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ABSTRACT. In this article we study the numerical approximation of incompress-
ible miscible displacement problems with a linearised Crank-Nicolson time discreti-
sation, combined with a mixed finite element and discontinuous Galerkin method.
At the heart of the analysis is the proof of convergence under low regularity require-
ments. Numerical experiments demonstrate that the proposed method exhibits
second-order convergence for smooth and robustness for rough problems.

1. INTRODUCTION AND INITIAL BOUNDARY VALUE PROBLEM

Mathematical models which describe the miscible displacement of fluids are of par-
ticular economical relevance in the recovery of oil in underground reservoirs by fluids
which mix with oil. They also play a significant role in CO, stratification.

This publication extends the analysis of [1], which studies the discretisation of mis-
cible displacement under low regularity. Unlike to [1] which is based on a first-
order implicit Euler time-step (leading to a nonlinear system of equations in each
time step), here we examine the discretisation in time by a linearised second-order
Crank-Nicolson scheme. Crucially, the new, more efficient method inherits stabil-
ity under low regularity. Like in [1], the concentration equation is approximated
with a discontinuous Galerkin method, while Darcy’s law and the incompressibility
condition is formulated as a mixed method. High-order time-stepping for miscible
displacement under low regularity has recently also been addressed in [4], however,
with a continuous Galerkin discretisation in space and discontinuous Galerkin in
time. We refer for an outline of the general literature to [1, 2, 3, 4].

Definition 1 (Weak Formulation). A triple (u,p,c) in
L>(0,T; Hy(div; Q) x L>(0,T; L§()) x (L*(0,T; H'(Q)) N H'(0,T; H*(Q)*))
15 called weak solution of the incompressible miscible flow problem if
(W1) forte (0,T), ve Hy(div; Q) and g € LE(Q)
(1(c) K 'u,v) = (p,dive) = (p(c)g,v)
(q,divu) = (ql - qP,q).
(W2)  for allw € 2(0,T; H*(Q2))

/0 —(qb c, 8tw) + (]D(u)Vc, Vw) + (u - Ve, w) + (ch, w) — (éqI,w)dt =0.
(W3)  ¢(0,-) = cp in H*(Q)*.

For the data qualification we refer to condition (A1)—(A8) in [1] and for the physical
interpretation of the system to [1, 2, 3]. We point out that D growths proportionally
with u:

do(1+ [ul)[]* < €T D(u,2)§ < d°(1+ |u)lg], w6 €RY, z€Q.

Thus D is in general unbounded on Lipschitz domains {2 and in the presence of
discontinuous coefficients, which are permitted in this paper.



2. THE FINITE ELEMENT METHOD

We compactly recall the definition of the finite element spaces from [1]. Let 0 =
to < t1 < ... <ty =T be a partition of the time interval [0,T]. Let k; :==t; — ;4
and dia’ = k;l (aj — aj_l). We consider meshes T of Q with elements K and set
hk := diam(K). We denote by 8°(T) the space of elementwise polynomial functions
of total or partial degree s. For w, € 8%(7) the function Vj,wy, is defined through
(Vihwp)|xk = V(wn|k). The sets of interior and boundary faces are €q(7) and
Eaa(T). We set E(T) = Eq(T) U Esa(T) and assign to each E € E(T) its diameter
hg. We denote jump and the average operators by [-] and {-}. The concentration ¢
is discretised at time j on the mesh J7 or simply by J7. The approximation space
for the variable ¢ at time step j is denoted by 8/. Often we abbreviate & := &(TY),
€l = €q(TY), &, = Epa(TI). We denote the Raviart-Thomas space of order ¢
by fRTf(‘J'J ). The approximation spaces of u and p are 8/ := RT*(T7) N Hy/(div; Q)
and 8 := 8(TJ) N LQ(Q). We frequently use the global mesh size and time step
W o= maXKexJ-an:r] hi, b= = maxo<j<py b/, ko= maxo<;j<y k? as well as to §, =
H] (89,8, = H] 1 87,8, = szo 87. In addition we impose conditions (M1)—(M5)
of [1] Wthh are on shape-regularity, boundedness of the polynomial degree, control
llvnllze S JJonllar and the structure of hanging nodes.

To deal with discontinuous coefficients and the time derivative, we substitute D by
Dy, : L?(Q)¢ — 85(T., R™?), v s IIy o D(v,-) where the Iy are projections such
that ||TIy D||x 5 ||D||K Given quantities a’, a/~! and /=% at times ¢;, t;_1, t;_2,
we denote @/ = a7 + 1o/ and 4 = 207! 1a7 2,

The diffusion term of the concentration equation is discretised by the symmetric
interior penalty discontinuous Galerkin method: Given ¢y, wy, € 82, wy, € &, we set

Bd(ch, Wh; Uh) = (]D?L(uh)vh Cp, Vh U}h) — ([Ch], {]D?l(uh) Vh wh})%
= (. D4 () Vhen}) g +(0%len). fon])

where o is chosen sufficiently large to ensure coercivity of By, cf. [1]. The convection,
injection and production terms are represented by

(WBeg (e, wn;  up) = /2 ((uth meh) - (uhch,Vhwh) + (@I +GP)Ch>wh)
+ Z (e (un - ni)+ [wh]K)aK\BQ = ((un - nx)- [Ch]K’w;LL)aK\aQ>’
KeJi
where (up,-n)4 := max{uy-n,0} and (up-n)_ := min{u,-n,0}. Weset B = By+ B,.

ALGORITHM (A%%). Choose ¢}, € 81 for j = 0,1. Given ¢}, find (u},pl) € 8, x 8
such that

(2) (/‘(C;)K_lungh) - (pi,divvh) = (p(c;)g,vh)
(qh,diVUi) = ((¢" = d"), ).

For2 < j <M find ¢} € 8 such that, for all wy, € 8,

(3) (6 dyc, w) + B(@?, ws i) = (€7, wy,)



and solve (2) to obtain (u},p),) € 8 x 8J.

The algorithm only requires the solution of a linear system in each time step. The
iterate c; can be computed with an implicit Euler method and fine time steps. The
use of extrapolated values such as u; is classical, e.g. see [5, p. 218].

3. UNCONDITIONAL WELL-POSEDNESS, BOUNDEDNESS AND CONVERGENCE

Given ¢, " and ¢}, there exists a solution ¢ € 8 of (3) because the bilinear
form B is positive deﬁnite. For t € [tj_1,t;], let ¢u(t,-) = t_,:f tgt a .
Then 0;cp(t,-) = dic (). We interpret elements of 8, §, and 8. as time-dependent
functions with stepwise constant values. Let

= (]Dh(ah)vh Chp, Vh Ch) + (CTQ[C}J, [Ch])ggz + (|ﬂh . ngjl [Ch], [Ch])%'

Theorem 1. Let p° = ||p||loo. There exists a constant C' > 0 such that

(4) g || + div g || + 1711 < (%ol + la" = a"1)

holds for all j =2,3..., M. Equally we have
ti ti i —i

I R e M T M O R
t1 t1

forallj=2,3..., M.

Proof. The stability of w/~!, uw/=2, p’=1, p’=2 follows from a classical inf-sup argu-
ment. This implies stability of 4/ and /. We choose w, = ¢ in (3) to verify
that

dllo e l® + e’ + @ +3") |

< 2(pdic, @) +2B@ atiiy) = 2(6 7" @),

The Cauchy-Schwarz inequality, multiplication by k; and summation over ¢ give
J
j — _ z 1/2
W%W+Zm%%sWﬂW+Zmrf/w
=2

forall j =2,3,..., M. ([l

For simplicity the next theorem is stated assuming meshes are not adapted in time.
For the extension to changing meshes consult [1]. However, observe that that the dis-
cretisation with the implicit Euler method gives additional stability in k; || ¢*/2d,c} |2,
which allows to change meshes more rapidly.

Theorem 2. The time derivative 0;¢;, belongs to L*(ty, T; H*(2)*) and

0ccnll 2t 1200 = ldichll L2y 72 )7) S 1,

independently of the mesh size and time step.



Proof. Let wy, € 8. We recall from [1]
A y " A
Ba(ch,wn; ) S L+ @1 72) el (19 wnll sy + lhwnll sy + llofwal g ),
. y o .
Beg(chywns @) S (L4 131 72) |eplos (IVhwall + llwalla@y + loTwallle; ).
L/' Nl
lolwnlllg, < L+l 27wl
With L%-orthogonality and
T , T , .
| Gadw)ae = [ (@0"w) - B i)
t1

t1

T
. .1 .
S /0 (L 1 1) (L 4 11 i) by Nl dt

S lwllzzorme )

one completes the proof. O

Theorem 3. Let (u;, p;, ¢;)ienw be a sequence of numerical solutions with (h;, k;) — 0
asi — oo. Then there exists c € L*(0,T; H'(Q))NH(0,T; H*(Q)*) such that, after
passing to a subsequence, ¢; — c in L*(Qr), 0,¢; — O in L*(0,T; H*(Q)*) and
Ve, = Ve in L2(0,T; HY(Q)). If &, ¢! — ¢y in H*(Q)* then c satisfies (W3).

The proof is, up to the treatment of the initial conditions, exactly as in [1]. It is
based on the Aubin-Lions theorem and the embedding

$(T:) = [BV(Q) N LY(Q), LY(Q)]y2 — L*(Q),
where [, -]y denotes the complex method of interpolation.

Theorem 4. Let (u;, p;i, ¢;)iew be numerical solutions with (h;, k;) — 0 and ¢; — ¢ in
L*(Qr) asi — oco. There exists u € L>(0,T; Hy(div; Q)) and p € L*(0,T; L(Q))
such that, after passing to a subsequence, u; — w in Hy(div; Q) and p; — p in LE(Q)
as (hi, ki) — 0. Furthermore, (u,p,c) satisfies (W1).

Proof. Use Strang’s lemma, for details see [1]. O

We interpret ; as piecewise constant function in time, attaining in (¢;_1,¢;] the
value Su(t971) — Lu(t172).

Theorem 5. Let (u;, p;, ¢;)ienw be numerical solutions with (EZ,EZ) — 0 asi — o0
and let w € L*>(0,T; Hy(div;Q)) and ¢ € L*(0,T; HY(Q)) N H'(0,T; H*(2)*) be a
limit of (u;,¢;); in the sense of Theorems 3 and 4. Then (u,c) satisfies (W2).

Proof. Let v € 2(0,T;¢>(R2)) and v;(t) € 8/ an approximation to v(t) in (¢;_1,1;].
Using the strong convergence of (Vj,v;); in L>(Q7)? and the weak convergence of
the lifted gradient of ¢; in L?(Q7)?, we find

T T
/ (Vc, ]D(u)Vv) dt = lim (Vh i, Dy (1;)Vy, vi) — ([ci], {Dp(11;) Vi, vi})gﬂ dt.
t1 o0 t1
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FIGURE 1. Example 1: Left: computational domain; right: absolute
value |uy| of the Darcy velocity at t = 1.0 before any interaction
between the concentration front and the corner singularity.

As in [1] it follows that By(c;, vi; ;) coincides in the limit with (Ve, D(u)Vv). One
can also conclude by adapting [1] that
T

T
/ (u - Ve, v) + (ch, v) dt = lim Bey(ci, v w;) dt.
11 L t1

One arrives at

/ —(gb ¢, &w) + (]D(u)Vc, Vv) + (u - Ve, v) + (qlc, v) — (éql, v) dt

t1

T o
= lim (¢ dic), wh) + B(ep? , wp; ) — (EJGU, wh) dt = 0.
1—00 tl
Hence (W2) is satisfied for v € 2(0,T;¢>(Q2)). The extension to 2(0,T; H*(Q))
follows from boundedness and density of smooth functions. 0J

4. NUMERICAL EXPERIMENTS

The numerical experiments are carried out in two space dimensions with the lowest-
order method on a mesh which consists of shape-regular triangles without hanging
nodes and which is not changed over time. The diffusion—dispersion tensor takes
the form

(6) D(u,z) = ¢(x) (dId + |u| dp E(u) + |u| dy (Id — E(u))) .

Numerical Example 1 (Singular Velocities). To examine the effect of a singular
velocity field caused by a discontinuous permeability distribution and a re-entrant
corner we employ the L-shaped domain Q and K with k; = 0.1 and ky = 1076
as depicted in Figure 1. The injection and production wells are located at (1,1)
and (0,0), respectively. The porous medium is almost impenetrable in the upper
left quarter, forcing a high fluid velocity at the reentrant corner where the nearly
impenetrable barrier is thinnest. This leads to a singularity |u| ~ =, where r is the



FI1GURE 2. Snapshots of ¢;, at ¢ = 1.5 and 2.0, computed with the
Crank-Nicolson scheme.

distance to the reentrant corner and o & 1, cf. [1]. Figure 2 shows the concentration
when the front passes the corner and at a later time. The solution ¢, contains
steep fronts but shows only the localised oscillations that are characteristic for dG
methods.
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FIGURE 3. Ezample 2: Snapshots of the concentration ¢, at t =
0.25,1.0 and 3.0.

Numerical Example 2 (Convergence rates). Convergence rates are determined
by comparing the numerical solution ¢, to a reference solution c,; that is computed
with high accuracy on a one dimensional grid. More precisely, we set ¢ =1, ¢ =1,
K =1 and g = 0 and choose € to be the ball B(0,1) C R?. Using polar coordinates
(r, ), we choose ¢' = 4 (1 — )% and ¢* = 275, Then the Darcy velocity only changes
in the radial direction and is determined by an ODE, which has the nonnegative

6
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FIGURE 4. Error ||c; — cref||22(n) of the implicit Euler method the
Crank-Nicolson method at time ¢t = 1.

exact solution u(r) = L (37% —247° 4 707" —1127% 4 105r* — 56 + 14). Conse-
quently, the concentration equation reduces to a linear parabolic equation in one
space dimension. Figure 3 shows snapshots of the solution ¢, with d,,, = 1.0 x 1075,
dy = 4.0 x 10~* and Figure 4 shows that L? error of implicit Euler method is of order
O(h? + k) whereas the Crank-Nicolson reaches the order O(h? + k?).
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