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Abstract. In this article we study the numerical approximation of incompress-
ible miscible displacement problems with a linearised Crank-Nicolson time discreti-
sation, combined with a mixed finite element and discontinuous Galerkin method.
At the heart of the analysis is the proof of convergence under low regularity require-
ments. Numerical experiments demonstrate that the proposed method exhibits
second-order convergence for smooth and robustness for rough problems.

1. Introduction and Initial Boundary Value Problem

Mathematical models which describe the miscible displacement of fluids are of par-
ticular economical relevance in the recovery of oil in underground reservoirs by fluids
which mix with oil. They also play a significant role in CO2 stratification.

This publication extends the analysis of [1], which studies the discretisation of mis-
cible displacement under low regularity. Unlike to [1] which is based on a first-
order implicit Euler time-step (leading to a nonlinear system of equations in each
time step), here we examine the discretisation in time by a linearised second-order
Crank-Nicolson scheme. Crucially, the new, more efficient method inherits stabil-
ity under low regularity. Like in [1], the concentration equation is approximated
with a discontinuous Galerkin method, while Darcy’s law and the incompressibility
condition is formulated as a mixed method. High-order time-stepping for miscible
displacement under low regularity has recently also been addressed in [4], however,
with a continuous Galerkin discretisation in space and discontinuous Galerkin in
time. We refer for an outline of the general literature to [1, 2, 3, 4].

Definition 1 (Weak Formulation). A triple (u, p, c) in

L∞(0, T ; HN(div; Ω))× L∞(0, T ; L2
0(Ω))×

(
L2(0, T ; H1(Ω)) ∩H1(0, T ; H2(Ω)∗)

)
is called weak solution of the incompressible miscible flow problem if

(W1) for t ∈ (0, T ), v ∈ HN(div; Ω) and q ∈ L2
0(Ω)(

µ(c)K−1u, v
)
−

(
p, div v

)
=

(
ρ(c) g, v

)(
q, div u

)
=

(
qI − qP , q

)
.

(W2) for all w ∈ D(0, T ; H2(Ω))∫ T

0

−
(
φ c, ∂tw

)
+

(
D(u)∇c,∇w

)
+

(
u · ∇c, w

)
+

(
qIc, w

)
−

(
ĉqI , w

)
dt = 0.

(W3) c(0, ·) = c0 in H2(Ω)∗.

For the data qualification we refer to condition (A1)–(A8) in [1] and for the physical
interpretation of the system to [1, 2, 3]. We point out that D growths proportionally
with u:

d◦(1 + |u|)|ξ|2 ≤ ξTD(u, x) ξ ≤ d◦(1 + |u|)|ξ|2, u, ξ ∈ Rd, x ∈ Ω.

Thus D is in general unbounded on Lipschitz domains Ω and in the presence of
discontinuous coefficients, which are permitted in this paper.
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2. The Finite Element Method

We compactly recall the definition of the finite element spaces from [1]. Let 0 =
t0 < t1 < . . . < tM = T be a partition of the time interval [0, T ]. Let kj := tj − tj−1

and dta
j := k−1

j

(
aj − aj−1

)
. We consider meshes T of Ω with elements K and set

hK := diam(K). We denote by Ss(T) the space of elementwise polynomial functions
of total or partial degree s. For wh ∈ Ss(T) the function ∇h wh is defined through
(∇h wh)|K = ∇(wh|K). The sets of interior and boundary faces are EΩ(T) and
E∂Ω(T). We set E(T) = EΩ(T) ∪ E∂Ω(T) and assign to each E ∈ E(T) its diameter
hE. We denote jump and the average operators by [·] and {·}. The concentration c
is discretised at time j on the mesh Tj

c or simply by Tj. The approximation space
for the variable c at time step j is denoted by Sj

c. Often we abbreviate Ej := E(Tj
c),

E
j
Ω := EΩ(Tj

c), E
j
∂Ω := E∂Ω(Tj

c). We denote the Raviart-Thomas space of order `
by RT `(Tj

u). The approximation spaces of u and p are Sj
u := RT `(Tj

u) ∩HN(div; Ω)
and Sj

p := S`(Tj
u) ∩ L2

0(Ω). We frequently use the global mesh size and time step

hj := maxK∈Tj
c∪Tj

u
hK , h̃ := max0≤j≤M hj, k̃ := max0≤j≤M kj as well as to Su =∏M

j=1 Sj
u, Sp =

∏M
j=1 Sj

p, Sc =
∏M

j=0 Sj
c. In addition we impose conditions (M1)–(M5)

of [1] which are on shape-regularity, boundedness of the polynomial degree, control
‖vh‖L4 . ‖vh‖H1 and the structure of hanging nodes.

To deal with discontinuous coefficients and the time derivative, we substitute D by
Dh : L2(Ω)d → Ss(Tc,R

d×d), v 7→ ΠT ◦ D(v, ·) where the ΠT are projections such
that ‖ΠT D‖K . ‖D‖K . Given quantities aj, aj−1 and aj−2 at times tj, tj−1, tj−2,
we denote aj = 1

2
aj + 1

2
aj−1 and ă = 3

2
aj−1 − 1

2
aj−2.

The diffusion term of the concentration equation is discretised by the symmetric
interior penalty discontinuous Galerkin method: Given ch, wh ∈ Sj

c, uh ∈ Sj
u, we set

Bd(ch, wh; uh) :=
(
D

j
h(uh)∇h ch,∇h wh

)
−

(
[ch], {Dj

h(uh)∇h wh}
)

Ej
Ω

−
(
[wh], {Dj

h(uh)∇h ch}
)

Ej
Ω
+

(
σ2[ch], [wh]

)
Ej

Ω

where σ is chosen sufficiently large to ensure coercivity of Bd, cf. [1]. The convection,
injection and production terms are represented by

Bcq(ch, wh; uh) := 1/2

((
uh∇h ch, wh

)
−

(
uhch,∇h wh

)
+

(
(qI + qP )ch, wh

)
(1)

+
∑

K∈Tj

(
c+
h , (uh · nK)+ [wh]K

)
∂K\∂Ω

−
(
(uh · nK)− [ch]K , w+

h

)
∂K\∂Ω

)
,

where (uh ·n)+ := max{uh ·n, 0} and (uh ·n)− := min{uh ·n, 0}. We set B = Bd+Bcq.

Algorithm (AdG). Choose cj
h ∈ Sj

c for j = 0, 1. Given cj
h, find (uj

h, p
j
h) ∈ Sj

u × Sj
p

such that

(2)

(
µ(cj

h)K
−1uj

h, vh

)
−

(
pj

h, div vh

)
=

(
ρ(cj

h) g, vh

)
,(

qh, div uj
h

)
=

(
(qI − qP )j, qh

)
.

For 2 ≤ j ≤ M find cj
h ∈ Sj

c such that, for all wh ∈ Sj
c,(

φ dtc
j
h, wh

)
+ B(ch

j, wh; ŭ
j
h) =

(
ĉ
j
qI j

, wh

)
(3)
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and solve (2) to obtain (uj
h, p

j
h) ∈ Sj

u × Sj
p.

The algorithm only requires the solution of a linear system in each time step. The
iterate c1

h can be computed with an implicit Euler method and fine time steps. The

use of extrapolated values such as ŭj
h is classical, e.g. see [5, p. 218].

3. Unconditional Well-posedness, Boundedness and Convergence

Given cj−1
h and cj−2

h , there exists a solution cj
h ∈ Sj

u of (3) because the bilinear

form B is positive definite. For t ∈ [tj−1, tj], let c̃h(t, ·) :=
t−tj−1

kj
cj
h +

tj−t

kj
cj−1
h .

Then ∂tc̃h(t, ·) = dtc
j
h(·). We interpret elements of Su, Sp and Sc as time-dependent

functions with stepwise constant values. Let

|ch|2ŭh
:=

(
Dh(ŭh)∇h ch,∇h ch

)
+

(
σ2[ch], [ch]

)
Ej

Ω
+

(
|ŭh · nEj | [ch], [ch]

)
Ej

Ω
.

Theorem 1. Let ρ◦ = ‖ρ‖∞. There exists a constant C > 0 such that

‖ŭj
h‖+ ‖div ŭj

h‖+ ‖p̆j
h‖ .

(
‖ρ◦g‖+ ‖q̆I − q̆P‖

)
(4)

holds for all j = 2, 3 . . . , M . Equally we have

‖φ1/2cj
h‖

2 +

∫ tj

t1

|ch|2ŭj
h

dt ≤ ‖φ1/2c1
h‖2 +

∫ tj

t1

‖
(
qI i)1/2

ĉ
i‖2 dt(5)

for all j = 2, 3 . . . , M .

Proof. The stability of uj−1, uj−2, pj−1, pj−2 follows from a classical inf-sup argu-
ment. This implies stability of ŭj and p̆j. We choose wh = ch

i in (3) to verify
that

dt‖φ1/2ci
h‖2 + |ch

i|2ŭi
h

+ ‖(qI + qP )1/2ch
i‖2

≤ 2
(
φ dtc

i
h, ch

i
)

+ 2B(ch
i, ch

i; ŭi
h) = 2

(
ĉ
i
qI i

, ch
i
)
.

The Cauchy-Schwarz inequality, multiplication by ki and summation over i give

‖φ1/2cj
h‖

2 +

j∑
i=2

ki|ch
i|2ŭi

h
≤ ‖φ1/2c1

h‖2 +

j∑
i=2

ki‖
(
qI i)1/2

ĉ
i‖2

for all j = 2, 3, . . . ,M . ¤

For simplicity the next theorem is stated assuming meshes are not adapted in time.
For the extension to changing meshes consult [1]. However, observe that that the dis-
cretisation with the implicit Euler method gives additional stability in ki‖φ1/2dtc

i
h‖2,

which allows to change meshes more rapidly.

Theorem 2. The time derivative ∂tc̃h belongs to L2(t1, T ; H2(Ω)∗) and

‖∂tc̃h‖L2(t1,T ;H2(Ω)∗) = ‖dtch‖L2(t1,T ;H2(Ω)∗) . 1,

independently of the mesh size and time step.
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Proof. Let wh ∈ Sj
c. We recall from [1]

Bd(c
j
h, wh; ŭ

j
h) . (1 + ‖ŭj

h‖
1/2 ) |cj

h|Tj (‖∇h wh‖L4(Ω) + ‖wh‖L4(Ω) + ‖σ[wh]‖Ej
Ω
),

Bcq(c
j
h, wh; ŭ

j
h) . (1 + ‖ŭj

h‖
1/2 ) |cj

h|Tj (‖∇h wh‖+ ‖wh‖L4(Ω) + ‖σ[wh]‖Ej
Ω
),

‖σ[wh]‖2
Ej

Ω

. (1 + ‖ŭj
h‖) h̃

1/2 ‖w‖2
H2(Ω).

With L2-orthogonality and∫ T

t1

(
φ dtc

j
h, w

)
dt =

∫ T

t1

(
ĉ
j
qI j

, wh

)
−B(ch

j, wh; ŭ
j
h) dt

.
∫ T

0

(1 + ‖ŭj
h‖)(1 + ‖ŭj

h‖
1/2

H(div;Ω)) |c
j
h|uj

h
‖w‖H2(Ω) dt

. ‖w‖L2(0,T ;H2(Ω))

one completes the proof. ¤

Theorem 3. Let (ui, pi, ci)i∈N be a sequence of numerical solutions with (h̃i, k̃i) → 0
as i →∞. Then there exists c ∈ L2(0, T ; H1(Ω))∩H1(0, T ; H2(Ω)∗) such that, after
passing to a subsequence, ci → c in L2(ΩT ), ∂tc̃i ⇀ ∂tc in L2(0, T ; H2(Ω)∗) and
∇ci ⇀ ∇c in L2(0, T ; H−1(Ω)). If c0

i , c
1
i → c0 in H2(Ω)∗ then c satisfies (W3).

The proof is, up to the treatment of the initial conditions, exactly as in [1]. It is
based on the Aubin-Lions theorem and the embedding

Ss(Ti) ↪→ [BV(Ω) ∩ L4(Ω), L4(Ω)]1/2 ↪→ L2(Ω),

where [·, ·]θ denotes the complex method of interpolation.

Theorem 4. Let (ui, pi, ci)i∈N be numerical solutions with (h̃i, k̃i) → 0 and ci → c in
L2(ΩT ) as i →∞. There exists u ∈ L∞(0, T ; HN(div; Ω)) and p ∈ L∞(0, T ; L2

0(Ω))
such that, after passing to a subsequence, ui → u in HN(div; Ω) and pi → p in L2

0(Ω)

as (h̃i, k̃i) → 0. Furthermore, (u, p, c) satisfies (W1).

Proof. Use Strang’s lemma, for details see [1]. ¤

We interpret ŭi as piecewise constant function in time, attaining in (tj−1, tj] the
value 3

2
u(tj−1)− 1

2
u(tj−2).

Theorem 5. Let (ui, pi, ci)i∈N be numerical solutions with (h̃i, k̃i) → 0 as i → ∞
and let u ∈ L∞(0, T ; HN(div ; Ω)) and c ∈ L2(0, T ; H1(Ω)) ∩H1(0, T ; H2(Ω)∗) be a
limit of (ui, ci)i in the sense of Theorems 3 and 4. Then (u, c) satisfies (W2).

Proof. Let v ∈ D(0, T ; C∞(Ω)) and vi(t) ∈ Sj
c an approximation to v(t) in (tj−1, tj].

Using the strong convergence of (∇h vi)i in L∞(ΩT )d and the weak convergence of
the lifted gradient of ci in L2(ΩT )d, we find∫ T

t1

(
∇c,D(u)∇v

)
dt = lim

i→∞

∫ T

t1

(
∇h ci,Dh(ŭi)∇h vi

)
−

(
[ci], {Dh(ŭi)∇h vi}

)
EΩ

dt.
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Figure 1. Example 1: Left: computational domain; right: absolute
value |uh| of the Darcy velocity at t = 1.0 before any interaction
between the concentration front and the corner singularity.

As in [1] it follows that Bd(ci, vi; ŭi) coincides in the limit with
(
∇c,D(u)∇v

)
. One

can also conclude by adapting [1] that∫ T

t1

(
u · ∇c, v

)
+

(
qIc, v

)
dt = lim

i→∞

∫ T

t1

Bcq(ci, vi; ŭi) dt.

One arrives at∫ T

t1

−
(
φ c, ∂tv

)
+

(
D(u)∇c,∇v

)
+

(
u · ∇c, v

)
+

(
qIc, v

)
−

(
ĉqI , v

)
dt

= lim
i→∞

∫ T

t1

(
φ dtc

j
h, wh

)
+ B(ch

j, wh; ŭ
j
h)−

(
ĉ
j
qI j

, wh

)
dt = 0.

Hence (W2) is satisfied for v ∈ D(0, T ; C∞(Ω)). The extension to D(0, T ; H2(Ω))
follows from boundedness and density of smooth functions. ¤

4. Numerical Experiments

The numerical experiments are carried out in two space dimensions with the lowest-
order method on a mesh which consists of shape-regular triangles without hanging
nodes and which is not changed over time. The diffusion–dispersion tensor takes
the form

(6) D(u, x) = φ(x) (dmId + |u| d` E(u) + |u| dt (Id− E(u))) .

Numerical Example 1 (Singular Velocities). To examine the effect of a singular
velocity field caused by a discontinuous permeability distribution and a re-entrant
corner we employ the L-shaped domain Ω and K with k1 = 0.1 and k2 = 10−6

as depicted in Figure 1. The injection and production wells are located at (1, 1)
and (0, 0), respectively. The porous medium is almost impenetrable in the upper
left quarter, forcing a high fluid velocity at the reentrant corner where the nearly
impenetrable barrier is thinnest. This leads to a singularity |u| ∼ r−α, where r is the

5
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Figure 2. Snapshots of ch at t = 1.5 and 2.0, computed with the
Crank-Nicolson scheme.

distance to the reentrant corner and α ≈ 1, cf. [1]. Figure 2 shows the concentration
when the front passes the corner and at a later time. The solution ch contains
steep fronts but shows only the localised oscillations that are characteristic for dG
methods.
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Figure 3. Example 2: Snapshots of the concentration cref at t =
0.25, 1.0 and 3.0.

Numerical Example 2 (Convergence rates). Convergence rates are determined
by comparing the numerical solution ch to a reference solution cref that is computed
with high accuracy on a one dimensional grid. More precisely, we set φ = 1, ĉ = 1,
K = 1 and g = 0 and choose Ω to be the ball B(0, 1) ⊂ R2. Using polar coordinates
(r, ϕ), we choose qI = 4 (1− r)6 and qP = 4

7
r6. Then the Darcy velocity only changes

in the radial direction and is determined by an ODE, which has the nonnegative
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Figure 4. Error ‖ch − cref‖L2(Ω) of the implicit Euler method the
Crank-Nicolson method at time t = 1.

exact solution u(r) = r
7
(3 r6 − 24 r5 + 70 r4 − 112 r3 + 105 r2 − 56 r + 14). Conse-

quently, the concentration equation reduces to a linear parabolic equation in one
space dimension. Figure 3 shows snapshots of the solution cref with dm = 1.0×10−5,
d` = 4.0×10−4 and Figure 4 shows that L2 error of implicit Euler method is of order
O(h2 + k) whereas the Crank-Nicolson reaches the order O(h2 + k2).
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