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Abstract

A quasi-static contact problem is considered for a non-linear elastic system with finitely
many degrees of freedom. Coulomb’s law is used to model friction and the friction coefficient
may be anisotropic and may vary along the surface of the rigid obstacle. Existence is estab-
lished following a time-incremental minimization problem. Friction is artificially decreased
to resolve the discontinuity arising from making and losing contact.

1 Introduction

The question of existence for quasi-static contact problems in elasticity with dry (Coulomb)
friction reached a peak in the literature in the 1990s. The first existence results for the con-
tinuous problem of an elastic body were due to Klarbring, Mikelić and Shillor [KMS91], where
still regularized problems are considered. It was Andersson [And00] and Rocca [Roc01] who
solved the complete model on the continuous level. Andersson [And99] also solved the problem
on the discrete level for N particles. Touzaline at al. still extended the continuous theory
to non-linear elastic bodies [ToT07]. But most authors have started to expand their models
principally including thermal effects, see [EcJ01, ChA04]. The energetic approach, which we
use as a method, has been recently adapted such that thermal effects can be included, see
[MiP07, Mie07]. Other extensions include non-coercivity of the elastic energy [RiA06], wear
[SST04] and damage [HSS01].

In this article we revisit the classical quasi-static contact problem with dry friction and extend
the problem to non-linear elasticity, similar to Touzaline at al., but we restrict ourself to the
discrete level only. In [ScM07] we considered a non-linear elastic system with three degrees
of freedom (dof). Further friction is allowed to be anisotropic and the friction coefficient may
vary along the flat obstacle surface. In this article we extend this result to finitely many dof
and use significantly weaker assumptions to establish existence. These improved assumptions
allow us to extend the existence result to situations of curved obstacles, which will be done in
forthcoming work, see also [Sch08].

The structure of the article is as follows. In Section 2 we introduce the model and a problem
formulation, which is based on energies only. In the Section 3 we present the main idea: a
simplified problem that avoids the discontinuity of the frictional terms, which is one of the
main difficulties. In the Section 4 existence is established for simplified problems following the
energetic approach introduced by Mielke and Theil [MiT99, Mie05]. In Section 5 we solve the
original problem by passing to the limit in the simplified problems.

2 Modeling

In this section we present the mechanical model, fix the notation and present the main result.

We consider an elastic system, which is determined by the position of N particles thus having
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3N degrees of freedom. The state of the system is described by the vector

z =

⎛
⎜⎜⎝

z1

z2

· · ·
z3N

⎞
⎟⎟⎠ =

⎛
⎝ z(1)

· · ·
z(N)

⎞
⎠ ∈ R

3N ∼= (R3
)N

.

For j = 1, . . . , N we denote by z(j) =
(
z3j−2 z3j−1 z3j

)� the state of the j-th particle. Each
single particle cannot penetrate a rigid obstacle and thus is restricted to an admissible set of
the form

S :=
{
z ∈ R

3 : z3 ≥ 0
}

,

i.e., we claim z(j) ∈ S for j = 1, . . . , N . Further, to keep notation simple, it is convenient to
introduce for j = 1, . . . , N the half-spaces

A(j) :=
{
z ∈ R

3N : z3j ≥ 0
}

.

With the help of these sets we define the admissible set A ⊂ R
3N for the whole system in three

equivalent ways via

A :=
{
z ∈ R

3N : z3j ≥ 0 for all j = 1, . . . , N
}

(N0)

=
{

z ∈ R
3N : z(j) ∈ S for all j = 1, . . . , N

}
= SN

= ∩
j∈{1,...,N}

A(j).

As announced we model the problem in terms of energies. The stored elastic energy of the
system is described by an energy functional E and we assume

E ∈ C2 ([0, T ] ×A, R) . (N1)

Also friction is modeled in terms of energy and we first describe the energy, which is dissipated
by a single particle z(j). For j = 1, . . . , N we denote by

σ(j)(t, z) := ∂z3jE(t, z)

the normal force with which the j-th particle is pressed onto the obstacle. For the roughness,
which affects each single particle, we introduce matrices of friction M(j). The dependence on
an index j indicates that different particles might consist of different materials and thus behave
different while sliding along the same obstacle. We denote by ν :=

(
0 0 −1

)� the normal
vector and by ∂S =

{
z ∈ R

3 : z3 = 0
}

the obstacle surface. For j = 1, . . . , N we assume the
matrix of friction Mj to satisfy

M(j) ∈ C1
(
∂S, R3×3

)
with M(j)(z)ν = 0 for all z ∈ ∂S. (N2)

According to Coulomb’s law the frictional force is proportional to normal force times roughness.
This motivates the definition of a single dissipation functional Ψ(j) : [0, T ] × A × R

3 → [0,∞)
via

Ψ(j)(t, z, v) :=

{
σ(j)(t, z)

+
‖M(j)(z(j))v‖ if z3j = 0,
0 if z3j > 0,

(2.1)

with σ(j)(t, z)
+

:= max{0, σ(j)(t, z)} and ‖·‖ being the usual Euclidian norm. Thus for ‖v‖ 
 1

the expression Ψ(j)(t, z, v) is a rough approximation of the energy lost due to friction for a
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particle sliding instantaneously from z(j) to z(j) + v at time t. It is only an approximation since
along the sliding vector v ∈ R

3 we assume the frictional force to be constant.

The dissipation functional Ψ : [0, T ] ×A × R
3N → [0,∞) for the whole system is now defined

via

Ψ(t, z, v) :=
N∑

j=1

Ψ(j)(t, z, v(j)).

After having introduced the energy and dissipation functional we now present our problem to
solve.

Problem 2.1 For given initial state Z0 ∈ A find a positive time T∗ ∈ (0, T ] and a solution
z ∈ W1,∞([0, T∗],A) such that the initial condition z(0) = Z0 is satisfied and such that for all
t ∈ [0, T∗] the following two conditions hold

E(t, z(t)) ≤ E(t, y) + Ψ(t, z(t), y − z(t)) for all y ∈ A and (S)

E(t, z(t)) +
∫ t

0
Ψ(s, z(s), ż(s)) ds = E(0, z(0)) +

∫ t

0
∂sE(s, z(s)) ds. (E)

We briefly motivate these two energetic conditions, see also [MiT04]. The energetic stability
claims that at time t our system is in such a position z(t) that switching instantaneously to any
other admissible position y ∈ A dissipates more energy due to friction than is released by the
elastic system. The equality (E) is an energy balance law and claims that the stored energy at
time t plus the dissipated energy up to time t is the same than the energy we start with plus
the energy put into the system due to changing external forces.

A direct consequence of the problem formulation is that we have to claim the stability condition
(S) for the initial value Z0 at time t = 0, i.e.

E(0, Z0) ≤ E(0, y) + Ψ(0, Z0, y − Z0) for all y ∈ A. (N3)

Further let us introduce the characteristic function XA(z) := 0 for z ∈ A and XA(z) := +∞ for
z �∈ A. If we denote by ’∂ ’ the subdifferential and by R

3N∗ ∼= R
1×3N the dual space of R

3N

then the above (S)&(E)-formulation, which has to hold for all t ∈ [0, T∗], is equivalent to claim
the following differential inclusion or force balance for almost all t ∈ [0, T∗]

0 ∈ DE(t, z(t))︸ ︷︷ ︸
elastic force

+ ∂vΨ(t, z(t), ż(t))︸ ︷︷ ︸
frictional forces

+ ∂XA(z(t))︸ ︷︷ ︸
constraint forces

⊂ R
3N∗

. (DI)

For a proof see [MiT04].

To present the last assumption and the existence theorem we have to distinguish three different
’types’ of particles. Depending on the initial values 0 and Z0 we define the index sets:

I := {1, . . . , N},
Ic :=

{
j ∈ I : σ(j)(0, Z0) > 0

}
,

If :=
{

j ∈ I : (Z0)3j > 0
}

and

Is := I\ (Ic ∪ If) .

Due to the initial assumption (N3) we find Ic ∩ If = ∅ and the sets Ic,If and Is are pairwise
disjoint. Here, the index ’c’ stands for contact, ’f’ for friction-free and ’s’ stands for switching.
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Due to (N3) we have for all j ∈ Ic that the corresponding particle (Z0)
(j) ∈ R

3 is in contact, i.e.
(Z0

(j))3 = 0. Since it is pressed onto the obstacle with a positive normal force σ(j)(0, Z0) > 0
we expect it to remain in contact for a short time span. Hence, the index set Ic represents all
particles, which are in contact and are expected to remain in contact. Further, the index ’f’
denotes friction-free. By definition we find Ψ(j)(0, Z0, ·) ≡ 0 for j ∈ If and since (Z0)3j > 0 holds
we also expect the particle to remain out of contact and thus the index set If denotes all particles,
which start friction-free and are expected to remain friction-free for a small time span. The index
’s’ shall represent the word switching since for j ∈ Is =

{
j ∈ I : σ(j)(0, Z0) = 0, (Z0)3j = 0

}
it is possible that the particle switches for arbitrary small time spans infinitely many times
between a contact situation with friction and a friction-free situation.

For given index set K ⊂ I (the case K = ∅ is allowed!) we define the admissible set for the sliding
vectors via S

3N−1
K :=

{
v ∈ R

3N : ‖v‖ = 1, v3j = 0, j ∈ K} =
{
v ∈ S

3N−1 : v3j = 0, j ∈ K} and
the constants αK > 0 and qK > 0 via

αK := min
{

v�H(0, Z0)v : v ∈ S
3N−1
K

}
, (2.2)

qK := max
{∑

j∈K

∣∣∣Dσ(j)(0, Z0)u
∣∣∣ ‖M(j)(Z0

(j))v(j)‖ (2.3)

+ σ(j)(0, Z0)+ ‖DM(j)(Z0
(j))[v(j), u(j)]‖ : u, v ∈ S

3N−1
K

}
.

For K1 ⊂ K2 we find S
3N−1
K1

⊃ S
3N−1
K2

and αK1 ≤ αK2 while no monotonicity holds for qK. With
increasing index set K the number of summands increases but the values of the single summands
decrease.

Theorem 2.2 (Existence) Let us assume (N0)–(N3). For all index sets Ic ⊂ K ⊂ Ic ∪Is we
further assume

αK > qK. (N4)

Then there exists a time T∗ > 0 and a solution z ∈ W1,∞ ([0, T∗],A) of Problem 2.1.

We prove existence in Theorem 5.2 below.

The assumption (N4) is composed by 2n single assumptions with n = #Is. For example we
face 2N assumptions if all particles are in grazing contact, i.e. Irms = I. This system of
assumptions in not reduceable as simple examples indicate, see [Sch08].

In the foregoing paper [ScM07] the case N = 1 was considered under the strong assumption
α∅ > q{1}. Due to α{1} ≥ α∅ this strong assumption implies (N4), which is composed by α∅ > 0
and α{1} > q{1}. The present weaker assumption (N4) is a major step in deriving conditions for
existence that are necessary and sufficient. While the strong assumption α∅ > q{1} links normal
displacements (v3 �= 0) with frictional effects the improved assumption α{1} > q{1} controls the
change of elastic and frictional forces only in tangential directions v3 = 0. This is needed if
one wants to understand what happens if the boundary is curved and thus tangential directions
change, see [Sch08].

The following section presents the central idea, which is needed for this improvement.

3 Decreasing the friction: a simplified problem

In this section we introduce a restricted admissible set and a new dissipation functional, which
helps to avoid the discontinuity of Ψ. This will lead us to a simplified problem.
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3.1 Extending the assumptions to some neighborhood

In this subsection we extend the Assumption (N4) to some neighborhood of of the initial values
(0, Z0). The index ’e’ stands for extended. The parameter le > 0 denotes half of the edge length
of the cuboid

Qle(Z0) :=
{
z ∈ R

3N : |(z − Z0)n| ≤ le, n = 1, . . . , 3N
}

.

We favor a cuboid over a ball as neighborhood since the cuboid can be described as an intersec-
tion of half-spaces. This will make the formula for corresponding constraint forces ∂XQle

easier.
For a given index set K ⊂ I we introduce the convex set

AK,e := A ∩
⎛
⎝⋂

j∈K
∂A(j)

⎞
⎠ ∩ Qle(Z0).

On physical grounds it is intuitively clear that particles, which are pressed onto the obstacle
remain locally in contact. This motivated the restriction to the boundary for some index set
K. In Figure 1 we present this idea for an elastic system in its initial configuration Z0 ∈ R

3N

set S
single adimissibe

∂S

Z0
(2)Z0

(1)

admissible regions

2le

Z0
(4)

Z0
(3)

Z0
(5)

Figure 1: Admissible regions for z ∈ AK,e ⊂ R
3N with K = {2} and N = 5

satisfying σ(1)(0, Z0) = 0 and σ(2)(0, Z0) > 0. If z ∈ AK,e holds then each single particle
z(j) ∈ S ⊂ R

3 is constrained to its grey box or plane.

We denote the extension time Te ∈ (0, T ] and introduce the cylinder CK,e := [0, Te]×AK,e. The
following constants are extended versions of the constants αK > 0 and qK > 0 defined in (2.2)
and (2.3). They coincide if we choose Te = le = 0.

αK,e := min
{

v�H(t, z)v : v ∈ S
3N−1
K , (t, z) ∈ CK,e

}
, (3.1)

qK,e := max
u,v∈S

3N−1
K

{∑
j∈K

∥∥∥Dσ(j)u
∥∥∥

L∞(CK,e,R)
‖M(j)(·(j))v(j)‖L∞(AK,e,R3) (3.2)

+ ‖σ(j)

+
‖L∞(CK,e,R)‖DM(j)(·(j))[v(j), u(j)]‖L∞(AK,e,R3)

}
.

Due to the regularity of E and M(j), see (N1) and (N2), and Assumption (N4) there exist le > 0
and Te > 0 such that for all K ⊂ I with Ic ⊂ K ⊂ Ic ∪ Is we find

αK,e > qK,e. (3.3)

We now chose Te ∈ (0, T ] and le > 0 such that (3.3) holds and fix this pair (Te, le) for the rest
of this article.
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3.2 Decreasing the friction

In this subsection we present a simplified problem, see Problem 3.1. We present three simplifi-
cations that help to avoid the discontinuity of the dissipation functional Ψ, which is the major
difficulty in the existence proof.

The first simplification is that we restrict ourself in the rest of the section to the set

Ae := AIc,e = A ∩
⎛
⎝⋂

j∈Ic

∂A(j)

⎞
⎠ ∩ Qle(Z0).

For j ∈ Ic the single dissipation functional Ψ(j) is continuous on Ae. The motivation for this
simplification is the physical intuition that particles, which are initially pressed onto the obstacle
remain locally, i.e. for a short time span, in contact.

Second for j ∈ If we neglect all functionals Ψ(j) and thus avoid their discontinuity. The
motivation is that particles, which are out of contact, remain locally out of contact and thus
are locally friction-free.

The third simplification consists in introducing a parameter γ > 0 and for j ∈ Is we define the
j-th dissipation functional via

Ψ(j)
γ (t, z, v) �→

{ (
σ(j)(t, z) − γ

)
+
‖M(j)(z(j))v‖ if z3j = 0,

0 if z3j > 0.
(3.4)

Since this is the most important simplification we motivate it in more detail. Due to physical
intuition it is clear that the j-th particle makes and loses contact exactly when σ(j)(t, z(t)) = 0
holds. Thus in the moments of making and losing contact there is no friction. This shows that
Ψ(j), as defined in (2.1), behaves continuous along the path of a physical reasonable solution.
The problem in approximating these solutions is that the moments of making and losing contact
are a priori unknown. But we will be able to construct for arbitrary small γ > 0 approximative
solutions, which make and lose contact for normal forces between 0 and γ. Thus the altered
dissipation Ψ(j)

γ behaves continuous with respect to good approximations. See also Figure 2.

σ(j)no friction
no contact no contact switch contact

no friction frictionγfriction
contact

σ(j)

+
(σ(j) − γ)

+

σ(j)

Figure 2: The γ-trick: Physical vs. approximative situation

Summarizing we obtain a new dissipation functional Ψγ : [0, T ] ×Ae × R
3N → [0,∞) with

Ψγ(t, z, v) :=
∑
j∈Ic

Ψ(j)(t, z, v(j)) +
∑
j∈Is

Ψ(j)
γ (t, z, v(j)). (3.5)

We now introduce our simplified problem:
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Problem 3.1 Find a function zγ ∈ W1,∞([0, Te],Ae) such that the initial condition zγ(0) = Z0

is satisfied and such that for all times t ∈ [0, Te] we have

E(t, zγ(t)) ≤ E(t, y) + Ψγ(t, zγ(t), y − zγ(t)) for all y ∈ Ae and (Sγ)

E(t, zγ(t)) +
∫ t

0
Ψγ(s, zγ(s), żγ(s)) ds = E(0, Z0) +

∫ t

0
∂sE(s, zγ(s)) ds. (Eγ)

4 Solving simplified problems

In this section we assume the parameter γ > 0 to be given and construct a solution of Problem
3.1. The proof is based on an incremental scheme, which was introduced by Mielke & Theil
[MiT99]. See also [Mie05, MiR07].

4.1 Approximative solutions

Definition 4.1 (Incremental Problem and approximative solutions)
For the given initial value z0 = Z0 ∈ Ae and a partition Π : 0 = t0 < t1 < · · · < tNΠ

= Te

the Incremental Problem consists in finding incrementally z1, z2, z3, . . . , zNΠ
such that for k =

1, . . . , NΠ

zk = argmin {E(tk, y) + Ψγ(tk−1, zk−1, y−zk−1) : y ∈ Ae} . (IPγ)

Here ‘argmin’ denotes the set of all minimizers.

For the sequence (Π(n))n∈N of equi-distant partitions Π(n) :=
{
tk = k

nTe : k = 0, . . . , n
}

we de-
fine the sequence of approximative solutions (z(n)

γ )n∈N ⊂ W1,∞([0, Te],Ae) as the piecewise linear
interpolation between the values (z(n)

k )k=1,...,n of the solution of the corresponding Incremental
Problem (IPγ), i.e.

zγ
(n)(t) := z

(n)
k−1 +

t − t
(n)
k−1

t
(n)
k − t

(n)
k−1

(z(n)
k − z

(n)
k−1) for t ∈ [t(n)

k−1, t
(n)
k ] and k = 1, . . . , n.

Theorem 4.2 (Existence & uniqueness of approximative solutions)
We assume (N0)–(N4). Then for any equi-distant sequence of partitions (Π(n))n∈N of [0, Te]
the corresponding sequence of approximative solutions (zγ

(n))n∈N ⊂ W1,∞([0, Te],Ae) of (IPγ)
exists and is unique.

Proof: By construction the set Ae is closed an convex and the dissipation functional Ψγ is
convex with respect to its third variable. Further, the function E(t, ·) is strictly convex on Ae for
all t ∈ [0, Te]. This is a consequence of estimate (3.3). Thus, the result follows from Weierstrass’
extreme principle.

4.2 Convergence

In this subsection we show that the existence of a convergent subsequence for the sequence of
approximative solutions (z(n)

γ )n∈N ⊂ W1,∞([0, Te],Ae), see Theorem 4.8. The proof is based on
the Arzela-Ascoli theorem and to be able to apply it, it is sufficient to establish the existence of
a uniform Lipschitz constant clip > 0, which neither depends on n nor on the choice of γ > 0.
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The following two constants are Lipschitz constants with respect to time for the elastic and
frictional forces DE and ∂Ψγ . We introduce the cuboid Ce := [0, Te] ×Ae and define

c1 :=
1
2
‖∂tDE‖L∞(Ce,R3N∗ ) ,

c2 :=
∑

j∈Ic∪Is

∥∥∥∂tσ
(j)
∥∥∥

L∞(Ce,R)

∥∥∥M(j)
∥∥∥

L∞(∂S∩Qle (Z0
(j)),R3×3)

and

ce := c1 + c2. (4.1)

Note that the constants are independent of the parameter γ > 0. Our aim will be to establish the
Lipschitz constant clip := sup

{
ce

αK,e−qK,e
: Ic ⊂ K ⊂ Ic ∪ Is

}
. We shorten notation as follows.

For Ic ⊂ K ⊂ Ic ∪ Is we define

AK,e := Ae ∩
(⋂
j∈K

∂A(j)
)

= Ae ∩
( ⋂
j∈K∩Is

∂A(j)
)

and

ΨK,γ :=
∑
j∈Ic

Ψ(j) +
∑

j∈K∩Is

Ψ(j)
γ .

In the extreme cases K = Ic and K = Ic ∪ Is we simply write ΨIc and Ψγ as hitherto.

Lemma 4.3 (Lipschitz-continuity of the dissipation functional)
For arbitrary γ > 0 and given times t, τ ∈ [0, Te], states z, z̃ ∈ AK,e and v ∈ S

3N−1
K we have

|ΨK,γ(t, z, v) − ΨK,γ(τ, z, v)| ≤ c2|t − τ | and
|ΨK,γ(t, z, v) − ΨK,γ(t, z̃, v)| ≤ qK,e‖z − z̃‖.

Proof: We first observe
∣∣(σ(j)(t, z) − γ)

+
− (σ(j)(τ, z) − γ)

+

∣∣ ≤ ∣∣σ(j)(t, z) − σ(j)(τ, z)
∣∣, which

helps to explain why c2 and qK,e can be chosen independent of γ. The first estimate now follows
directly by definition of c2. For the second estimate we consider only the difference of single
dissipation functionals. We label all data with a tilde if the data depends on z̃ and write in a
symbolic way∣∣∣Ψ(j)

γ − Ψ̃(j)
γ

∣∣∣ ≤ |σ(j) − σ̃(j)|‖M(j)‖ +
(
σ̃(j) − γ

)
+

‖M(j) − M̃(j)‖

≤
(∥∥∥Dσ(j)u

∥∥∥
L∞(CK,e,R)

‖M(j)(·(j))v(j)‖L∞(AK,e,R3)

+ ‖σ(j)

+
‖L∞(CK,e,R)‖DM(j)(·(j))[v(j), u(j)]‖L∞(AK,e,R3)

)
‖z − z̃‖

with the vector u = z−z̃
‖z−z̃‖ ∈ S

3N−1
K . Summing up we find the constant qK,e, see (3.2).

The following recursive estimate was established in this context in [MiR07].

Lemma 4.4 (Recursive estimate) Let (N0)–(N2), (N4) hold and assume an index set Ic ⊂
K ⊂ (Ic ∪Is), the times t0, t1, t2 ∈ [0, Te] and the state z0 ∈ AK,e to be given. We define first z1

and then z2 via

z1 = argmin {E(t1, y) + ΨK,γ(t0, z0, y − z0) : y ∈ AK,e}
z2 = argmin {E(t2, y) + ΨK,γ(t1, z1, y − z1) : y ∈ AK,e}

then we find the recursive estimate

αK,e‖z2 − z1‖ ≤ ce max{|t2 − t1|, |t1 − t0|} + qK,e‖z1 − z0‖ (4.2)

with the constants αK,e, qK,e and ce as defined in (3.1), (3.2) and (4.1).
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Proof: For k = 1, 2 we reformulate the above minimizing problems using the characteristic
function XAK,e

(z) := 0 for z ∈ AK,e and XAK,e
(z) := +∞ for z �∈ AK,e as follows

zk = argmin
{E(tk, y) + ΨK,γ(tk−1, zk−1, y − zk−1) + XAK,e

(y) : y ∈ R
3N
}

.

Denoting by ∂y the subdifferential with respect to y this is equivalent to

−DE(tk, zk) ∈ ∂y

{
ΨK,γ(tk−1, zk−1, · − zk−1) + XAK,e

(·)} (zk).

Here we used the convexity of E(t, ·) on AK,e, see (3.3) and the Moreau-Rockafellar-Theorem
A.3. By definition of the subdifferential this is for y ∈ AK,e equivalent to

−DE(tk, zk)(y − zk) ≤ ΨK,γ(tk−1, zk−1, y − zk−1) − ΨK,γ(tk−1, zk−1, zk − zk−1). (4.3)

This was already the crucial estimate. Next we introduce the function y(s) := zk + s(y − zk)
and applying the fundamental theorem of calculus twice we deduce

E(tk, y) − E(tk, zk) =
∫ 1

0

∫ r

0
〈y − zk,H(tk, y(s))(y − zk)〉dsdr + DE(tk, zk)(y − zk).

The definition of the constant αK,e > 0 in (3.1) was chosen such that we can estimate the double
integral from below by the term 1

2αK,e‖y − zk‖2 for y ∈ AK,e. Together with the estimate (4.3)
this shows
αK,e

2
‖y − zk‖2 ≤ E(tk, y) − E(tk, zk) + ΨK,γ(tk−1, zk−1, y − zk−1) − ΨK,γ(tk−1, zk−1, zk − zk−1).

Applying this estimate twice, once for k = 1 and y = z2 and once for k = 2 and y = z1, we find

αK,e‖z2 − z1‖2 ≤ E(t1, z2) − E(t1, z1) + E(t2, z1) − E(t2, z2) + SΨ

with SΨ := ΨK,γ(t1, z1, z1−z1) − ΨK,γ(t1, z1, z2−z1) + ΨK,γ(t0, z0, z2−z0) − ΨK,γ(t0, z0, z1−z0).
We introduce the function t(r) := t2 + r(t1 − t2). Applying again the fundamental theorem of
calculus twice we reformulate the four energy terms as a double integral, which we estimate
from above with the help of the constant c1 = 1

2 ‖∂tDE‖L∞(Ce,R3N∗), i.e.

2∑
j,k=1

(−1)j+k+1E(tj , zk) =
∫ 1

0

∫ 1

0
∂tDE(t(r), y(s))(z2 − z1)ds(t1 − t2)dr

≤ c1‖z2 − z1‖|t2 − t1|.
In the rest of the proof we derive the following estimate for the four remaining dissipational
terms

SΨ ≤ (c2|t1 − t0| + qK,e‖z1 − z0‖
)‖z2 − z1‖. (4.4)

Before we prove this last estimate we want to point out that the combination of the last three
estimates leads us to our desired recursive estimate. To establish (4.4) we use ΨK,γ(t1, z1, z1 −
z1) = ΨK,γ(t1, z1, 0) = 0 and the triangle inequality giving ΨK,γ(t0, z0, z2−z0)−ΨK,γ(t0, z0, z1−
z0) ≤ ΨK,γ(t0, z0, z2 − z1). Summarizing we find

SΨ ≤ ΨK,γ(t0, z0, z2 − z1) − ΨK,γ(t1, z1, z2 − z1).

Note that (4.2) is trivial for z2 = z1. Thus we assume ‖z2 − z1‖ > 0, introduce the vec-
tor v := z2−z1

‖z2−z1‖ ∈ S
3N−1
K and rewrite the above estimate as follows SΨ ≤ (ΨK,γ(t0, z0, v) −
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ΨK,γ(t1, z1, v)
)‖z2 − z1‖. We expand the difference of the right hand side to ΨK,γ(t0, z0, v) −

ΨK,γ(t1, z0, v)+ΨK,γ(t1, z0, v)−ΨK,γ(t1, z1, v). But the constants c2 and qK,e in (4.1) and (3.2)
where chosen exactly such that the first difference is estimated by c2|t1 − t0| and the second
difference by qK,e‖z1 − z0‖.

The following Lemma is only an auxiliary but technically useful result. It will be used several
times in the crucial Theorem 4.7.

Lemma 4.5 We assume (N0)–(N4). Further let t0, t ∈ [0, Te], z0 ∈ Ae and I∗ ⊂ Is be given.
Then for j∗ ∈ I∗ the following two conditions are equivalent:

z = argmin

⎧⎨
⎩E(t, y) + Ψγ(t0, z0, y − z0) : y ∈ Ae ∩

⋂
j∈I∗

∂A(j)

⎫⎬
⎭ , σ(j∗)(t, z) > 0; (4.5)

z = argmin

⎧⎨
⎩E(t, y) + Ψγ(t0, z0, y − z0) : y ∈ Ae ∩

⋂
j∈I∗\{j∗}

∂A(j)

⎫⎬
⎭ , σ(j∗)(t, z) > 0. (4.6)

Proof: To keep notation short we introduce the cuboids Q := Ae ∩
⋂

j∈I∗
∂A(j) and Q∗ :=

Ae ∩
⋂

j∈I∗\{j∗}
∂A(j). Using the Moreau-Rockafellar-theorem A.3 we reformulate the minimizing

problems in (4.5) and (4.6) as differential inclusions, i.e.

0 ∈ DE(t, z) + ∂vΨγ(t0, z0, y − z0) + ∂XQ(z) ⊂ R
3N∗

,

0 ∈ DE(t, z) + ∂vΨγ(t0, z0, y − z0) + ∂XQ∗(z) ⊂ R
3N∗

with the characteristic function XQ(z) := 0 for z ∈ Q and XQ(z) = +∞ for z �∈ Q. The
inclusions correspond to force balances and they differ only in the formula for the constraint
forces ∂XQ and ∂XQ∗ . For a general cuboid Q̃ =

{
z ∈ R

3N : aj ≤ zj ≤ bj , j = 1, . . . , 3N
}

we
represent the constraint force component-wise with the help of the set-valued function F(x) :=
{0} for x > 0 and F(0) := (−∞, 0]. We find (∂XQ̃(z))j = F(zj − aj) − F(bj − zj) for j =
1, . . . , 3N . Thus the above inclusions differ only in the 3j∗-th column. For Q we have z3j∗ =
a3j∗ = b3j∗ = 0 and thus (∂XQ)3j∗(z) = R while for Q∗ we find a3j∗ = 0, b3j∗ = le and
(∂XQ∗)3j∗(z) = F(z3j∗ − 0) − F(le − z3j∗). For the elastic and dissipational forces we find by
definition (DE)3j∗ ≡ σj∗ and (∂vΨ)3j∗ ≡ {0}, since the dissipational functional is invariant
along the sliding direction e3j∗ , see (N2) . Summarizing, the two above differential inclusions
differ only in the 3j∗-th columns, which read

0 ∈ σj∗(t, z) + F(z3j∗) −F(le − z3j∗) for (4.5),

0 ∈ σj∗(t, z) + R for (4.6).

Having these inclusions at hand the equivalence between (4.5) and (4.6) is easy to check using
the additional information σj∗(t, z) > 0.

Corollary 4.6 Assume Ic ⊂ K ⊂ Ic ∪Is and Ic ⊂ K∗ ⊂ Ic ∪Is and further let σ(j)(t0, z0) < γ
for all j ∈ (Ic ∪Is)\(K∪K∗). We define H := (K∪K∗)\(K∩K∗) then the following conditions
are equivalent:

z = argmin
{
E(t, y) + ΨK∗,γ(t0, z0, y − z0) : y ∈ AK∗,γ

}
, σ(j)(t, z) > 0, j ∈ H;

z = argmin
{
E(t, y) + ΨK,γ(t0, z0, y − z0) : y ∈ AK,γ

}
, σ(j)(t, z) > 0, j ∈ H.
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Proof: The additional assumption σ(j) < γ implies Ψ(j)
γ ≡ 0 and allows us to replace ΨK∗,γ by

Ψγ . Using the above lemma recursively we replace first AK∗ by AK∗∪K and then by AK. Again
due to σ(j) < γ we replace in the last step ΨK∗ by ΨK.

For a given partition Π : 0 = t0 < t1 < · · · < tNΠ
= Te we define the fineness fΠ :=

{|tk − tk−1| : k = 1, . . . , NΠ}.

Theorem 4.7 (Lipschitz continuity for (IPγ)) Let Assumptions (N0)–(N4) hold then there
exists a Lipschitz constant clip > 0 and Cfine > 0, independent of the choice of γ, such that the
following holds: If γ > 0 and the partition Π of [0, Te] satisfies

fΠ ≤ Cfineγ,

then the solution (zk)k=0,...,NΠ
of (IPγ) satisfies the uniform Lipschitz estimate

‖zk − zk−1‖ ≤ clip|tk − tk−1| for k = 1, . . . , NΠ. (4.7)

Proof: We define the Lipschitz constant clip > 0 via

clip := max
{

c1 + c2

αK,e − qK,e
: Ic ⊂ K ⊂ Ic ∪ Is

}
, (4.8)

which is independent of γ. See (3.1), (3.2) and (4.1) for the definition of the constants involved.
The definition of the upper limit Cfine of the fineness of the partition we find in (4.11) below.

The key argument of this proof is the recursive estimate of Lemma 4.4. For the lemma we
have to show that two consecutive solutions zk, zk+1 solve similar minimizing problems. To
simplify this task we introduce an auxiliary incremental problem. We put z0 := Z0 and define
for k = 1, . . . , NΠ incrementally first the set Ik−1 ⊂ Is and then the state zk ∈ Ae via

Ik−1 :=
{

j ∈ Is : σ(j)(tk−1, zk−1) ≥ γ

2

}
(4.9)

and

zk = argmin

⎧⎨
⎩E(tk, y) + Ψγ(tk−1, zk−1, y − zk−1) : y ∈ Ae ∩

⋂
j∈Ik−1

∂A(j)

⎫⎬
⎭ , (4.10)

Physically we restrict a single particle z(j) ∈ R
3, j ∈ Is to the boundary when it was pressed

onto the boundary with a big normal force σ(j) ≥ γ/2 in the previous step. Our first aim is to
prove that all these particles remain pressed onto the obstacle if the time step is chosen small
enough, see (4.12).

Let us assume for a moment that the auxiliary solution (zk)k=1,...,NΠ
satisfies the Lipschitz

estimate (4.7) for k = 1, . . . , N , i.e.

‖zk − zk−1‖ ≤ clip|tk − tk−1|.

We define the constant Cσ := sup
{
‖∂tσ

(j)‖L∞(Ce,R) + ‖Dσ(j)‖L∞(Ce,R3N∗) : j ∈ I
}

such that

for all k = 1, . . . , NΠ and j ∈ I the following estimate holds |σ(j)(tk, zk) − σ(j)(tk−1, zk−1)|
≤ Cσ(|tk − tk−1| + ‖zk − zk−1‖) ≤ Cσ(1 + clip)fΠ. Let us choose

fΠ < Cfineγ and Cfine :=
1

2Cσ(1 + clip)
. (4.11)
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This implies |σ(j)(tk, zk) − σ(j)(tk−1, zk−1)| < γ/2 for small fineness fΠ. But for j ∈ Ik−1 the
estimate σ(j)(tk−1, zk−1) ≥ γ/2 holds and thus we find that the particles remain pressed onto
the obstacle, i.e.

σ(j)(tk, zk) > 0 for all j ∈ Ik−1. (4.12)

As a consequence the auxiliary solution coincides with the solution of the Incremental Problem
(IPγ). For this we apply Lemma 4.5 and replace the set Ae∩j∈Ik−1

∂A(j) by Ae. Summarizing
we have shown that if the solution (zk)k=1,··· ,NΠ

of the auxiliary problem (4.10) satisfies for all
k = 1, · · · , NΠ the Lipschitz estimate (4.7) then it coincides with the solution of the Incremental
Problem (IPγ) for small time steps.

In the second part of the proof we show the Lipschitz estimate (4.7) for the auxiliary solution.
The proof is carried out by induction. To be able to apply the key argument, the recursive
estimate of Lemma 4.4, we have to show that two consecutive solutions zk and zk+1 solve
minimizing problems, which are formulated with respect to the same dissipation and admissible
set. See for this (4.13) and (4.14) or (4.16) and (4.17) below.

We start our induction and consider the initial values t0 = 0 and z0 = Z0. For j �∈ Ic we have
by definition Ψ(j)(t0, z0, ·) ≡ 0. Thus we can replace Ψ by ΨIc in the initial Assumption (N3)
and find

z0 = argmin {E(t0, z) + ΨIc(t0, z0, z − z0) : z ∈ Ae} .

By a similar argument we can replace Ψγ by ΨIc +
∑

j∈Ik−1
Ψ(j)

γ in the auxiliary problem (4.10).
And since I0 = ∅ holds we find in the definition of z0 and z1 the same minimizing set Ae and
the same dissipation functional ΨIc , i.e.

z0 = argmin {E(t0, z) + ΨIc(t0, z0, z − z0) : z ∈ Ae} and (4.13)
z1 = argmin {E(t1, z) + ΨIc(t0, z0, z − z0) : z ∈ Ae} . (4.14)

We are now formally in the setting of Lemma 4.4 and we deduce

‖z1 − z0‖ ≤ c1 + c2

αIc,e
|t1 − t0| ≤ c1 + c2

αIc,e − qIc,e
|t1 − t0| ≤ clip|t1 − t0|.

This completes the proof of the induction start.

For the induction step we assume for given k ∈ {1, · · · , NΠ−1} that the Lipschitz estimate (4.7)
holds and we will prove

‖zk+1 − zk‖ ≤ clip|tk+1 − tk|. (4.15)

As mentioned above we can replace the dissipation function Ψγ by Ψ(Ic∪Ik),γ in (4.10). For this
we introduce the index sets K∗ := Ic ∪ Ik−1 and K := Ic ∪ Ik and thus find

zk = argmin {E(tk, z) + ΨK∗,γ(tk−1, zk−1, z−zk−1) : y ∈ AK∗,e} ,

zk+1 = argmin {E(tk+1, z) + ΨK,γ(tk, zk, z−zk) : y ∈ AK,e} .

Our aim is to replace the index set K∗ by K in the definition of zk with the help of Corollary 4.6.
We find for all j ∈ H := (Ik−1 ∪ Ik) \ (Ik−1 ∩ Ik) that the normal force σ(j) crosses the level γ/2,
i.e.

(
σ(j)(tk−1, zk−1) − γ/2

) (
σ(j)(tk, zk) − γ/2

) ≤ 0. Note that the normal force is formulated
with respect to the the states zk−1, zk for which the Lipschitz estimate (4.7) already holds. As
in the first part of the proof we find |σ(j)(tk, zk) − σ(j)(tk−1, zk−1)| < γ/2 for fΠ < Cfineγ with
Cfine > 0 as defined in (4.11). Together with the crossing of the level this proves on the one
hand

0 < σ(j)(tk, zk) for all j ∈ H.
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On the other hand, for j ∈ Is\Ik = (Ic ∪ Is)\K we have σ(j)(tk, zk) < γ/2 and we deduce
σ(j)(tk−1, zk−1) < γ. And since the same estimate holds by definition for j ∈ Is\Ik−1 we find

σ(j)(tk−1, zk−1) < γ for all j ∈ (Ic ∪ Is)\(K∗ ∩ K).

These estimates on the normal forces allow us to apply Corollary 4.6 and to replace K∗ by K,
i.e.

zk = argmin {E(tk, z) + ΨK,γ(tk−1, zk−1, z−zk−1) : y ∈ AK,e} , (4.16)
zk+1 = argmin {E(tk+1, z) + ΨK,γ(tk, zk, z−zk) : y ∈ AK,e} . (4.17)

We next apply Lemma 4.4 and using |tk+1 − tk| = |tk − tk−1| we find

‖zk+1 − zk‖ ≤ ce

αK,e
|tk+1 − tk| + qK,e

αK,e
‖zk − zk−1‖

By estimate (4.7) we deduce ‖zk+1 − zk‖ ≤
(

ce
αK,e

+ qK,e

αK,e
clip

)
|tk+1 − tk|. It remains to prove(

ce
αK,e

+ qK,e

αK,e
clip

)
≤ clip. This is equivalent to ce ≤ (αK,e − qK,e)clip. Due to the extended

convexity assumption αK,e > qK,e the inequality does not change if we divide by (αK,e−qK,e) > 0.
By the definition of clip in (4.8) we find

‖zk+1 − zk‖ ≤ clip|tk+1 − tk|.
We concluded the induction step. Hence, the solution (zk)k=1,...,NΠ

of the Auxiliary Problem
(4.10) satisfies the Lipschitz estimate (4.7). In the first part of the proof we have shown that
this implies that the auxiliary solution coincides with the solution of (IPγ).

Theorem 4.8 (Convergence) Let (N0)–(N4) hold, then the the sequence of approximative
solutions has a convergent subsequence (z(nj)

γ )j∈N ⊂ W1,∞([0, Te],Ae), i.e.

‖z(nj )
γ − zγ‖L∞([0,Te],R3N ) → 0 for j → ∞ (4.18)

for some zγ ∈ W1,∞([0, Te],Ae). The subsequence satisfies the uniform estimate

‖z(nj)
γ (t) − z

(nj)
γ (τ)‖ ≤ clip|t − τ | for all t, τ ∈ [0, Te] and j ∈ N (4.19)

and with the Lipschitz constant clip being independent of γ, see (4.8).

Proof: The result directly follows from the previous Theorem 4.7 and the Arzela-Ascoli
theorem.

4.3 Existence

In this section we prove that the limit function zγ ∈ W1,∞([0, Te],Ae) of Theorem 4.8 represents
a solution of the simplified problem. In literature this step is well known if the dissipation
functional is continuous with respect to z, for example see [ScM07]. Thus it is sufficient to show
Ψγ to be continuous on a set D, which contains all discrete solutions. For j ∈ Is we introduce
the closed domain

D(j) :=
{

(t, z) ∈ [0, Te] ×Ae : σ(j)(t, z) ≤ 0 or z(j) ∈ ∂S
}
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and define the general domain D via

D := ([0, Te] ×Ae) ∩
⎛
⎝⋂

j∈Is

D(j)

⎞
⎠ . (4.20)

Lemma 4.9 (Continuity of Ψ(j)
γ ) Let the Assumptions (N0)–(N2) hold. Then each discrete

solution (zk)k=0,...,n of the Incremental Problem (IPγ) satisfies

(tk, zk) ∈ D for all k = 0, . . . , n.

For j ∈ Is we find for single dissipation functionals

Ψ(j)
γ ∈ C(D(j) × R

3N , [0,∞)) for all j = 1, . . . , N.

Proof: For the inclusion it is sufficient to prove (tk, zk) ∈ D(j) for all j ∈ Is. For this
we assume z

(j)
k �∈ ∂S or equivalently (zk)3j > 0. Thus, for all λ ∈ [0, (zk)3j ], we may choose

y := zk−λe3j ∈ Ae as a test state in (IPγ). Due to Assumption (N2) the dissipation is invariant
along the sliding direction v = e3j and we find 0 ≤ E(tk, zk−λe3j)−E(tk, zk). Dividing by λ > 0
and taking the limit λ → 0 we find σ(j)(tk, zk) ≤ 0 and thus (tk, zk) ∈ D(j).

For the second part we recall the definition

Ψ(j)
γ (t, z, v) =

{ (
σ(j)(t, z) − γ

)
+
‖M(j)(z(j))v‖ if z(j) ∈ ∂S,

0 if z(j) ∈ intS.

The function Ψ(j)
γ is upper semi-continuous and positive. Thus it is sufficient to consider a

sequence (tn, zn, vn)n∈N ⊂ D(j)×R
3 with a limit (t, z, v) ∈ D(j)×R

3 that satisfies Ψ(j)
γ (t, z, v) >

0. This implies z(j) ∈ ∂S and σ(j)(t, z) > γ. Since σ(j) is continuous there exists n0 ∈ N such
that σ(j)(tn, zn) > 0 for all n ≥ n0. By the definition of D(j) this implies z

(j)
n ∈ ∂S for all

n ≥ n0. Thus for n ≥ n0 we find Ψ(j)
γ (tn, zn, vn) and Ψ(j)

γ (t, z, v) being both defined by the
continuous function

(
σ(j)(t, z) − γ

)
+
‖M(j)(z(j)v‖.

Since all approximative solutions satisfy z
(n)
γ (0) = Z0 the convergence (4.18) implies the initial

condition
zγ(0) = Z0. (4.21)

From the above continuity result 4.9 and Lemma 3.12 in [ScM07] we derive the stability.

Lemma 4.10 (Stability of the limit function z) If the Assumptions (N0)–(N4) hold then
the limit function zγ ∈ W1,∞([0, Te],Ae) of Theorem 4.8 is stable for all t ∈ [0, Te], i.e.

E(t, zγ(t)) ≤ E(t, y) + Ψγ (t, zγ(t), y − zγ(t)) for all y ∈ Ae. (S)

A direct consequence of the stability (S) of the limit function zγ ∈ W1,∞([0, Te],Ae) shown in
the previous Lemma 4.10 is the following lower energy estimate, see [Mie05] Proposition 5.7 for
a first proof of this fact.
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Lemma 4.11 (Lower energy estimate) Let (N0)–(N4) hold and assume the limit function
z ∈ W1,∞([0, Te],Ae) to satisfy for all times t ∈ [0, Te] the stability condition (S). Then we find
the lower energy estimate

E(t2, z(t2)) +
∫ t2

t1

Ψγ

(
τ, z(τ), ż(τ)

)
dτ ≥ E(t1, z(t1)) +

∫ t2

t1

∂tE(τ, z(τ)) dτ

for all t1, t2 ∈ [0, Te] with t1 ≤ t2.

Before we prove the upper energy estimate we recall that the lower energy energy estimate of
Lemma 4.11 is equivalent to the monotonicity of the function

f(t) := E(t, z(t)) +
∫ t

0
Ψγ

(
τ, z(τ), ż(τ)

)
dτ −

∫ t

0
∂tE(τ, z(τ))

on the interval [0, Te]. The next lemma states the opposite estimate but only for the initial and
end time, i.e. f(Te) ≤ f(0). Together with the monotonicity this proves the equality f(t) = f(0)
for all t ∈ [0, Te]. Recalling the definition of f it is easy to see that this equality is equivalent
to the desired energy equality (E).

For the following result see Lemma 4.9 above and Lemma 3.14 in [ScM07].

Lemma 4.12 (upper energy estimate) We assume (N0)–(N4), then the limit function z
satisfies the upper energy estimate

E(Te, z(Te)) +
∫ Te

0
Ψγ

(
τ, z(τ), ż(τ)

)
dτ ≤ E(0, Z0) +

∫ Te

0
∂tE(τ, z(τ))dτ. (4.22)

Summarizing the results 4.10–4.12 we deduce the following theorem.

Theorem 4.13 (Existence for Problem 3.1) Let us assume (N0)–(N4). Then there exists
a constant clip > 0 independent of γ and a solution zγ ∈ W1,∞([0, Te],Ae) of Problem 3.1
satisfying for all τ1, τ2 ∈ [0, Te]

‖zγ(τ2) − zγ(τ1)‖ ≤ clip|τ2 − τ1| and (t, zγ(t)) ∈ D (4.23)

with D as defined in (4.20).

5 Solving the problem

In this section we solve the N particle Problem 2.1. We construct a solution considering a
sequence of simplified solutions zγn whose parameters converge to zero, i.e γn → 0 for n → 0.

We start with a technical lemma.

Lemma 5.1 (Lower sequentially semi-continuity) Let z, z(n) ∈ W1,∞([0, Te],Ae) satisfy

‖z(n) − z‖C0([0,Te],R3N ) → 0, (n → ∞) and ‖ż(n)‖L∞([0,Te],R3N ) ≤ clip. (5.1)

with (t, z(t)) ∈ D for all t ∈ [0, Te]. Then for t ∈ [0, Te] we find∫ t

0
Ψγ(τ, z(τ), ż(τ))dτ ≤ lim inf

n→∞

∫ t

0
Ψγ(τ, z(τ), ż(n)(τ))dτ.
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Proof: The assumptions in (5.1) assure the sequence (z(n))n∈N to be uniformly bounded in
W1,∞([0, Te], R3N ). Thus, for all 1 ≤ p < ∞ there exists a subsequence, which we still denote
by (z(n))n∈N, such that

z(n) ⇀ z in W1,p([0, Te], R3N ).

By a standard result of the direct calculus of variations, see [Dac08] the operator I(u) :=∫ t
0 Ψγ(t, z(t), u̇(t))dt is sequentially weakly lower semi-continuous on W1,p([0, Te], R3N ) if the

function g(t, v) := Ψγ(t, z(t), v) is positive, continuous and convex with respect to v ∈ R
3N .

Theorem 5.2 We assume (N0)–(N4). Then there exists a time T∗ ∈ (0, Te] and a solution
z ∈ W1,∞([0, T∗],A) of Problem 2.1, i.e. for all t ∈ [0, T∗] we have

E(t, z(t)) ≤ E(t, y) + Ψ(t, z(t), y − z(t)) for all y ∈ A and (S)

E(t, z(t)) +
∫ t

0
Ψ(s, z(s), ż(s)) ds = E(0, z(0)) +

∫ t

0
∂sE(s, z(s)) ds. (E)

Proof: We consider a sequence of parameters (γn)n∈N ⊂ (0,∞) with γn → 0 for n → ∞. We
denote by (zγn)n∈N ⊂ W1,∞([0, Te],Ae) the sequence of solutions of the corresponding simplified
Problems 3.1. The Existence Theorem 4.13 shows the existence of the solutions and provides
the uniform Lipschitz estimate (4.23), i.e.

‖zγn(τ2) − zγn(τ1)‖ ≤ clip|τ2 − τ1| and (τ, zγn(τ)) ∈ D
for all τ1, τ2, τ ∈ [0, Te], n ∈ N and D as defined in (4.20). Since clip > 0 is independent of
n ∈ N and all solutions satisfy the same initial condition zγn(0) = Z0 we can apply the Arzela-
Ascoli theorem and we extract a convergent subsequence, which we still denote by (zγn)n∈N ⊂
W1,∞([0, Te],Ae). Thus there exists a limit function z ∈ W1,∞([0, Te],Ae) such that

‖zγn − z‖L∞([0,Te],Ae) → 0 for n → ∞. (5.2)

In the following we prove that z is our desired solution. But let us present a further convergence
result first. There exists cte > 0 such that for all j ∈ I, z ∈ Ae and v ∈ R

3N we have∣∣∣Ψ(j)
γ (t, z, v) − Ψ(j)(t, z, v)

∣∣∣ ≤ cte‖v‖γ. (5.3)

By definition this difference equals
∣∣∣∣(σ(j)(t, z) − γ

)
+

− σ(j)(t, z)
+

∣∣∣∣ ‖M(j)(z(j))v‖. Finally we de-

fine cte := sup
{‖M(j)(z(j))‖ : j ∈ I, z ∈ Ae

}
such that the estimate (5.3) follows directly.

We next show that z satisfies an (S)&(E)-formulation. For all n ∈ N and t ∈ [0, Te] we have

E(t, zγn(t)) ≤ E(t, y) + Ψγn(t, zγn(t), y − zγn(t)) for all y ∈ Ae and (Sn)

E(t, zγn(t)) +
∫ t

0
Ψγn(s, zγn(s), żγn(s)) ds = E(0, Z0)) +

∫ t

0
∂sE(s, zγn(s)) ds. (En)

Passing to the limit we see due to (5.2) and (N1) that we can replace zγn by z in all energy
terms. Concerning the dissipational terms we replace Ψγn by Ψc,s :=

∑
j∈Ic∪Is

Ψ(j). Note that

we have Ψγ − Ψc,s =
∑

j∈Is

(
Ψ(j)

γ − Ψ(j)
)
. The dissipation in (Sn) is estimated as follows (we

drop any dependence on t to keep the formula short), for j ∈ Is we have

|Ψ(j)
γn

(zγn, y−zγn) − Ψ(j)(z, y−z)| ≤ |Ψ(j)
γn

(zγn, y−zγn) − Ψ(j)(zγn, y−zγn)|
+ |Ψ(j)(zγn, y−zγn) − Ψ(j)(z, y−z)|.
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The first difference converges due to (5.3). For the second difference we exploit (t, zγn(t)) ∈ D
and Ψ(j) ∈ C(D×R

3N , R), see Lemma 4.9. Hence the uniform convergence (5.2) is sufficient to
pass to the limit and to find for all t ∈ [0, 0] the stability condition

E(t, z(t)) ≤ E(t, y) + Ψc,s(t, z(t), y − z(t)) for all y ∈ Ae. (Sc,s)

Applying Lemma 4.11 we deduce for all t ∈ [0, Te] the lower energy estimate

E(t, z(t)) +
∫ t

0
Ψc,s(s, z(s), ż(s)) ds ≥ E(0, Z0)) +

∫ t

0
∂sE(s, z(s)) ds.

It remains us to derive the upper energy estimate and our starting point is the equation (En).
We replace the integrand Ψγn(s, zγn(s), żγn(s)) by Ψc,s(s, z(s), żγn(s)) doing the same estimates
as above. For this note that Ψ(j) is uniformly continuous on D×Bclip(0). Taking the lim inf in
(En), see also Lemma 5.1, we find for the dissipational integral∫ t

0
Ψc,s(s, z(s), ż(s)) ds ≤ lim inf

n→∞

∫ t

0
Ψc,s(s, z(s), żγn (s)) ds.

We thus established the upper energy estimate and together with the above lower estimate this
proves

E(t, z(t)) +
∫ t

0
Ψc,s(s, z(s), ż(s)) ds = E(0, Z0)) +

∫ t

0
∂sE(s, z(s)) ds. (Ec,s)

All in all, we have shown that the function z satisfies an (Sc,s)&(Ec,s)-formulation.

In this last paragraph we shorten the time interval and choose a new final time 0 < T∗ ≤
Te. We first choose T∗ such that the particles z(j), j ∈ If , which are initially out of con-
tact remain out of contact up to a time T∗. This allows us to replace Ψc,s by Ψ. Thus
we established (E) while in the stability condition (Sc,s) we find still have to replace Ae =
A ∩ Qle ∩ (

⋂
j∈Ic

∂A(j)) by the set A. Up to now z(t) solves the convex minimizing prob-
lem z = argmin {E(t, y) + Ψ(t, z(t), y − z(t)) : y ∈ Ae}. Choosing T∗ ≤ min{le/(2clip), Te} we
find z(t) ∈ intQle(Z0) for all t ∈ [0, T∗] and thus drop the set Qle in the definition of Ae

and replace the set Ae by A∗ := A ∩ ⋂j∈Ic
∂A(j) in (Sc,s). To replace A∗ by A we use the

Moreau-Rockafellar-Theorem A.3 to rewrite the stability conditions (Sc,s) and (S) as inclusions

0 ∈ DE(t, z(t)) + ∂vΨ(t, z(t), 0) + ∂XA∗(z(t)) ⊂ R
3N∗

.

A direct calculus shows that the constraint forces ∂XA∗ and ∂XA differ only in the 3j-th columns
for j ∈ Ic. The corresponding column in the above force balance law reads

0 ∈ σ(j)(t, z(t)) + {0} + R
∗.

The {0} corresponds to ∂vΨ since dissipation is invariant in sliding directions, which are normal
to the obstacle, see (N2). Further, for j ∈ Ic we have by definition σ(j)(0, Z0) > 0 and we
further shorten T∗ ∈ (0, Te] such that σ(j)(t, z(t)) ≥ 0 holds for all j ∈ Ic and t ∈ [0, T∗]. This
allows us to replace R

∗ by (−∞, 0] or equivalently ∂XA∗ by ∂XA. Applying once again Theorem
A.3 we find (S) for all t ∈ [0, T∗].

A Subdifferential calculus

In the Appendix we present some results from convex analysis, which are reused in the whole
article.
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Definition A.1 (Subdifferential) Let f : R
n → (−∞,∞] for z ∈ R

n we define

∂f(z) :=
{

v∗ ∈ R
n∗

: v∗(y − z) ≤ f(y) − f(z) for all y ∈ R
n
}

.

We call the set ∂f(z) ⊂ R
n∗

the subdifferential of f in z.

We now present two classical results from convex analysis. Both can be found in the book
[EkT76], see Proposition 5.3 and 5.6 there.

Theorem A.2 Let f : R
n → R be convex and assume for z ∈ R

n the Gateaux-derivative
Df(z) ∈ R

n∗
to exist then we have

∂f(z) = {Df(z)}.

We present the following result in a simplified form. It was established by Moreau [Mor66] and
Rockafellar [Roc66].

Theorem A.3 (Moreau-Rockafellar 1966) For j = 1, 2 let fj : R
n → (−∞,∞] be a convex,

lower semi-continuous function. If max{f1(z), f2(z)} < ∞ holds for some point z ∈ R
n and f1

is continuous in z, then we have:

∂(f1 + f2)(z) = ∂f1(z) + ∂f2(z).
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