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1 Introduction and model equations 1

Abstract

We study a stationary spin-polarized drift-diffusion model for semiconductor spin-
tronic devices. This coupled system of continuity equations and a Poisson equation
with mixed boundary conditions in all equations has to be considered in heterostruc-
tures. In 3D we prove the existence and boundedness of steady states. If the Dirichlet
conditions are compatible or nearly compatible with thermodynamic equilibrium the
solution is unique. The same properties are obtained for a space discretized version
of the problem: Using a Scharfetter-Gummel scheme on 3D boundary conforming
Delaunay grids we show existence, boundedness and, for small applied voltages, the
uniqueness of the discrete solution.

1 Introduction and model equations

Spin-polarized drift-diffusion models as proposed in [20, 21, 22, 23] are a generalization of
the classical van Roosbroeck equations [16, 17]. Spin-resolved densities are introduced for
electrons n↑ and n↓ and holes p↑ and p↓. For electrons as well as for holes there occurs
spin relaxation, moreover a spin dependent generation/recombination of electrons and
holes has to be taken into account. Such spin-polarized drift-diffusion model consist of
four continuity equations for n↑, n↓, p↑ and p↓ which are coupled with a Poisson equation
for the electrostatic potential.

In the following, we label the spin-resolved quantities (densities, current densities, quasi
Fermi energies, band-edges) by ↑ for spin-up and ↓ for spin-down along a chosen quanti-
zation axis for the spin angular momentum.

We use a scaling such that potentials and energies are considered in units of kBT/q and
kBT , respectively. For the derivation of the in sequel used scaled spin-polarized drift-
diffusion system from the papers [20, 21, 22, 23] see [7].

We count the four different species in the following order: electrons with spin up, electrons
with spin down, holes with spin up and holes with spin down. We introduce the four
component vectors λ = (−1,−1, 1, 1) of specific charge numbers, D = (Dn↑,Dn↓,Dp↑,Dp↓)
of diffusion coefficients, and

u =
(Nc

2
exp

[−Ec0+qgc

kBT

]
,
Nc

2
exp

[−Ec0−qgc

kBT

]
,
Nv

2
exp

[Ev0−qgv

kBT

]
,
Nv

2
exp

[Ev0+qgv

kBT

])

of reference densities involving the spin-split band edges. Here Nc and Nv are the corre-
sponding band-edge densities, Ec0 and Ev0 denote the variation of the bulk conduction and
valence band-edge energies of the semiconductor material, respectively. The spin-splitting
of the conduction and the valence bands (see [21]) is expressed by qgc and qgv, where q is
the elementary charge, T is the temperature and kB is Boltzmann’s constant.

The particle densities are collected in the vector

u = (u1, . . . , u4) = (n↑, n↓, p↑, p↓).
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Scaling the electrostatic potential ψ by q/kBT and the Quasi-Fermi energies ϕn↑, ϕn↓, ϕp↑

and ϕp↓ by 1/kBT , we obtain the (scaled) electrostatic potential v0 and chemical potentials,
vi, i = 1, . . . , 4,

v0 =
qψ

kBT
, (v1, . . . , v4) =

1

kBT

(
ϕn↑ + qψ, ϕn↓ + qψ,−ϕp↑ − qψ,−ϕp↓ − qψ

)
.

Denoting by ζi the (scaled) electrochemical potential and by ai the electrochemical activity
of the ith species we have ζi = vi + λiv0, ai = eζi . The statistic relations reflecting
Boltzmann statistics have the form

ui = uie
vi = uie

ζi−λiv0 = uie
−λiv0ai, i = 1, . . . , 4. (1.1)

The particle flux densities Ji read as

Ji = −Diui∇ζi = −Diuie
−λiv0∇ai = −Di

(
ui∇

ui

ui
+ uiλi∇v0

)
, i = 1, . . . , 4. (1.2)

In this notation the spin polarized drift-diffusion model can be written in the form

−∇ · (ε∇v0) = f +
4∑

i=1

λiui,

∂ui

∂t
+ ∇ · Ji = −Ri, i = 1, . . . , 4, on (0,∞) × Ω,

(1.3)

where in the Poisson equation, f is a fixed charge density produced by densities of ionized
acceptors and donors and ε = ǫkBT/q

2 is the scaled dielectric permittivity. Moreover, in
the continuity equations

R1 = r13(a1a3 − 1) + r14(a1a4 − 1) + r12 ev0(a1 − a2),

R2 = r23(a2a3 − 1) + r24(a2a4 − 1) − r12 ev0(a1 − a2),

R3 = r13(a1a3 − 1) + r23(a2a3 − 1) + r34 e−v0(a3 − a4),

R4 = r14(a1a4 − 1) + r24(a2a4 − 1) − r34 e−v0(a3 − a4)

with
rii′ = ruiui′ , ii

′ = 13, 14, 23, 24,

r12 =
1 − tanhhc

2τsn
u1, r34 =

1 − tanhhv

2τsp
u3

and r = r(x, u) > 0. Here τsn and τsp are the spin relaxation times for electrons and holes,
respectively, and

hc =
qgc

kBT
, hv = −

qgv

kBT
.

Ω denotes the domain which is occupied by the spintronic device. We split ∂Ω into
the disjoint subsets of insulating parts ΓN and Ohmic contacts ΓD, ∂Ω = ΓD ∪ ΓN ,
ΓD = ∪nD

k=1ΓDk. On insulating parts of the boundary of the device the normal derivatives
of the electrostatic potential and of the electrochemical potentials vanish,

∂v0
∂ν

= 0,
∂ζi
∂ν

= 0, i = 1, . . . , 4, on ΓN .
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At the kth Ohmic contact ΓDk
charge neutrality, infinite velocity of electronic reactions

and infinite conductivity of the metallic contact lead to

v0|ΓDk
= v0k + vbi

0k, f |ΓDk
− (u1 + u2)e

vbi
0k + (u3 + u4)e

−vbi
0k = 0,

ζi|ΓDk
= −λiv0k, i = 1, . . . , 4,

where v0k = ζ1k = ζ2k = −ζ3k = −ζ4k is the applied potential which is zero in thermo-
dynamic equilibrium. And the built-in-potential vbi

0k is chosen such that the device is in
thermal equilibrium if all externally applied potentials are zero,

vbi
0k = ln

f |ΓDk
+

√
f |2ΓDk

+ 4(u1 + u2)(u3 + u4)

2(u1 + u2)
.

In this paper Gate and Schottky contacts prescribed by third kind boundary conditions
are omitted for reasons of simplicity. We complete the system (1.3) by boundary and
initial conditions

v0 = vD
0 , ζi = ζD

i , i = 1, . . . , 4, on (0,∞) × ΓD,

ε∇v0 · ν = 0, Ji · ν = 0, i = 1, . . . , 4, on (0,∞) × ΓN ,

ui(0) = Ui, i = 1, . . . , 4, on Ω

(1.4)

where the Dirichlet data is assumed to be traces of functions vD
0 , ζD

i , i = 1, . . . , 4, defined
on Ω for analytical convenience.

Remark 1.1 For two space dimensions, in [7] we proved an existence and uniqueness re-
sult for the instationary problem (1.3), (1.4) as well as the existence of stationary states of
the system. For boundary data compatible with thermodynamic equilibrium the stationary
solution is unique and it is a thermodynamic equilibrium. Moreover we obtained the fol-
lowing results concerning the instationary problem: If the boundary data is compatible with
thermodynamic equilibrium then the free energy along the solution decays monotonously
and exponentially to its equilibrium value. In other cases it may be increasing but we
estimated its growth. Moreover we gave upper and lower estimates for the solution.

The present paper is devoted to the investigation of the stationary problem

−∇ · (ε∇v0) = f +
4∑

i=1

λiuie
ζi−λiv0 on Ω,

∇ · (Diui∇ζi) = Ri, i = 1, . . . , 4, on Ω,

v0 = vD
0 , ζi = ζD

i , i = 1, . . . , 4, on ΓD,

∂v0
∂ν

= 0,
∂ζi
∂ν

= 0, i = 1, . . . , 4, on ΓN

(1.5)

(with(1.1), (1.2)) in three space dimensions. In Section 2 we show upper and lower a priori
bounds for solutions to the continuous problem (cf. Theorem 2.1) and prove solvability (cf.
Theorem 2.2). Additionally, we verify uniqueness for Dirichlet data compatible or nearly
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compatible with thermodynamic equilibrium (cf. Theorem 2.3). In Section 3 we study
a discretized stationary spin-polarized drift-diffusion system. We establish an existence
result and show that bounds for the solutions can be carried over from the continuous
problem (cf. Theorem 3.1). Moreover, we prove that the stationary spin-polarized drift-
diffusion model has exactly one solution if the applied voltage is sufficiently small (cf.
Theorem 3.2).

2 The continuous stationary spin-polarized drift-diffusion system

2.1 Assumptions

At first we collect general assumptions our analytical investigations are based on.

(A1) Ω ⊂ R
N bounded Lipschitzian domain, N ≤ 3,

ΓN relative open subset of ∂Ω, ΓD := ∂Ω \ ΓN , mes ΓD > 0.

(A1*) For all x∈∂Ω there exists an open neighborhood U of x in R
N and a Lipschitz

transformation Φ : U → R
N such that Φ(U ∩ (Ω ∪ ΓN )) ∈ {E1, E2, E3} where

E1 = {x ∈ R
N : ‖x‖ < 1, xN < 0}, E2 = {x ∈ R

N : ‖x‖ < 1, xN ≤ 0},

E3 = {x ∈ E2 : x1 > 0 or xN < 0}.

(A2) Di ∈ L∞(Ω), Di ≥ c > 0 a.e. on Ω, i = 1, . . . , 4.

(A3) rii′ ∈ L∞
+ (Ω), ii′ = 12, 34.

rii′ : Ω × (0,∞)4 → R+, rii′(x, ·) ∈ C1((0,∞)4) for a.a. x ∈ Ω.

rii′(·, u),
∂rii′

∂u (·, u) are measurable for all u ∈ (0,∞)4.

(A3*) For every compact subset K⊂ (0,∞)4 there exists a ∆ > 0 such that

|rii′(x, u)|, ‖
∂rii′

∂u (x, u)‖ ≤ ∆ for all u ∈ K and a.a. x ∈ Ω.

For every compact subset K ⊂ (0,∞)4 and ǫ > 0 there exists a δ > 0 such that

|rii′(x, u) − rii′(x, û)| < ǫ, ‖
∂rii′

∂u (x, u) −
∂rii′

∂u (x, û)‖ < ǫ for all u, û ∈ K with

‖u− û‖ ≤ δ and a.a. x ∈ Ω, ii′ = 13, 14, 23, 24.

(A4) ε, f, ui ∈ L
∞(Ω), ε ≥ c > 0, 0 < cf ≤ f ≤ Cf , cu ≤ ui ≤ Cu, i = 1, 2, 3, 4,

a.e. on Ω, vD
0 , ζ

D
i ∈W 1,2(Ω) ∩ L∞(Ω), i = 1, . . . , 4.

There exists M > 0 such that ess supΓD
vD
0 − ess infΓD

vD
0 ≤M and

−M ≤ ζD
i ≤M a.e. on ΓD.

Here and in the following we denote by c (possibly different) positive constants. Using the
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bounds from (A4) we define the following quantities

K := ln
cf +

√
c2
f
+16Cucu

4Cu
−M, K := ln

Cf +
√

C2
f
+16Cucu

4cu
+M,

L := min(ess infΓD
vD
0 ,K), L := max(ess supΓD

vD
0 ,K),

κ := max{|L|, |L|}.

(2.1)

Remark 2.1 The assumptions in (A3) concerning the coefficients rii′, ii
′ = 13, 14, 23, 24,

are formulated in this weak form to include Shockley-Read-Hall as well as Auger genera-
tion/recombination processes.

(A1*), meaning that Ω ∪ ΓN is regular in the sense of Gröger, and (A3*) concerning the
coefficients rii′ , ii

′ = 13, 14, 23, 24, are only used to obtain the uniqueness of steady states
for Dirichlet data ζD

i nearly compatible with thermodynamic equilibrium (see Theorem 2.3
and its proof).

2.2 A priori bounds for the steady state solutions

Theorem 2.1 Let (A1) – (A4) be fulfilled. Then all steady state solutions (v0, ζ1, . . . , ζ4) ∈
(W 1,2(Ω) ∩ L∞(Ω))5 to (1.5) fulfill the estimates

v0 ∈ [L,L], ζi ∈ [−M,M ], ai ∈ [e−M , eM ], i = 1, . . . , 4, a.e. in Ω. (2.2)

Proof. 1. Due to the choice of M in (A4) the positive and negative parts (ζi − M)+,
(ζi +M)−, i = 1, . . . , 4, belong to W 1,2

0 (Ω ∪ ΓN ). Testing the first, second, third and last
continuity equation by (ζ1−M)+, (ζ2−M)+, −(ζ3 +M)−, −(ζ4 +M)−, respectively, and
adding them we obtain

0 =

∫

Ω

{ ∑

i=1,2

Diui|∇(ζi −M)+|2 +
∑

i=3,4

Diui|∇(ζi +M)−|2
}

dx

+

∫

Ω
r12 ev0(eζ1 − eζ2)

(
(ζ1 −M)+ − (ζ2 −M)+

)
dx

+

∫

Ω
r34 e−v0(eζ3 − eζ4)

(
(ζ4 +M)− − (ζ3 +M)−

)
dx

+

∫

Ω

∑

ii′=13,14,23,24

rii′(e
ζi+ζi′ − 1)

(
(ζi −M)+ − (ζi′ +M)−

)
dx.

Since the terms in the last three lines are nonnegative for all values of ζi, i = 1, . . . , 4,
this implies ζ1, ζ2 ≤ M and ζ3, ζ4 ≥ −M . On the other hand, testing by −(ζ1 +M)−,
−(ζ2 +M)−, (ζ3 −M)+, (ζ4 −M)+, respectively, ensures ζ1, ζ2 ≥ −M and ζ3, ζ4 ≤M .

2. For ai > 0, i = 1, . . . , 4, the mapping y 7→
∑4

i=1 λiuiaie
−λiy is strictly monotone

decreasing. For ai ∈ [e−M , eM ] the uniquely determined solution y of the equation
f +

∑4
i=1 λiuiaie

−λiy = 0 fulfills

(ey)2 −
f

u1a1 + u2a2
ey −

u3a3 + u4a4

u1a1 + u2a2
= 0
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and

ey =
f

2(u1a1 + u2a2)
+

√
f2

4(u1a1 + u2a2)2
+
u3a3 + u4a4

u1a1 + u2a2
.

Using the bounds for f and ui, the estimation

c2f + 16Cucu

4(2CueM )2
=

c2f
4(2CueM )2

+
2cue−M

2CueM
≤

f2

4(u1a1 + u2a2)2
+
u3a3 + u4a4

u1a1 + u2a2

≤
C2

f

4(2cue−M )2
+

2CueM

2cue−M
=
C2

f + 16Cucu

4(2cue−M )2

and the definition of K, K in (2.1) we find that y ∈ [K,K].

3. For L from (2.1) we have (v0 − L)+ ∈W 1,2
0 (Ω ∪ ΓN ) and we can use it as test function

for the Poisson equation in (1.5) to obtain

∫

Ω
ε|∇(v0 − L)+|2 dx =

∫

Ω

(
f +

4∑

i=1

λiuiaie
−λiv0

)
(v0 − L)+ dx.

Due to (1.1) and step 2 the integral on the right hand side is nonpositive, since according
to the choice of L in (2.1) we have f +

∑4
i=1 λiuiaie

−λiv0 < 0 if (v0 −L)+ 6= 0. Therefore,
v0 ≤ L a.e. in Ω. Analogously, the test function −(v0 + L)−, L from (2.1), yields v0 ≥ L
a.e. in Ω. �

2.3 Existence result

As approved for the van Roosbroeck system using Slotboom variables (see e.g. [14, 3,
5]), we formulate our equations in the electrostatic potential v0 and the electrochemical
activities ai, i = 1, . . . , 4, by taking into account that ui = uie

−λiv0ai and ∇ζi = ∇ai/ai:

−∇ · (ε∇v0) = f +
4∑

i=1

λiuiaie
−λiv0 on Ω,

∇ · (Diuie
−λiv0∇ai) = Ri, i = 1, . . . , 4, on Ω,

v0 = vD
0 , ai = aD

i = eζD
i , i = 1, . . . , 4, on ΓD,

∂v0
∂ν

= 0,
∂ai

∂ν
= 0, i = 1, . . . , 4, on ΓN .

(2.3)

Theorem 2.2 We assume (A1) – (A4). There exists a least one steady state solution
(v0, a) ∈ (W 1,2(Ω) ∩ L∞(Ω))5 to (1.5). It fulfills the bounds stated in Theorem 2.1.

The proof is based on an iteration procedure and an application of Schauders fixed point
theorem in L2(Ω)4. Starting from functions ao

i , i = 1, . . . , 4, we evaluate functions an
i ,

i = 1, . . . , 4, as follows. First we determine vn
0 as the unique solution to

−∇ · (ε∇vn
0 ) = f +

4∑

i=1

λiuie
−λiv

n
0 ao

i on Ω, vn
0 |ΓD

= vD
0 on ΓD,

∂vn
0

∂ν
= 0 on ΓN (2.4)
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(see Lemma 2.1). Next, using this vn
0 we solve the four decoupled continuity equations

−∇ · (D1u1e
vn
0 ∇an

1 ) =
∑

i=3,4

r1i(x, û)(1 − ao
ia

n
1 ) + r12 evn

0 (ao
2 − an

1 ),

−∇ · (D2u2e
vn
0 ∇an

2 ) =
∑

i=3,4

r2i(x, û)(1 − ao
ia

n
2 ) − r12 evn

0 (an
2 − ao

1),

−∇ · (D3u3e
−vn

0 ∇an
3 ) =

∑

i=1,2

ri3(x, û)(1 − ao
ia

n
3 ) + r34 e−vn

0 (ao
4 − an

3 ),

−∇ · (D4u4e
−vn

0 ∇an
4 ) =

∑

i=1,2

ri4(x, û)(1 − ao
ia

n
4 ) − r34 e−vn

0 (an
4 − ao

3),

an
i |ΓD

= aD
i on ΓD,

∂an
i

∂ν
= 0 on ΓN , i = 1, . . . , 4,

(2.5)

with ûi = uie
−λivn

0 ao
i , i = 1, . . . , 4, to evaluate an = (an

1 , . . . , a
n
4 ). We show that the four

decoupled problems in (2.5) are uniquely solvable if ao lies in

Mc = {a ∈ L2(Ω)4 : ai ∈ [e−M , eM ] a.e. in Ω, i = 1, . . . , 4} (2.6)

(see Lemma 2.2). We define the solution operator Qc : Mc → L2(Ω)4 by Qc(a
o) = an.

Then each fixed point a• of the operator Qc gives a solution (v•0 , a
•) to the stationary

spin-polarized drift-diffusion model (2.3) where v•0 is obtained as solution to (2.4) for a•

instead of ao.

Lemma 2.1 We assume (A1) and (A4). Let ao ∈ Mc. Then there is a unique solution
vn
0 to (2.4). It fulfills vn

0 ∈ [L,L] a.e. in Ω. The solution depends continuously on ao.

Proof. 1. Let

Pκ(y) =





κ y ≥ κ

y y ∈ [−κ, κ]

−κ y ≤ −κ

for κ from (2.1).

The operator Eκ : vD
0 +W 1,2

0 (Ω ∪ ΓN ) → W−1,2(Ω ∪ ΓN ),

〈Eκv0, v0〉 :=

∫

Ω

{
ε∇v0 · ∇v0 −

4∑

i=1

λiuie
−λiPκvn

0 ao
i v0

}
dx ∀v0 ∈W 1,2

0 (Ω ∪ ΓN ),

is strongly monotone and Lipschitz continuous. Thus, for each given ao ∈ Mc the regu-
larized nonlinear Poisson equation

−∇·(ε∇vn
0 ) = f+

4∑

i=1

λiuie
−λiPκvn

0 ao
i on Ω, vn

0 |ΓD
= vD

0 on ΓD,
∂vn

0

∂ν
= 0 on ΓN (2.7)

has exactly one weak solution vn
0 ∈W 1,2(Ω). Testing (2.7) by (vn

0 −L)+ and −(vn
0 +L)−,

respectively, and taking into account that

f +
4∑

i=1

λiuie
−λiPκvn

0 ao
i ≤ f +

4∑

i=1

λiuie
−λiLao

i ≤ 0 if (vn
0 − L)+ 6= 0,
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−f −

4∑

i=1

λiuie
−λiPκvn

0 ao
i ≤ −f −

4∑

i=1

λiuie
−λiLao

i ≤ 0 if (vn
0 + L)− 6= 0

we prove that vn
0 ∈ [L,L] a.e. in Ω. Thus, vn

0 is a solution to (2.4), too.

2. If there would be two solutions vn1
0 , vn2

0 to (2.4), the test with vn1
0 − vn2

0 yields

∫

Ω
ε|∇(vn1

0 − vn2
0 )|2 dx =

∫

Ω

4∑

i=1

λiuia
o
i (e

−λivn1
0 − e−λivn2

0 )(vn1
0 − vn2

0 ) dx.

Due to the monotonicity of the functions y 7→ λie
−λiy the right hand side is nonpositive

and we obtain that vn1
0 = vn2

0 .

3. To prove the continuous dependency of vn
0 on ao we consider aom → ao in L2(Ω)4,

aom ∈ Mc and the corresponding solutions vnm
0 to (2.4). We test the corresponding

problems (2.4) by vm
0 := vn

0 − vnm
0 ,

c‖vm
0 ‖2

W 1,2 ≤

∫

Ω
ε|∇vm

0 |2 dx =

∫

Ω

4∑

i=1

λiui

{
ao

i e
−λiv

n
0 − aom

i e−λiv
nm
0

}
vm
0 dx

≤

4∑

i=1

∫

Ω
λiui

{
ao

i (e
−λiv

n
0 − e−λiv

nm
0 ) + (ao

i − aom
i )e−λiv

nm
0

}
vm
0 dx

≤ ceκ
4∑

i=1

‖ao
i − aom

i ‖L2‖vm
0 ‖W 1,2 .

Thus the continuity follows. �

Lemma 2.2 We assume (A1) – (A4). Let ao ∈ Mc and let vn
0 be the solution to (2.4).

Then there exist unique solutions an
i ∈ W 1,2(Ω), i = 1, . . . , 4, to the four decoupled equa-

tions (2.5). They fulfil an = (an
1 , a

n
2 , a

n
3 , a

n
4 ) ∈ Mc. Moreover, an depends continuously on

vn
0 and ao.

Proof. 1. Since vn
0 ∈ [L,L], ao

i′ ∈ [e−M , eM ] a.e. on Ω, rii′(·, û) ≥ 0, ii′ = 13, 14, 23, 24,
r12e

vn
0 ≥ 0, r34e

−vn
0 ≥ 0 a.e. on Ω there exist unique solutions in W 1,2(Ω) to the four

decoupled linear elliptic equations for an
i in (2.5).

2. Testing the ith equation in (2.5) by (an
i −eM )+ and taking into account that rii′(·, û) ≥ 0,

ii′ = 13, 14, 23, 24, r12e
vn
0 ≥ 0, r34e

−vn
0 ≥ 0 a.e. on Ω and

(ao
i′ − an

i )(an
i − eM )+ ≤ 0, (1 − ai′a

n
i )(an

i − eM )+ ≤ 0

we obtain an
i ≤ eM a.e. in Ω. Moreover, the test function −(an

i + e−M )− and having in
mind

−(ao
i′ − an

i )(an
i + e−M )− ≤ 0, −(1 − ai′a

n
i )(an

i + e−M )− ≤ 0

yields an
i ≥ e−M a.e. in Ω.

3. According to our assumptions on the coefficients and on the bounds of vn
0 and ao

i we find
that the coefficients and right hand sides of the four decoupled linear equations depend
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continuously on vn
0 and ao

i . Therefore the solution of the four decoupled linear equations
depend continuously on vn

0 and ao
i . �

Proof of Theorem 2.2. Lemma 2.1 and Lemma 2.2 guarantee that the mappingQc : Mc →
L2(Ω)4, Qc(a

0) = an, is continuous and maps the bounded, closed, convex and nonempty
set Mc into itself. We show that Qc maps Mc into a precompact subset of L2(Ω)4, then
the assertion of Theorem 2.2 follows by Schauders fixed point theorem. (By Lemma 2.2
the fixed point then lies in (W 1,2(Ω) ∩ L∞(Ω))4.)

Let a0 ∈ Mc, a
n = Qc(a

0). Testing the equation for an
i from (2.5) by an

i − aD
i , using

that a0 ∈ [e−M , eM ]4, vn
0 ∈ [L,L], that rii′ are bounded for bounded arguments (cf. (A3))

and ‖aD
i ‖W 1,2 is bounded (cf. (A4)) we obtain a bound for ‖an

i − aD
i ‖W 1,2 which implies

‖ai‖W 1,2 ≤ c, i = 1, . . . , 4. Due to the compact embedding of W 1,2(Ω) into L2(Ω) then
Qc[Mc] is a precompact subset of L2(Ω)4. �

2.4 Uniqueness for Dirichlet data compatible or nearly compatible with

thermodynamic equilibrium

Lemma 2.3 We assume (A1) – (A4). Let the Dirichlet data be compatible with thermo-
dynamic equilibrium,

aD∗
i = eζD∗

i = const, i = 1, . . . , 4, ζD∗
1 = ζD∗

2 = −ζD∗
3 = −ζD∗

4 . (2.8)

Then the thermodynamic equilibrium (v∗0 , a
∗) = (v∗0 , a

D∗
1 , . . . , aD∗

4 ) where v∗0 solves

−∇ · (ε∇v∗0) = f +
4∑

i=1

λiuie
−λiv

∗

0aD∗
i on Ω, v∗0 |ΓD

= vD∗
0 on ΓD,

∂v∗0
∂ν

= 0 on ΓN

is the unique solution to (2.3).

Proof. Clearly, the thermodynamic equilibrium (v∗0 , a
∗) is a solution to (2.3). Suppose

there would be another solution (v̂0, â) to (2.3). Using the test function ln âi − ζD∗
i ∈

W 1,2
0 (Ω ∪ ΓN ) for the ith continuity equation in (2.3), add for i = 1, . . . , 4 and taking

into account the boundedness of solutions to (2.3), that ζD∗
i = const and that ∇âi =

âi∇(ln âi − ζD∗
i ) we obtain

c

4∑

i=1

‖ln âi − ζD∗
i ‖2

W 1,2 ≤

∫

Ω

{
r12e

v̂0(â1 − â2) ln
â2

â1
+ r34e

−v̂0(â3 − â4) ln
â4

â3

+
∑

ii′=13,14,23,24

rii′(·, û)(1 − âiâi′) ln âiâi′

}
dx ≤ 0

such that â = a∗ and therefore due to the unique solvability of the nonlinear Poisson
equation v̂0 = v∗0 . �

Remark 2.2 Especially, for the equilibrium boundary conditions motivated in Section 1

vD
0 = vbi, ζD

i = 0, i = 1, . . . , 4,
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the unique solution to (2.3) is the thermodynamic equilibrium (v∗0 , 1, 1, 1, 1) where v∗0 solves

−∇ · (ε∇v∗0) = f +

4∑

i=1

λiuie
−λiv∗0 on Ω, v∗0 |ΓD

= vbi
0 on ΓD,

∂v∗0
∂ν

= 0 on ΓN .

To prove a uniqueness result for Dirichlet values nearly compatible with thermodynamic
equilibrium we work with a formulation of the stationary spin-polarized drift-diffusion
system (1.5) in Sobolev-Campanato spaces. Here we use techniques provided in [10, 11, 12].

We introduce the needed notation. For p ∈ [1,∞) and 0 ≤ ω ≤ 2 +N we denote by

L
p,ω(Ω) := {w ∈ Lp(Ω) : ‖w‖Lp,ω(Ω) <∞}

the Campanato space with its norm

‖w‖Lp,ω(Ω) :=
(
‖w‖p

Lp + sup
x∈Ω,ρ>0

{
ρ−ω

∫

B(x,ρ)
|w(y) − wB(x,ρ)|

p dy
})1/p

,

where

B(x, ρ) := {y ∈ Ω : ‖y − x‖ < ρ}, wB(x,ρ) :=
1

|B(x, ρ)|

∫

B(x,ρ)
w(y) dy.

Then Lp,0(Ω) = Lp(Ω). We work with Sobolev-Campanato spaces

W 1,2,ω(Ω) :=
{
w ∈W 1,2(Ω) :

∂w

∂xj
∈ L

2,ω(Ω), j = 1, . . . ,N
}

and their norms

‖w‖2
W 1,2,ω(Ω) := ‖w‖2

L2 +

N∑

j=1

‖
∂w

∂xj
‖2

L2,ω(Ω).

According to [6] the continuous embeddings W 1,2,ω(Ω) →֒ C0,γ(Ω) for N − 2 < ω ≤ N
and γ = 1 − N−ω

2 are valid. Moreover we introduce the space of functions vanishing on
∂Ω \ ΓN

W 1,2,ω
0 (Ω ∪ ΓN ) := W 1,2

0 (Ω ∪ ΓN ) ∩W 1,2,ω(Ω)

and use the Sobolev-Campanato spaces of functionals

W−1,2,ω(Ω ∪ ΓN ) := {F ∈W−1,2(Ω ∪ ΓN ) : ‖F‖W−1,2,ω(Ω∪ΓN ) <∞}.

‖F‖W−1,2,ω(Ω∪ΓN ) for F ∈ W−1,2,ω(Ω ∪ ΓN ) is defined as the supremum of the set of all

ρ−ω/2|〈F,w〉|, where w ∈ W 1,2
0 (Ω ∪ ΓN ), ‖w‖W 1,2(Ω) ≤ 1, supp (w) ⊂ B(x, ρ), x ∈ Ω and

ρ > 0. Here 〈·, ·〉 : W−1,2(Ω ∪ ΓN ) ×W 1,2
0 (Ω ∪ ΓN ) → R is the dual pairing. We use the

abbreviations
W1,2 := W 1,2(Ω)5, W1,2

0 := W 1,2
0 (Ω ∪ ΓN )5,

W1,2,ω := W 1,2,ω(Ω)5, W1,2,ω
0 := W 1,2,ω

0 (Ω ∪ ΓN )5, W−1,2,ω := W−1,2,ω(Ω ∪ ΓN )5,

and write 〈·, ·〉 for the duality pairing. For convenience, in this subsection we use the vector
z = (z0, . . . , z4), where z0 = v0 and zi = ζi, i = 1, . . . , 4. We split up z in z = Z + zD,
where zD = (vD

0 , ζ
D
1 , . . . , ζ

D
4 ).
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Let zD∗ with zD∗
0 = vD∗

0 ∈ W 1,2,ωD(Ω) for some ωD ∈ (N − 2,N) and (2.8). Then
zD∗ ∈ W1,2,ωD . Let z∗ = Z∗ + zD∗ = (v∗0 , ζ

∗
i , . . . , ζ

∗
4 ) be the corresponding thermodynamic

equilibrium (see Lemma 2.3). We look for a weak formulation of the spin-polarized drift-
diffusion system (1.5) in a neighbourhood of this equilibrium solution. Let U be an open
subset of [L∞(Ω)]5 ∩W1,2

0 , V an open subset in W1,2,ωD with Z∗ ∈ U and zD∗ ∈ V. We
consider the variational equation for Z ∈ U and zD ∈ V:

∫

Ω

{
ε∇Z0 · ∇ψ0 +

4∑

i=1

Diuie
zi−λiz0∇Zi · ∇ψi

}
dx = 〈F(Z, zD), ψ〉 ∀ψ ∈ W1,2

0 , (2.9)

where

〈F(Z, zD), ψ〉 =

∫

Ω

{
− ε∇zD

0 · ∇ψ0 −
4∑

i=1

Diuie
zi−λiz0∇zD

i · ∇ψi + h(·, Z, zD)ψ0

+ r12e
z0(ez1 − ez2)(ψ2 − ψ1) + r34e

−z0(ez3 − ez4)(ψ4 − ψ3)

+
∑

ii′=13,14,23,24

rii′(·, u)(1 − ezi+zi′ )(ψi + ψi′)
}

dx

and z = Z + zD, u = (u1, . . . , u4), ui = uie
zi−λiz0 , h(·, Z, zD) := f +

∑4
i=1 λiuie

zi−λiz0.

Theorem 2.3 We assume (A1) – (A4), (A1*) and (A3*). Let zD∗ with zD∗
0 = vD∗

0 ∈
W 1,2,ωD(Ω) for some ωD ∈ (N − 2,N) and (2.8). Let z∗ = Z∗ + zD∗ = (v∗0 , ζ

∗
i , . . . , ζ

∗
4 )

be the corresponding thermodynamic equilibrium (see Lemma 2.3). Then there exists an
ω̂ ∈ (N −2, ωD] and neighborhood U0 ⊂ U of Z∗ in L∞(Ω)5 ∩W1,2

0 such that there exists a

neighbourhood of Dirichlet values V0 ⊂ V of zD∗ in W1,2,ωD and a map Φ ∈ C1(V0,W
1,2,ω̂
0 )

such that (Z, zD) ∈ U0 ×V0 is a solution to (2.9) if and only if Z = Φ(zD). In particular,

for each solution (Z, zD) ∈ U0 × V0 to (2.9) we have Z ∈ W1,2,ω̂
0 , z = Z + zD ∈ W1,2,ω̂.

For Dirichlet values zD = (vD
0 , ζ

D
i , . . . , ζ

D
4 ) ∈ V0 the corresponding solution to (2.9), i.e.

the weak solution to (1.5) is unique.

Proof. 1. The main part in the variational problem (2.9) is diagonal and the map-

pings (Z, zD) 7→ Diuie
Zi+zD

i −λi(Z0+zD
0 ) belong to C1(U × V, L∞(Ω)). Moreover, the maps

(Z, zD) 7→ ε∇zD
0 , (Z, zD) 7→ Diuie

Zi+zD
i −λi(Z0+zD

0 )∇zD
i belong to C1(U × V,L2,ωD(Ω)N )

since ∇zD
i ∈ L

2,ωD(Ω)N and L∞(Ω) is a multiplier of L
2,ωD(Ω). Due to our assumptions

(A3*) for rii′ and the definition of h we obtain that h(·, Z, zD), r12e
Z0+zD

0 (eZ1+zD
1 −eZ2+zD

2 ),

r34e
−(Z0+zD

0 )(eZ3+zD
3 − eZ4+zD

4 ) and

rii′(·, u1e
Z1+zD

1 −λ1(Z0+zD
0 ), . . . , u4e

Z4+zD
4 −λ4(Z0+zD

0 ))(eZi+zD
i +Zi′+zD

i′ −1), ii′ = 13, 14, 23, 24,

are in C1(U×V, L∞(Ω)) and thus belong to C1(U×V,L2N/(N+2),ωDN/(N+2)(Ω)). According
to [12, Proposition 6.1 (i), (ii)] for the composed right hand side F in (2.9) we find that
F ∈ C1(U×V,W−1,2,ωD) and that ∂F

∂Z (Z, zD) is completely continuous from L∞(Ω)5∩W1,2
0

into W−1,2,ωD . This guarantees the assumptions (3.1) and (3.3) in [12, Theorem 3.1].

2. By Lemma 2.3, (Z∗, zD∗) =
(
(v∗0−v

D∗
0 , 0, 0, 0, 0), (vD∗

0 , ζD∗
1 , . . . , ζD∗

4 )
)

is a solution to the

variational problem (2.9). From Theorem 2.1 we obtain 1
c ≤ Diuie

Z∗

i +zD∗

i −λi(Z
∗

0+zD∗

0 ) ≤ c
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a.e. on Ω such that the assumption (3.4) in [12, Theorem 3.1] is fulfilled, too. Finally, we
prove that the linearization of (2.9) with respect to Z in (Z∗, zD∗) is injective. Since zD∗

fulfills (2.8) we have to show that the equation for Z ∈ W1,2
0

∫

Ω

{
ε∇Z0 · ∇ψ0 +

4∑

i=1

Diuie
z∗i −λiz∗0∇Zi · ∇ψi

}
dx

=

∫

Ω

{
r12e

z∗0+z∗1 (Z1 − Z2)(ψ2 − ψ1) + r34e
−z∗0+z∗3 (Z3 − Z4)(ψ4 − ψ3)

−
∑

ii′=13,14,23,24

rii′(·, u
∗)(Zi + Zi′)(ψi + ψi′) +

∂h

∂Z
(·, Z∗, zD∗) · Zψ0

}
dx ∀ψ ∈ W1,2

0

possesses only the zero solution. Testing this equation by ψ = (0, Z1, . . . , Z4) the right
hand side becomes non-positive. And since mes ΓD > 0 we obtain Zi = 0, i = 1, . . . , 4.
Next, we use the test function (Z0, 0, 0, 0, 0) and get

∫

Ω

{
ε|∇Z0|

2 −
∂h

∂Z0
(·, Z∗, zD∗)Z

2
0

}
dx = 0.

Since ∂h
∂Z0

(·, Z∗, zD∗) < 0, ε > c a.e. on Ω this leads to Z0 = 0 and finally to the desired
injectivity result needed for [12, Theorem 3.1].

3. Therefore all assumptions of [12, Theorem 3.1] are verified and we can apply [12,
Theorem 3.1] which guarantees an ω̂ ∈ (N − 2, ωD] and a neighborhood U0 ⊂ U of Z∗ in
L∞(Ω)5 ∩ W1,2

0 such that there exists a neighborhood V0 ⊂ V of zD∗ in W1,2,ωD and a

map Φ ∈ C1(V0,W
1,2,ω̂
0 ) such that (Z, zD) ∈ U0 × V0 is a solution to (2.9) if and only if

Z = Φ(zD). In particular, for each solution (Z, zD) ∈ U0×V0 to (2.9) we have Z ∈ W1,2,ω̂
0 ,

z = Z + zD ∈ W1,2,ω̂. This proves Theorem 2.3. �

Remark 2.3 The proof of [12, Theorem 3.1] mainly uses that the linearization of (2.9) in
thermodynamic equilibrium (Z∗, zD∗) is an injective Fredholm operator of index zero from

W1,2,ω̂
0 into W−1,2,ω̂ and applies the implicit function theorem in these scales of spaces.

Remark 2.4 In [8, 9] we investigated stationary energy models for semiconductor devices
which correspond to strongly coupled elliptic systems. To obtain in two space dimensions
a local existence and uniqueness result for data nearly compatible with thermodynamic
equilibrium we used there regularity and surjectivity results in W 1,p(Ω), p > 2 and applied
the implicit function theorem in that scale of spaces.

3 The discrete stationary spin-polarized drift-diffusion system

3.1 Voronoi diagrams and finite volume discretization

The notation for the space discretized problem is closely related to that used in [3, 4, 5].
In this section we additionally suppose that
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(A5) Ω ⊂ R
N is a polyhedral domain, N ≤ 3, with a finite polyhedral partition

Ω = ∪IΩ
I . On each ΩI the functions ε, ui, Di, i = 1, . . . , 4, r12, r34,

rii′(·, u), ii
′ = 13, 14, 23, 24, are constants. The discretization is boundary

conforming Delaunay (see Definition 3.1) with r grid points.

(A5) implies that Ω is supposed to be composed by subdomains ΩI , each ΩI is associated
with a homogeneous material. Let us remark that C0 ∩ L∞ coefficient functions can be
handled by properly chosen averaging schemes, but they are omitted for reasons of nota-
tional simplicity. For the space discretization we use N -dimensional simplices (elements)
EN

l such that

ΩI = ∪lE
N
l .

The orientation is taken positive with respect to a right handed coordinate system and
the outer normal. N -dimensional simplices can be prescribed by their N + 1 vertices. We
denote by xT

j = (x1,j , . . . , xN,j) the vector of space coordinates of the vertex j. Edges of
simplices are denoted by ejk = xk − xj , indexed by their starting and ending vertex. The
simplex EN−1

j is the ’surface’ opposite to vertex j of the simplex EN
l .

Definition 3.1 A discretization by simplices EN
l is called a Delaunay grid if the balls

defined by the N + 1 vertices of EN
l ∀l do not contain any vertex xk, xk ∈ EN

m, xk /∈ EN
l

(see [1]). Let the Delaunay criterion be fulfilled and let all smallest circum balls of all
simplices Ed

l ⊂ ∂ΩI , d = 1, . . . , N −1, contain not any vertex xk ∈ ΩI , xk /∈ Ed
l , this mesh

is called boundary conforming Delaunay (see [2]).

Definition 3.2 Let Vj = {x ∈ R
N : ‖x − xj‖ < ‖x − xk‖ ∀ vertices xk ∈ Ω} denote the

Voronoi box of vertex xj and ∂Vj = V j\Vj the corresponding Voronoi surface. The Voronoi
volume element Vjl of the vertex j with respect to the simplex EN

l is the intersection of
the simplex EN

l and the Voronoi volume Vj of vertex j.

Moreover, ∂Vjl = ∂(Vj ∩EN
l ) denotes the Voronoi surface of vertex j in simplex EN

l . Each
planar part of ∂Vjl is either a part of the Voronoi surface, hence orthogonal to an edge
ejk(j,l) (from vertex xj to vertex xk in simplex EN

l , in short ∂Vj,k(j,l)) or it is a part of

∂EN
l . Fluxes through these last surfaces are compensated by neighbor simplices or are

prescribed by boundary conditions of third kind

α1w + α2
∂w

∂ν
+ α3 = 0, α1 ≥ 0, α2 > 0.

We explain the discretization scheme for the equation −∇ · ε∇w = g. Functions g defined
on EN

l are replaced by vectors g = (g(x1), . . . , g(xN+1))
T and

∫

Vjl

g(x) dx ≈ |Vjl|g(xj), [V ]j =
∑

l

|Vjl|,
∑

j,l

|Vjl| = |Ω|

where [·] denotes a diagonal matrix, [·]j its jth diagonal element. Moreover, functions
and relations like

√
[x], ln(g), (g − L)+,..., x < y should be understood in a per element

meaning.
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Differential operators of the form −∇ · ε∇w (ε constant on each simplex) are discretized
using Gauss Theorem

∫

Vjl

−∇ · ε∇w dx = −ε
∑

k 6=j:xk∈EN
l

∫

∂Vj,k(j,l)

ν · ∇w dΓ +BIVjl

≈ −ε
∑

k 6=j:xk∈EN
l

|∂Vj,k(j,l)|

|ejk(j,l)|
(wk − wj) +BIVjl

= ε[γk(j,l)]G̃Nw|
EN

l
+BIVjl

(3.1)

where

γk(j,l) =
|∂Vj,k(j,l)|

|ejk(j,l)|

denotes the elements of a diagonal matrix of geometric weights per simplex. The explicit
form of the boundary integrals BIVjl

is given by

BIVjl
= −

∑

j′ 6=j:xj′ ,xj∈EN
l

,EN−1
j′

⊂∂Ω

∫

E
N−1
j′

∩∂Vjl

ν · (ε∇w) dΓ

≈
∑

j′ 6=j:xj′ ,xj∈EN
l

,EN−1
j′

⊂∂Ω

ε

α2j′
(α1j′wj + α3j′)|E

N−1
j′ ∩ ∂Vjl|,

where EN−1
j′ denotes the N − 1 dimensional simplex opposite to xj′ ∈ EN

l , EN−1
j′ ⊂ ∂Ω.

G̃N is a number of edges × number of vertices matrix which maps from nodes to edges of
a triangle or tetrahedron. Possible representations are

G̃2 =




1 −1 0

0 1 −1

−1 0 1


 , G̃3 =




1 −1 0 0

0 1 −1 0

−1 0 1 0

−1 0 0 1

0 −1 0 1

0 0 −1 1




.

From now on we neglect the lower index N . G̃ fulfills

(G̃T G̃)jj > 0, (G̃T G̃)j>k < 0, 1T G̃T = 0T . (3.2)

Summation of (3.1) over the vertices of the simplex yields

∑

j:Vjl⊂EN
l

∫

Vjl

−∇ · ε∇w dx ≈ εG̃T [γ]G̃w|
EN

l
+BI (3.3)
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with BI =
∑

j:Vjl⊂EN
l
BIVjl

. Boundary conditions modify the right hand side and lead

to nonnegative contributions to diagonal entries. To simplify the notation G =
√

[γ]G̃ is
used as ’discrete gradient matrix’. Moreover, the notation GT [·]Gw is used to indicate
the global function including boundary conditions, too. The summation over all simplices
and its reordering over edges, nodes, etc. is not indicated explicitly as long as the global
or local meaning follows from the context.

Remark 3.1 The boundary conforming Delaunay property yields

[γ]m ≥ 0, [γ]m =
[ ∑

EN
l
∋eij

[γ]
]
m
, eij = em, EN

l ⊂ ΩI .

Let the grid be connected and let α1α2 > 0 for at least one EN−1
l . Summing (3.3) over

all simplices results an irreducible, weakly diagonally dominant matrix. This matrix has
a bounded, non negative inverse – due to maximum principle or Perron-Frobenius theory
(see [18]).

3.2 Scharfetter-Gummel scheme

Having in mind the definitions of G̃ and G in Subsection 3.1 we define

AS
i (v0) := GT [Diuie

−λiv0/sh(G̃
v0

2
)]G, i = 1, . . . 4, (3.4)

where

sh(t) =
sinh t

t
, v0 =

v0,j + v0,k(j,l)

2
.

This ’average’ Diuie
−λiv0/sh(G̃v0

2 ) is called Scharfetter-Gummel scheme and results from
solving a two-point boundary value problem along each edge, (e−λiv0ai

′) ′ = 0, compare
e.g. [17]. Then the discrete stationary spin-polarized drift-diffusion model reads as

GT εGv0 = [V ]g(f ,u), g = f +

4∑

i=1

λiui, ui = [uie
−λiv0 ]ai,

AS
1 (v0)a1 =

∑

i=3,4

[V ][r1i(x,u)](1 − [ai]a1) + [V ][r12(x) ev0 ](a2 − a1),

AS
2 (v0)a2 =

∑

i=3,4

[V ][r2i(x,u)](1 − [ai]a2) − [V ][r12(x) ev0 ](a2 − a1),

AS
3 (v0)a3 =

∑

i=1,2

[V ][ri3(x,u)](1 − [ai]a3) + [V ][r34(x) e−v0 ](a4 − a3),

AS
4 (v0)a4 =

∑

i=1,2

[V ][ri4(x,u)](1 − [ai]a4) − [V ][r34(x) e−v0 ](a4 − a3),

(3.5)

shortly Fi(x,y) = 0, y = (v0,a), i = 0, . . . , 4.
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3.3 Existence

In analogy to the proof of Theorem 2.2 for the continuous situation we use for the proof of
the existence of a solution to the discrete stationary spin-polarized drift-diffusion system
the following iteration procedure. Starting from vectors ai

o, i = 1, . . . , 4, we evaluate
vectors ai

n, i = 1, . . . , 4, as follows. First we determine v0
n as the unique solution to

GT εGv0
n = [V ](f +

4∑

i=1

λi[uie
−λiv

n
0 ]ai

o). (3.6)

Next, using this v0
n we solve the four decoupled discretized continuity equations

AS
1 (v0

n)a1
n =

∑

i=3,4

[V ][r1i(x, û)](1 − [ao
i ]a1

n) + [V ][r12(x) evn
0 ](a2

o − a1
n),

AS
2 (v0

n)a2
n =

∑

i=3,4

[V ][r2i(x, û)](1 − [ao
i ]a2

n) − [V ][r12(x) evn
0 ](a2

n − a1
o),

AS
3 (v0

n)a3
n =

∑

i=1,2

[V ][ri3(x, û)](1 − [ao
i ]a3

n) + [V ][r34(x) e−vn
0 ](a4

o − a3
n),

AS
4 (v0

n)a4
n =

∑

i=1,2

[V ][ri4(x, û)](1 − [ao
i ]a4

n) − [V ][r34(x) e−vn
0 ](a4

n − a3
o)

(3.7)

with ûi = [uie
−λivn

0 ]ai
o, i = 1, . . . , 4, to evaluate an = (a1

n, . . . ,a4
n). We show that the

four problems in (3.7) are uniquely solvable if ao is in

M := {a ∈ R
4r : aij ∈ [e−M , eM ], j = 1, . . . , r, i = 1, . . . , 4}. (3.8)

For these ao we define the solution operator Q : M → R
4r by Q(ao) = an. Then each

fixed point a• of Q gives a solution (v0
•,a•) to the discrete stationary spin-polarized

drift-diffusion model (3.5) where v0
• is obtained as solution to (3.6) for a• instead of ao.

Using the constants from (A4) and (2.1) and assume that ao ∈ M we find analogously to
step 2 of the proof of Theorem 2.1 that at any vertex xj the unique solution yj to

fj +

4∑

i=1

λiuia
o
ije

−λiyj = 0

fulfills yj ∈ [K,K].

Lemma 3.1 We assume (A1), (A4) and (A5). Let be ao ∈ M. Then there exists a
unique solution v0

n to (3.6). It fulfills vn
0j ∈ [L,L], j = 1, . . . , r. The solution depends

continuously on ao.

Proof. 1. We suppose that v0
n is a solution to (3.6) and that there would be a vertex xj

with vn
0j > L and lead this to a contradiction. Testing (3.6) by (v0

n − L)+T we find

(v0
n − L)+TGT εGv0

n − (v0
n − L)+T [V ](f +

4∑

i=1

λi[uie
−λiv

n
0 ]ai

o) = 0. (3.9)
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The inequality vn
0j > L implies fj +

∑4
i=1 λiuie

−λivn
0jao

ij < 0 and

−(v0
n − L)+T [V ](f +

4∑

i=1

λi[uie
−λiv

n
0 ]ai

o) > 0.

Moreover, generally (v0
n − L)+TGT εGv0

n ≥ 0, and this expression is positive if vn
0j > L

for at least one j. This yields a contradiction to (3.9). The lower bound is obtained
similarly by testing with −(v0

n + L)−T .

2. Solving

GT εGv0
n = [V ]

(
f +

4∑

i=1

λi[uie
−λivn

0 ]ai
o
)

is equivalent to finding the minimizer v0
n of h : R

r → R,

h(w) =
1

2
wTGT εGw − wT [V ]

(
f +

4∑

i=1

[uie
−λiw]ai

o
)
.

Since h is continuously differentiable and

τh(w)+(1−τ)h(z)−h(τw+(1−τ)z) ≥
1

2
(w−z)TGT εG(w−z) ∀w, z ∈ R

r, ∀τ ∈ (0, 1)

there exists a unique minimizer for h (see [15, Chap. 7]) which gives the solution v0
n to

(3.6). The solution to (3.6) depends continuously on ao.

3. For uniqueness we argue as follows: If there would be two solutions v0
n and ṽ0

n to
(3.6) with vn

0j > ṽn
0j for at least one j, we use the test function (v0

n − ṽ0
n)+,

(v0
n − ṽ0

n)+TGT εG(v0
n − ṽ0

n) − (v0
n − ṽ0

n)+T [V ]
4∑

i=1

λi[ui(e
−λiv

n
0 − e−λiṽ

n
0 )]ai

o = 0

and obtain (v0
n− ṽ0

n)+TGT εG(v0
n− ṽ0

n) > 0. Due to the monotonicity of the functions
y 7→

∑4
i=1 λiuie

−λiyao
ij , j = 1, . . . , r, this leads to a contradiction. �

Lemma 3.2 We assume (A1) – (A3) and (A5). Suppose −c ≤ v0j ≤ c for some constant
c > 0. Then AS

i (v0) are weakly diagonally dominant matrices, i = 1, . . . , 4. And they
have bounded positive inverses for homogeneous Dirichlet data.

Proof. Since 0 <
[
Diuie

−λiv0/sh(G̃v0

2 )
]
<∞ we obtain for the matrices

H̃i :=

√[
Diuie

−λiv0/sh(G̃
v0

2
)
]
G, i = 1, . . . , 4,

the same properties (sign pattern and sum rules) as formulated for G̃ in (3.2). Therefore
AS

i (v0) = H̃T
i H̃i have bounded positive inverses for homogeneous Dirichlet data, i =

1, . . . , 4. �
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Lemma 3.3 We assume (A1) – (A5). Let v0
n be the solution to (3.6) with ao fulfilling

(3.8). Then there exist unique solutions ai
n, i = 1, . . . , 4, to the four decoupled equations

(3.7). They fulfill

an
ij ∈ [e−M , eM ], j = 1, . . . , r, i = 1, . . . , 4.

The solutions ai
n to (3.7) depend continuously on v0

n and ai
o, i = 1, . . . , 4.

Proof. 1. We show the result for the first equation in (3.7)

AS
1 (v0

n)a1
n =

∑

i=3,4

[V ][r1i(x, û)](1 − [ao
i ]a1

n) + [V ][r12(x) evn
0 ](a2

o − a1
n).

Since
∑

i=3,4[V ][r1i(x, ũ)][ao
i ] + [V ][r12(x) evn

0 ] is a diagonal matrix with nonnegative en-
tries, Lemma 3.2 guarantees that the matrix

C(v0
n,ao) := AS

1 (v0
n) +

∑

i=3,4

[V ][r1i(x, ũ)][ao
i ] + [V ][r12(x) evn

0 ]

has a bounded inverse such that the problem is uniquely solvable.

2. Assuming that an
ij > eM for at least one xj ∈ Ω and i = 1. We test the first equation

in (3.7) by (a1
n − eM )+T ,

(a1
n − eM )+TAS

i (vo
n)a1

n

= (a1
n − eM )+T [V ]

( ∑

i=3,4

[V ][r1i(x, û)](1 − [ao
i ]a1

n) + [r12(x) evn
0 ](a2

o − a1
n)

)
.

Under our assumption then (a1
n− eM )+TAS

i (vo
n)a1

n > 0. Additionally (1− [ao
i ]e

M ) ≤ 0,
a2

o − eM ≤ 0, [r1i(x, û)] ≥ 0, [r12(x) evn
0 ] ≥ 0. This gives a contradiction. The lower

bound is obtained by testing with −(a1
n + e−M)−T .

3. The matrix C(v0
n,ao) depends continuously on v0

n, ao. Due to the perturbation
lemma we have for matrices C1, C2 where C1 is a regular matrix with ‖C−1

1 ‖ ≤ β,
‖C1 − C2‖ ≤ β1, ββ1 < 1 that C2 is regular and

‖C−1
2 ‖ ≤

β

1 − ββ1
, ‖C−1

1 − C−1
2 ‖ ≤

β2β1

1 − ββ1
.

Additionally, our right hand side in C(v0
n,ao) =

∑
i=3,4[V ][r1i(x, û)]1+[V ][r12(x) evn

0 ]a2
o

depends continuously on v0
n, ao. Thus in summary an depends continuously on v0

n, ao.
�

Theorem 3.1 We assume (A1) – (A5). Then there exists at least one solution (v0
•,a•) to

the discrete stationary spin-polarized drift-diffusion model (3.5). Solutions to (3.5) fulfill
the bounds

a•ij ∈ [e−M , eM ], i = 1, . . . , 4, v•0j ∈ [L,L], j = 1, . . . , r.
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Proof. According to Lemma 3.1, Lemma 3.3 the mapping Q : M → R
4r, Q(ao) = an, is

continuous and maps the convex, bounded, closed and non empty set M (see (3.8)) into
itself. Therefore Brouwer’s fixed point theorem (see [19]) guarantees at least one fixed
point a• of Q. Solving (3.6) for a• instead of ao leads to v0

•. And u• is obtained by
ui

• = [uie
−λiv•0 ]ai

•, i = 1, . . . , 4. The bounds are guaranteed by Lemma 3.1, Lemma 3.3.
�

Remark 3.2 Theorem 3.1 ensures for the solutions to the discretized problem exactly the
same upper and lower bounds as proved for the continuous problem in Theorem 2.1. An
analogous result for the van Roosbroeck system is obtained in [5] where also the Scharfetter-
Gummel scheme is used. In [13] this question is discussed for non-monotone elliptic
equations and a finite element approximation. There the lower bounds of the continuous
problem can not be saved since the necessary truncated functions can not be used as test
functions for the discretized problem.

3.4 Uniqueness for small applied voltages

Lemma 3.4 We assume (A1) – (A5). If no voltage is applied to the device (hence, the
boundary conditions

v0|ΓD
= vbi

0 , ai|ΓD
= 1, i = 1, . . . , 4,

which are compatible with thermodynamic equilibrium) then there exists a unique solution
(v0

∗,a∗) to (3.5). This solution is a thermodynamic equilibrium with ai
∗ = 1 and v0

∗ is
the unique solution to the Poisson equation in (3.5) where a is substituted by a∗.

Proof. Clearly (v0
∗,a∗) is a solution to (3.5). It remains to show its uniqueness. Let

(v0,a) be a solution to (3.5). The ai fulfill the bounds and the boundary conditions,
hence each boundary integral expression in the discrete continuity equations vanishes.
Testing the continuity equation for ai in (3.5) with ln(ai

T ) is possible due to the bounds.
Summing them yields the dissipation expression

4∑

i=1

ln(ai
T )AS

i (v0)ai = [V ]
∑

ii′=13,14,23,24

ln(ai
T [ai′ ])[rii′ ]([ai′ ]ai − 1)

+ [V ]
∑

ii′=12,34

ln(ai
T [ai′ ]

−1)[ai′ ][rii′ ](ai[ai′ ]
−1 − 1).

(3.10)

The monotonicity of the logarithm and the positivity of diagonal weights (see (3.4))
summed over all contributions to one edge yields per edge and hence for ln(ai

T )AS
i (v0)ai ≥

0 for all i. Because [V ] > 0, [rii′ ] > 0 each expression on the right hand side of (3.10) is
non positive. Hence all expressions have to be zero to fulfill (3.10). This implies ai = 1,
due to the boundary conditions. For these thermodynamic equilibrium activities the Pois-
son equation yields the unique thermodynamic equilibrium solution (v∗

0
,a∗) (compare

Lemma 3.1). �

Theorem 3.2 We assume (A1) – (A5). If the applied voltage is sufficiently small, then the
discrete stationary spin-polarized drift-diffusion model (3.5) possesses exactly one solution.
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Proof. 1. We show that the linearization of (3.5) in the unique thermodynamic equilib-
rium (v0

∗,a∗) (corresponding to no applied voltage) has a bounded inverse. Due to the
continuous dependence of the mapping (3.5) of (v0,a) the implicit function theorem gives
the desired uniqueness result for small voltages.

2. We discuss the linearization of (3.5) in the Form Fi(x,y) = 0 at approximated solutions
Y, y = Y + δy of (3.5). Denoting

Ti := [Gai]
∂

∂v0
[Diuie

−v0/ sh(G̃(v0/2)], i = 1, . . . , 4,

[∂rii′
∂v0

]
=

[
−

4∑

l=1

λlule
−λlv0

∂rii′

∂ul

]
,

[∂rii′
∂al

]
=

[
ule

−λlv0
∂rii′

∂ul

]
, ii′ = 13, 14, 23, 24,

and omitting the arguments in rii′ the linearization applied to (δv0, δa) has the form

{
GT εG+ [V ][

4∑

i=1

ui]
}
δv0 −

4∑

i=1

λi[V uie
−λiṽ0 ]δai + F0 = 0, (3.11)

{
GTT1 −

∑

i=3,4

[V ](I − [a1ai])
[∂r1i

∂v0

]
− [V ][a2 − a1][r12e

v0 ]
}
δv0

+
{
AS

1 (v0) −
∑

i=3,4

[V ](I − [a1ai])
[∂r1i

∂a1

]
+

∑

i=3,4

[V ][r1iai] + [V ][r12e
v0 ]

}
δa1

+
{
−

∑

i=3,4

[V ](I − [a1ai])
[∂r1i

∂a2

]
− [V ][r12e

v0 ]
}
δa2

+
{
−

∑

i=3,4

[V ](I − [a1ai])
[∂r1i

∂a3

]
+ [V ][r13a1]

}
δa3

+
{
−

∑

i=3,4

[V ](I − [a1ai])
[∂r1i

∂a4

]
+ [V ][r14a1]

}
δa4 + F1 = 0,

{
GTT2 −

∑

i=3,4

[V ](I − [a2ai])
[∂r2i

∂v0

]
+ [V ][a2 − a1][r12e

v0 ]
}
δv0

+
{
−

∑

i=3,4

[V ](I − [a2ai])
[∂r2i

∂a1

]
− [V ][r12e

v0 ]
}
δa1

+
{
AS

2 (v0) −
∑

i=3,4

[V ](I − [a2ai])
[∂r2i

∂a2

]
+

∑

i=3,4

[V ][r2iai] + [V ][r12e
v0 ]

}
δa2

+
{
−

∑

i=3,4

[V ](I − [a2ai])
[∂r2i

∂a3

]
+ [V ][r23a2]

}
δa3

+
{
−

∑

i=3,4

[V ](I − [a2ai])
[∂r2i

∂a4

]
+ [V ][r24a2]

}
δa4 + F2 = 0,
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{
GTT3 −

∑

i=1,2

[V ](I − [aia3])
[∂ri3
∂v0

]
+ [V ][a4 − a3][r34e

−v0 ]
}
δv0

+
{
−

∑

i=1,2

[V ](I − [aia3])
[∂ri3
∂a1

]
+ [V ][r13a3]

}
δa1

+
{
−

∑

i=1,2

[V ](I − [aia3])
[∂ri3
∂a2

]
+ [V ][r23a3]

}
δa2

+
{
AS

3 (v0) −
∑

i=1,2

[V ](I − [aia3])
[∂ri3
∂a3

]
+

∑

i=1,2

[V ][ri3ai] + [V ][r34e
−v0 ]

}
δa3

+
{
−

∑

i=1,2

[V ](I − [aia3])
[∂ri3
∂a4

]
− [V ][r34e

−v0 ]
}
δa4 + F3 = 0,

{
GTT4 −

∑

i=1,2

[V ](I − [aia4])
[∂ri4
∂v0

]
+ [V ][a4 − a3][r34e

−v0 ]
}
δv0

+
{
−

∑

i=1,2

[V ](I − [aia4])
[∂ri4
∂a1

]
+ [V ][r14a4]

}
δa1

+
{
−

∑

i=1,2

[V ](I − [aia4])
[∂ri4
∂a2

]
+ [V ][r24a4]

}
δa2

+
{
−

∑

i=1,2

[V ](I − [aia4])
[∂ri4
∂a3

]
− [V ][r34e

−v0 ]
}
δa3

+
{
AS

4 (v0) −
∑

i=1,2

[V ](I − [aia4])
[∂ri4
∂a4

]
+

∑

i=1,2

[V ][ri4ai] + [V ][r34e
−v0 ]

}
δa4 + F4 = 0.

3. For the thermodynamic equilibrium solution (v0
∗,a∗) we have

Gai
∗ = 0, [ai − ai′ ] = [0], ii′ = 12, 34, I − [aiai′ ] = [0], ii′ = 13, 14, 23, 24.

According to the form of the linearization of (3.5) obtained in step 2, therefore it is
sufficient to show the existence of a bounded inverse for the linearized continuity equations.
We use the following abbreviations

A = diag
(
AS

i (v0
∗)

)
i=1,...,4

,

with diag indicating a block matrix in the 4 × 4 block system,

Sii′ = [V ][rii′(x,u
∗)], ii′ = 13, 14, 23, 24, S12 = [V ][r12e

v∗0 ], S34 = [V ][r34e
−v∗0 ].

Then the linearization of the continuity equations in thermodynamic equilibrium L(v0
∗,a∗)

has the form L(v0
∗,a∗) = A+B where

B =




S13 + S14 + S12 −S12 S13 S14

−S12 S23 + S24 + S12 S23 S24

S13 S23 S13 + S23 + S34 −S34

S14 S24 −S34 S14 + S24 + S34



.
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The linearizations AS
i (v0

∗) in thermodynamic equilibrium in Slotboom variables are sym-
metric and positive definite. Thus the same for A is true. The matrix B is symmetric,
too. Due to the Gershgorins circle theorem all eigenvalues of B lie in the closed interval

[0, max
i=1,...,4

max
j=1,...,r

2
∑

i′ 6=i

[Sii′ ]j]

where [Sii′ ]j ≥ 0 denotes the jth diagonal element of the r × r diagonal matrix Sii′ .
Therefore B is positive semidefinite, and the linearization of the continuity equations
in thermodynamic equilibrium L(v0

∗,a∗) is symmetric and positive definite. Thus the
in thermodynamic equilibrium linearized discrete continuity equations can uniquely be
solved for δa. Inserting this in (3.11) taken at thermodynamic equilibrium we obtain
unique solvability of this equation w.r.t. δv0. �

Summary: The static spin-polarized drift-diffusion system possesses very similar analyt-
ical and numerical properties compared to the stationary classical van Roosbroeck system
(see [14, 5]).
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