- : R2\ 1 rtp 1 i

mVa (L, — Nw — (I+ Ka) V,ow — smgb(l — /<;_2>Va oV T =2E",

(23) ; > Y |
— VAL~ Dr— (I + KD VT + sin¢<1 _ —*)VJ&Va‘w 28I

N
i

M RZ

Recall that we suppose 2 # 0 and w?k% — a2 # 0 for all n.

For the analytical and numerical treatment of the integral equation system (23) it is advan-
tageous to use the relations

VIOV = —HIV. =V J:

(see the definitions (20), (21)). Then (23) becomes a system of singular integral equations,
for which exist powerful analytical and numerical methods.

If the solution of the system (23) is found, then the solution of the conical diffraction problem
(10) - (12) can be determined by the relations

1 B 2 : 2 2

up == (oESHI - L)w+ DV w+ = o ) SHlir). u=Siw,
2 ELRZ RZ
1 B 2 : 2 2

o= (st - Ly DV - BT o) = s
2\ RZ K

A detailed mathematical analysis of the system of singular integral equations (23) is given
in |32|. In particular, the following properties have been established:

1. The integral equations are equivalent to the Helmholtz system if the operators V.t
and V_ are invertible.



2. If the profile 3 has no corners, then (23) is solvable if e_ +e, # 0 and p_ + uy # 0.

3. If the profile ¥ has corners, then (23) is solvable if ¢_ /ey and p_/puy ¢ [—p,—1/p]
for some p > 1, depending on the angles at these corners.

4. The solution of (23) is unique if Ime_ > 0 and Im g > 0 with Im(e_ +p_) >0

2.3. Energy balance for conical diffraction. Suppose that F,, B, are a solution of the
partial differential formulation of conical diffraction (5), (6) and (8). The expression of the
conservation of energy is based on a variational equality for £, and B, in a periodic cell
Qy, which has in z-direction the width d, is bounded by the straight lines {y = £H} and
contains I". We multiply the Helmholtz equations (5) respectively with

E. and

B.
£y K> k277

and apply Green’s formula in the subdomains Q5 NG4. Then by using the quasiperiodicity
of E,, B, and the jump relations (6) one derives

/ ; ( \VE,|> - 2|EZ|2> —l—smgb — — — /@B E,
Qy €+
1 _
(24) - — oE.E, — 5 / oE.E. =0,
K3 Jrm) E+RZ Jr(-H)
1 1 _
el |VB 2 |B.?) —sind(— — —) | HE. B
2 2
Qp M+ ky  R=/7Jr
1 — _ —
K3 Jrm) H4RZ Jr(—H)

where T'(£H) denotes the upper and lower straight boundary of Qp, respectively. The
outgoing wave condition (7) and (8) implies

| 0B B = i5(|E P~ I 2t (B pre™)) 03 BB e
['(H)

n#0
nE.E, =i B,|E;|* e ?Mmbn,
L. >

nez
and similar expressions for the boundary integrals involving B,. Note that ¢, and pu, are
positive.

Let - and p_ be real. Taking the imaginary part of Eqs. (24) and (25) leads to the
equations

11
|Pz E BHET? — E G |E |2——s1n¢<—2——2) Im [ ,B.E.,
K
Bn>0 Bn>0 Rt - r
11
qu E GBI == > B; |2—sm¢<—2 —2> Im | 6,E. B.
K
Bn>0 T Bn>0 Rt - r
Since
Im/&tBZE:Im/&EZE
T r
we derive
By K o TR
PP+ 10 = 30 (B +IBHR) + 55 3 P (SR P+ B )



Thus for lossless gratings the energy of the incident wave [p.|> + |¢.|* equals the sum of
reflection order efficiencies

R= Z |E+|2 + B %)
B >0
plus the sum of transmission order efficiencies

-y Lo (5‘|E 2+ ]B;P).

Bn >0

If Ime_ #0or Imu_ # 0, then T'= 0 and |p.|*> + |¢.|* > R, i.e. the usual conservation of
energy does not hold. Instead, one part of the energy is absorbed in the substrate. This heat
absorption energy plus the energy of the reflected modes equals the energy of the incident
wave.

Therefore, one tool to check the quality of the numerical solution for absorbing gratings is
the requirement, that the sum of the reflected energy and the absorption energy should be
equal to the energy of the incident wave.

To obtain an expression for the absorption energy we note that by Green’s formula

1 B
/ €_<—2|VEZ|2—w2|EZ|2> - = / 0.B.E, = /a E.E.,
QunG- €+ E+RZ Jr(-H) 5+/‘€

/ /J“ < |VB ‘2 2 |Bz‘2) - 'u_2 / 8nBZ /a B BZ7
QrnG_ M+ MR~ I'(—H) ,u_,.li
such that the imaginary parts of Eqs. (24), (25 ) become
—Im /8 E.E. +sm¢1m /8,53 b,
€+/€
—2(|E0+|2 - |pz|2) -3 B =o
+ KL
Bn >0
1
—Im /8BB —smgblm ol /@EB
v Z
g B
_K—2<|B+|2 |qz|) > Lysip -0
- gr>o0 t
Hence
Pt lal = 3 (B 1B + i S /a E Fﬂmﬂ/a B. T
550 B " " eyk2 08 Jr pyk2 3 Jr

2

_ Si;¢ (1 (1-25) /F (0.B.F- ~ 0,1. 7))

J’_ 2
= %(|E;|2+|B;|2)+%+1 /(6 —0uB. F. + £=-0,B. B.)

K=
Bt >0 He

22 si 1 _
+wlm—2Re/EZ8th
5 KZ r

Thus we derive the conservation of energy for absorbing gratings

"+ |g.* =R+ A




with the absorption energy of conical diffraction

(26) A—IEI ( /8EE+—/8BB+2sm¢Re/E8t ))

In the case ¢ = 0 formula (26) provides the expressions of the heat absorption energy for
in-plane diffraction derived in [29].

3. NUMERICAL IMPLEMENTATION

We discuss briefly the numerical solution of the system (23). Let I' be parametrized by
(13). In the case of a smooth profile ¥ a trigonometric collocation method is used, i.e. we
approximate

N
w(o(t)) e XO o/ (1) ~ wy(t) = Z ay, e 27kt
(27) Pa—

7(o(t)) e XW |6/ (1)] ~ T (t Z by 02kt

k=—N

and the coefficients {ax}, {bx} are such that the system (23) is satisfied at the 2N + 1
collocation points ¢, = k/(2N + 1), k=0,...,2N.

Similar to [16] the advantage of trigonometric methods is utilized that the integral operators
VE HI and J; with singular kernels can be approximated properly. For example, using
the parametrization o(t) the single layer potential operator of w can be approximated by

VEw(o(t)) ~ —2e0X® (/01 log [2sin7(t — s)| wn(s) ds + /Olgai(t, s)wn(s) ds)

and the singular integral JXw by
1

JEw(o(t)) ~ eX® </01 cotm(t — s)wn(s)ds —I—/O JE(t, s)wn(s) ds) ,

where the functions gZ (¢, s), j(¢,s) are continuous and periodic in ¢ and s. The action of
the integral operators with the kernels log |2sin (¢ — s)| and cot 7(t — s) on trigonometric
polynomials is given analytically. All other integrals have continuous kernels and they are
approximated by the trapezoidal rule like in Nystrom’s method. So the discretization error
depends only on the error made in computing the functions g= (¢, s), j=(¢, s) and the continu-
ous kernels of K and L, i.e. in computing the fundamental solution and there derivatives.
Here we use the exact Ewald method (cf. [22]) with a number of summation terms to ensure
discretization errors of order N73. Finally the operator products V.* L7, KXV~ HIV_~ or
V.rJ, are approximated by the products of the corresponding discretization matrices. Note
that instead of H 'V or V"J one can also perform the discretization of V7 0,V.~, involving
a numerical differentiation. Numerical tests and further investigations can show Wthh one
is preferable for given efficiency calculations.

For the solution of the discrete system we use a preconditioned GMRES method similar to
that described in [22]. The number of iterations until a prescribed residual error is reached,
depends of course on the refraction indices and the profile, but it is nearly independent of
the number of unknowns. However, it should be noted that modern implementations of the
LAPACK and BLAS software packages on multiprocessor machines make direct solving to
a competitive alternative to iterative solution methods even for rather large systems.

10



If the profile curve has corners, then the convergence properties of methods with only trigono-
metric trial functions deteriorate due to singularities of the densities w and 7 of the form
O(p~°), 0 < § < 1, where p is the distance to the closest edge. In boundary element methods
it is common to use piecewise polynomial trial functions on meshes graded towards corner
points. But due to the complicated form of their kernels the quadrature of the integral op-
erators acting on piecewise polynomials is very expensive. Therefore we use a modification
of the trigonometric collocation scheme with a fixed number of piecewise polynomial trial
functions. First we introduce meshes of collocation points, which contain the corners and
are graded towards the corner points. This can be derived by changing the parametrization
(13), for example, if o(t;) is a corner point, then o’(t;) = o”(t;) = 0 implies grading towards
the corner. Further, for each collocation point t; there exists a Lagrangian trigonometric
polynomial py(t) of degree 2N + 1 such that

pk(t]):(sk]a kajzoa"'aQNa

0x; is Kronecker’s delta. For each edge and a fixed number of collocation points ¢; around it
we replace the corresponding Lagrangian trigonometric polynomial pg(¢) by a cubic spline
si(t) on the graded mesh with s;(¢;) = 0x;. Thus we get a hybrid trigonometric-spline collo-
cation method, which combines the efficient computation of the integrals for trigonometric
polynomials with the good approximation properties of piecewise polynomials on graded
meshes near edges. The values at the collocation point ¢; of the integrals on the basis spline
s are computed by a composite Gauss-quadrature with a quadrature mesh geometrically
graded towards ¢; and depending on the distance |o(t;) — o(t;)|. This leads to a fixed num-
ber of additional calculations of the fundamental solutions W¥,,., o, for each discretisation
level compared with the pure trigonometric method, which is however compensated by a
significantly higher accuracy.

4. NUMERICAL RESULTS

The workability of the code developed has been confirmed by numerous tests usually em-
ployed in classical and conical diffraction cases, more specifically: the reciprocity theorem:;
stabilization of results under doubling of the number of collocation points and varying of
the calculation accuracy of kernel functions; comparison with analytically amenable cases
of plane interfaces; consideration of the inverse (non-physical) radiation condition; use of
different variants of collocation point distribution on boundaries (mesh refinements); com-
parison with the results obtained by another of our codes or with published data, or with
information corresponded to us by other researchers, including results of measurements. A
small part of such numerical tests is demonstrated in this Section.

4.1. Comparing. In Table 1 the numerical results of the present boundary integral equation
method (IM) for a dielectric lamellar grating with the ridge ¢ in a conical mounting are
compared with those of Table 2 of Li who uses the modal method (MM) [33]. All grating
and light parameters are listed in the table caption. The agreement between the MM and
the IM for the efficiencies and polarization angles is almost perfect for all reflection and
transmission orders despite of very different methods compared. Note that we use the same
definitions for polarization angles as in Refs. |30, 33]. We used 400 collocation points, mesh
grading, and the direct discretization of J to calculate this example that allocates 188
MByte memory. The energy balance error calculated from (26) is about 107°. The average
time taken up by the example on a portable workstation IBM ThinkPad® R50p with an
Intel® Pentium® M 1.7 GHz processor and 2 GByte of RAM is about 4 sec when operating
on Linux (kernel 2.6.17).
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In Table 2 the numerical results of a similar comparison as in Table 1 between the IM and
the MM are demonstrated for a conducting lamellar grating in a conical mounting (compare
with Table 3 of [33]). All grating and light parameters are listed in the table caption. The
agreement between the MM and the IM for the efficiencies and polarization angles is, in
general, good. The same accuracy parameters as in the previous example have been used
and similar calculation times have been obtained on the above mentioned laptop. The energy
balance error calculated from (26) is about 1075.

In Tables 3 and 4 the numerical results of the IM for a dielectric sine grating in a conical
mounting are compared with those of Table 2 of Ref. [7] of Li who used for the presented data
the coordinate transformation method (CM) [5]. All grating and light parameters are listed
in the table captions. The agreement between the CM and the IM for the efficiencies is very
good. We used 100 collocation points and the numerical differentiation of V" to calculate
this example that allocates 10 MByte of RAM. The energy balance error calculated from
(26) is about 107° for both components of the incident radiation. The average computation
time taken up by the example on the above mentioned laptop is about 0.2 sec.

The results of another comparison for a metal echelette grating with the blaze angle ( in
a conical mounting are demonstrated in Tables 5 and 6 compared with those [34] updated
by Li who has used again the CM to calculate the efficiency of the grating having edges
[35]. All grating and light parameters are listed in the table captions. As one can see in
Tables 5 and 6, again the agreement between the CM and the IM is very good for the all
order efficiencies and polarization angles. One has used 800 collocation points, mesh scaling
near edges, and the differentiation of V' to calculate this example allocating 196 MByte of
RAM. The average energy balance error calculated from Eq. (26) is about 1075 for both
polarization states of the incident radiation. The average computation time taken up by two
values of the polarization angle on the above mentioned laptop is about 18 sec.

4.2. Convergence, accuracy, and computation time. We will examine the convergence
rate and the accuracy of diffraction efficiencies with respect to the number of collocation
points N. For the efficiency convergence testing, a magnitude of computational error cannot
be reliably deduced from accuracy criteria based on a single computation such as the energy
balance and the inverse radiation condition tests. For this purpose comparative studies
should be used, i.e. N-doubling or changing the configuration of collocation points. We
introduce a parameter Ay as an integral measure of the efficiency error under N-doubling
tests. It is equal to the sum of absolute differences of respective diffraction order efficiencies
for two successive iterations with the number of collocation points for each iteration of
N = Ny x 2871 where Nj is the initial number of collocation points, k =1, ..., K, and K is
the total number of iterations. The magnitude of Ay, gives approximately the correct digits
in the numerical results if the number of propagating diffraction orders is small enough or
only a few valuable orders exist. For many propagating orders it can give a more pessimistic
error value.

To examine the convergence of diffraction efficiencies, we choose as a sample the slanted
lamellar highly-conducting grating similar to that from Figs. 10 and 11 of Ref. [36], but for
e_ = (—10%0) That means that we study almost perfectly conducting non-function-profiled
grating with the zero real part of the refractive index and its imaginary part of 10? using our
solver for the finite conductivity, the case probably not possible for many rigorous methods,
even with all known improvements and artificial inclusions [36|. Note that using the refractive
index of (1072,10) from the example of Ref. [36] the convergence rate of our solver is so
fast that no interesting data to discuss can be seen even for small values of N. So in Fig.
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2 the convergence of the diffraction efficiencies with respect to the truncation parameter N
under N-doubling is demonstrated for Ny = 15 and K = 9 using the much harder refractive
index mentioned above. The efficiency values stabilize and the convergence is starting at
N = 60 and achieved with the high accuracy at N = 960. Note that Ajgyg = 4.21 x 107*
and Aggio0 = 1.50 x 107* and the energy balance error is about 107 for these values of N.

0.95

0.65 \
Py —o—order # -1
c
% —@—order#0
&
e}

0.35 (

0.05 — ———

10 1000

Number of collocation points N

FIGURE 2. Diffraction efficiencies of a lamellar highly-conducting grating with
c¢/d = 0.5 and 2H/d = 0.3 having the grooves slanted at angle of 45° vs.
number of collocation points N. Other parameters: e, = 1, e = (—10%,0),

pe =1, \d =08, 0 = 26.565°, ¢ = 14.478°, §° = 0, and ' = 0.

Thus, the convergence rate is fast enough taking into account the difficult case tested. More-
over, due to solution peculiarities for profiles with edges the convergence rate even is better
for e = (—105,0), but the calculation time is longer. The absorption calculated from Eq.
(26) is very small for a such grating (~ 1075) and its non-negative magnitude and decreasing
are also a good measure of the convergence and the calculation accuracy. One can also check
of the absolute accuracy of calculation results for this example using the perfect conductivity
approximation. The asymptotic efficiency values calculated using this approximation differ
from those obtained using the finite conductivity approach (0.9105 and 0.0894 for —1 and
0 orders, respectively) by not more than a few hundredths of a %. The total computation
time of all results presented in Fig. 3 is about 35 minutes on the above mentioned PC and
the required RAM is about 2 GB. Non-using a mesh refinement and using the differentiation
of VF are most suitable for this sort of calculations.

The computation time 7" for the considered one-border conical diffraction solver is essentially
a function of the truncation parameter N only. The general dependence T'(N) of boundary
integral equation formalisms is proportional to N3 due to a square dependence on N for
the Green functions and their derivatives calculations and the summation of these computed
values that is proportional to N [15, 16, 17]. In addition, a direct linear equation solver
requires a time that is also proportional to N3. To speed-up the presented calculation solver
two substantial accelerations have been used. The first one is the Ewald’s method for the
kernel computation; the second one is solving systems of linear equations iteratively. As
a result, the computation time is proportional to N? that clearly seen in Fig. 3 for the
typical example described in Table 2. If the iterative solver cannot give correct results after
the given number of iterations, then the direct solver is applied. Fortunately, this situation
occurs in infrequent or hard cases only.
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FIGURE 3. The computation time for the example described in Table 2.

4.3. Efficiency of a grazing-incidence real-groove-profile off-plane grating in x-
rays. Grazing-incidence off-plane gratings have been suggested for the International X-ray
Observatory (IXO) [37]. Compared with gratings in the classical in-plane mount, x-ray
gratings in the off-plane mount have the potential for superior resolution and efficiency for
the IXO mission. The results of efficiency calculations for such a gold blazed soft x-ray
grating in a conical mount using the groove profile derived from Atomic Force Microscopy
(AFM) measurements are shown in Fig. 4. The average border shape having 123 nodes is
presented in Fig. 5. All grating and light parameters are listed in the figure caption. The
incident beam in the rigorous calculations was assumed to be 81% TM-polarized that means
the electric vectors of the incident wave and the diffracted waves are approximately parallel
to the surface of the grating at the given diffraction angles. In Fig. 5 the numerical results of
the presented BIEM for a finite boundary conductivity are compared with those based on the
BIEM with the perfect conductivity approximation. The incident beam in the computations
based on the perfect conductivity approximation was assumed to be 100% TE-polarized.

Rigorous computations carried out by the presented method show that for the considered
grating model all the order efficiencies are not sensitive to a polarization state and efficiency
jumps do not occur in the wavelength range investigated. For any polarization state order
efficiencies differ from those presented in Fig. 4 not more than a few tenths of a %. Contrary,
calculations based on the perfectly conducting boundary approximation are very sensitive to
the polarization state and sharp Rayleigh anomalies for the TM-polarized incident radiation
occur. They were predicted earlier for such a grating using the in-plane boundary integral
equation method and the Invariance theorem [39]. As it can be seen in Fig. 4, the agreement
between rigorously calculated data and those obtained by the perfect conductivity approxi-
mation multiplied by Fresnel reflectances is good only if the TE-polarized incident radiation
is used for the approximation.

It has been used 800 collocation points, no mesh scaling, and the differentiation of V' to
calculate rigorously this real groove profile example that allocates a space of 144 MByte. The
energy balance error calculated from Eq. (26) is about 107 in the investigated wavelength
range. The average computation time taken up by one wavelength on the above mentioned
laptop is about 40 sec. The time of an approximate computation is about five times shorter
for the same accuracy.
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FIGURE 4. Diffraction efficiencies of a gold polygonal grating with 123 nodes,
p+ = 1 and d = 200 nm for the incident wave with §° = —30° and ¢' =
88°: rigorously (6" = 34.143° and ¢ = 0) or using the perfect conductivity
approximation (B, ~ 0: §" = 30.015° and ¢* = 180°) vs. wavelength .
Refractive indices of Au were taken from Ref. [3§]
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FIGURE 5. AFM-measured average groove profile.

5. SUMMARY AND CONCLUSIONS

Off-plane scattering of time-harmonic plane waves by 1D structures has been considered.
The term "1D’ refers to a general diffraction grating or a rough mirror having arbitrary con-
ductivity on a planar surface in R?, which is periodic in one surface direction, constant in the
second, and has an arbitrary border profile including edges and non-functions. The electro-
magnetic formulation of conical diffraction by gratings reduced to a system of 2 Helmholtz
equations in R?, which are coupled by transmission conditions at the interfaces between

different materials, was presented.

The integral equations for conical diffraction were obtained using the boundary integrals
of the single and double layer potentials including the tangential derivative of single layer
potentials interpreted as singular integrals. A full rigorous theoretical foundation of the
conical boundary integral equation method was established for the first time. Besides, we
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derived an important formula for direct calculation of the absorption of gratings in conical
diffraction mounts. Some rules which are expedient for the numerical implementation of the
described theory were presented.

The results of efficiencies and polarization angles comparing with the data obtained by Li
using the modal (lamellar profiles) and the coordinate transformation (sinus and echelette
profiles) conical solvers for transmission and reflection gratings are in a good agreement.
The high rate of convergence, the high accuracy, and the short computation time of the
presented solver were demonstrated for various samples. An example of rigorous efficiency
computations of the soft x-ray grazing-incidence off-plane grating suggested for the IXO
mission was demonstrated using the 123-node AFM-measured border profile and realistic
refractive indices data.

The solver developed and tested is found to be accurate and efficient for solving conical
diffraction problems including difficult cases of high-conductive surfaces, borders with edges,
real border profiles, and gratings working at very short wavelengths.

TABLE 1. Diffraction Angles (6, ¢), Diffraction Efficiencies (), and Polariza-
tion Angles (6, 1) of a Dielectric Lamellar Grating®

DOP 0(IM),°  ¢(IM),° n(MM),% n(IM),% 6(MM),°> o(IM),° ¢(MM),° (IM),°

R_o 35.265 -30 0.1614 0.1612  64.32 64.32 —30.30 —30.24
R, O -30 0.3807 0.3807  65.97 66.0 —157.20  —157.22
Ry  35.264 -30 1.855 1.854 70.49 70.43 —148.46  —148.60
T 5 —45 —19.471 3.363 3.363 51.06 51.05  32.28 32.28
T, —20.705 —19.471 10.34 10.35 56.24 56.24  110.21 110.23
74, 0 —19.471 31.87 31.87 46.55 46.54  99.03 99.02
Ty  20.705 —19.471 14.19 14.19 34.26 34.26  68.37 68.38

7y 45 —19.471 37.83 37.83 46.33 46.34  86.81 86.83

dc/d = 0.5, 2H/d = 0.5, e, = 1, e = 2.25, ux = 1, \/d = 0.5, 0 = 35.264°, ¢* = 30°, §* = 45°, and
* = 90°. IM stands for the present integral method, MM stands for the Li’s modal method.
Diffraction order.

TABLE 2. Diffraction Angles (6, ¢), Diffraction Efficiencies (), and Polariza-
tion Angles (9, 1) of a Metallic Lamellar Grating®

DOP 0(IM),;°  ¢(IM),° n(MM),% n(IM),% o6(MM),°> o(IM),° &(MM),° (IM),°

R_o —43.715 —=20.705 7.31 7.52 62.48 61.85  52.74 48.30

R_; —=9.007 —20.705 13.51 13.25 15.35 15.79 —12.05 —12.23
Ry  22.208 —20.705 42.99 44.27 41.25 41.33 171.21 170.15
Ry 65.852 —20.705 30.24 31.05 75.23 75.64  168.78 166.30

dc/d=05,2H/d=1,e; =1, e = (=24.99,1), px = 1, \/d = 0.5, 0 = 22.208°, ¢ = 20.705°, §* = 45°,
and ¢’ = 0. IM stands for the present integral method, MM stands for the Li’s modal method.
®Diffraction order.
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TABLE 3. Diffraction Angles (0, ¢), Diffraction Efficiencies (n), and Polariza-
tion Angles (d, ) of a Dielectric Sine Grating for B, = 0°

DO’ O(IM)°  ¢(IM),° n(CM),% n(IM),% o6(CM),°  6(IM),° #»(CM),°  o(IM)°
R —43384 —1b 1.121 1121 7101 70.99  3.62 3.60
R, —9.744 ~15 3741 3741 26.91 26.90  0.93 0.93
R_; 20.389 ~15  3.873 3873 63.25 63.25  178.16 178.18
Ry 60 —15 10.33 10.33  88.93 88.93  178.06 178.05
T 5 —57.013  —7.435 .01858 01855  80.18 80.19  —114.16  —114.68
T_, —35921  —7.435 .002466  .002482 52.39 52.58  99.81 100.24
T_s —19.545  —7.435 .7396 7394 57.62 57.61  —179.23  —179.28
T, —4.729 —7.435  4.922 4922 22.89 2290  174.83 174.84
T, 9.770 —7.435 9.925 9.923  60.39 60.39  4.71 472
Ty  24.949 —7.435  7.146 7.145  77.33 7732 6.83 6.84
T,  42.371 —7.435 51.83 5183  84.43 84.43  —5.77 —5.78
T,  67.826 ~7.435  6.351 6.351  84.85 8485  —11.33 ~11.39

“9H/d =03, ey =1,

bDiffraction order.

€. =4, pg =1, \/d = 0.5, " = 60°, ¢* = 15°, §* = 81.501°, and +* = 0. IM stands
for the present integral method, CM stands for the Li’s coordinate transformation method.

TABLE 4. Diffraction Angles (0, ¢), Diffraction Efficiencies (n), and Polariza-
tion Angles (J, ¥) of a Dielectric Sine Grating for E, = 0°

DO" 6(IM),°  ¢(IM),° n(CM),% n(IM),% o(CM),° 8(IM),° ¢(CM),> (IM),°
R_; —43384 —15  1.121 1121 71.01 7099  3.62 3.60
R, —9.744  —15  3.741 3741 26.91 26.90  0.93 0.93
R_; 20389  —15  3.873 3.873  63.25 6325 17816  178.18
Ry 60 ~15 1033 10.33  88.93 88.93 178.06  178.05
T_5 —57.013 —7.435 .01858  .01855  80.18 80.19 —114.16 —114.68
T, —35921 —7.435 .002466  .002482 52.39 52.58  99.81 100.24
T3 —19.545 —7.435 .7396 7394 57.62 5761  —179.23  —179.28
T, —4729  —7.435 4.922 4922 22.89 2290 174.83  174.84
T, 9.770 —7.435 9.925 9.923  60.39 60.39  4.71 472
T, 24.949  —7.435 7.146 7.145  77.33 7732 6.83 6.84
Ty 42371  —7.435 51.83 51.83  84.43 8443  —5.77 —5.78
T, 67826  —7.435 6.351 6.351  84.85 8485 —11.33  —11.39

®2H/d =03, e, =1, e =4, ur =1, \/d = 0.5, §° = 60°, ¢
stands for the present integral method, CM stands for the Li’s coordinate transformation method.

bDiffraction order.
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TABLE 5. Diffraction Angles (0, ¢), Diffraction Efficiencies (n), and Polariza-
tion Angles (6, 1) of a Metallic Echelette Grating for §° = 02

DO? 9(IM),°  ¢(IM),° n(CM),% n(IM).% o(CM),° o(IM),° ¢(CM),° o(IM);°

R, —40.746  —40 12.99 12.97 39.409 39.447  —175.87  —175.93
Ry O —40 28.49 28.45 86.449 86.414 —51.16 —50.97
Ry 40.746 —40 24.77 24.81 39.237 39.209  7.58 7.67

@ =30%¢€ =1, = (—45,28), ux = 1, \/d = 0.5, " = 0, ¢* = 40°, and ' = 0. IM stands for the
present integral method, CM stands for the Li’s coordinate transformation method.
bDiffraction order.

TABLE 6. Diffraction Angles (0, ¢), Diffraction Efficiencies (n), and Polariza-
tion Angles (9, 1) of a Metallic Echelette Grating for §° = 90°¢

DO* 9(IM),°  ¢(IM),° n(CM),% n(IM).% o(CM),° o(IM),° ¢(CM),° o(IM);°

R_; —40.746  —40 53.15 53.15 54.0 54.0 13.31 13.37
Ry O —40 17.51 17.48 4.53 4.58 95.49 95.21
Ry 40.746 —40 9.423 9.444 49.47 49.41 —171.24  —171.22

T =30%¢€r =1, = (—45,28), ux = 1, \/d = 0.5, " = 0, ¢* = 40°, and ' = 0. IM stands for the
present integral method, CM stands for the Li’s coordinate transformation method.
bDiffraction order.
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