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Random walks 
onditioned to stay in Weyl 
hambers of type C and DAbstra
tWe 
onstru
t the 
onditional versions of a multidimensional random walk giventhat it does not leave the Weyl 
hambers of type C and of type D, respe
tively, interms of a Doob h-transform. Furthermore, we prove fun
tional limit theorems for theres
aled random walks. This is an extension of re
ent work by Ei
helsba
her and Königwho studied the analogous 
onditioning for the Weyl 
hamber of type A. Our prooffollows re
ent work by Denisov and Wa
htel who used martingale properties and astrong approximation of random walks by Brownian motion. Therefore, we are able tokeep minimal moment assumptions. Finally, we present an alternate fun
tion that isamenable to an h-transform in the Weyl 
hamber of type C.1 Introdu
tionIn his 
lassi
al work [7℄ Dyson established a 
onne
tion between dynami
al versionsof random matri
es and non-
olliding random parti
le systems. Indeed, the eigenvaluepro
ess of a k×k Hermitian Brownian motion has the same distribution as the evolutionof k independent standard Brownian motions 
onditioned never to 
ollide (whi
h meansthat they are in the same order at all times). This pro
ess 
an also be 
hara
terised bysaying that a k-dimensional Brownian motion is 
onditioned on never leaving the Weyl
hamber of type A, WA = {x = (x1, . . . , xk) ∈ R
k : x1 < . . . < xk}.This 
onditional pro
ess, 
alled Dyson's Brownian motion, attra
ted the interest ofvarious resear
hers. Several dis
rete versions were 
onsidered. Re
ently, Ei
helsba
herand König [8℄ 
onstru
ted, in great generality, the analogous random walk version, i.e.,the 
onditional version of a random walk on R

k given that it never leaves WA. Thisresult and its proof were re
ently improved by Denisov and Wa
htel [5℄. It is the aimof this paper to extend their analysis to the two 
ases of the Weyl 
hambers of type Cand D, see Se
tion 2.Let us �rst des
ribe the random walk version for the type-A 
hamber. To �x nota-tion, let S(n) = (S1(n), . . . , Sk(n)) denote the position of a random walk in R
k startedat x ∈ R

k after n steps with 
omponents Sj(n) = xj +ξ
(1)
j + . . .+ξ

(n)
j , 1 ≤ j ≤ k, where

{ξ(i)
j : 1 ≤ j ≤ k, i ∈ IN} is a family of independent identi
ally distributed random vari-ables. In parti
ular, S(0) = x. We write Px and Ex for the 
orresponding probabilitymeasure and expe
tation.A
tually one 
an understand 
onditioning to never leave WA in two ways. If τA

x =

inf{n ∈ IN0 : S(n) /∈ W A} denotes the exit time from WA, then on the one hand one 
anmean the 
onditional distribution of the path given the event {τA
x > m} asymptoti
allyas m grows to in�nity, that is,

P̂x(S(n) ∈ dy) = lim
m→∞

Px(S(n) ∈ dy | τA
x > m), x, y ∈ WA.On the other hand, one 
an make a 
hange of measure by Doob's h-transform [6℄.Ne
essary for this pro
edure is to �nd a fun
tion h whi
h is stri
tly positive on WA1
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k S
hmidand regular for the restri
tion of the transition kernel to WA, i. e.,
Ex[h(S(1)); τA

x > 1] = h(x), x ∈ WA.Then a new probability transition fun
tion on WA is de�ned by
P̂

(h)
x (S(n) ∈ dy) = Px(S(n) ∈ dy; τA

x > n)
h(y)

h(x)
, x, y ∈ WA.The 
orresponding Markov 
hain is 
alled the h-transform on WA. A priori there maybe more than one fun
tion h amenable to this pro
edure. However, if a positive regularfun
tion h governs the upper tails of τA

x , i.e., P(τA
x > n) ∼ C1h(x)n−c2 as n → ∞ forsome C1, c2 > 0 for any x ∈ WA, then the two above 
onstru
tions lead to the samepro
ess. Indeed, by the Markov property one obtains in the limit m → ∞

Px(S(n) ∈ dy | τA
x > m) = Px(S(n) ∈ dy; τA

x > n)
P(τA

y > m − n)

P(τA
x > m)

→ Px(S(n) ∈ dy; τA
x > n)

h(y)

h(x)
.Ei
helsba
her and König su

eeded in �nding a positive regular fun
tion V A whi
hyields this 
oin
iden
e:

V A(x) = hA(x) − Ex[hA(S(τA
x ))], x ∈ WA, (1)with hA the Vandermonde determinant

hA(x) =
∏

1≤i<j≤k

(xj − xi) = det
(
(xj−1

i )i,j∈{1,...,k}
)

.It should be noted that hA is, up to a multipli
ative positive 
onstant, the uniqueharmoni
 fun
tion that is positive on the interior of WA and vanishes on the boundary.In potential theoreti
 terms, this is expressed by saying that hA is the réduite of WA.Furthermore, Ei
helsba
her and König showed that the res
aled random walk weakly
onverges to Dyson's Brownian motion.It is not easy to see that V A is stri
tly positive on WA, and it is surprisingly di�
ultto prove that V A is well-de�ned, i.e., that hA(S(τA
x )) is integrable. The approa
h in[8℄ is based on the dis
rete analogue of the Karlin-M
Gregor formula [11℄ for randomwalks and an appli
ation of a lo
al 
entral limit theorem. By repeated use of the Hölderinequality, Ei
helsba
her and König lose tra
k of minimal moment assumptions: theyneed the �niteness of moments E[|ξ(i)

j |r] with r > ck3. Denisov and Wa
htel [5℄ improvetheir results by showing that the minimal moment requirement is a
tually r = k − 1for k > 3. Sin
e the k-dimensional Vandermonde determinant is a polynomial whi
hhas in ea
h variable at most order k− 1, at least moments of order k− 1 are ne
essary.Hen
e Denisov and Wa
htel's moment requirement is indeed minimal. For k = 3 theyneed higher moments sin
e their approa
h is based on a strong 
oupling whi
h will beexplained later. 2



Random walks 
onditioned to stay in Weyl 
hambers of type C and DA 
onditional version on never leaving WA under less integrability has not been
onstru
ted yet, and it is un
lear how to do that. This is a bit surprising sin
e thequestion of leaving WA or not has a priori nothing to do with moments.The 
ase k = 2 has already been extensively treated in the literature if one notesthat staying in order for two walkers 
an be translated to staying positive for a singlewalker. See for example Bertoin and Doney [2℄.The paper is organised as follows. We present our main results in Se
tion 2, and theproofs are given in Se
tion 3. In the �nal Se
tion 4, we dis
uss an alternate h-transformfor the restri
tion of the walk to the Weyl 
hamber of type C.2 Extension to Weyl 
hambers C and DA natural extension of the 
onditioned random walk setting just des
ribed is the oneto di�erent Weyl 
hambers. They arise in Lie theory as the set of orbits of the adjointa
tion on a Lie algebra or 
onjugation under the asso
iated Lie group and �rst appearedin 
onne
tion with Brownian motion in a work by Grabiner [9℄. There he 
onsideredWeyl 
hambers of type A, B, C, D, but one should mention that the Weyl 
hambers Band C are a
tually identi
al. Those of type C and D are de�ned as follows:
WC = {x = (x1, . . . , xk) ∈ R

k : 0 < x1 < . . . < xk},
WD = {x = (x1, . . . , xk) ∈ R

k : |x1| < x2 < . . . < xk}.As already mentioned, the Weyl 
hamber of type A imposes a stri
t order. For typeC, an additional wall at zero o

urs, and for D the mirror image of x1 is in
orporatedinto the order. It is important that these 
hambers are also equipped with respe
tiveréduites:
hD(x) =

∏

1≤i<j≤k

(xj2 − xi2) and hC(x) = hD(x)
k∏

i=1

xi.As we 
an handle the two 
ases simultaneously, we will write Z for C or D. Of 
oursewe need 
orresponding exit times
τZ
x = inf{n ∈ IN0 : S(n) /∈ W Z}.One of the most important obje
ts of this paper is the fun
tion

V Z(x) = hZ(x) − Ex[h
Z(S(τZ

x ))], x ∈ W Z; (2)its role will turn out to be analogous to the role of V A for WA.Let us formulate our assumptions on the random walk (S(n))n∈IN0
, whi
h are sup-posed for the results of this se
tion:Moment Assumption (MA): E[|ξ(i)

j |(rZ )] < ∞, where rC = 2k − 1 and rD = 2k − 2if k ≥ 3, and rC = 3 and rD > 2 arbitrary in 
ase k = 2.3
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k S
hmidSymmetry Assumption (SA): E[(ξ
(j)
i )r] = 0 for any odd integer r ≤ rZ.Normalization Assumption (NA): E[(ξ

(j)
i )2] = 1.As one again sees from the de�nition of hZ, the moment requirements are indeed min-imal for the integrability of hZ(S(n)) in the 
ases k ≥ 3. In the 
ase k = 2 we needfor Z = D some higher power for yet another appli
ation of the strong 
oupling, sin
ese
ond moments do not su�
e. The assumption (SA) seems somewhat unnatural, butit will be
ome 
learer in the proof of Proposition 2.1 why we need it. The normalizationassumption is just for 
onvenien
e.First we make an interesting observation about a martingale property:Proposition 2.1. The fun
tion hZ is regular for (S(n))n∈IN0

, i.e., for any x ∈ R
k wehave Ex[hZ(S(1))] = hZ(x). Thus, (hZ(S(n)))n∈IN0

is a martingale for any x ∈ R
k.The proof uses the ex
hangeability of the step distribution of the random walk

(S(n))n∈IN0
only, not the independen
e of the 
omponents. The 
ase Z = A was treatedin [12℄. Two important properties of V Z are that this fun
tion is well-de�ned and stri
tlypositive on W Z. We 
ombine these properties with some results that are of interest inthemselves:Proposition 2.2. a) V Z(x) = limn→∞ Ex[h

Z(S(n)); τZ
x > n] for all x ∈ W Z;b) V Z ist monotone in the sense that V Z(x) ≤ V Z(y) if xj − xj−1 ≤ yj − yj−1 for

2 ≤ j ≤ k and additionally either x1 ≤ y1 (Z=C) or x1 + x2 ≤ y1 + y2 (Z=D);
) V Z(x) ∼ hZ(x) in the limit inf2≤j≤k(xj − xj−1) → ∞ together with x1 → ∞(Z = C) or (x1 + x2) → ∞ (Z = D) respe
tively;d) there is 
 positive su
h that V Z(x) ≤ c · hZ
2 (x) for all x ∈ W Z, with hD

t (x) =∏
1≤i<j≤k(t + |xj − xi|)(t + |xj + xi|) and hC

t (x) = hD
t (x)

∏k
i=1(t + |xi|);e) V Z(x) > 0 for all x ∈ W Z.With help of these insights we get a hold on the upper tails of the exit time:Theorem 2.3. The asymptoti
 behavior for n → ∞ of the exit time starting from

x ∈ W Z is given by
P(τZ

x > n) ∼ κ
ZV Z(x)n−(αZ)/2with αC = k2 and αD = k2 − k, and κ

C, κ
D the following 
onstants:

κ
D =

2(3k2−3k+2)/2

πkk!

∏

1≤i<j≤k

[(2j − 1)2 − (2i − 1)2]−1
k∏

i=1

[
Γ

(
1 +

i

2

)
Γ

(
1 + i

2

)]

κ
C = κ

D2(3k−2)/2
k∏

i=1

(2k + 1 − 2i)−1.The next result shows that V Z is indeed suitable for an h-transform:4



Random walks 
onditioned to stay in Weyl 
hambers of type C and DProposition 2.4. V Z is regular for the restri
tion of the transition kernel to W Z.In parti
ular, using Theorem 2.3, the two ways of 
onditioning the walk to stay in
W Z that we mentioned in the introdu
tion 
oin
ide.Furthermore, we prove a fun
tional limit theorem for the 
onditional walk in thespirit of Donsker's theorem. Let us introdu
e the limit pro
esses of the s
aled randomwalks and state our result. For a k-dimensional Brownian motion one 
an make a 
hangeof measure in the sense of Doob's h-transform using the 
orresponding réduite:

P̂
(hZ)
x (B(t) ∈ dy) = Px(B(t) ∈ dy; τBM,Z

x > t)
hZ(y)

hZ(x)
, x, y ∈ W Z,with τBM,Z

x = inf{t ≥ 0: x+B(t) /∈ W Z} denoting the exit time of the Brownian motionfrom the type-Z Weyl 
hamber when started at x. We will term the 
orresponding pro-
esses Dyson's Brownian Motion of type Z; however note that for Z = D this expressionis used di�erently in [4℄(there is a little ambiguity, but it is not of any serious 
on
ern;see also [10℄). It is possible to start these pro
esses from the origin (this 
an be seen bythe same arguments as in [14℄).Theorem 2.5. For x ∈ W Z, as n → ∞,
Px

(
1√
n

S(n) ∈ ·
∣∣∣ τZ

x > n

)
⇒ µZ,with µZ the probability measure on W Z with density proportional to hZ(y) exp (−|y|2/2).Additionally the pro
ess (Xn(t))t≥0 = ( 1√

n
S([nt]))t≥0 under the probability measure

P̂
(V Z)

x
√

n
weakly 
onverges to Dyson's Brownian motion of type Z started at x. Under

P̂
(V Z)
x , this pro
ess 
onverges weakly to Dyson's Brownian motion of type Z started atzero.3 ProofsFirst we prove the regularity of hZ on IRk, whi
h is essential for our purposes:Proof of Proposition 2.1. We make an indu
tion on the number k of 
omponents.For this we exploit the Vandermonde determinant representation and write hZ in theform

hZ(x) = det
[
(x2i−2+γ

j )i,j∈[k]

]
, [k] = {1, . . . , k},where γ = 1 for Z = C and γ = 0 for Z = D. We dispense with another supers
riptas not to overburden the notation. For k = 1 the assertion trivially holds either by(SA) (Z = C) or a 
onstant determinant (Z = D). Now �x k ≥ 2 and assume that ourassertion is true for k − 1. For any x ∈ R

k and m ∈ [k] we de�ne
hZ

m(x) = det
[
(x2i−2+γ

j )i∈[k−1],j∈[k]\{m}
]
,5
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hmidwhi
h is the determinant of the matrix that we obtain by deleting the last row and the
mth 
olumn. In parti
ular, it is a (k − 1)-dimensional analogue of hZ. Using Lapla
eexpansion we write

hZ(x) =

k∑

m=1

(−1)m−1x2k−2+γ
m hZ

m(x).We use this in the expe
tation and denote by µ the step distribution of the randomwalk, to obtain
Ex[h

Z(S(1))] =

∫

Rk

µ(dy)hZ(x+y) =

k∑

m=1

(−1)m−1

∫

Rk

µ(dy) (xm+ym)2k−2+γhZ
m(x+y).We denote by ν the m-th marginal of µ, whi
h does not depend on m by ex
hangeability,and by µm(dỹ|ym) the 
onditional distribution of µ given the 
oordinate ym, whi
h isex
hangeable for ỹ = (y1, . . . , ym−1, ym+1, . . . , yk). Hen
e, µ(dy) = ν(dym)µm(dỹ|ym).By our indu
tion hypothesis we have for any ym ∈ R and x ∈ R

k that
∫

Rk−1

µm(dỹ|ym)hZ
m(x + y) = hZ

m(x).This allows us to 
omplete our 
omputation:
Ex[hZ(S(1))] =

k∑

m=1

(−1)m−1

∫

R

ν(dym) (xm + ym)2k−2+γhZ
m(x)

=
k∑

m=1

(−1)m−1

∫

R

ν(dz)

2k−2+γ∑

l=0

(
2k − 2 + γ

l

)
x2k−2+γ−l

m zlhZ
m(x)

=

2k−2+γ∑

l=0,leven ∫

R

ν(dz) zl

(
2k − 2 + γ

l

) k∑

m=1

(−1)m−1x2k−2+γ−l
m hZ

m(x),where we used (SA) in the third line. Now we apply the Lapla
e expansion to the m-sum in the last line. For l ≥ 2 this m-sum vanishes sin
e its summands are equal tothe determinants of matri
es with two identi
al 
olumns. For l = 0 it is equal to hZ(x).This �nishes the proof.Now we prove regularity of V Z on W Z.Proof of Proposition 2.4. For any x ∈ W Z we get by the strong Markov propertyand the martingale property of Proposition 2.1
Ex[V Z(S(1))1{τZ

x >1}] =

= Ex[h
Z(S(1))1{τZ

x >1}] − Ex[ES(1)[h
Z(S(τZ

x ))]1{τZ
x >1}]

= Ex[h
Z(S(1))1{τZ

x >1}] − Ex[h
Z(S(τZ

x ))1{τZ
x >1}]

= Ex[h
Z(S(1))1{τZ

x >1}] − Ex[h
Z(S(τZ

x ))] + Ex[h
Z(S(τZ

x ))1{τZ
x ≤1}]

= Ex[h
Z(S(1))] − Ex[hZ(S(1))1{τZ

x ≤1}] − Ex[hZ(S(τZ
x ))] + Ex[h

Z(S(τZ
x ))1{τZ

x ≤1}]

= V Z(x). 6



Random walks 
onditioned to stay in Weyl 
hambers of type C and DNow we turn to the proofs of the remaining results, Proposition 2.2 and Theorems 2.3and 2.5. We de
ided to give a sket
h only, sin
e the methods employed by Denisov andWa
htel for the 
ase WA 
an be straightforwardly extended. Rather than re
appingall te
hni
al details in tedious length, we indi
ate the key steps of their proof andilluminate the di�eren
es that are ne
essary to adapt.We �rst explain how they obtain their analogues to Proposition 2.2 and Theo-rems 2.3 and 2.5 for the Weyl 
hamber of type A, in parti
ular the asymptoti
s
P(τZ

x > n) ∼ κ
AV A(x)n−k(k−1)/4, with κ

A a 
onstant, and the weak 
onvergen
eto Dyson's Brownian motion of type A. Their idea is to 
onsider, additionally to τA
x ,the stopping time

TA
x = inf{n ∈ IN0 : hA(S(n)) ≤ 0}.This has the advantage that the triggering of the de�ning 
ondition 
an more easily beexploited for estimates sin
e we have 
ontrol over the sign of hA(S(n)). Furthermore,obviously, TA

x ≥ τA
x almost surely. Therefore, 
ertain estimates involving TA

x 
an bedire
tly transferred to estimates involving τA
x . Cru
ial for their approa
h is the fa
t that

(hA(S(n)))n∈IN0
is a martingale. This yields that the sequen
e Yn = hA(S(n))1{TA

x >n}is a nonnegative submartingale (this is solely based on the martingale property). Withthis they next show that there is a universal 
onstant C su
h that
Ex[hA(S(n));TA

x > n] ≤ ChA
2 (x), n ∈ IN, x ∈ WA, (3)where hA

t (x) =
∏

1≤i<j≤k(t + |xj − xi|) is de�ned similar to the expressions in Propo-sition 2.2d). Proving (3) is te
hni
al and lengthy and uses an auxiliary Weyl 
hamberde�ned by
WA

n,ε = {x ∈ R
k : |xj − xi| > n1/2−ε, 1 ≤ i < j ≤ k}, ε > 0.If a point of WA is additionally in WA

n,ε, it is far away from the boundary of WA. Fur-thermore, WA
n,ε has the property that it is rea
hed by the motion soon with high prob-ability: the probability of the entran
e time νA

n = inf{m ∈ IN0 : S(m) ∈ WA
n,ε} beingbigger than n1−ε de
ays exponentially. Indeed, we have Px(ν

A
n > n1−ε) ≤ exp{−Cnε}.This 
an be shown by a subdivision of the traje
tory into nε pie
es and an appli
ationof the 
entral limit theorem to the pie
es. Also expe
tations of hA(S(n)) on the event

{νA
n > n1−ε} de
ay exponentially, hen
e one 
an extend estimates for expe
tationswhi
h start from x ∈ WA

n,ε to expe
tations with arbitrary starting points in WA by thestrong Markov property. For the former one 
an elementarily derive upper bounds withstandard estimates like Doob's inequality. With this one is able to prove the bound in(3).Now this in turn yields the integrability of hA(S(τA
x )) by a dire
t appli
ation ofmartingale arguments. Furthermore, Denisov and Wa
htel obtain from this that thefun
tion V (TA)(x) = limn→∞ Ex[Yn] is well de�ned on the set {x : hA(x) > 0}. Forshowing that V A is stri
tly positive on WA they use that (V (TA)(S(n))1{τA

x >n})n∈IN0is a supermartingale; again this is solely based on the martingale property.Here we terminate our survey on the proofs of the 
orresponding statements of d)and e) of Proposition 2.2. The 
orresponding results to a) and b) pop out easily from7
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k S
hmidthe method of proof. The proof of 
) is a
tually part of the derivation of e). This �nishesthe sket
h of their analogue of Proposition 2.2.Now we turn to the sket
h of the proofs of their analogues of Theorems 2.3 and2.5. For this a 
oupling of random walks and Brownian motion by Major [13℄ is appliedwhi
h has already been used in other 
ontexts, see [1℄, [3℄.Lemma 3.1. Given that E[|ξ(i)
j |2+δ ] < ∞ for some δ ∈ (0, 1), a Brownian motion

(B(t))t≥0 
an be de�ned on the same probability spa
e as the random walk (S(n))n∈IN0su
h that, for a ∈ (0, δ
2(2+δ) ),

P

(
sup
u≤n

|S([u]) − B(u)| ≥ n1/2−a

)
= o

(
n2a+aδ−δ/2

)
.Other important tools for the proof of the asymptoti
 behavior of Px(τA

x > n) areestimates for the upper tails of the exit time of Brownian motion from WA due toGrabiner [9℄ and Varopoulos [15℄. Again, the auxiliary Weyl 
hamber WA
n,ε is used.To atta
k the upper tails of τA

x , we know from the above mentioned exponentialde
ay of Px(ν
A
n > n1−ε) that the random walk rea
hes WA

n,ε after a short time, withhigh probability. Using the strong Markov property at time νA
n , we only have to 
onsiderstarting points y ∈ WA

n,ε instead of x. For those, we use Lemma 3.1 with a = 2ε and seethat the exit times from WA for the Brownian motion and the 
oupled random walkare roughly identi
al with high probability, sin
e the distan
es between them, n1/2−2ε,are negligible with respe
t to the typi
al distan
es n1/2−ε required in WA
n,ε. Hen
e, theupper tails of the random walk exit times 
an dire
tly be related to the ones of theBrownian motion, whi
h are well-known. After identifying the asymptoti
 behavior of

Px(τ
A
x > n), one 
an use it to prove the fun
tional limit theorem in a straightforwardmanner.So, unlike in the proof of Ei
helsba
her and König, there is no need to employ thedis
rete analogue of the Karlin-M
Gregor formula, or Hölder's inequality; the resultsare derived using a 
omparison to Brownian motion.Now we argue that these proofs 
an be straightforwardly extended to 
ases C and D.This is due to several fa
tors. First, a

ording to Proposition 2.1, (hZ(S(n)))n∈IN0

is alsoa martingale, and one 
an analogously de�ne the 
orresponding sub- and supermartin-gales, (hZ(S(n))1{TZ
x >n})n∈IN0

and (V (TZ)(S(n))1{τZ
x >n})n∈IN0

. Se
ond, as one easilysees, the inequalities TZ
x ≥ τZ

x hold almost surely, too. Third, for proving the estimate ind) of Proposition 2.2, we split the fun
tions hZ into hD(x) =
∏

1≤i<j≤k(xj −xi)(xj +xi)(and hC similarly). This is a more suitable representation when used together with the
orresponding auxiliary Weyl 
hambers de�ned by
WD

n,ε = {x ∈ R
k : |xj − xi| > n1/2−ε, |xj + xi| > n1/2−ε, 1 ≤ i < j ≤ k},

WC
n,ε = WD

n,ε ∩ {x ∈ R
k : |xi| > n1/2−ε, 1 ≤ i ≤ k}.Again the probability of the entran
e time νZ

n = inf{m ∈ IN0 : S(m) ∈ W Z
n,ε} beingbigger than n1−ε de
ays exponentially, whi
h 
an be proved by the same argument asfor WA

n,ε. 8



Random walks 
onditioned to stay in Weyl 
hambers of type C and DFourth, by the works of Grabiner and Varopoulos [9, 15℄, we have analogous es-timates for the upper tails of the exit times from W Z at our disposal. Varopoulosformulated them more generally for 
oni
al regions (i.e., 
losed under s
aling by a posi-tive 
onstant and addition of elements), and Grabiner formulated them dire
tly for theWeyl 
hambers:Lemma 3.2. a) For all y ∈ W Z we have with τBM,Z
y = inf{t ≥ 0: y + B(t) /∈ W Z},

P(τBM,Z
y > t) ≤ C

hZ(y)

t(αZ)/2
, t > 0,where αC = k2 and αD = k2 − k.b) As t → ∞,

P(τBM,Z
y > t) ∼ κ

Z hZ(y)

t(α
Z)/2

,uniformly in y ∈ W Z satisfying |y| ≤ θt

√
t with some θt → 0.
) For y ∈ W Z, denote by bZ

t (y, z) the density of P(τBM,Z
y > t, y + B(t) ∈ dz). Then,as t → ∞,

bZ
t (y, z) ∼ KZt−

k

2 e−|z|2/(2t)hZ(y)hZ(z)t−αZ

,uniformly in y, z ∈ W Z satisfying |y| ≤ θt

√
t and |z| ≤

√
t/θt with some θt → 0,and

KC =
2kk!κC

∫
Rk e−|x|2/2|hC(x)|dx

, KD =
2k−1k!κD

∫
Rk e−|x|2/2|hD(x)|dx

.Of 
ourse we 
an use the same 
oupling of random walks and Brownian motion asin Lemma 3.1. Using all these ingredients, we 
an easily adapt the strategy employedby Denisov and Wa
htel to prove Proposition 2.2 and Theorems 2.3 and 2.5.4 An alternate h-transform for W
CIn this se
tion we present another fun
tion, Ṽ C, that is positive and regular on thetype-C Weyl 
hamber, WC. This fun
tion is in general di�erent from the fun
tion V Cde�ned in (2), but be
ause of its positivity and regularity on WC, it is amenable toan h-transform of the random walk restri
ted to WC. This illustrates our remark inthe introdu
tion: Not every h-transform of the random walk on a set W is equal tothe 
onditional version of the walk given that it never leaves W . The point is that Ṽ Cdoes not ne
essarily govern the upper tails of the exit time from WC, but V C does; seeTheorem 2.3.The idea of the 
onstru
tion of Ṽ C is to �rst 
ondition every 
omponent on stayingpositive and afterwards 
onditioning the resulting walk on never violating the orderof the 
omponents. In other words, we �rst 
ondition on never leaving (0,∞)k andafterwards on never leaving WA. Even though the interse
tion of these two sets isequal to WC, there is no reason to hope that the sequentially 
onditioned random walkbe equal to the 
onditional walk 
onstru
ted in Se
tion 2; this is a general fa
t about
onditional probabilities. 9



Wolfgang König and Patri
k S
hmidLet us now des
ribe the 
onstru
tion of Ṽ C. For z ∈ (0,∞), denote V (z) =

z − Ez[S1(τ
+,(1)
z )] with τ

+,(i)
z = inf{n ∈ IN0 : Si(n) ≤ 0} the exit time from (0,∞).When we apply the method of proof of Denisov and Wa
htel to k = 2 under su�
ientmoment assumptions, we know that V is positive and regular for the restri
tion of aone-dimensional symmetri
 random walk (S1(n))n∈IN0

to (0,∞) and that it governs theupper tails of the exit time τ
+,(1)
z . By independen
e, V ⊗k is positive and regular for therestri
tion of the walk (S(n))n∈IN0

to (0,∞)k and governs the upper tails of the exittime τ+
z = inf{n ∈ IN0 : S(n) /∈ (0,∞)k}. As a 
onsequen
e,

P̂
+
x (S(n) ∈ dy) : = lim

m→∞
Px(S(n) ∈ dy | τ+

x > m)

= Px(S(n) ∈ dy; τ+
x > n)

V ⊗k(y)

V ⊗k(x)
.

(4)Under P̂
+
x , the walk is equal to the 
onditional version given that it does not leave

(0,∞)k. Now we need the version of the fun
tion V A de�ned in (1) for P̂
+
x :

V +,A(x) = hA(x) − Ê
+
x [hA(S(τA

x ))], x ∈ WA.Lemma 4.1. Assume that the step distribution of the walk is symmetri
 and possesses�nite moments of order k − 1 for k ≥ 4 or of some order r > 2 in 
ases k = 3 and
k = 2. Then the fun
tion

Ṽ C = V +,AV ⊗kis positive in WC and regular for the restri
tion of the transition kernel to WC.Proof. The h-transform of P̂
+
x with V +,A on WA is equal to the 
onditional versiongiven that the walk does not leave WA, i.e.,

lim
m→∞

P̂
+
x (S(n) ∈ dy | τA

x > m) = P̂
+
x (S(n) ∈ dy; τA

x >> n)
V +,A(y)

V +,A(x)
. (5)Using (4), we see that

P̂
+
x (S(n) ∈ dy; τA

x > n) = Px(S(n) ∈ dy; τ+
x > n, τA

x > n)
V ⊗k(y)

V ⊗k(x)
.Using this in (5) and noting that {τ+

x > n, τA
x > n} = {τC

x > n}, we arrive at
lim

m→∞
P̂

+
x (S(n) ∈ dy | τA

x > m) = Px(S(n) ∈ dy; τC
x > n)

V +,A(y)

V +,A(x)

V ⊗k(y)

V ⊗k(x)

= Px(S(n) ∈ dy; τC
x > n)

Ṽ C(y)

Ṽ C(x)
.Sin
e the left hand side is a probability measure in y ∈ WC, the right hand side is aswell. This shows the regularity of Ṽ C in WC. The positivity is obvious.For the 
ase D this approa
h does not work sin
e it is not 
lear how to divide the
ondition in WD into two 
onditions that 
an separately be handled with the methodspresented in this paper.A
knowledgementsP. S
hmid would like to thank P. Ferrari and T. Sasamoto for helpful dis
ussions.10
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