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Random walks onditioned to stay in Weyl hambers of type C and DAbstratWe onstrut the onditional versions of a multidimensional random walk giventhat it does not leave the Weyl hambers of type C and of type D, respetively, interms of a Doob h-transform. Furthermore, we prove funtional limit theorems for theresaled random walks. This is an extension of reent work by Eihelsbaher and Königwho studied the analogous onditioning for the Weyl hamber of type A. Our prooffollows reent work by Denisov and Wahtel who used martingale properties and astrong approximation of random walks by Brownian motion. Therefore, we are able tokeep minimal moment assumptions. Finally, we present an alternate funtion that isamenable to an h-transform in the Weyl hamber of type C.1 IntrodutionIn his lassial work [7℄ Dyson established a onnetion between dynamial versionsof random matries and non-olliding random partile systems. Indeed, the eigenvalueproess of a k×k Hermitian Brownian motion has the same distribution as the evolutionof k independent standard Brownian motions onditioned never to ollide (whih meansthat they are in the same order at all times). This proess an also be haraterised bysaying that a k-dimensional Brownian motion is onditioned on never leaving the Weylhamber of type A, WA = {x = (x1, . . . , xk) ∈ R
k : x1 < . . . < xk}.This onditional proess, alled Dyson's Brownian motion, attrated the interest ofvarious researhers. Several disrete versions were onsidered. Reently, Eihelsbaherand König [8℄ onstruted, in great generality, the analogous random walk version, i.e.,the onditional version of a random walk on R

k given that it never leaves WA. Thisresult and its proof were reently improved by Denisov and Wahtel [5℄. It is the aimof this paper to extend their analysis to the two ases of the Weyl hambers of type Cand D, see Setion 2.Let us �rst desribe the random walk version for the type-A hamber. To �x nota-tion, let S(n) = (S1(n), . . . , Sk(n)) denote the position of a random walk in R
k startedat x ∈ R

k after n steps with omponents Sj(n) = xj +ξ
(1)
j + . . .+ξ

(n)
j , 1 ≤ j ≤ k, where

{ξ(i)
j : 1 ≤ j ≤ k, i ∈ IN} is a family of independent identially distributed random vari-ables. In partiular, S(0) = x. We write Px and Ex for the orresponding probabilitymeasure and expetation.Atually one an understand onditioning to never leave WA in two ways. If τA

x =

inf{n ∈ IN0 : S(n) /∈ W A} denotes the exit time from WA, then on the one hand one anmean the onditional distribution of the path given the event {τA
x > m} asymptotiallyas m grows to in�nity, that is,

P̂x(S(n) ∈ dy) = lim
m→∞

Px(S(n) ∈ dy | τA
x > m), x, y ∈ WA.On the other hand, one an make a hange of measure by Doob's h-transform [6℄.Neessary for this proedure is to �nd a funtion h whih is stritly positive on WA1



Wolfgang König and Patrik Shmidand regular for the restrition of the transition kernel to WA, i. e.,
Ex[h(S(1)); τA

x > 1] = h(x), x ∈ WA.Then a new probability transition funtion on WA is de�ned by
P̂

(h)
x (S(n) ∈ dy) = Px(S(n) ∈ dy; τA

x > n)
h(y)

h(x)
, x, y ∈ WA.The orresponding Markov hain is alled the h-transform on WA. A priori there maybe more than one funtion h amenable to this proedure. However, if a positive regularfuntion h governs the upper tails of τA

x , i.e., P(τA
x > n) ∼ C1h(x)n−c2 as n → ∞ forsome C1, c2 > 0 for any x ∈ WA, then the two above onstrutions lead to the sameproess. Indeed, by the Markov property one obtains in the limit m → ∞

Px(S(n) ∈ dy | τA
x > m) = Px(S(n) ∈ dy; τA

x > n)
P(τA

y > m − n)

P(τA
x > m)

→ Px(S(n) ∈ dy; τA
x > n)

h(y)

h(x)
.Eihelsbaher and König sueeded in �nding a positive regular funtion V A whihyields this oinidene:

V A(x) = hA(x) − Ex[hA(S(τA
x ))], x ∈ WA, (1)with hA the Vandermonde determinant

hA(x) =
∏

1≤i<j≤k

(xj − xi) = det
(
(xj−1

i )i,j∈{1,...,k}
)

.It should be noted that hA is, up to a multipliative positive onstant, the uniqueharmoni funtion that is positive on the interior of WA and vanishes on the boundary.In potential theoreti terms, this is expressed by saying that hA is the réduite of WA.Furthermore, Eihelsbaher and König showed that the resaled random walk weaklyonverges to Dyson's Brownian motion.It is not easy to see that V A is stritly positive on WA, and it is surprisingly di�ultto prove that V A is well-de�ned, i.e., that hA(S(τA
x )) is integrable. The approah in[8℄ is based on the disrete analogue of the Karlin-MGregor formula [11℄ for randomwalks and an appliation of a loal entral limit theorem. By repeated use of the Hölderinequality, Eihelsbaher and König lose trak of minimal moment assumptions: theyneed the �niteness of moments E[|ξ(i)

j |r] with r > ck3. Denisov and Wahtel [5℄ improvetheir results by showing that the minimal moment requirement is atually r = k − 1for k > 3. Sine the k-dimensional Vandermonde determinant is a polynomial whihhas in eah variable at most order k− 1, at least moments of order k− 1 are neessary.Hene Denisov and Wahtel's moment requirement is indeed minimal. For k = 3 theyneed higher moments sine their approah is based on a strong oupling whih will beexplained later. 2



Random walks onditioned to stay in Weyl hambers of type C and DA onditional version on never leaving WA under less integrability has not beenonstruted yet, and it is unlear how to do that. This is a bit surprising sine thequestion of leaving WA or not has a priori nothing to do with moments.The ase k = 2 has already been extensively treated in the literature if one notesthat staying in order for two walkers an be translated to staying positive for a singlewalker. See for example Bertoin and Doney [2℄.The paper is organised as follows. We present our main results in Setion 2, and theproofs are given in Setion 3. In the �nal Setion 4, we disuss an alternate h-transformfor the restrition of the walk to the Weyl hamber of type C.2 Extension to Weyl hambers C and DA natural extension of the onditioned random walk setting just desribed is the oneto di�erent Weyl hambers. They arise in Lie theory as the set of orbits of the adjointation on a Lie algebra or onjugation under the assoiated Lie group and �rst appearedin onnetion with Brownian motion in a work by Grabiner [9℄. There he onsideredWeyl hambers of type A, B, C, D, but one should mention that the Weyl hambers Band C are atually idential. Those of type C and D are de�ned as follows:
WC = {x = (x1, . . . , xk) ∈ R

k : 0 < x1 < . . . < xk},
WD = {x = (x1, . . . , xk) ∈ R

k : |x1| < x2 < . . . < xk}.As already mentioned, the Weyl hamber of type A imposes a strit order. For typeC, an additional wall at zero ours, and for D the mirror image of x1 is inorporatedinto the order. It is important that these hambers are also equipped with respetiveréduites:
hD(x) =

∏

1≤i<j≤k

(xj2 − xi2) and hC(x) = hD(x)
k∏

i=1

xi.As we an handle the two ases simultaneously, we will write Z for C or D. Of oursewe need orresponding exit times
τZ
x = inf{n ∈ IN0 : S(n) /∈ W Z}.One of the most important objets of this paper is the funtion

V Z(x) = hZ(x) − Ex[h
Z(S(τZ

x ))], x ∈ W Z; (2)its role will turn out to be analogous to the role of V A for WA.Let us formulate our assumptions on the random walk (S(n))n∈IN0
, whih are sup-posed for the results of this setion:Moment Assumption (MA): E[|ξ(i)

j |(rZ )] < ∞, where rC = 2k − 1 and rD = 2k − 2if k ≥ 3, and rC = 3 and rD > 2 arbitrary in ase k = 2.3



Wolfgang König and Patrik ShmidSymmetry Assumption (SA): E[(ξ
(j)
i )r] = 0 for any odd integer r ≤ rZ.Normalization Assumption (NA): E[(ξ

(j)
i )2] = 1.As one again sees from the de�nition of hZ, the moment requirements are indeed min-imal for the integrability of hZ(S(n)) in the ases k ≥ 3. In the ase k = 2 we needfor Z = D some higher power for yet another appliation of the strong oupling, sineseond moments do not su�e. The assumption (SA) seems somewhat unnatural, butit will beome learer in the proof of Proposition 2.1 why we need it. The normalizationassumption is just for onveniene.First we make an interesting observation about a martingale property:Proposition 2.1. The funtion hZ is regular for (S(n))n∈IN0

, i.e., for any x ∈ R
k wehave Ex[hZ(S(1))] = hZ(x). Thus, (hZ(S(n)))n∈IN0

is a martingale for any x ∈ R
k.The proof uses the exhangeability of the step distribution of the random walk

(S(n))n∈IN0
only, not the independene of the omponents. The ase Z = A was treatedin [12℄. Two important properties of V Z are that this funtion is well-de�ned and stritlypositive on W Z. We ombine these properties with some results that are of interest inthemselves:Proposition 2.2. a) V Z(x) = limn→∞ Ex[h

Z(S(n)); τZ
x > n] for all x ∈ W Z;b) V Z ist monotone in the sense that V Z(x) ≤ V Z(y) if xj − xj−1 ≤ yj − yj−1 for

2 ≤ j ≤ k and additionally either x1 ≤ y1 (Z=C) or x1 + x2 ≤ y1 + y2 (Z=D);) V Z(x) ∼ hZ(x) in the limit inf2≤j≤k(xj − xj−1) → ∞ together with x1 → ∞(Z = C) or (x1 + x2) → ∞ (Z = D) respetively;d) there is  positive suh that V Z(x) ≤ c · hZ
2 (x) for all x ∈ W Z, with hD

t (x) =∏
1≤i<j≤k(t + |xj − xi|)(t + |xj + xi|) and hC

t (x) = hD
t (x)

∏k
i=1(t + |xi|);e) V Z(x) > 0 for all x ∈ W Z.With help of these insights we get a hold on the upper tails of the exit time:Theorem 2.3. The asymptoti behavior for n → ∞ of the exit time starting from

x ∈ W Z is given by
P(τZ

x > n) ∼ κ
ZV Z(x)n−(αZ)/2with αC = k2 and αD = k2 − k, and κ

C, κ
D the following onstants:

κ
D =

2(3k2−3k+2)/2

πkk!

∏

1≤i<j≤k

[(2j − 1)2 − (2i − 1)2]−1
k∏

i=1

[
Γ

(
1 +

i

2

)
Γ

(
1 + i

2

)]

κ
C = κ

D2(3k−2)/2
k∏

i=1

(2k + 1 − 2i)−1.The next result shows that V Z is indeed suitable for an h-transform:4



Random walks onditioned to stay in Weyl hambers of type C and DProposition 2.4. V Z is regular for the restrition of the transition kernel to W Z.In partiular, using Theorem 2.3, the two ways of onditioning the walk to stay in
W Z that we mentioned in the introdution oinide.Furthermore, we prove a funtional limit theorem for the onditional walk in thespirit of Donsker's theorem. Let us introdue the limit proesses of the saled randomwalks and state our result. For a k-dimensional Brownian motion one an make a hangeof measure in the sense of Doob's h-transform using the orresponding réduite:

P̂
(hZ)
x (B(t) ∈ dy) = Px(B(t) ∈ dy; τBM,Z

x > t)
hZ(y)

hZ(x)
, x, y ∈ W Z,with τBM,Z

x = inf{t ≥ 0: x+B(t) /∈ W Z} denoting the exit time of the Brownian motionfrom the type-Z Weyl hamber when started at x. We will term the orresponding pro-esses Dyson's Brownian Motion of type Z; however note that for Z = D this expressionis used di�erently in [4℄(there is a little ambiguity, but it is not of any serious onern;see also [10℄). It is possible to start these proesses from the origin (this an be seen bythe same arguments as in [14℄).Theorem 2.5. For x ∈ W Z, as n → ∞,
Px

(
1√
n

S(n) ∈ ·
∣∣∣ τZ

x > n

)
⇒ µZ,with µZ the probability measure on W Z with density proportional to hZ(y) exp (−|y|2/2).Additionally the proess (Xn(t))t≥0 = ( 1√

n
S([nt]))t≥0 under the probability measure

P̂
(V Z)

x
√

n
weakly onverges to Dyson's Brownian motion of type Z started at x. Under

P̂
(V Z)
x , this proess onverges weakly to Dyson's Brownian motion of type Z started atzero.3 ProofsFirst we prove the regularity of hZ on IRk, whih is essential for our purposes:Proof of Proposition 2.1. We make an indution on the number k of omponents.For this we exploit the Vandermonde determinant representation and write hZ in theform

hZ(x) = det
[
(x2i−2+γ

j )i,j∈[k]

]
, [k] = {1, . . . , k},where γ = 1 for Z = C and γ = 0 for Z = D. We dispense with another supersriptas not to overburden the notation. For k = 1 the assertion trivially holds either by(SA) (Z = C) or a onstant determinant (Z = D). Now �x k ≥ 2 and assume that ourassertion is true for k − 1. For any x ∈ R

k and m ∈ [k] we de�ne
hZ

m(x) = det
[
(x2i−2+γ

j )i∈[k−1],j∈[k]\{m}
]
,5



Wolfgang König and Patrik Shmidwhih is the determinant of the matrix that we obtain by deleting the last row and the
mth olumn. In partiular, it is a (k − 1)-dimensional analogue of hZ. Using Laplaeexpansion we write

hZ(x) =

k∑

m=1

(−1)m−1x2k−2+γ
m hZ

m(x).We use this in the expetation and denote by µ the step distribution of the randomwalk, to obtain
Ex[h

Z(S(1))] =

∫

Rk

µ(dy)hZ(x+y) =

k∑

m=1

(−1)m−1

∫

Rk

µ(dy) (xm+ym)2k−2+γhZ
m(x+y).We denote by ν the m-th marginal of µ, whih does not depend on m by exhangeability,and by µm(dỹ|ym) the onditional distribution of µ given the oordinate ym, whih isexhangeable for ỹ = (y1, . . . , ym−1, ym+1, . . . , yk). Hene, µ(dy) = ν(dym)µm(dỹ|ym).By our indution hypothesis we have for any ym ∈ R and x ∈ R

k that
∫

Rk−1

µm(dỹ|ym)hZ
m(x + y) = hZ

m(x).This allows us to omplete our omputation:
Ex[hZ(S(1))] =

k∑

m=1

(−1)m−1

∫

R

ν(dym) (xm + ym)2k−2+γhZ
m(x)

=
k∑

m=1

(−1)m−1

∫

R

ν(dz)

2k−2+γ∑

l=0

(
2k − 2 + γ

l

)
x2k−2+γ−l

m zlhZ
m(x)

=

2k−2+γ∑

l=0,leven ∫

R

ν(dz) zl

(
2k − 2 + γ

l

) k∑

m=1

(−1)m−1x2k−2+γ−l
m hZ

m(x),where we used (SA) in the third line. Now we apply the Laplae expansion to the m-sum in the last line. For l ≥ 2 this m-sum vanishes sine its summands are equal tothe determinants of matries with two idential olumns. For l = 0 it is equal to hZ(x).This �nishes the proof.Now we prove regularity of V Z on W Z.Proof of Proposition 2.4. For any x ∈ W Z we get by the strong Markov propertyand the martingale property of Proposition 2.1
Ex[V Z(S(1))1{τZ

x >1}] =

= Ex[h
Z(S(1))1{τZ

x >1}] − Ex[ES(1)[h
Z(S(τZ

x ))]1{τZ
x >1}]

= Ex[h
Z(S(1))1{τZ

x >1}] − Ex[h
Z(S(τZ

x ))1{τZ
x >1}]

= Ex[h
Z(S(1))1{τZ

x >1}] − Ex[h
Z(S(τZ

x ))] + Ex[h
Z(S(τZ

x ))1{τZ
x ≤1}]

= Ex[h
Z(S(1))] − Ex[hZ(S(1))1{τZ

x ≤1}] − Ex[hZ(S(τZ
x ))] + Ex[h

Z(S(τZ
x ))1{τZ

x ≤1}]

= V Z(x). 6



Random walks onditioned to stay in Weyl hambers of type C and DNow we turn to the proofs of the remaining results, Proposition 2.2 and Theorems 2.3and 2.5. We deided to give a sketh only, sine the methods employed by Denisov andWahtel for the ase WA an be straightforwardly extended. Rather than reappingall tehnial details in tedious length, we indiate the key steps of their proof andilluminate the di�erenes that are neessary to adapt.We �rst explain how they obtain their analogues to Proposition 2.2 and Theo-rems 2.3 and 2.5 for the Weyl hamber of type A, in partiular the asymptotis
P(τZ

x > n) ∼ κ
AV A(x)n−k(k−1)/4, with κ

A a onstant, and the weak onvergeneto Dyson's Brownian motion of type A. Their idea is to onsider, additionally to τA
x ,the stopping time

TA
x = inf{n ∈ IN0 : hA(S(n)) ≤ 0}.This has the advantage that the triggering of the de�ning ondition an more easily beexploited for estimates sine we have ontrol over the sign of hA(S(n)). Furthermore,obviously, TA

x ≥ τA
x almost surely. Therefore, ertain estimates involving TA

x an bediretly transferred to estimates involving τA
x . Cruial for their approah is the fat that

(hA(S(n)))n∈IN0
is a martingale. This yields that the sequene Yn = hA(S(n))1{TA

x >n}is a nonnegative submartingale (this is solely based on the martingale property). Withthis they next show that there is a universal onstant C suh that
Ex[hA(S(n));TA

x > n] ≤ ChA
2 (x), n ∈ IN, x ∈ WA, (3)where hA

t (x) =
∏

1≤i<j≤k(t + |xj − xi|) is de�ned similar to the expressions in Propo-sition 2.2d). Proving (3) is tehnial and lengthy and uses an auxiliary Weyl hamberde�ned by
WA

n,ε = {x ∈ R
k : |xj − xi| > n1/2−ε, 1 ≤ i < j ≤ k}, ε > 0.If a point of WA is additionally in WA

n,ε, it is far away from the boundary of WA. Fur-thermore, WA
n,ε has the property that it is reahed by the motion soon with high prob-ability: the probability of the entrane time νA

n = inf{m ∈ IN0 : S(m) ∈ WA
n,ε} beingbigger than n1−ε deays exponentially. Indeed, we have Px(ν

A
n > n1−ε) ≤ exp{−Cnε}.This an be shown by a subdivision of the trajetory into nε piees and an appliationof the entral limit theorem to the piees. Also expetations of hA(S(n)) on the event

{νA
n > n1−ε} deay exponentially, hene one an extend estimates for expetationswhih start from x ∈ WA

n,ε to expetations with arbitrary starting points in WA by thestrong Markov property. For the former one an elementarily derive upper bounds withstandard estimates like Doob's inequality. With this one is able to prove the bound in(3).Now this in turn yields the integrability of hA(S(τA
x )) by a diret appliation ofmartingale arguments. Furthermore, Denisov and Wahtel obtain from this that thefuntion V (TA)(x) = limn→∞ Ex[Yn] is well de�ned on the set {x : hA(x) > 0}. Forshowing that V A is stritly positive on WA they use that (V (TA)(S(n))1{τA

x >n})n∈IN0is a supermartingale; again this is solely based on the martingale property.Here we terminate our survey on the proofs of the orresponding statements of d)and e) of Proposition 2.2. The orresponding results to a) and b) pop out easily from7



Wolfgang König and Patrik Shmidthe method of proof. The proof of ) is atually part of the derivation of e). This �nishesthe sketh of their analogue of Proposition 2.2.Now we turn to the sketh of the proofs of their analogues of Theorems 2.3 and2.5. For this a oupling of random walks and Brownian motion by Major [13℄ is appliedwhih has already been used in other ontexts, see [1℄, [3℄.Lemma 3.1. Given that E[|ξ(i)
j |2+δ ] < ∞ for some δ ∈ (0, 1), a Brownian motion

(B(t))t≥0 an be de�ned on the same probability spae as the random walk (S(n))n∈IN0suh that, for a ∈ (0, δ
2(2+δ) ),

P

(
sup
u≤n

|S([u]) − B(u)| ≥ n1/2−a

)
= o

(
n2a+aδ−δ/2

)
.Other important tools for the proof of the asymptoti behavior of Px(τA

x > n) areestimates for the upper tails of the exit time of Brownian motion from WA due toGrabiner [9℄ and Varopoulos [15℄. Again, the auxiliary Weyl hamber WA
n,ε is used.To attak the upper tails of τA

x , we know from the above mentioned exponentialdeay of Px(ν
A
n > n1−ε) that the random walk reahes WA

n,ε after a short time, withhigh probability. Using the strong Markov property at time νA
n , we only have to onsiderstarting points y ∈ WA

n,ε instead of x. For those, we use Lemma 3.1 with a = 2ε and seethat the exit times from WA for the Brownian motion and the oupled random walkare roughly idential with high probability, sine the distanes between them, n1/2−2ε,are negligible with respet to the typial distanes n1/2−ε required in WA
n,ε. Hene, theupper tails of the random walk exit times an diretly be related to the ones of theBrownian motion, whih are well-known. After identifying the asymptoti behavior of

Px(τ
A
x > n), one an use it to prove the funtional limit theorem in a straightforwardmanner.So, unlike in the proof of Eihelsbaher and König, there is no need to employ thedisrete analogue of the Karlin-MGregor formula, or Hölder's inequality; the resultsare derived using a omparison to Brownian motion.Now we argue that these proofs an be straightforwardly extended to ases C and D.This is due to several fators. First, aording to Proposition 2.1, (hZ(S(n)))n∈IN0

is alsoa martingale, and one an analogously de�ne the orresponding sub- and supermartin-gales, (hZ(S(n))1{TZ
x >n})n∈IN0

and (V (TZ)(S(n))1{τZ
x >n})n∈IN0

. Seond, as one easilysees, the inequalities TZ
x ≥ τZ

x hold almost surely, too. Third, for proving the estimate ind) of Proposition 2.2, we split the funtions hZ into hD(x) =
∏

1≤i<j≤k(xj −xi)(xj +xi)(and hC similarly). This is a more suitable representation when used together with theorresponding auxiliary Weyl hambers de�ned by
WD

n,ε = {x ∈ R
k : |xj − xi| > n1/2−ε, |xj + xi| > n1/2−ε, 1 ≤ i < j ≤ k},

WC
n,ε = WD

n,ε ∩ {x ∈ R
k : |xi| > n1/2−ε, 1 ≤ i ≤ k}.Again the probability of the entrane time νZ

n = inf{m ∈ IN0 : S(m) ∈ W Z
n,ε} beingbigger than n1−ε deays exponentially, whih an be proved by the same argument asfor WA

n,ε. 8



Random walks onditioned to stay in Weyl hambers of type C and DFourth, by the works of Grabiner and Varopoulos [9, 15℄, we have analogous es-timates for the upper tails of the exit times from W Z at our disposal. Varopoulosformulated them more generally for onial regions (i.e., losed under saling by a posi-tive onstant and addition of elements), and Grabiner formulated them diretly for theWeyl hambers:Lemma 3.2. a) For all y ∈ W Z we have with τBM,Z
y = inf{t ≥ 0: y + B(t) /∈ W Z},

P(τBM,Z
y > t) ≤ C

hZ(y)

t(αZ)/2
, t > 0,where αC = k2 and αD = k2 − k.b) As t → ∞,

P(τBM,Z
y > t) ∼ κ

Z hZ(y)

t(α
Z)/2

,uniformly in y ∈ W Z satisfying |y| ≤ θt

√
t with some θt → 0.) For y ∈ W Z, denote by bZ

t (y, z) the density of P(τBM,Z
y > t, y + B(t) ∈ dz). Then,as t → ∞,

bZ
t (y, z) ∼ KZt−

k

2 e−|z|2/(2t)hZ(y)hZ(z)t−αZ

,uniformly in y, z ∈ W Z satisfying |y| ≤ θt

√
t and |z| ≤

√
t/θt with some θt → 0,and

KC =
2kk!κC

∫
Rk e−|x|2/2|hC(x)|dx

, KD =
2k−1k!κD

∫
Rk e−|x|2/2|hD(x)|dx

.Of ourse we an use the same oupling of random walks and Brownian motion asin Lemma 3.1. Using all these ingredients, we an easily adapt the strategy employedby Denisov and Wahtel to prove Proposition 2.2 and Theorems 2.3 and 2.5.4 An alternate h-transform for W
CIn this setion we present another funtion, Ṽ C, that is positive and regular on thetype-C Weyl hamber, WC. This funtion is in general di�erent from the funtion V Cde�ned in (2), but beause of its positivity and regularity on WC, it is amenable toan h-transform of the random walk restrited to WC. This illustrates our remark inthe introdution: Not every h-transform of the random walk on a set W is equal tothe onditional version of the walk given that it never leaves W . The point is that Ṽ Cdoes not neessarily govern the upper tails of the exit time from WC, but V C does; seeTheorem 2.3.The idea of the onstrution of Ṽ C is to �rst ondition every omponent on stayingpositive and afterwards onditioning the resulting walk on never violating the orderof the omponents. In other words, we �rst ondition on never leaving (0,∞)k andafterwards on never leaving WA. Even though the intersetion of these two sets isequal to WC, there is no reason to hope that the sequentially onditioned random walkbe equal to the onditional walk onstruted in Setion 2; this is a general fat aboutonditional probabilities. 9



Wolfgang König and Patrik ShmidLet us now desribe the onstrution of Ṽ C. For z ∈ (0,∞), denote V (z) =

z − Ez[S1(τ
+,(1)
z )] with τ

+,(i)
z = inf{n ∈ IN0 : Si(n) ≤ 0} the exit time from (0,∞).When we apply the method of proof of Denisov and Wahtel to k = 2 under su�ientmoment assumptions, we know that V is positive and regular for the restrition of aone-dimensional symmetri random walk (S1(n))n∈IN0

to (0,∞) and that it governs theupper tails of the exit time τ
+,(1)
z . By independene, V ⊗k is positive and regular for therestrition of the walk (S(n))n∈IN0

to (0,∞)k and governs the upper tails of the exittime τ+
z = inf{n ∈ IN0 : S(n) /∈ (0,∞)k}. As a onsequene,

P̂
+
x (S(n) ∈ dy) : = lim

m→∞
Px(S(n) ∈ dy | τ+

x > m)

= Px(S(n) ∈ dy; τ+
x > n)

V ⊗k(y)

V ⊗k(x)
.

(4)Under P̂
+
x , the walk is equal to the onditional version given that it does not leave

(0,∞)k. Now we need the version of the funtion V A de�ned in (1) for P̂
+
x :

V +,A(x) = hA(x) − Ê
+
x [hA(S(τA

x ))], x ∈ WA.Lemma 4.1. Assume that the step distribution of the walk is symmetri and possesses�nite moments of order k − 1 for k ≥ 4 or of some order r > 2 in ases k = 3 and
k = 2. Then the funtion

Ṽ C = V +,AV ⊗kis positive in WC and regular for the restrition of the transition kernel to WC.Proof. The h-transform of P̂
+
x with V +,A on WA is equal to the onditional versiongiven that the walk does not leave WA, i.e.,

lim
m→∞

P̂
+
x (S(n) ∈ dy | τA

x > m) = P̂
+
x (S(n) ∈ dy; τA

x >> n)
V +,A(y)

V +,A(x)
. (5)Using (4), we see that

P̂
+
x (S(n) ∈ dy; τA

x > n) = Px(S(n) ∈ dy; τ+
x > n, τA

x > n)
V ⊗k(y)

V ⊗k(x)
.Using this in (5) and noting that {τ+

x > n, τA
x > n} = {τC

x > n}, we arrive at
lim

m→∞
P̂

+
x (S(n) ∈ dy | τA

x > m) = Px(S(n) ∈ dy; τC
x > n)

V +,A(y)

V +,A(x)

V ⊗k(y)

V ⊗k(x)

= Px(S(n) ∈ dy; τC
x > n)

Ṽ C(y)

Ṽ C(x)
.Sine the left hand side is a probability measure in y ∈ WC, the right hand side is aswell. This shows the regularity of Ṽ C in WC. The positivity is obvious.For the ase D this approah does not work sine it is not lear how to divide theondition in WD into two onditions that an separately be handled with the methodspresented in this paper.AknowledgementsP. Shmid would like to thank P. Ferrari and T. Sasamoto for helpful disussions.10
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