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Abstract

This is preliminary study on a phenomenon that happens during crystal
growth of GaAs in a vertical gradient freeze (VGF) device. Here unwanted
polycrystals nucleate at the chamber wall and move into the interior of the
crystal. This happens within an undercooled region in the vicinity of the triple
point, where the liquid-solid interface meets the chamber wall. The size and
shape of that region is modelled by the Gibbs-Thomson law, which will be
rederived in this paper. Hereafter we identify the crucial parameter, whose
proper adjustment may minimize the undercooled region. Finally we give a
simple estimate to calculate and evaluate the energy barrier for homogeneous
and heterogeneous nucleation of a solid nucleus in the undercooled melt.

1 Introduction

This is the first of two studies on a phenomenon that happens during crystal growth
of GaAs in a vertical gradient freeze (VGF) device. Here unwanted polycrystals
nucleate at the chamber wall and move into the interior of the crystal. This hap-
pens within an undercooled region in the vicinity of the triple point, where the
liquid-solid interface meets the chamber wall. In the current study we describe
the phenomena ignoring the difference between the heat conductivities of solid and
liquid, its influence will be addressed in a further study.

Figure 1: Nucleation in the undercooled region in the melt

The paper is organized as follows. In section 2 we give the necessary conditions for
local equilibrium in a general solid-liquid system with sharp interface. From these
we re-derive the Gibbs-Thomson law, which is the basis of the mathematical models
presented in the next two sections.

In section 3 we introduce a general model for the temperature distribution and
the crystal-melt interface in the vicinity of the triple point. In the case of equal
liquid and solid thermal conductivity coefficients, we provide an exact solution of
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the stationary heat equation and determine the interface as a simple smooth curve
in an appropriate coordinate system. Hereafter we identify the parameter, whose
proper adjustment may minimize the undercooled region.

In section 4 we give a simple estimate of the critical number of particles needed
for the nucleation of a solid nucleus in the melt. We show the difference between
the homogeneous and the heterogeneous case and calculate the critical number for
typical parameter values.

Finally, in section 5 we briefly discuss the results from the previous two sections.

2 The liquid-solid system with sharp interface at
local equilibrium

The main thermodynamical relation used in this paper is the Gibbs-Thomson law,
which links the temperature of the liquid-solid interface to its mean curvature if
the interface is in local equilibrium. The resulting formula we will apply to three
different situations (see Figure 2) in the general frame of a liquid-solid system with
sharp interface.

Figure 2: Liquid-solid systems: Left: Crystal-melt interface in the vicinity of the
triple point. Middle and Right: Homogeneous and heterogeneous nucleation

In this section we consider a closed unitary solid-liquid system with curved interface.
We introduce the following notation:
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TL/S : temperature in liquid/solid
qL/S : heat flux in liquid/solid
pL/S : pressure in liquid/solid
VL/S : volume of liquid/solid
mL/S : mass of liquid/solid
m : mean atomic mass of GaAs
n : total number of atoms in the solid
ρL/S : density of liquid/solid
σLW/SW : surface tension of liquid-wall/solid-wall interface
σ or σSL : surface tension of solid-liquid interface
κM : mean curvature of solid-liquid interface
γ : contact angle of wall and solid-liquid interface
ψ : specific Helmholtz free energy
s : specific entropy

2.1 Necessary conditions for equilibrium

We use three kinds of conditions to describe the properties of the solid-liquid inter-
face.

Mechanical conditions:

(i) pS = pL + 2σSLκM , where the sign of the mean curvature κM must be chosen so
that we find the higher pressure on the convex side of the interface.

(ii) cos(γ) =
σSW − σLW

σSL

.

Thermal condition:

(iii) TS = TL =: TI .

(iv) qS = qL.

Phase condition:

(v) gS(TI , pS) = gL(TI , pL).

The mechanical condition (i) is the Young-Laplace law, which relates the pressure
at the interface to its mean curvature. The meaning of the angle γ in condition
(ii) is given in Figure 2), see [DK] for details. The thermal condition (iii) is part
of the axioms that establish the 2nd law of thermodynamics, and (iv) describes the
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continuity of the heat flux that we have at an interface at rest. The phase condition
(v) states the continuity of the specific Gibbs energy if the interface is in local phase
equilibrium, and it is also derived in [DK]. That continuity represents the basis of
the Gibbs-Thomson law.

The specific Gibbs energy is defined by g = ψ + p
ρ
and fulfils the Gibbs equation

dg = −sdT +
1

ρ
dp. (1)

2.2 Plane interface

In the case κM ≡ 0 the interface between the two phases is plane. Here not only the
specific Gibbs energy, but also the pressure is continuous across the interface:

pL = pS := p̄ and gL(T, p̄) = gS(T, p̄). (2)

The so called melting pressure p̄ may be calculated from (2)2 as a function of the
temperature T . By means of some constitutive laws one can then compute the
corresponding mass densities ρ̄S and ρ̄L.

2.3 The Gibbs-Thomson law

In order to re-derive the Gibbs-Thomson law, we expand the specific Gibbs energy
of liquid and solid in the vicinity of the point (Tm, p̄(Tm)), where Tm is the melt-
ing temperature, which can be read off for given pressure p̄ from a classical phase
diagram for a plane interface. By means of the Gibbs equation (1) we obtain the
approximation

g(TI , p) = g (Tm + (TI − Tm), p̄ + (p− p̄))

≈ g(Tm, p̄)− s̄(TI − Tm) +
1

ρ̄
(p− p̄),

with p̄ = p̄(Tm), s̄ = s̄(Tm) and ρ̄ = ρ̄(Tm) for liquid and solid, respectively. We may
now use (2)2 to compute the difference between the liquid and solid Gibbs energy

gS(TI , pS)− gL(TI , pL) = λ

(
TI

Tm

− 1

)
+

(
1

ρ̄S

− 1

ρ̄L

)
(pL − p̄) +

1

ρ̄S

2σκM , (3)

where λ = (s̄L− s̄S)Tm is the melting heat, also called latent heat, which is positive
for GaAs. At interfacial equilibrium, when the energy of liquid and solid is equal,
equation (3) simplifies to

TI = Tm

(
1 +

1

λ

(
1

ρ̄L

− 1

ρ̄S

)
(pL − p̄)

)
− Tm

λρ̄S

2σκM . (4)
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For the temperature T̄ (pL) in a plane interface system with liquid pressure pL the
last term in equation (4) vanishes, thus it holds

T̄ (pL) = Tm

(
1 +

1

λ

(
1

ρ̄L

− 1

ρ̄S

)
(pL − p̄)

)
. (5)

This is for example the temperature at the melting isotherm in Figure 31. For a
curved interface we tus obtain

TI = T̄ (pL)− σTm

λρ̄S

2κM . (6)

This equation is known as the Gibbs-Thomson law.

3 The interface model in the vicinity of the triple
point

3.1 General model

In this section we study (i) the temperature distribution in the crystal-melt region
between the melting isothermal line and the crucible wall, and (ii) the shape of
the interface at equilibrium. For symmetry reasons, we confine our analysis to the
problem in a plane and fix an appropriate coordinate system (see Figure 32), which
choice makes further calculations easier. We assume that in this setting the interface
I can be represented as the graph of a smooth function y(x).

Figure 3: General setting and appropriate transformation in 2D

We denote by β the angle between the crucible wall and the melt isothermal and
by γ the contact angle of the wall and the crystal-melt interface. Sometimes we
use α = π − γ instead. Typical parameter values are α ∈ [90◦, 130◦] ,see [Hur],
and β ∈ [0.5◦, 20◦], see [EKSJ]. The coordinate of the triple point L is still to be
determined.
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Our goal is to identify the function y(x) and the temperature TI at the interface. For
this purpose we have to solve the stationary heat equation (i.e. Laplace equation) in
the liquid ΩL and in the solid domain ΩS, respectively, subjected to the interfacial
conditions (iii) and (iv) from Section 2.1 and the Gibbs-Thomson law (6):

∆ TL/S = 0 in ΩL/S with

{
TL = TS ≡ TI

aL∇TL · ~n = aS ∇TS · ~n
on I, (7)

where the heat flux has been related to the temperature via Fourier’s law

qL/S = −aL/S ∇TL/S. (8)

The quantities aL, aS denote the liquid and solid thermal conductivities, respectively.
In order to present the mean curvature and the outer normal at the interface I we
use the coordinate system of Figure 3:

κM(x) =
y′′(x)

2(1 + y′(x)2)3/2
and ~n(x) = (−y(x), 1)

1√
1 + y′(x)2

, (9)

thus we have
TI(x) = T̄ (pL)− σTm

λρ̄S

y′′(x)

(1 + y′(x)2)3/2
. (10)

3.2 Boundary values

Finally we have to fix external boundary values for the problem (7). We assume that
the temperature at the melt isotherm is given by T̄ (pL) and that we have a constant
negative temperature gradient ∇T along the crucible wall, where the temperature
reads in the coordinate system of Figure 3

h(x) = T̄ (pL)− |∇T |
sin(β)

x. (11)

The solution of the general problem (7) will be addressed in a forthcoming paper. In
the next section we briefly present the special case where the thermal conductivities
of liquid and solid are equal.

3.3 Exact solution for equal thermal conductivities

For aL = aS we obtain a solution of (7) by setting TL = h|ΩL
and TS = h|ΩS

. In
particular we get

TI(x) = T̄ (pL)− |∇T |
sin(β)

x. (12)

Comparing with (10), we end up with the following second order ordinary differential
equation

y′′(x)

(1 + y′(x)2)3/2
=

c

sin(β)
x, (13)
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with the positive parameter c =
ρ̄Sλ|∇T |

σTm

and the boundary conditions

{
limx→0 y′(x) = −∞, y′(L) = − cot(α− β),
limx→0 y(x) = ∞, y(L) = L cot(β)

(14)

The exact solution of (13) has been determined in appendix 6. It reads

y(x) = L(α, β, c) cot(β) + Y (x)− Y (L(α, β, c)) for x ∈ (0, L], (15)

with L =
√

2
c
sin(β)(1− cos(α− β)). The function Y is given by

Y (x) = −1

c̃

(√
4− (c̃x)2 − ln

x√
4− (c̃x)2 + 2

)
with c̃ =

√
c

sin(β)
. (16)

Since the isotherms in the undercooled melt are parallel to the ordinate, for α greater
than β the largest deviation from the melting temperature is at the triple point and
can be calculated as

um(α, β, c) = T̄ (pL)− TI(L(α, β, c)) =
|∇T |
sin(β)

L(α, β, c) = |∇T |
√

2

c

(1− cos(α− β))

sin(β)

(17)
One can easily prove that the undercooling um at x = L(α, β, c) is a monotonic
increasing function of α and monotonic increasing function of β.

3.4 Crystal-melt interface with material data for gallium ar-
senide

In the numerical simulations we have used the following material data for GaAs:

m = 1.2004× 10−25 kg (molecular mass)

∇T = −500 K m−1 (temperature gradient)

Tm = 1511 K (temperature at the congruent melting point) with the corresponding
data

p̄ = 2.77× 105 N
m2 , ρ̄L = 5.72× 103 kg

m3 , ρ̄S = 5.17× 103 kg
m3 , σ = 0.5 N

m ,

KL = 7.55× 109 N
m2 , λ = 1.46× 106 N m

kg .

Note that according to (5) pL < p̄ bar implies T̄ (pL) > Tm and for pL > p̄ bar we
have T̄ (pL) < Tm.

Figure 4 shows shape and location of the crystal-melt interface for different param-
eter values α, β and for pL = p̄. We observe that the deviation of the interface from
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Figure 4: Crystal-melt interface

the melting isotherm increases for decreasing β and increasing α. Exploitation of
(17) reveals the following: For equal thermal conductivities of liquid and solid and
in the selected parameter range, the maximal undercooling is 0.137185, which is at
least ten times less than the expected one, which is about 2 K for the application
at hand. This is possible, but it requires β < 0.002.

Figure 5: Undercooling due to surface tension as a function of the contact angle γ
for given melting isotherm angle β.

4 Homogeneous and heterogeneous nucleation in
the melt

4.1 Setting of the problem

In this chapter we study the possibility of the formation of a new solid nucleus in the
undercooled region of the melt. We distinguish between homogeneous nucleation,
due to random encounters of atoms in the liquid phase by undercooling or/and
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supersaturation, and heterogeneous nucleation, which takes place at the wall of the
vessel and depends on its material properties and on the geometry. We provide the
wall with defects that may essentially assist heterogeneous nucleation. The defects
are modelled here by four different cases as it is indicated by Figures 6 and 7. We
denote by γ the contact angle at the triple point and by ϕ the apex cone angle as
indicated in Figure 6.

Figure 6: Nucleation in the melt. Left: homogeneous. Middle and Right: heteroge-
neous.

To simplify matters, we assume that the crystal is spherical. For the system in
equilibrium we have the Gibbs-Thomson formula (6)

TI = T̄ (pL)− σTm

λρ̄S

2

rcrit

, (18)

where rcrit denotes the so-called critical radius for nucleation. The interpretation is
as follows: If due to random encounters a nucleus forms with less that ncrit atoms,
which denotes the number of particles contained in a cluster with radius rcrit, then
it will shrink till it vanishes, whereas cluster with n > ncrit will grow further on. We
assume, that a realistic number of atoms, that can accidentally collide in the liquid
phase by fluctuation, is less than one hundred. Thus, only in a system, where ncrit

is small enough, nucleation can take place.

Figure 7: Setting for different cone angles

Re-arranging equation (18) we get

rcrit =
2σTm

λρ̄S

1

u
with u = T̄ (pL)− TI . (19)
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For the four considered cases in Figure 7 we may relate the critical radius to the
corresponding particle number n, by

VS =
mS

ρs

=
mn

ρs

≈ mn

ρ̄s

and VS = F (γ, ϕ)
4π

3
r3. (20)

Herein ϕ denotes the semi-cone angle, γ is the contact angle and mS and m denote
the mass of the solid cluster respectively the mass of an atom. Clearly we have (20)1,
whereas the proof of (20)2 and the explicit form of the function F for the four cases
considered in Figure 7 need some simple but quite tedious geometric calculations.
They are listed in (21). In the case of homogeneous nucleation, where the nucleus
has no contact to the wall, we have F = 1.

F (γ, ϕ) =





1

{
if 0 ≤ ϕ ≤ 90◦ and γ = 0◦

or 90◦ ≤ ϕ < 180◦ and γ ≤ ϕ− 90◦

1− cos(ϕ) sin3(γ) if 0 ≤ ϕ ≤ 90◦ and 0◦ ≤ γ ≤ 90◦ − ϕ

1−sin(γ−ϕ)
2

+ cos(γ) cos2(γ−ϕ)
4 sin(ϕ)





if 0 ≤ ϕ ≤ 90◦

and 90◦ − ϕ ≤ γ ≤ 90◦ + ϕ
or 90◦ ≤ ϕ < 180◦

and ϕ− 90◦ ≤ γ ≤ 270◦ − ϕ

− cos(ϕ) sin3(γ) if 90◦ ≤ ϕ < 180◦

and 270◦ − ϕ ≤ γ ≤ 180◦

0

{
if 0◦ ≤ ϕ ≤ 90◦ and 90◦ + ϕ ≤ γ ≤ 180◦

or 90◦ ≤ ϕ < 180◦ and γ = 180◦

(21)

Thus the critical particle number is controlled by the undercooling and the geometric
function F that takes care for the considered wall defect.

ncrit = F (γ, ϕ)
4π

3

ρ̄S

m
r3
crit = F (γ, ϕ)

4π

3

ρ̄S

m

(
2σTm

λρ̄S

1

u

)3

. (22)

Note that the critical radius is the same for both homogeneous and heterogeneous
nucleation, whereas the corresponding particle number may strongly differ depend-
ing on the different volumes of the critical cluster.

The circumstances for homogenous nucleation, i.e. F = 1, are illustrated in Figure
8, which represents how the particle number of a critical cluster depends on the
undercooling. For three selected particle numbers we may read rom Table 4.1 the
corresponding values of undercooling.

A comparison with the material data given in Section 3.4 reveals that homogenous
nucleation first sets in if the undercooling is 240 K. However, according to [EKSJ]
nucleation occurs at the container wall near to the triple point already for an un-
dercooling of a few Kelvin. We conclude that this can only be understood if the
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Figure 8: Dependence of the critical particle number on the undercooling in the
homogeneous case

Table 1:
u in K 0.137 3 240
ncrit 5.6 1011 53 673 030 105

observed phenomenon is due to heterogeneous nucleation, requiring

0 < F ¿ 1. (23)

For an illustration we refer to Table 2 where ncrit values for different parameter
constellations are given, and Figure 9 shows for different cone angles the behavior
of F as a function of the contact angle. We observe that we must have γ > 90◦

Figure 9: F for different cone angles

in order to satisfy the condition (23). We read off from Table 2 that heterogenous
nucleation already sets in at a wall defect that represents a disruption with cone
angle ϕ < 11◦ and if the contact angle is γ = 100◦, see the first case of Figure 7.

5 Conclusions

The two main results from Sections 3 and 4 may be summarized as follows: At first
we calculate for given isotherm angle β and given contact angle γ the undercooling.
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Table 2:
u = 3 K r in 10−8 m nhom

crit nhet
crit

F = 0.1 6.676775 53 673 030 5 367 303
(γ = 80◦, ϕ = 20◦)
(γ = 90◦, ϕ = 37◦)
(γ = 100◦, ϕ = 51◦)

F = 0.01 6.676775 53 673 030 536 73 0
(γ = 90◦, ϕ = 12◦)
(γ = 100◦, ϕ = 25◦)

F = 0.001 6.676775 53 673 030 53 673
(γ = 90◦, ϕ = 3.7◦)
(γ = 100◦, ϕ = 16◦)

F = 0.0001 6.676775 53 673 030 5 367
(γ = 90◦, ϕ = 1.1◦)

(γ = 100◦, ϕ = 12.6◦)
F = 0.00001 6.676775 53 673 030 537

(γ = 100◦, ϕ = 11.14◦)
F = 0.000001 6.676775 53 673 030 54

(γ = 100◦, ϕ = 10.52◦)

Moreover we assume that the defect of the crucible wall in the vicinity of the triple
point is a disruption with cone angle ϕ. By means of equations (22) and (17) we
then calculate the number of atoms in a nucleus of critical size, see Figures 10 and
11. Thus again a contact angle γ > 90◦ is needed for the formation of a nucleus.

Figure 10: The critical particle number as a function of the contact angle γ for
heterogenous nucleation at a wall defect, represented by ϕ. According to Figure 3.4,
which gives the corresponding undercooling, the melting isotherm angle β is 0.001.
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Figure 11: Dependence of the critical particle number on the melting isotherm angle
β for given values of cone angle ϕ and contact angle γ.

6 Appendix

Our aim in this section is to identify the function y(x) describing the interface
between the crystal and the undercooled melt. To this end, we consider the second
order ordinary differential equation

y′′(x)

(1 + y′(x)2)3/2
=

c

sin(β)
x in [0, L], (24)

where c is a positive parameter and L still to be determined by means of the given
boundary values for y

{
limx→0 y′(x) = −∞, y′(L) = − cot(α− β),

limx→0 y(x) = ∞, y(L) = L cot(β).
(25)

We solve the equation (24) in five steps:

1. We integrate (24) over the interval [0, x] and use the initial value limx→0 y′(x) =
−∞ to get the algebraic equation in the new variable u = y′

u(x)

(1 + u(x)2)1/2
= a(x)− 1 in [0,∞), (26)

with a(x) = c
2 sin(β)

x2.

2. We calculate from (26) for x = L that

L =

√
2

c
sin(β)(1− cos(α− β)). (27)

3. We solve the equation (26) in u(x), keeping in mind that u and a− 1 have the
same sign, to obtain

u(x) =
a(x)− 1√

a(x)(2− a(x))
for x ∈

(
0, 2

√
sin(β)

c

)
, (28)
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which corresponds to the condition that the expression a(x)(2− a(x)) should
be strict positive. Note that the interval [0, L] is always included in the domain
of the solution above.

4. We integrate (28) over [x, L] with the boundary value y(L) = L cot(β) to get
the solution (15).
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