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AbstratWe derive global analyti representations of fundamental solutions for alass of linear paraboli systems with full oupling of �rst order derivativeterms where oe�ients may depend on spae and time. Pointwise onver-gene of the global analyti expansion is proved. This leads to analyti repre-sentations of solutions of initial-boundary problems of �rst and seond type interms of onvolution integrals or onvolution integrals and linear integral equa-tions. The results have both analytial and numerial impat. Analytially,our representations of fundamental solutions of oupled paraboli systems maybe used to de�ne generalized stohasti proesses. Moreover, some lassialanalytial results based on a priori estimates of ellipti equations are a sim-ple orollary of our main result. Numerially, aurate, stable and e�ientshemes for omputation and error estimates in strong norms an be obtainedfor a onsiderable lass of Cauhy- and initial-boundary problems of parabolitype. Furthermore, there are obvious and less obvious appliations to �naneand physis.1 IntrodutionWe onsider linear equations of the form
∂u

∂t
= ∇2u + B · ∇u (1)on a domain D = (0, T ] × Ω with Ω ⊆ R

n a bounded domain, and where
u = (u1, · · · , un)

T (2)is a vetor-valued funtion and B = (B1, · · · , Bn) is an n-tuple of matrix-valuedfuntions Bi = (bijk) where eah entry bijk possibly depends on spae and time.More preisely, we understand B · ∇u as a vetor the ith omponent of whih isgiven by
(B · ∇u)i :=

n
∑

j,k=1

bijk
∂uj

∂xk

, (3)suh that general linear oupling of �rst order terms an be expressed. This meansthat in oordinates equation (1) is given by
∂ui

∂t
=

n
∑

j=1

∂2ui

∂x2
j

+

n
∑

j,k=1

bijk
∂uj

∂xk

(4)1



for 1 ≤ i ≤ n. We are looking for an analyti representation of the solution
(t, x, s, y) → p(t, x; s, y) for (1), (4) with Dira distributions δy(x) = δ(x − y) asinitial onditions, i.e. for a representation of the fundamental solution. In the time-homogenous ase dependene of time is only dependene of t − s, so that in thisase we also write the fundamental solution in the form (t, x, y) → p(t, x; y). Forour representations of the fundamental solution for equations with time-dependentoe�ients we also �x the parameter s = 0 and write the fundamental solution inthe form (t, x, 0, y) → p(t, x; 0, y) for simpliity of notation.Remark 1.1. In the following we denote the fundamental solution of a system bybold fae letters and use usual type of letters for the fundamental solution of a salarequation.Remark 1.2. In general for paraboli systems of order 2p of form

∂ui

∂t
=

N
∑

j=1

∑

|α|≤2p

Aij
α (t, x)∂α

xuj (5)(with some natural number N) the fundamental solution (or fundamental matrix)
(t, x, s, y) → p(t, x, s, y) is a N × N-matrix of funtions on (0, T ] × Ω × (0, T ] × Ωwhih satis�es (5), and suh that

lim
t↓s

∫

Ω

f(y)p(t, x, s, y)dy = f(x) (6)for all ontinuous funtions y → f(y) in Ω. The latter ondition is equivalent to therule that p(0, x; 0, y) = δy(x) = δ(x − y). Here in the general ase with oupling ofthe higher order derivatives 2p, p ≥ 1, a vetorial representation of the fundamentalsolution is not known. It is one of the observations of this paper that a vetorialrepresentation is possible in the ase p = 1, if the only oupling ourring is that via�rst order terms. Note that N 6= n is possible. Our restrition to the ase N = n isnot essential but only related to an eonomy in the use of symbols.It turns out that results in the ase of time-homogenous oe�ients an be extendedto the ase of time-inhomogeneous oe�ients but it is worth to onsider the time-homogeneous ase separately, beause less assumptions have to be made. For thisreason we shall state our main theorem in the time-homogenous ase separately, i.e.where oe�ient funtions are of the form x → bijk(x). We shall assume that thefuntions x → bijk(x) and their derivatives are uniformly bounded by powers of ageneri onstant c suh that
|∂α

x b
i
jk| ≤ c|α| (7)for all multiindies α = (α1, · · · , αn). Here ∂α

x = ∂|α|

∂x
α1
1 ···∂x

αn
n

denotes the partialderivative operator of order α with respet to x = (x1, · · · , xn). If the oe�ientsare time-dependent funtions of form (t, x) → bijk(t, x), then we shall assume inaddition that
|∂m

t b
i
jk| ≤ Cm! for all integers m ≥ 0, (8)2



all 1 ≤ i, j, k ≤ n, ∂m
t = ∂m

∂tm
is the derivative of order m with respet to time.Note that assumption 7 holds for arbitrary �nite Fourier series. Clearly it holds alsoon a bounded domain for polynomial oe�ients, and on suh domains multivariatepolynomials an approximate all ontinuous funtions in the supremum norm. Thismeans that we are �exible enough for numerial appliations. Indeed the treatmentfor higher dimensional salar paraboli problems based on analyti expansions ofthe type onsidered here (simpli�ed to the salar ase) showed aurate and fastomputations as well as error estimates in strong norms (f. [3℄). The main reasons,however, to introdue assumption 7 are analytial. First assumption 7 implies that

bijk are globally analyti, i.e. for all y ∈ R
n bijk equals its Taylor expansion, i.e. wehave

bijk(x) =
∑

|α|≥0

bijkα(y)

α!
∆xα, (9)where α is a multiindex and ∆x = (x − y), and bijkα(y) = ∂α

x b
i
jk(y). This makes itpossible to write down expliit solutions of paraboli systems of type 1 in terms ofpower series of type 9. Seond, the proof indiates that the assumptions made hereannot be weakened in general.Essential parts of our onsiderations an be generalized to paraboli systems withspae-time dependent seond-order terms, i.e. equations of the form

∂ui

∂t
=

n
∑

j,k=1

ai
jk

∂2ui

∂xj∂xk

+

n
∑

j,k=1

bijk
∂uj

∂xk

, (10)where the salar funtions ai
jk may depend on spae and time. It turns out thatthe onvergent analytial solutions (in ase (4)) are building bloks for the repre-sentations of solutions of paraboli systems with potential and soure terms. Asexamples, let us onsider a Cauhy problem and a standard initial-boundary prob-lem whih our in the vetor-valued as well as in the salar ase. The �nite horizonCauhy problem for paraboli systems of type (4) is











∂ui

∂t
−
∑n

j=1
∂2ui

∂x2
j

−
∑

jk b
i
jk

∂uj

∂xk
= fi in R

n × (0, T ]

ui(0, x) = φi(x) on R
n,

, (11)where T > 0 and for 1 ≤ i ≤ n.Remark 1.3. The proof of the pointwise valid representation of the fundamentalsolution given is valid for bounded domains Ω and annot be diretly generalized tounbounded domains. This is no essential restrition for numerial treatment, how-ever. Analytially, a generalization is possible, if one onsiders a slightly di�erentrepresentation (f. setion 4.2.). However, the reursive relations of the expan-sion oe�ients are more ompliated and the onvergene proof is more involved.Therefore we restrit ourselves to the ase of bounded domains Ω in this paper.3



Another example is the initial-boundary problem of seond type. We onsider it inthe salar ase here. Consider a domain Ω ⊂ R
n and denote the three onstituentsof boundary of the ylinder by Ω0 := {(t, x)|t = 0 & x ∈ Ω} Ω × (0, T ) by ΩT =

{(t, x)|t = T & x ∈ Ω} and B = {(t, x)|t ∈ (0, T ) & x ∈ ∂Ω}, where ∂Ω denotes theboundary of Ω. The initial-boundary problem is of the form


























∂u
∂t

−∑n
j=1

∂2u
∂x2

j

−∑k bk
∂u
∂xk

= f in Ω × (0, T ]

u(0, .) = φ(.) on Ω

∂u
∂t

+ αu = ψ on B, (12)where α, φ, and ψ may depend on spae and time. With an expliit representa-tion of the fundamental solution we an represent the solution of (11) in terms ofonvolutions of the initial data and the soure data with the fundamental solution,and the solution of (12) in terms of onvolutions of initial data, soure data, anda funtion whih is solution of a linear integral equation. It is lear that suh rep-resentations lead to aurate shemes whih have obvious advantages ompared to�nite di�erene shemes and other standard shemes.Remark 1.4. In (4) we may add potential terms of form ciu with a oe�ientfuntions ci whih may depend on spae and time. Theorem 1 below an be triviallyextended to this ase. Hene, in equations (11) and (12) we may also add potentialterms of form ciu and representations of solutions in terms of onvolutions and linearintegral equations (in ase of the initial-boundary problem (12) an be obtained.Remark 1.5. More general ylinder domains D = ∪0≤t≤T Ωt with varying Ωt maybe onsidered, of ourse.This is the �rst paper on globally pointwise valid analyti expansions of parabolisystems. In the ase of salar equations there are some investigations and applia-tions to problems of omputation reently ([3℄ and referenes). Our result has diretappliations to ase of the salar equations, of ourse. Further omments on therelation to results in the salar ase an be found in Setion 7.The outline of this paper is as follows. In the next setion we state the mainresults onerning the representation of the fundamental solution. In Setion 3 weformally ompute the analyti expansion of the solution and in Setion 4 we prove thepointwise onvergene of the analyti representation in the time-homogenous ase fora ertain limited time horizon 0 ≤ t ≤ T0. In Setion 5 we extend the results of thepreeding Setions to the ase where the oe�ients may depend on spae and timeand we show the global onvergene for any time horizon 0 < T < ∞. In Setion6 we onsider the impliations for representations of solutions Cauhy problemsand seond initial-value boundary problem and brie�y disuss the advantages forbuilding e�ient numerial shemes. In Setion 7 we state some generalizations withgeneral (but unoupled) di�usion oe�ients and show that a result by Varadhan4



is a rather immediate onsequene of our main theorem. We also disuss possibleother appliations (for example the de�nition of generalized proesses) and give somefurther omments and an outlook.2 Main results on linear paraboli systemsSine the seond order derivative terms in (4) are unoupled, we may expet thata vetorial representation of the fundamental solution p = (p1, · · · , pn) (insteadof an n × n fundamental matrix) is possible. The natural andidate for suh arepresentation (in the time-homogeneous ase) is
pj(t, x, y) =

1√
4πt

n exp

(

−
∑n

i=1 ∆x2
i

4t
+

∞
∑

k=0

c
j
k(x, y)t

k

)

, (13)for j = 1, · · · , n, and in (0, T )×Ω, where Ω ⊆ R
n. Here the cjk are oupled oe�ientfuntions whih are de�ned expliitly via reursion. For eah j the oe�ients

c
j
k will be de�ned reursively in terms of funtion crl and their derivatives, where

0 ≤ l, r ≤ k−1. They are solutions of �rst order partial di�erential equations whihan be solved expliitly and an be represented in terms of reursively de�ned powerseries under the assumption (9). We shall show that (13) is valid on some domain
Ω × (0, T0]. Sine it is desirable to have a representation whih holds on the wholea domain Ω × (0, T ] with arbitrary time T ∈ (0,∞), in our main theorem we shallonsider global representations of an equivalent problem, where the equivalene isvia the time transformation τ(t) : [0,∞) → [0, 1) with

τ = (1 − e
− t

β ), or t = t(τ) = β ln(1 − τ). (14)This introdues a time-dependene in the related oe�ients cjk,β,τ , even in the aseof time-homogeneous oe�ient funtions x → bijk(x) in (4). The main result forparaboli systems of type (1) is formulated in the time-homogenous ase, i.e. whenthe oe�ients bjlm depend only on the spatial oordinates. The extension to thetime-dependent ase is then the ontent of the subsequent orollary.Theorem 2.1. Given assumption (7) and some domain Ω × (0, T ] for any �nite
T > 0 and any domain Ω ⊆ R

n there exist β, τ > 0 suh that the fundamentalsolution of
∂ui

∂τ
=

β

1 − τ

n
∑

j=1

∂2ui

∂x2
j

+
β

1 − τ

n
∑

j,k=1

bijk
∂uj

∂xk

(15)equivalent to (1) (or (4)) via (14) has the pointwise valid representation
p

β,τ
j (τ, x, 0, y) =

1
√

4πt(τ)
n exp

(

−
∑n

i=1 ∆x2
i

4t(τ)

)

exp

(

∞
∑

k=0

c
j
k,β,τ(τ, x, y)τ

k

)

, (16)5



for j = 1, · · · , n, and for (t(τ), x) ∈ (0, T ) × Ω, i.e. τ ∈ (0, 1 − e
T
β ), where Ω ⊆ R

n.For the oe�ient funtions cjk the following holds: for k = 0 we have
c
j
0,β,τ(τ, x, y) = c

j
0(x, y) =

∑

m

(ym − xm)

∫ 1

0

∑

l

b
j
l,m(y + s(x− y))ds, (17)and for all k ≥ 1 we have

c
j
k,β,τ(τ, x, y) =

∫ 1

0

R
j
k−1,β,τ(t, y + s(x− y), y)sk 1−τ

β
−1
ds (18)with

R
j
k−1,β,τ(t, x, y) = ∂

∂τ
c
j
k−1,β,τ + ∆cjk−1,β,τ +

∑n
l=1

∑k−1
r=0

(

∂
∂xl
c
j
r,β,τ

∂
∂xl
c
j
k−1−r,β,τ

)

+
∑

lm b
j
lm(x) ∂

∂xm
clk−1 (19)More expliitly, we have

c
j
0,β,τ (τ, x, y) = c

j
0(x, y) = −

∑

l,m

∑

γ b
j
lmγ(y)∆x

γ+1i 1
1+|γ|

≡∑γ c
j
0γ∆x

γ

(20)and, given the power series representation
c
j
k−1,β,τ(τ, x, y) =

∑

γ,l

c
j

(k−1)γl
(y)∆xγτ l (21)we have

c
j
k,β,τ(τ, x, y) =

∑

γ,l lc
j

(k−1)γl
(y)∆xγtl+

∑

γ {
∑

i

∑

ρ+α=γ(ρi + 1)(αi + 1)cj
r(β+1i)

c
j

(k−1−r)(α+1i)

+
∑

i(γi + 2)(γi + 1)ck(γ+2i) +
∑

ρ+α=γ(
∑

1
β!
b
j
lm,ρ(y)×

(αi + 1)c(k−1)(α+1i)}
(
∑γ

δ=0 p
yγ
kδ∆x

δ
)

,

(22)
where with δΣ :=

n
∑

i=1

δi, and
γ
∑

δ=0

p
yγ
kδ,β,τ∆x

δ =

γ
∑

δ=0

β

(1 − τ)δΣ + k (23)
×

[

n
∏

i=1

(

γi!

δi!(γi − δi)!

)

y(γ−δ)

]

∆xδ.6



Remark 2.2. In (21) the notation
c
j
k,β,τ(x, y) =

∑

γl

c
j

(k−1)γl,β,τ
(y)∆xγτ l (24)may be expeted, but we dropped the β, τ indies in order to keep some notationalsimpliity in (22).Remark 2.3. Note that cj0,β,τ does not depend on τ (and β). This means that in(19) ∂

∂τ
ck−1 di�ers from 0 only for k ≥ 2.Corollary 2.4. Consider the same situation as in the preeding theorem, exept thatthere are time dependent oe�ient funtions (t, x) → bijk(t, x) and in addition (8)holds. Then a analogous statement as in the preeding theorem holds with reursive.3 Formal omputation of solution of paraboli sys-tems of type (1)First we onsider the equation (1) (or, equivalently, (4)) without the time trans-formation (14), and with time-homogenous oe�ients, i.e. where the oe�ientfuntions x→ bijk(x) depend only on the spatial variable x. We onsider the ansatz

pj(t, x, y) =
1√
4πt

n exp

(

∑n
i=1 ∆x2

i

4t
+

∞
∑

k=0

c
j
k(x, y)t

k

)

. (25)We derive reursive relations for the oe�ients ck. In a seond step, assuming (7),and therefore global analytiity of the bijk, we derive the expliit solution in termsof Taylor power series of bijk. For the time derivative we get
∂pj

∂t
(t, x) =

(

− n

2t
+

∑

i ∆x
2
i

4t2
+
∑

k

kc
j
k(x, y)t

k−1

)

pj(t, x, y). (26)For the �rst and seond spatial derivatives we get
∂pj

∂xl

=

(

−∆xl

2t
+
∑

k

∂

∂xl

c
j
k(x, y)t

k

)

pj(t, x, y), (27)and
∂2pj

∂x2
l

=

(

− 1
2t

+
∑

k
∂2

∂x2
l

c
j
k(x, y)t

k

+
(

−∆xl

2t
+
∑

k
∂

∂xl
c
j
k(x, y)t

k
)2
)

pj(t, x, y).

(28)7



Plugging into (4) and ordering with respet to the terms t−2, t−1 et. we get thefollowing reursive relations for the cjk, where 1 ≤ j ≤ n:
t−2 :

∑

i ∆x
2
i

4t2
=
∑

l

∆x2
l

4t2
(29)

t−1 : − n

2t
= −

∑

l

1

2t
− 1

2t

(

∑

l

∆xl

∂c
j
0

∂xl

−
∑

lm

b
j
lm(x)∆xm

)

, (30)and for all k − 1 ≥ 0.
tk−1 : kc

j
k +

∑

l ∆xl
∂c

j
k

∂xl
= ∆cjk−1 +

∑n
l=1

∑k−1
r=0

(

∂
∂xl
cjr

∂
∂xl
c
j
k−1−r

)

+
∑

lm b
j
lm(x) ∂

∂xm
clk−1 ≡ R

j
k−1(x, y).

(31)Note that the �rst order oupling of the system is essentially re�eted in the reursive�rst order partial di�erential equations starting from (31). This would be di�erent ifwe had oupling via the seond order terms and it makes the solution of the systemmuh easier. Note that equation (29) is satis�ed. Equation (30) is equivalent to
∑

l

∆xl

∂c
j
0

∂xl

= −
∑

l,m

b
j
lm(x)∆xm, (32)with the solution

c
j
0(x, y) =

∑

m

(ym − xm)

∫ 1

0

∑

l

b
j
l,m(y + s(x− y))ds (33)and for all k ≥ 1 we have

c
j
k(x, y) =

∫ 1

0

Rk−1(y + s(x− y), y)skds (34)with Rk−1 as in equation (56). Next we ompute the solution expliitly doing theintegral for c0 �rst. We abbreviate ∆x = (x − y) with omponents ∆xi = (x − y)iand for a multiindex α = (α1, · · · , αn) we write ∆xα := Πn
i=1∆x

αi

i . Furthermore, wede�ne |α| =
∑

i αi If
b
j
lm(x) =

∑

γ

1

γ!
b
j
lm,γ(y)(∆x)

γ, (35)
8



along with some multiindex γ, then
c
j
0(x, y) = −∑m ∆xm

∫ 1

0

∑

l b
j
lm(y + s∆x)ds

= −
∑

l,m ∆xm

∫ 1

0

∑

γ b
j
lmγ(y)(s∆x)

γds

= −
∑

l,m ∆xm

∑

γ b
j
lmγ(y)∆x

γ
∫ 1

0
s|γ|ds

= −∑l,m

∑

γ b
j
lmγ(y)∆x

γ+1i 1
1+|γ|

s|γ|+1
∣

∣

∣

1

0

= −
∑

l,m

∑

γ b
j
lmγ(y)∆x

γ+1i 1
1+|γ|

≡
∑

γ c
j
0γ∆x

γ .

(36)
Next we ompute cjk for k ≥ 1. We have

c
j
k(x, y) =

∫ 1

0
{
∑

i

∑k−1
r=0

∂c
j
r

∂xi

∂c
j
k−1−r

∂xi

+∆ck−1 +
∑

i b
j
lm

∂ck−1

∂xi
}(y + s(x− y))sk−1ds.

(37)Assuming that cjk−1 equals its Taylor series for every y ∈ R
n, i.e.

c
j
k−1(x) =

∑

γ

c
j

(k−1)γ(y)∆x
γ, (38)then we may evaluate the derivatives ourring in Rk−1 as follows:

∂c
j
k−1

∂xi

=
∑

γ

(γi + 1)c(k−1)(γ+1i)(y)∆x
γ, (39)and

∂2c
j
k−1

∂x2
i

=
∑

γ

(γi + 2)(γi + 1)ck(γ+2i)(y)∆x
γ, (40)and

∂cjr
∂xi

∂c
j
k−1−r

∂xi

=
∑

γ

{

∑

β+α=γ

(βi + 1)(αi + 1)cj
r(β+1i)

c
j

(k−1−r)(α+1i)

}

∆xγ . (41)For the multiindex γ, we have
P

γ
k (x, y) :=

∫ 1

0

(y + s(x− y))γsk−1ds (42)
=

∫ 1

0

n
∏

i=1

(

γi
∑

δi=0

γi!

δi!(γi − δi)!
y

(αi−δi)
i ∆xδisδi

)

sk−1ds9



=

∫ 1

0

γ
∑

δ=0

(

n
∏

i=1

γi!

δi!(αi − δi)!
y

(γi−δi)
i ∆xδi

)

sδsk−1ds

=

γ
∑

δ=0

1

δΣ + k

[

n
∏

i=1

(

γi!

δi!(γi − δi)!

)

y(γ−δ)

]

∆xδ

=:

γ
∑

δ=0

p
yγ
kδ∆x

δwhere δΣ :=

n
∑

i=1

δi and sδ = Πn
i=1s

δi = sδΣ . Hene
c
j
k(x, y) =

∑

γ {
∑

i

∑

β+α=γ(βi + 1)(αi + 1)cj
r(β+1i)

c
j

(k−1−r)(α+1i)

+
∑

i(γi + 2)(γi + 1)ck(γ+2i) +
∑

β+α=γ(
∑

1
β!
b
j
lm,β(y)×

(αi + 1)c(k−1)(α+1i)}
(
∑γ

δ=0 p
yγ
kδ∆x

δ
)

.

(43)
4 Proof of onvergene of the formal solution (25)for some time 0 ≤ t ≤ T0In this setion we shall show that the representation (25) of the solution of (4)holds for some time 0 ≤ t ≤ T0 for some T0 > 0. In the next setion then we willshow how the time transformation t → τ(t) is used to get a representation of thefundamental solution for any domain with any �nite time horizon. We shall provethat the representation (25) holds for the equation

∂ui

∂τ
= β

n
∑

j=1

∂2ui

∂x2
j

+ β

n
∑

j,k=1

bijk
∂uj

∂xk

(44)with some β suh that t = τβ. Essentially this step means that we have proved thevalidity of the representation for smaller time. Considering the solution of (4) attime t is equivalent to onsidering the solution of (44) at time τ with t = τβ. If wewant oe�ients to be small then we hoose β small. Hene if
p

β
j (τ, x, y) =

1√
4πτ

n exp

(

∑n
i=1 ∆x2

i

4τ
+

∞
∑

k=0

c
j
k,β(x, y)τk

) (45)is a representation of the fundamental solution of (44) on some domain Ω×(0, T ] forsome τ < 1 (whih may be shown by proving that for eah x, y ∈ Ω c
j
k,β(x, y) on-verges to zero), then this is a proof that the representation (25) of the fundamentalsolution of (4) onverges for t = βτ . 10



4.1 Proof of onvergene on bounded domainsSine Ω ⊂ R
n is bounded, there is a ball BR(0) around 0 with radius R suh that

Ω ⊂ BR(0). Reall that
c
j
0(x, y) =

∑

m

(ym − xm)

∫ 1

0

∑

l

b
j
l,m(y + s(x− y))ds, (46)and for all k ≥ 1 we have

c
j
k(x, y) =

∫ 1

0

Rk−1(y + s(x− y), y)sk−1ds (47)with
R

j
k−1(t, x, y) = ∆cjk−1 +

∑n

l=1

∑k−1
r=0

(

∂
∂xl
cjr

∂
∂xl
c
j
k−1−r

)

+
∑

lm b
j
lm(x) ∂

∂xm
clk−1.

(48)If the modulus of the oe�ients bjl,m are bounded by the generi C > 0 for all j, l,m,then we have
|cj0(x, y)| ≤ n2RC. (49)Next the time transformation

t = βτ (50)transforms the equation
∂ui

∂t
=

n
∑

j=1

∂2ui

∂x2
j

+
∑

jk

bijk
∂uj

∂xk

(51)into the equation
∂vi

∂τ
= β

n
∑

j=1

∂2vi

∂x2
j

+ β
∑

jk

bijk
∂vj

∂xk

, (52)where ui(t, x) = vi(τ, x), where ∂ui

∂t
= ∂vi

∂τ
∂τ
∂t

= ∂vi

∂τ
1
β
. The analogous representationof the solution is of the form

p
β
j (t, x, y) =

1√
4πτ

n exp

(∑n
i=1 ∆x2

i

4βτ

)

(

1 +
∑

k

c
j
k,β(x, y)τ

k

)

, (53)for j = 1, · · · , n. Plugging (53) into (52) and olleting the terms with τ−2, τ−1 et.we get (we feel free to write t instead of βτ if onvenient)
τ−2 :

∑

i ∆x
2
i

4βτ 2
= β

∑

l

∆x2
l

4β2τ 2
(54)

τ−1 : − n

2t
= −β

∑

l

1

2βt
− β

2βτ

(

∑

l

∆xl

∂c
j
0,β

∂xl

−
∑

lm

b
j
lm(x)∆xm

)

, (55)11



and for all k − 1 ≥ 0

τk−1 : kc
j
k,β + β

∑

l ∆xl

∂c
j
k,β

∂xl
= β∆cjk−1,β + β

∑n
l=1

∑k−1
r=0

(

∂
∂xl
c
j
r,β

∂
∂xl
c
j
k−1−r,β

)

+β
∑

lm b
j
lm(x) ∂

∂xm
clk−1,β ≡ βR

j
k−1(x, y). (56)We divide equation (56) by β and get the solutions (the solution for cj0,β equalsexatly that for cj0 in (46))

c
j
k,β(x, y) =

∫ 1

0

R
j
k−1(y + s(x− y), y)s

k
β
−1ds. (57)Next we proveTheorem 4.1. There exists β > 0 suh thatfor eah x, y ∈ Ω, 1 ≤ j ≤ n c

j
k,β(x, y) ↓ 0 as k ↑ ∞. (58)Proof. First we remark that

∂|α|

∂xα
c0(x, y) ≤ c|α|c

up
0 , (59)for some generi C, where

c
up
0 := sup

x,y∈Ω
c0(x, y). (60)Indeed, if we de�ne

bup := sup
x∈Ω,1≤l,m≤n

b
j
lm(x), (61)then writing the multivariate derivative of order α with α = (α1, · · · , αn), and |α| :=

∑n
i=1 αi we get |α|n terms bounded by C |α|−1bup and n2 terms bounded by RC |α|bup.Next, a majorant of cjk,β(x, y) is obtained as follows: we onsider three types ofoperators O1,n

k , O
2,n
k , O

3,n
k with positive integers k, and ating on a single funtion

f : Ω × Ω → R or on a families of funtions (fl)1≤l≤k : Ω × Ω → R, namely
O

1,n
k [f ] (x, y) := β

k
∆f(x, y)

O
2,n
k [fk, · · · , f1] (x, y) := β

k

∑n

l=1

∑k

r=0
∂fr

∂xl

∂fk−r

∂xl

O
3,n
k [f ] (x, y) := β

k

∑

lm b
j
lm(x) ∂

∂xm
f(x, y).

(62)Let
Mk := {(αk, · · · , α1)|αj ∈ {1, 2, 3}} (63)For
c
up
k,β := sup

x,y∈Ω,j∈{1,···,n}

c
j
k,β(x, y) (64)12



we have
c
up
k,β ≤

∑

α∈Mk

O
α,n
k c0(x, y) =

∑

α∈Mk

O
α,n
k c0(x, y), (65)where

O
α,n
k [f ] (x, y) := O

αk,n
k O

αk−1,n

k−1 ◦ · · · ◦Oα1,n
1 [f ] (x, y). (66)First let 1k (resp. 2k, 3k) the multiindex α ∈ Mk suh that for eah 1 ≤ m ≤ k

αm = 1 (resp. αm = 2, αm = 3). Hene
O1

k [f ] (x, y) = (O1)
k
[f ] (x, y) = ∆k [f ] (x, y) (67)et.. Then for all x, y ∈ Ω

|O1,n
k [c0] (x, y)| ≤

βknkC2kc
up
0

k!
, (68)and for b bounded by a generi C on the domain we also have

|O3,n
k [c0] (x, y)| ≤

βkn2kC2kc
up
0

k!
. (69)The operators of quadrati type applied to c0(x, y) O2,n

k c0 derease to zero as k ↑ ∞if β is small. We estimate (a rough estimate is su�ient here) that surely we have
|O2,n

k [f ] (x, y)| ≤ βkk22k−1nkCkk!(cup
0 )k+1

k!
. (70)For large k this is essentially the largest term of all the 3k ontributions in the sum(65) for large k (k �xed). We mean the following: if we hoose

β <
1

3 · 4n2C2(cup
0 )2

, (71)then surely we have for k ≥ k0 (some k0 > 0

|3kO2

k [c0] (x, y)| ≤
3kβkk22k−1nkCkk!(cup

0 )k+1

k!
↓ 0. (72)as k ↑ ∞, and this is also the estimate whih holds for ck for large k. Here wehoose β suh that in a summand in O

α,n
k c0(x, y) in (65) eah ourrene of anoperator of form O

3,n
k an be replaed by an operator of form O

2,n
k in order to geta majorant estimation. So in the sum in (65) it su�es to onentrate on thesummands onsisting of onatenations of operators of form O
2,n
k and O

1,n
k . Fornatural numbers l let us de�ne an inreasing sequene of numbers k1 < k2 < · · · <

kl < kl+1 · · ·, and operators
O

1,n
kl+1kl

:= O
1,n
kl+1

◦ · · · ◦O1,n
kl

O
2,n
kl+1kl

:= O
2,n
kl+1

◦ · · · ◦O2,n
kl

(73)13



Then in the summands o (65) we have to onsider the asymptoti behavior of valuesof family of operators of form
O

2,n
kl+1kl

◦O1,n
klkl−1

◦ · · · ◦O2,n
k3k2

◦O1,n
k2k1

(74)or of form
O

2,n
kl+1kl

◦O1,n
klkl−1

◦ · · · ◦O1,n
k3k2

◦O2,n
k2k1

(75)applied to c0(x, y) as k ↑ ∞. If there is only a �nite ourrene of operators of form
O

1,n
k in suh a family ((74) of (75), then the asymptoti behavior is learly the sameas for O2

kc0(x, y). If on the other hand there are in�nite ourrenes of operatorsof form O
1,n
k in ((74) of (75)), then for large k O2

kc0(x, y) beomes a majorant ofsuh a summand. Hene, the estimate (72) is a majorant for large k and proves theonvergene of the series in (65).4.2 Remark on unbounded domainsIt is not possible to extend the proof in the preeding setion immediately to un-bounded domains Ω ⊆ R
n. However, a similar proof with a di�erent but equivalentansatz

pd
j (t, x, y) =

1√
4πt

n exp

(

−
∑n

i=1 ∆x2
i

4t

)

(

1 +
∞
∑

k=0

d
j
k(x, y)t

k

)

, (76)leads to suh an extension. The reursion equation for d0 and c0 are equivalent,but the reursion equations for the dk, k ≥ 1 are more involved. However, it an beshown that given t, y the supremum in x of eah
1√
4πt

n exp

(−∆x2

4t

)

d
j
k(x, y) (77)is in some ball whih an be hosen a priori. However, this is beyond the sope ofthe present paper, and we shall onsider a similar situation in [7℄.5 Extension to the time-inhomogenous ase (solu-tion and global onvergene)In a seond step we use a ertain nonlinear time transformation in order to liftthe result to onvergene for any �nite time t. This requires the extension of theanalysis to the ase with time-dependent oe�ients. Note that in the extensionof the reursion of the ck to the time-inhomogeneous ase only �rst order timederivatives our. This is the reason for the weaker onstraints for (8). We startthis Setion with the omputation of the reursive oe�ients ck in the ase of time-and spae-dependent drift oe�ients bjkl. Then we shall omplete the proof foronvergene on bounded domains for any �nite time in the time-homogenous ase,and �nally in the time-inhomogeneous ase in the following subsetions.14



5.1 Formal omputation of reursive oe�ients in the time-inhomogeneous aseWe onsider paraboli equations with time-dependent oe�ients of the form
∂ui

∂t
+ ∆ui +

∑

jk

bijk(t, x)
∂uj

∂xk

= 0 (78)We onsider the ansatz
pj(t, x, 0, y) =

1√
4πt

n exp

(

−∆x2

4t
+

∞
∑

k=0

c
j
k(t, x, y)t

k

)

. (79)Compared to the time-homogenous ase the time derivative ontains an additionalterm. We have
∂pj

∂t
(t, x, y) =

(

− n
2t

+
P

i ∆x2
i

4t2
+
∑∞

k=0
∂ck

∂t
(t, x, y)tk

+
∑

k kc
j
k(t, x, y)t

k−1

)

pj(t, x, 0, y)

(80)The spatial derivatives are essentially the same as in the time-homogenous ase. Weompute
∂pj

∂xl

(t, x, y) =

(

−∆xl

2t
+
∑

k

∂

∂xl

c
j
k(t, x, y)t

k

)

pj(t, x, 0, y), (81)and
∂2pj

∂x2
l

(t, x, y) =

(

− 1
2t

+
∑

k
∂2

∂x2
l

c
j
k(t, x, y)t

k

+
(

−∆xl

2t
+
∑

k
∂

∂xl
c
j
k(t, x, y)t

k
)2
)

pj(t, x, 0, y).

(82)Plugging into 1 and ordering with respet to the terms t−2, t−1 et. we get thefollowing reursive relations for the cjk, where 1 ≤ j ≤ n. First, the highest orderterms are the same as before:
t−2 :

∑

i ∆x
2
i

4t2
=
∑

l

∆x2
l

4t2
(83)The terms of order t−1 are essentially as before (we just have to add the t-argumentin the oe�ient funtions bijk):

t−1 : − n

2t
= −

∑

l

1

2t
− 1

2t

(

∑

l

∆xl

∂c
j
0

∂xl

−
∑

lm

b
j
lm(t, x)∆xm

)

. (84)15



For k − 1 ≥ 0 we get an additional t-derivative on the right side:
tk−1 : kc

j
k +

∑

l ∆xl
∂c

j
k

∂xl
=

∂c
j
k−1

∂t
+ ∆cjk−1 +

∑n
l=1

∑k−1
r=0

(

∂
∂xl
cjr

∂
∂xl
c
j
k−1−r

)

+
∑

lm b
j
lm(t, x) ∂

∂xm
clk−1 ≡ R

j
k−1(x, y)

(85)Hene,
∑

l

∆xl

∂c
j
0

∂xl

= −
∑

l,m

b
j
lm(t, x)∆xm, (86)whih has the solution

c
j
0(x, y) =

∑

m

(ym − xm)

∫ 1

0

∑

l

b
j
l,m(t, y + s(x− y))ds, (87)and for all k ≥ 1 we have

c
j
k(x, y) =

∫ 1

0

Rk−1(t, y + s(x− y), y)skds (88)with Rk−1 as in equation (85). The expliit alulation of the solution is knowompletely analogous, so it su�es to write down the results. We write
b
j
lm(t, x) =

∑

γ

1

γ!
b
j
lm,γ(t, y)(∆x)

γ (89)along with some multiindex γ. Then
c
j
0(t, x, y) = −

∑

l,m

∑

γ b
j
lmγ(y)∆x

γ+1i 1
1+|γ|

≡
∑

γ c
j
0γ(t, y)∆x

γ

(90)Given that cjk−1 equals its Taylor series for every y ∈ R
n, i.e.

c
j
k−1(t, x) =

∑

γ

c
j

(k−1)γ(t, y)∆x
γ =

∑

γ,l

c
j

(k−1)γl
(y)∆xγtl, (91)we have

c
j
k(t, x, y) =

∑

γ,l lc
j

(k−1)γl
(y)∆xγtl

+
∑

γ {
∑

i

∑

β+α=γ(βi + 1)(αi + 1)cj
r(β+1i)

(t, y)cj(k−1−r)(α+1i)
(t, y)

+
∑

i(γi + 2)(γi + 1)ck(γ+2i) +
∑

β+α=γ(
∑

1
β!
b
j
lm,β(t, y)×

(αi + 1)c(k−1)(α+1i)}
(
∑γ

δ=0 p
yγ
kδ∆x

δ
)

,

(92)
where the pyγ

kδ are de�ned exatly as before.16



5.2 Completion of onvergene proof for �nite time in thegeneral ase on bounded domainsWe apply a nonlinear time transformation. Consider for β > 0 the transformation
τ(t) : [0,∞) → [0, 1)

τ = (1 − e
− t

β ), or t = t(τ) = β ln(1 − τ) (93)with
∂t

∂τ
=

β

1 − τ
. (94)The transformation of the equation

∂ui

∂t
= ∆ui +

∑

jk

bijk(t, x)
∂uj

∂xk

(95)then is
∂vi

∂τ
=

β

1 − τ
∆vi +

β

1 − τ

∑

jk

bijk(t(τ), x)
∂vj

∂xk

. (96)Let us all the assoiated oe�ients of the global expansion of the fundamentalsolution by cjk,β,τ . If we an show that for eah given x, y (in Ω and then in R
n ingeneral) cjk,β,τ(τ, x, y) onverges to zero as k ↑ ∞, then we have onvergene for τ < 1whih implies onvergene of the analyti representation for the original equationfor t ∈ (0,∞). First we derive the reursive relations for (96). Sine

φ
β,τ
i (τ, x, y) :=

1
√

4π (−β ln(1 − τ))
n exp

(

− ∆x2

4 (−β ln(1 − τ))

) (97)is the fundamental solution of the equation
∂u

∂τ
=

β

1 − τ
∆u, (98)we onsider the ansatz

p
β,τ
i (τ, x, y) = φ

β,τ
i (τ, x, y) exp

(

∞
∑

k=0

cik,β,τ(τ, x, y)τ
k

)

. (99)Using t = −β ln(1 − τ) we have
∂pi

∂τ
(t, x, y) =

(

− n
2t

∂t
∂τ

+
P

i ∆x2
i

4t2
∂t
∂τ

+
∑∞

k=0
∂
∂τ
cik,β,τ(τ, x, y)τ

k

+
∑

k kc
i
k,β,τ(τ, x, y)τ

k−1

)

p
β,τ
i (τ, x, y),

(100)
∂pi

∂xl

(τ, x, y) =

(

−∆xl

2t
+
∑

k

∂

∂xl

c
j
k,β,τ)(τ, x, y)τ

k

)

p
β,τ
i (τ, x, y), (101)17



and
∂2pi

∂x2
l

(τ, x, y) =

(

− 1
2t

+
∑

k
∂2

∂x2
l

c
j
k,β,τ(τ, x, y)τ

k

+
(

−∆xl

2t
+
∑

k
∂

∂xl
c
j
k,β,τ(τ, x, y)τ

k
)2
)

p
β,τ
i (τ, x, y).

(102)Plugging into (96) and ordering with respet to the terms τ−2, τ−1 et. leads to
τ−2 :

∑

i ∆x
2
i

4t2
∂t

∂τ
=

β

1 − τ

∑

l

∆x2
l

4t2
, (103)whih is satis�ed beause the seond order di�usion term in (96) is β

1−τ
. For theterms of order τ−1 we get:

τ−1 : − n
2t

∂t
∂τ

= − β

1−τ

∑

l
1
2t

− 1
2t

(

β

1−τ

∑

l ∆xl
∂c

j
0

∂xl
− β

1−τ

∑

lm b
j
lm(t, x)∆xm

)

.

(104)For k − 1 ≥ 0 we get an additional τ -derivative on the right side:
τk−1 : kcik + β

1−τ

∑

l ∆xl
∂ci

k

∂xl
=

∂ci
k−1

∂τ
+ β

1−τ
∆cik−1

+ β

1−τ

∑n

l=1

∑k−1
r=0

(

∂
∂xl
cir

∂
∂xl
cik−1−r

)

+ β

1−τ

∑

lm b
j
lm(t, x) ∂

∂xm
clk−1 ≡ β

1−τ
Ri

k−1(τ, x, y)

(105)We have
ci0,β,τ(τ, x, y) =

∑

m

(ym − xm)

∫ 1

0

∑

l

bil,m(t(τ), y + s(x− y))ds, (106)and for all k ≥ 1 we have
cik,β,τ(x, y) =

∫ 1

0

R
i,τ
k−1(t(τ), y + s(x− y), y)s

(1−τ)k
β

−1ds, (107)where
R

i,τ
k−1(τ, x, y) =

1 − τ

β

∂

∂τ
cik−1,β,τ +R

i,τ
k−1,β,τ(τ, x, y) (108)with Ri

k−1 is as in equation (105). From this and the preeding setions it is learhow we get the power series representation (22)in theorem 2.1. above. We see fromthis representation that the proof for small t an be used, only that the substitution
β → β

1 − τ
(109)has to be made. Sine there are only �rst order time derivatives in the reursion (f.(85) and (105), the proof of setion 5.1. an be extended trivially. Hene, globalonvergene (for any positive t of our analyti expansion follows from the following18



Proposition 5.1. For eah onstant c > 0 the range of the funtion
(β, τ) → t = −β ln(1 − τ) (110)is unbounded on the domain
{

(β, τ)| β

1 − τ
= c

}

. (111)Proof. c = β

1−τ
= ǫβ

ǫ(1−τ)
→ −ǫβ ln(ǫ(1 − τ)) ↑ ∞ as ǫ ↓ 0.This means that it su�es to prove that the reursion (104, (105) onverges to zerofor some β

1−τ
(whih may be as small as we need).6 Representations of initial boundary value prob-lems of �rst and seond typeThe expliit fundamental solution leads to representations of solutions for initial-boundary problems of paraboli systems and paraboli equations. We onsider twoexamples.6.1 Representation of the solution for initial-boundary prob-lems for paraboli systems of �rst typeFor the Cauhy problem (11) we have the following representation of the solution u:

u(t, x) =
∫

Rn φ(y)p(t, x; 0, y)φ(y)dy

+
∫ t

0

∫

Rn f(s, y)p(t, x; s, y)φ(y)dyds

(112)Remark 6.1. Stritly speaking, the solution for p presented here is on boundeddomains Ω ⊂ R
n (whih is for large Ω a su�ient approximation for numerial pur-poses, but not exat). However, suh exat representations on unbounded domainsan be found using the reursion indiated in Setion 4.2.6.2 Representation of the solution for initial-boundary prob-lems for paraboli equations of seond typeIn the ase of the salar problem 12 for the solution u the ansatz for γ with

u(t, x) =
∫

Ω
φ(y)p(t, x, 0, y)dy −

∫ t

0

∫

Ω
f(s, y)p(t, x, 0, y)dyds

+
∫ t

0

∫

B
p(t, x; s, y)γ(s, y)dsdy

(113)19



leads to the integral equation
1
2
γ(t, x) =

∫ t

0

∫

B

{

∂p

∂ν
(t, x; s, y) + α(t, x)p(t, x; s, y)

}

γ(t, x)dBxds

+h(t, x)
(114)where

h(t, x) =
∫

Ω
∂p

∂ν(t,x)
(t, x; s, y)φ(y)dy

+
∫ t

0

∫

Ω
∂p

∂ν(t,x)
(t, x; s, y)f(s, y)dyds

+α(t, x)
∫

Ω
p(t, x; s, y)φ(y)dy

−α(t, x)
∫ t

0

∫

Ω
p(t, x; s, y)f(s, y)dyds

−ψ(t, x)

(115)
Hene with our expliit solution for p we redue the initial-boundary value problemof seond type to the solution of a linear integral equation.7 Generalizations, appliations, and further om-mentsThe preeding results an be extended to more general di�usions. We haveTheorem 7.1. Consider equation (4) with spae-dependent di�usion oe�ients
x→ ai

jk(x) whih satisfy
|∂α

xa
i
jk| ≤ c|α| (116)Assume that the onditions of theorem 1 are satis�ed. Then the fundamental solutionhas the representation

pi(t, x, y) =
1√
4πt

n exp

(

−d
2
i (x, y)

4t

)

exp

(

∑

k

cik,β(τ, x, y)τk

) (117)where for eah i (x, y) → d2
i (x, y) are funtionals whih assign to eah pair of points

x, y the length of a geodesi with respet to the line element
ds2

i =
∑

jk

gi
jkdxjdxk, (118)with (gi

jk) the inverse of (ai
jk), and the cik are smooth funtions given by reursiverelations similar to that in theorem 1 but involving d2

i and partial derivatives of d2
i .20



The proof is quite analogous exept that additional existene and regularity resultsfor the Riemmanian metri funtional d2 are needed. These are given in [5℄. Generalanalytial formulas are not available for the funtional d2 but in [5℄ that solutionsan be approximated in arbitrarily strong Sobolev norms. This may be used toobtain approximations of (117) in arbitrarily strong Sobolev norms when ombinedwith the results in [6℄. Note, however, that an extension is far from obvious if theseond order terms are oupled.An immediate appliation of theorem 7.1. is a result of Varadhan whih we stateand prove here in the ase of time-homogeneous oe�ients and for salar equations,where the highest order oe�ient funtion in the global expansion may be denotedby d2 without an index i.Corollary 7.2. (time-homogeneous and salar ase) Assume that for eah i we have
λξ2 ≤ ai

jk(x)ξiξj ≤ Λξ2 for x ∈ Ω ⊆ R
n and some onstants 0 < λ < Λ. Then forbounded Hölder-ontinuous oe�ient funtions x→ ai

jk(x), x→ bijk(x)

lim
t↓0

−4t ln p(t, x, y) = d2(x, y) (119)where d2 is the Riemannian metri indued by the line element (118).Proof. The reason for the assumption of Hölder ontinuity is just for the existene ofthe fundamental solution, whih may then be ensured by the parametrix method).For the assumptions of theorem 7.1 this follows diretly from the representation(117). Given x, y one may de�ne in a bounded domain x, y ∈ Ω ontaining thegeodesi a series of oe�ient funtions (ai,n
jk )n and (bi,njk )n satisfying the assumptionsof theorem 7.1. and suh that ai,n

jk (x) → ai
jk(x) and (bi,njk )n → bijk. Here we anassume that the orresponding geodesis onneting x and y are in ΩThere is a deep di�erene between the representations onsidered here with leadingterms of the form

1√
4πt

n exp

(

−d
2
i (x, y)

4t

) (120)and diret Taylor expansions of the solution. Indeed, in [2℄ we saw that for theharateristi funtion (the Fourier transform of the fundamental solution with re-spet to the parameter y), where a diret Taylor approah seems natural, it seemsthat onvergene results an be obtained only if oe�ients are of linear spatialdependene. We note that results of myself for salar equations ited in [3℄ annotbe diretly generalized to the systems onsidered here. Our results may be usedto generalize the results in [1℄ and onstrut e�ient omputation shemes for re-lated reation di�usion equations. A seond appliation may be the de�nition ofgeneralized Brownian motions (f. [14℄). This was attempted in [12℄ in the ontextof elastiity and the Lamé equation, but not in a rigorous way. Note that Laméequation has oupling of seond order terms, so the generalized Brownian motionsassoiated to (117) would not over these examples from elastiity (beause we have21
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