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Abstrat. In this paper we study the metastable behavior of one of the simplest disor-dered spin system, the random �eld Curie-Weiss model. We will show how the potentialtheoreti approah an be used to prove sharp estimates on apaities and metastableexit times also in the ase when the distribution of the random �eld is ontinuous. Pre-vious work was restrited to the ase when the random �eld takes only �nitely manyvalues, whih allowed the redution to a �nite dimensional problem using lumping teh-niques. Here we produe the �rst genuine sharp estimates in a ontext where entropy isimportant.
1. INTRODUCTION AND MAIN RESULTSThe simplest example of disordered mean �eld models is the random �eld Curie-Weissmodel. Here the state spae is SN = {−1, 1}N , where N is the number of partiles of thesystem. Its Hamiltonian is

HN [ω](σ) ≡ −N
2

(
1

N

∑

i∈Λ

σi

)2

−
∑

i∈Λ

hi[ω]σi, (1.1)where Λ ≡ {1, . . . , N} and hi, i ∈ Λ, are i.i.d. random variables on some probabilityspae (Ω,F ,Ph). For sake of onveniene, we will assume throughout this paper that theommon distribution of h has bounded support.The dynamis of this model has been studied before: dai Pra and den Hollander stud-ied the short-time dynamis using large deviation results and obtained the analog of theMKeane-Vlasov equations [16℄. Mathieu and Pio [15℄ and Fontes, Mathieu, and Pio[12℄, onsidered onvergene to equilibrium in a partiularly simple ase where the random�eld takes only the two values ±ε. Finally, Bovier et al. [6℄ analyzed this model in thease when h takes �nitely many values, as an example of the use of the potential theoretiapproah to metastability. In this artile we extend this analysis to the ase of random�elds with ontinuous distributions, while at the same time improving the results by givingsharp estimates of transition times between metastable states.The present paper should be seen, beyond the interest presented by the model as suh, asa �rst ase study in the attempt to derive preise asymptotis of metastable harateristisin kineti Ising models in situations where neither the temperature tends to zero nor anexat redution to low-dimensional models is possible. While the RFCW model is ertainlyone of the simplest examples of this lass, we feel that the general methodology developedhere will be useful in a muh wider lass of systems.
1.1. Gibbs measure and order parameter. The static picture. The equilibrium statisti-al mehanis of the RFCW model was analyzed in detail in [1℄ and [13℄. We give a verybrief review of some key features that will be useful later. As usual, we de�ne the Gibbsmeasure of the model as the random probability measure

µβ,N [ω](σ) ≡ 2−Ne−βHN [ω](σ)

Zβ,N [ω]
, (1.2)where the partition funtion is de�ned as

Zβ,N [ω] ≡ Eσe
−βHN [ω](σ) ≡ 2−N

∑

σ∈SN

e−βHN [ω](σ). (1.3)We de�ne the total magnetization as
mN (σ) ≡ 1

N

∑

i∈Λ

σi. (1.4)
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The magnetization will be the order parameter of the model, and we de�ne its distributionunder the Gibbs measures as the indued measure,
Qβ,N ≡ µβ,N ◦m−1

N , (1.5)on the set of possible values ΓN ≡ {−1,−1 + 2/N, . . . , 1}.Let us begin by writing
Zβ,N [ω]Qβ,N [ω](m) = exp

(
Nβ

2
m2

)
Z1

β,N [ω](m) (1.6)where
Z1

β,N [ω](m) ≡ Eσ exp

(
β
∑

i∈Λ

hiσi

)1{N−1
P

i∈Λ σi=m} ≡ E
h
σ1{N−1

P
i∈Λ σi=m}. (1.7)For simpliity we will in the sequel identify funtions de�ned on the disrete set ΓN withfuntions de�ned on [−1, 1] by setting f(m) ≡ f([2Nm]/2N). Then, for m ∈ (−1, 1),

Z1
N (m) an be expressed, using sharp large deviation estimates [10℄, as

Z1
β,N [ω](m) =

exp (−NIN [ω](m))√
Nπ
2 /I ′′N [ω](m)

(1 + o(1)) , (1.8)where o(1) goes to zero as N ↑ ∞. This means that we an express the right-hand side in(1.6) as
Zβ,N [ω]Qβ,N [ω](m) =

√
2I′′N [ω](m)

Nπ exp (−NβFβ,N [ω](m)) (1 + o(1)) , (1.9)where
Fβ,N [ω](m) ≡ −1

2
m2 +

1

β
IN [ω](m). (1.10)Here IN [ω](y) is the Legendre-Fenhel transform of the log-moment generating funtion

UN [ω](t) ≡ 1

N
ln E

h
σ exp

(
t
∑

i∈Λ

σi

)
(1.11)

=
1

N

∑

i∈Λ

ln cosh (t+ βhi) .Above we have indiated the random nature of all funtions that appear by making theirdependene on the random parameter ω expliit. To simplify notation, in the sequel thisdependene will mostly be dropped.We are interested in the behavior of this funtion near ritial points of Fβ,N . An importantonsequene of Equations (1.6) through (1.11) is that if m∗ is a ritial point of Fβ,N , thenfor |v| ≤ N−1/2+δ,
Qβ,N (m∗ + v)

Qβ,N (m∗)
= exp

(
−βN

2
a(m∗)v2

)
(1 + o(1)) , (1.12)with

a(m∗) ≡ F ′′
β,N (m∗) = −1 + β−1I ′′N (m∗). (1.13)Now, if m∗ is a ritial point of Fβ,N , then

m∗ = β−1I ′N (m∗) ≡ β−1t∗, (1.14)or
βm∗ = I ′N (m∗) = t∗. (1.15)
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Sine IN is the Legendre-Fenhel transform of UN , I ′N (x) = U ′−1
N (x), so that

m∗ = U ′
N (βm∗) ≡ 1

N

∑

i∈Λ

tanh(β(m∗ + hi))). (1.16)Finally, using that at a ritial point, I ′′N,ℓ(m
∗) = 1

U ′′
N,ℓ(t

∗) , we get the alternative expression
a(m∗) = −1 +

1

βU ′′
N (βm∗)

= −1 +
1

β
N

∑
i∈Λ

(
1 − tanh2(β(m∗ + hi))

) . (1.17)We see that, by the law of large numbers, the set of ritial points onverges, Ph-almostsurely, to the set of solutions of the equation
m∗ = Eh tanh (β (m∗ + h)) , (1.18)and the seond derivative of Fβ,N (m∗) onverges to

lim
N→∞

F ′′
β,N (m∗) = −1 +

1

βEh

(
1 − tanh2(β(m∗ + h))

) . (1.19)Thus, m∗ is a loal minimum if
βEh

(
1 − tanh2(β(m∗ + h))

)
< 1, (1.20)and a loal maximum if

βEh

(
1 − tanh2(β(m∗ + h))

)
> 1. (1.21)(The ases where βEh

(
1 − tanh2(β(m∗ + h))

)
= 1 orrespond to seond order phase tran-sitions and will not be onsidered here).

Proposition 1.1. Let m∗ be a critical point of Qβ,N . Then, Ph-almost surely, for all but
finitely many values of N ,

Zβ,NQβ,N (m∗) =
exp (−βNFβ,N (m∗)) (1 + o(1))√

Nπ
2

∣∣E
(
1 − tanh2(β(m∗ + h))

)∣∣
(1.22)

with

Fβ,N (m∗) =
(m∗)2

2
− 1

βN

∑

i∈Λ

ln cosh (β(m∗ + hi)) . (1.23)From this disussion we get a very preise piture of the distribution of the order parameter.
1.2. Glauber dynamics. We will onsider for de�niteness disrete time Glauber dynamiswith Metropolis transition probabilities

pN [ω](σ, σ′) ≡ 1

N
exp

(
−β[HN [ω](σ′) −HN [ω](σ)]+

)
, (1.24)if σ and σ′ di�er on a single oordinate,

pN [ω](σ, σ) ≡ 1 −
∑

σ′∼σ

1

N
exp

(
−β[HN [ω](σ′) −HN [ω](σ)]+

)
, (1.25)and pN (σ, σ′) = 0 in all other ases. We will denote the Markov hain orresponding tothese transition probabilities σ(t) and write Pν[ω] ≡ Pν , for the law of this hain withinitial distribution ν, and we will set Pσ ≡ Pδσ . As is well known, this hain is ergodiand reversible with respet to the Gibbs measure µβ,N [ω], for eah ω. Note that we mightalso study hains with di�erent transition probabilities that are reversible with respetto the same measures. Details of our results will depend on this hoie. The transitionmatrix assoiated with these transition probabilities will be alled PN , and we will denoteby LN ≡ PN − 1 the (disrete) generator of the hain.
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Our main result will be sharp estimates for mean hitting times between minima of thefuntion Fβ,N (m) de�ned in (1.10).More preisely, for any subset A ⊂ SN , we de�ne the stopping time
τA ≡ inf{t > 0|σ(t) ∈ A}. (1.26)We also need to de�ne, for any two subsets A,B ⊂ SN , the probability measure on A givenby

νA,B(σ) =
µβ,N (σ)Pσ[τB < τA]∑

σ∈A µβ,N (σ)Pσ[τB < τA]
. (1.27)We will be mainly onerned with sets of on�gurations with given magnetization. Forany I ∈ ΓN , we thus introdue the notation S[I] ≡ {σ ∈ SN : mN (σ) ∈ I} and state thefollowing:

Theorem 1.2. Assume that β and the distribution of the magnetic field are such that there
exist more than one local minimum of Fβ,N . Let m∗ be a local minimum of Fβ,N , M ≡
M(m∗) be the set of minima of Fβ,N such that Fβ,N (m) < Fβ,N (m∗), and z∗ be the minimax
between m and M , i.e. the lower of the highest maxima separating m from M to the left
respectively right. Then, Ph-almost surely, for all but finitely many values of N ,

EνS[m∗],S[M]
τS[M ] = exp (βN [Fβ,N (z∗) − Fβ,N (m∗)]) (1.28)

× 2πN

β|γ̄1|

√
βEh

(
1 − tanh2 (β(z∗ + h))

)
− 1

1 − βEh

(
1 − tanh2 (β(m∗ + h))

) (1 + o(1)) ,

where γ̄1 is the unique negative solution of the equation

Eh


(1 − tanh(β(z∗ + h))) exp (−2β [z∗ + h]+)

exp (−2β[z∗+h]+)

β(1+tanh(β(z∗+h))) − 2γ


 = 1. (1.29)

Note that we have the explicit representation for the random quantity

Fβ,N (z∗) − Fβ,N (m∗) =
(z∗)2 − (m∗)2

2
(1.30)

− 1

βN

∑

i∈Λ

[ln cosh (β(z∗ + hi)) − ln cosh (β(m∗ + hi))] .The proof of this result on mean transition times relies on the following result on apaities(for a de�nition see Eq. (2.5) in Setion 2 below).
Theorem 1.3. With the same notation as in Theorem 1.2 we have that

Zβ,Nap (S[m∗], S[M ]) =
β|γ̄1|
2πN

exp (−βNFβ,N (z∗)) (1 + o(1))√
βEh

(
1 − tanh2 (β(z∗ + h))

)
− 1

. (1.31)The proof of Theorem 1.3 is the ore of the present paper. As usual, the proof of anupper bound of the form (1.31) will be relatively easy. The main di�ulty is to prove aorresponding lower bound. The main ontribution of this paper is to provide a method toprove suh a lower bound in a situation where the entropy of paths annot be negleted.Before disussing the methods of proof of these results, it will be interesting to omparethis theorem with the predition of the simplest unontrolled approximation.The naive approximation. A widespread heuristi piture for metastable behavior ofsystems like the RFCW model is based on replaing the full Markov hain on SN by ane�etive Markov hain on the order parameter, i.e. by a nearest neighbor random walk on
ΓN with transition probabilities that are reversible with respet to the indued measure,
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Qβ,N . The ensuing model an be solved exatly. In the absene of a random magneti �eld,this replaement is justi�ed sine the image of σ(t), m(t) ≡ mN (σ(t)), is a Markov hainreversible w.r.t. Qβ,N ; unfortunately, this fat relies on the perfet permutation symmetryof the Hamiltonian of the Curie-Weiss model and fails to hold in the presene of random�eld.A natural hoie for the transition rates of the heuristi dynamis is
rN [ω](m,m′) ≡ 1

Qβ,N [ω](m)

∑

σ:mN (σ)=m

µβ,N [ω](σ)
∑

σ′:mN (σ′)=m′

pN [ω](σ, σ′), (1.32)whih are di�erent from zero only if m′ = m ± 2/N or if m = m′. The ensuing Markovproess is a one-dimensional nearest neighbor random walk for whih most quantities ofinterest an be omputed quite expliitly by elementary means (see e.g. [17, 3℄). Inpartiular, it is easy to show that for this dynamis,
EνS[m∗],S[M]

τS[M ] = exp (βN [Fβ,N (z∗) − Fβ,N (m∗)])

× 2πN

β|a(z∗)|

√
βEh

(
1 − tanh2 (β(z∗ + h))

)
− 1

1 − βEh

(
1 − tanh2 (β(m∗ + h))

) (1 + o(1)) ,where a(z∗) is de�ned in (1.19).The predition of the naive approximation is slightly di�erent from the exat answer, albeitonly by a wrong prefator. One may of ourse onsider this as a striking on�rmation ofthe quality of the naive approximation; from a di�erent angle, this shows that a trueunderstanding of the details of the dynamis is only reahed when the prefators of theexponential rates are known (see [14℄ for a disussion of this point).The piture above is in some sense generi for a muh wider lass of metastable systems:on a heuristi level, one wants to think of the dynamis on metastable time sales to be welldesribed by a di�usion in a double (or multi) well potential. While this annot be maderigorous, it should be possible to �nd a family of mesosopi variables with orresponding(disrete) di�usion dynamis that asymptotially reprodue the metastable behavior of thetrue dynamis. The main message of this paper is that suh a piture an be made rigorouswithin the potential theoreti approah.
Acknowledgments. The authors thank Alexandre Gaudillière, Frank den Hollander, andCristian Spitoni for useful disussions on metastability.

2. SOME BASIC CONCEPTS FROM POTENTIAL THEORYOur approah to the analysis of the dynamis introdued above will be based on the ideasdeveloped in [6, 7, 8℄ to analyze metastability through a systemati use of lassial potentialtheory. Let us reall the basi notions we will need.For two disjoint sets A,B ⊂ SN , the equilibrium potential, hA,B, is the harmoni funtion,i.e. the solution of the equation
(LhA,B)(σ) = 0, σ 6∈ A ∪B, (2.1)with boundary onditions
hA,B(σ) =

{
1, if σ ∈ A

0, if σ ∈ B
. (2.2)The equilibrium measure is the funtion

eA,B(σ) ≡ −(LhA,B)(σ) = (LhB,A)(σ), (2.3)
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whih learly is non-vanishing only on A and B. An important formula is the disreteanalog of the �rst Green's identity: Let D ⊂ SN and Dc ≡ SN \D. Then, for any funtion
f , we have

1

2

∑

σ,σ′∈SN

µ(σ)pN (σ, σ′)[f(σ) − f(σ′)]2 (2.4)

= −
∑

σ∈D

µ(σ)f(σ)(Lf)(σ) −
∑

σ∈Dc

µ(σ)f(σ)(Lf)(σ).In partiular, for f = hA,B , we get that
1

2

∑

σ,σ′∈SN

µ(σ)pN (σ, σ′)[hA,B(σ) − hA,B(σ′)]2 (2.5)

=
∑

σ∈A

µ(σ)eA,B(σ) ≡ ap(A,B),where the right-hand side is alled the apaity of the apaitor A,B. The funtionalappearing on the left-hand sides of these relations is alled the Dirihlet form or energy,and denoted
ΦN (f) ≡ 1

2

∑

σ,σ′∈SN

µ(σ)pN (σ, σ′)[f(σ) − f(σ′)]2. (2.6)As a onsequene of the maximum priniple, the funtion hA,B is the unique minimizer of
ΦN with boundary onditions (2.2), whih implies the Dirihlet priniple:ap(A,B) = inf

h∈HA,B

ΦN (h), (2.7)where HA,B denotes the spae of funtions satisfying (2.2).Equilibrium potential and equilibrium measure have an immediate probabilisti interpre-tation, namely
Pσ[τA < τB] =

{
hA,B(σ), ifσ 6∈ A ∪B
eB,A(σ), ifσ ∈ B.

(2.8)An important observation is that equilibrium potentials and equilibrium measures alsodetermine the Green's funtion. In fat (see e.g. [7, 4℄),
hA,B(σ) =

∑

σ′∈A

GSN \B(σ, σ′)eA,B(σ′) (2.9)In the ase then A is a single point, this relation an be solved for the Green's funtion togive
GSN\B(σ, σ′) =

µ(σ′)hσ,B(σ)

µ(σ)eσ,B(σ)
. (2.10)This equation is perfet if the ardinality of the state spae does not grow too fast. In ourase, however, it is of limited use, sine both numerator and denominator tend to be verylose to zero for the wrong reason. However, (2.9) remains useful. In partiular, it givesthe following representation for mean hitting times

∑

σ∈A

µ(σ)eA,B(σ)EστB =
∑

σ′∈SN

µ(σ′)hA,B(σ′), (2.11)or, using de�nition (1.27)
EνA,B

τB =
1ap(A,B)

∑

σ′∈SN

µ(σ′)hA,B(σ′). (2.12)
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From these equations we see that our main task will be to obtain preise estimates onapaities and some reasonably aurate estimates on equilibrium potentials. In previousappliations [6, 7, 8, 9, 5℄, three main ideas were used to obtain suh estimates:(i) Upper bounds on apaities an be obtained using the Dirihlet variational priniplewith judiiously hosen test funtions.(ii) Lower bounds were usually obtained using the monotoniity of apaities in thetransition probabilities (Raighley's priniple). In most appliations, redution ofthe network to a set of parallel 1-dimensional hains was su�ient to get goodbounds.(iii) The simple renewal estimate hA,B(x) ≤ ap(x,A)ap(x,B) was used to bound the equilibriumpotential through apaities again.These methods were su�ient in previous appliations essentially beause entropy werenot an issue there. In the models at hand, entropy is important, and due to the abseneof any symmetry, we annot use the trik to deal with entropy by a mapping of the modelto a low-dimensional one, as an be done in the standard Curie-Weiss model and in theRFCW model when the magneti �eld takes only �nitely many values [15, 6℄.Thus we will need to improve on these ideas. In partiular, we will need a new approahto lower bounds for apaities. This will be done by exploiting a dual variational repre-sentation of apaities in terms of �ows, due to Berman and Konsowa [2℄. Indeed, one ofthe main messages of this paper is to illustrate the power of this variational priniple.Random path representation and lower bounds on apaities. It will be onvenientto think of the quantities µ(σ)pN (σ, σ′) as ondutanes, c(σ, σ′), assoiated to the edges
e = (σ, σ′) of the graph of allowed transitions of our dynamis. This interpretation isjusti�ed sine, due to reversibility, c(σ, σ′) = c(σ′, σ) is symmetri.For purposes of the exposition, it will be useful to abstrat from the spei� model and toonsider a general �nite onneted graph, (S, E) suh that whenever e = (a, b) ∈ E , thenalso −e ≡ (b, a) ∈ E . Let this graph be endowed with a symmetri funtion, c : E → R+,alled ondutane.Given two disjoint subsets A,B ⊂ S de�ne the apaity,ap(A,B) =

1

2
min

h|A=0, h|B=1

∑

e=(a,b)∈E
c(a, b) (h(b) − h(a))2 . (2.13)

Definition 2.1. Given two disjoint sets, A,B ⊂ S, a non-negative, cycle free unit flow, f ,
from A to B is a function f : E → R+∪{0}, such that the following conditions are verified:

(i) if f(e) > 0, then f(−e) = 0;
(ii) f satisfies Kirchoff ’s law, i.e. for any vertex a ∈ S \ (A ∪B),

∑

b

f(b, a) =
∑

d

f(a, d); (2.14)

(iii)
∑

a∈A

∑

b

f(a, b) = 1 =
∑

a

∑

b∈B

f(a, b); (2.15)

(iv) any path, γ, from A to B such that f(e) > 0 for all e ∈ γ, is self-avoiding.

We will denote the space of non-negative, cycle free unit flows from A to B by UA,B.
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An important example of a unit �ow an be onstruted from the equilibrium potential,
h∗, i.e. the unique minimizer of (2.13). Sine h∗ satis�es, for any a ∈ S \ (A ∪B),

∑

b

c(a, b)(h∗(b) − h∗(a)) = 0, (2.16)one veri�es easily that the funtion, f∗, de�ned by
f∗(a, b) ≡ 1ap(A,B)

c(a, b) (h∗(a) − h∗(b))+ , (2.17)is a non-negative unit �ow from A to B. We will all f∗ the harmoni �ow.The key observation is that any f ∈ UA,B gives rise to a lower bound on the apaityap(A,B), and that this bound beomes sharp for the harmoni �ow. To see this weonstrut from f a stopped Markov hain X = (X0, . . . ,Xτ ) as follows: For eah a ∈ S \Bde�ne F (a) =
∑

b f(a, b).We de�ne the initial distribution of our hain as P
f (a) = F (a), for a ∈ A, and zerootherwise. The transition probabilities are given by

qf (a, b) =
f(a, b)

F (a)
, (2.18)for a 6∈ B, and the hain is stopped on arrival in B. Notie that by our hoie of the initialdistribution and in view of (2.18) X will never visit sites a ∈ S \B with F (a) = 0.Thus, given a trajetory X = (a0, a1, . . . , ar) with a0 ∈ A, ar ∈ B and aℓ ∈ S \ (A∪B) for

ℓ = 0, . . . , r − 1,
P

f (X = X ) =

∏r−1
ℓ=0 f(eℓ)∏r−1
ℓ=0 F (aℓ)

, (2.19)where eℓ = (aℓ, aℓ+1) and we use the onvention 0/0 = 0. Note that, with the abovede�nitions, the probability that X passes through an edge e is
P

f (e ∈ X) =
∑

X
P

f (X )1{e∈X} = f(e). (2.20)Consequently, we have a partition of unity,1{f(e)>0} =
∑

X

P
f (X )1{e∈X}

f(e)
. (2.21)We are ready now to derive our f -indued lower bound: For every funtion h with h|A = 0and h|B = 1,

1

2

∑

e

c(e) (∇eh)
2 ≥

∑

e:f(e)>0

c(e) (∇eh)
2

=
∑

X

∑

e∈X
P

f (X )
c(e)

f(e)
(∇eh)

2 .As a result, interhanging the minimum and the sum,ap(A,B) ≥
∑

r

∑

X=(a0,...,ar)

P
f (X ) min

h(a0)=0, h(ar)=1

r−1∑

0

c(aℓ, aℓ+1)

f(aℓ, aℓ+1)
(h(aℓ+1) − h(aℓ))

2

=
∑

X
P

f (X )

[
∑

e∈X

f(e)

c(e)

]−1

. (2.22)
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Sine for the equilibrium �ow, f∗,
∑

e∈X

f∗(e)
c(e)

=
1ap(A,B)

, (2.23)with P
f∗-probability one, the bound (2.22) is sharp.Thus we have proven the following result from [2℄:

Proposition 2.2. Let A,B ⊂ S. Then, with the notation introduced above,ap(A,B) = sup
f∈UA,B

E
f

[
∑

e∈X

f(e)

c(e)

]−1

(2.24)

3. COARSE GRAINING AND THE MESOSCOPIC APPROXIMATIONThe problem of entropy fores us to investigate the model on a oarse grained sale. Whenthe random �elds take only �nitely many values, this an be done by an exat mapping toa low-dimensional hain. Here this is not the ase, but we an will onstrut a sequene ofapproximate mappings that in the limit allow to extrat the exat result.
3.1. Coarse graining. Let I denote the support of the distribution of the random �elds.Let Iℓ, with ℓ ∈ {1, . . . , n}, be a partition of I suh that, for some C < ∞ and for all ℓ,
|Iℓ| ≤ C/n ≡ ε.Eah realization of the random �eld {hi[ω]}i∈N indues a random partition of the set
Λ ≡ {1, . . . , N} into subsets

Λk[ω] ≡ {i ∈ Λ : hi[ω] ∈ Ik}. (3.1)We may introdue n order parameters
mk[ω](σ) ≡ 1

N

∑

i∈Λk[ω]

σi. (3.2)We denote by m [ω] the n-dimensional vetor (m1[ω], . . . ,mn[ω]). In the sequel we willuse the onvention that bold symbols denote n-dimensional vetors and their omponents,while the sum of the omponents is denoted by the orresponding plain symbol, e.g. m ≡∑n
ℓ=1 mℓ. m takes values in the set

Γn
N [ω] ≡ ×n

k=1

{
−ρN,k[ω],−ρN,k[ω] + 2

N , . . . , ρN,k[ω] − 2
N , ρN,k[ω]

}
, (3.3)where

ρk ≡ ρN,k[ω] ≡ |Λk[ω]|
N

. (3.4)We will denote by eℓ, ℓ = 1, . . . , n, the lattie vetors of the set Γn
N , i.e. the vetors oflength 2/N parallel to unit vetors.Note that the random variables ρN,k onentrate exponentially (in N) around their meanvalues EhρN,k = Ph[hi ∈ Ik] ≡ pk.Notational warning: To simplify statements in the remainder of the paper, we willheneforth assume that all statements involving random variables on (Ω,F ,Ph) hold truewith Ph-probability one, for all but �nitely many values of N .We may write the Hamiltonian in the form

HN [ω](σ) = −NE(m[ω](σ)) +

n∑

ℓ=1

∑

i∈Λℓ

σih̃i[ω], (3.5)
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where E : R
n → R is the funtion

E(x) ≡ 1

2

(
n∑

k=1

xk

)2

+

n∑

k=1

h̄kxk, (3.6)with
h̄ℓ ≡

1

|Λℓ|
∑

i∈Λℓ

hi, and h̃i ≡ hi − h̄ℓ. (3.7)Note that if hi = h̄ℓ for all i ∈ Λℓ, whih is the ase when h takes only �nitely many valuesand the partition Iℓ is hosen suitably, then the Glauber dynamis under the family offuntions mℓ is again Markovian. This fat was exploited in [15, 6℄. Here we will onsiderthe ase where this is not the ase. However, the idea behind our approah is to exploitthat by hoosing n large we an get to a situation that is rather lose to that one.Let us de�ne the equilibrium distribution of the variables m[σ]

Qβ,N [ω](x) ≡ µβ,N [ω](m[ω](σ) = x) (3.8)

=
1

ZN [ω]
eβNE(x)

Eσ1{m[ω](σ)=x}e
Pn

ℓ=1

P
i∈Λℓ

σi(hi−h̄ℓ)where ZN [ω] is the normalizing partition funtion. Note that with some abuse of notation,we will use the same symbols Qβ,N , Fβ,N as in Setion 1 for funtions de�ned on the
n-dimensional variables x. Sine we distinguish the vetors from the salars by use of boldtype, there should be no onfusion possible. Similarly, for a mesosopi subset A ⊆ Γn

N [ω],we de�ne its mirosopi ounterpart,
A = SN [A] = {σ ∈ SN : m(σ) ∈ A} . (3.9)

3.2. The landscape near critical points. We now turn to the preise omputation ofthe behavior of the measures Qβ,N [ω](x) in the neighborhood of the ritial points of
Fβ,N [ω](x). We will see that this goes very muh along the lines of the analysis in theone-dimensional ase in Setion 1.Let us begin by writing

Zβ,N [ω]Qβ,N [ω](x) = exp


Nβ


1

2

(
n∑

ℓ=1

xℓ

)2

+
n∑

ℓ=1

xℓh̄ℓ






n∏

ℓ=1

Zℓ
β,N [ω](xℓ/ρℓ),

(3.10)where
Zℓ

β,N [ω](y) ≡ EσΛℓ
exp


β

∑

i∈Λℓ

h̃iσi


1n

|Λℓ|−1
P

i∈Λℓ
σi=y

o ≡ E
h̃
σΛℓ

1n
|Λℓ|−1

P
i∈Λℓ

σi=y
o.

(3.11)For y ∈ (−1, 1), these Zℓ
N an be expressed, using sharp large deviation estimates [10℄, as

Zℓ
β,N [ω](y) =

exp (−|Λℓ|IN,ℓ[ω](y))√
π
2 |Λℓ|/I ′′N,ℓ[ω](y)

(1 + o(1)) , (3.12)where o(1) goes to zero as |Λℓ| ↑ ∞. Note that as in the one-dimensional ase, we identifyfuntions on Γn
N with their natural extensions to R

n. This means that we an express theright-hand side in (3.10) as
Zβ,N [ω]Qβ,N [ω](x) =

n∏

ℓ=1

√
(I′′N,ℓ[ω](xℓ/ρℓ)/ρℓ)

Nπ/2 exp (−NβFβ,N [ω](x)) (1 + o(1)) , (3.13)
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where
Fβ,N [ω](x) ≡ −1

2

(
n∑

ℓ=1

xℓ

)2

−
n∑

ℓ=1

xℓh̄ℓ +
1

β

n∑

ℓ=1

ρℓIN,ℓ[ω](xℓ/ρℓ). (3.14)Here IN,ℓ[ω](y) is the Legendre-Fenhel transform of the log-moment generating funtion,
UN,ℓ[ω](t) ≡ 1

|Λℓ|
ln E

h̃
σΛℓ

exp


t
∑

i∈Λℓ

σi


 (3.15)

=
1

|Λℓ|
∑

i∈Λℓ

ln cosh
(
t+ βh̃i

)
.We again analyze our funtions near ritial points, z∗, of Fβ,N . Equations (3.10)-(3.15)imply: if z∗ is a ritial point, then, for ‖v‖ ≤ N−1/2+δ ,

Qβ,N (z∗ + v)

Qβ,N (z∗)
= exp

(
−βN

2
(v,A(z∗)v)

)
(1 + o(1)) , (3.16)with

(A(z∗))kℓ =
∂2Fβ,N (z∗)

∂zk∂zℓ
= −1 + δk,ℓβ

−1ρ−1
ℓ I ′′N,ℓ(z

∗
ℓ/ρℓ) ≡ −1 + δℓ,kλ̂ℓ. (3.17)Now, if z∗ is a ritial point of Fβ,N ,

n∑

j=1

z∗
j + h̄ℓ = β−1I ′N,ℓ(z

∗
ℓ/ρℓ) ≡ β−1t∗ℓ , (3.18)or, with z∗ =

∑n
j=1 z∗

ℓ ,
β
(
z∗ + h̄ℓ

)
= I ′N,ℓ(z

∗
ℓ/ρℓ) = t∗ℓ . (3.19)By standard properties of Legendre-Fenhel transforms, we have that I ′N,ℓ(x) = U ′−1

N,ℓ (x),so that
z∗

ℓ/ρℓ = U ′
N,ℓ(β(z∗ + hℓ)) ≡

1

|Λℓ|
∑

i∈Λℓ

tanh(β(z∗ + hi))). (3.20)Summing over ℓ, we see that z∗ must satisfy the equation
z∗ =

1

N

∑

i∈Λ

tanh(β(z∗ + hi)), (3.21)whih niely does not depend on our hoie of the oarse graining (and hene on n).Finally, using that at a ritial point I ′′N,ℓ(z
∗
ℓ/ρℓ) = 1

U ′′
N,ℓ(t

∗
ℓ ) , we get the expliit expressionfor the random numbers λ̂ℓ on the right hand side of (3.17)

λ̂ℓ =
1

βρℓU
′′
N,ℓ(β(z∗ + h̄ℓ))

=
1

β
N

∑
i∈Λℓ

(
1 − tanh2(β(z∗ + hi))

) . (3.22)The determinant of the matrix A(z∗) has a simple expression of the form
det (A(z∗)) =

(
1 −

n∑

ℓ=1

1

λ̂ℓ

)
n∏

ℓ=1

λ̂ℓ (3.23)

=

(
1 − β

N

∑

i∈Λ

(
1 − tanh2(β(z∗ + hi))

)
)

n∏

ℓ=1

λ̂ℓ

=
(
1 − βEh

(
1 − tanh2(β(z∗ + h))

)) n∏

ℓ=1

λ̂ℓ (1 + o(1)) ,
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where o(1) ↓ 0, a.s., as N ↑ ∞. Combing these observations, we arrive at the followingproposition.
Proposition 3.1. Let z∗ be a critical point of Qβ,N . Then z∗ is given by (3.20) where z∗ is a
solution of (3.21). Moreover,

Zβ,NQβ,N (z∗) =

√
|det(A(z∗))|√(

Nπ
2β

)n ∣∣βEh

(
1 − tanh2(β(z∗ + h))

)
− 1
∣∣

(3.24)

× exp

(
βN

(
−(z∗)2

2
+

1

βN

∑

i∈Λ

ln cosh (β(z∗ + hi))

))
(1 + o(1)) .

Proof. We only need to examine (3.13) at a critical point z∗. The equation for the prefactor
follows by combining (3.12) with (3.23). As for the exponential term, Fβ,N , notice that
by convex duality

IN,ℓ(z
∗
ℓ/ρℓ) = t∗ℓz

∗
ℓ/ρℓ − UN,ℓ(t

∗
ℓ) = β(z∗ + h̄ℓ)z

∗
ℓ/ρℓ − UN,ℓ

(
β(z∗ + h̄ℓ)

)
. (3.25)

Hence (3.14) equals

−1

2
(z∗)2 −

n∑

ℓ=1

z∗
ℓ h̄ℓ +

1

β

n∑

ℓ=1

[
ρℓβ(z∗ + h̄ℓ)z

∗
ℓ/ρℓ − ρℓUN,ℓ

(
β(z∗ + h̄ℓ)

)]

= −1

2
(z∗)2 −

n∑

ℓ=1


z∗

ℓ h̄ℓ − z∗z∗
ℓ − h̄z∗

ℓ +
1

βN

∑

i∈Λℓ

ln cosh (β(z∗ + hi))




=
1

2
(z∗)2 − 1

βN

∑

i∈Λ

ln cosh (β(z∗ + hi)) . (3.26)

�

Remark. The form given in Proposition 3.1 is highly suitable for our purposes as the de-
pendence on n appears only in the denominator of the prefactor. We will see that this is
just what we need to get a formula for capacities that is independent of the choice of the
partition of I and has a limit as n ↑ ∞.Eigenvalues of the Hessian. We now desribe the eigenvalues of the Hessian matrix
A(z∗).
Lemma 3.2. Let z∗ be a solution of the equation (3.21). Assume in addition that all numbers

λ̂k are distinct. Then γ is an eigenvalue of A(z∗) if and only if it is a solution of the equation
n∑

ℓ=1

1
1

β
N

P
i∈Λℓ

(1−tanh2(β(z∗+hi)))
− γ

= 1. (3.27)

Moreover, (3.27) has at most one negative solution, and it has such a negative solution if and
only if

β

N

N∑

i=1

(
1 − tanh2 (β (z∗ + hi))

)
> 1. (3.28)

Remark. To analyze the case when some λ̂k coincide is also not difficult. See [6].

Proof. To find the eigenvalues of A, just replace λ̂k by λ̂k − γ in the first line of (3.23).
This gives

det (A(z∗) − γ)) =

(
1 −

n∑

ℓ=1

1

λ̂ℓ − γ

)
n∏

ℓ=1

(λ̂ℓ − γ), (3.29)
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FIGURE 1. Correspondence of one and n-dimensional landscape

provided none of the λ̂ℓ − γ = 0. (3.27) is then just the demand that the first factor on
the right of (3.29) vanishes. It is easy to see that, under the hypothesis of the lemma, this
equation has n solutions, and that exactly one of them is negative under the hypothesis
(3.28). �Topology of the landsape. From the analysis of the ritial points of Fβ,N it followsthat the landsape of this funtion is losely slaved to the one-dimensional landsapedesribed in Setion 1. We ollet the following features:(i) Let m∗

1 < z∗1 < m∗
2 < z∗2 < · · · < z∗k < m∗

k+1 be the sequene of minima resp.maxima of the one-dimensional funtion Fβ,N de�ned in (1.10). Then to eahminimum, m∗
i , orresponds a minimum, m∗

i of Fβ,N , suh that ∑n
ℓ=1 m∗

i,ℓ = m∗
i ,and two eah maximum, z∗i , orresponds a saddle point, z∗

i of Fβ,N , suh that∑n
ℓ=1 z∗

i,ℓ = z∗i .(ii) For any value m of the total magnetization, the funtion Fβ,N (x) takes its relativeminimum on the set {y :
∑

yℓ = m} at the point x̂ ∈ R
n determined (oordinate-wise) by the equation

x̂ℓ(m) =
1

N

∑

i∈Λℓ

tanh (β (m+ a+ hi)) , (3.30)where a = a(m) is reovered from
m =

1

N

∑

i∈Λ

tanh (β (m+ a+ hi)) . (3.31)Moreover,
Fβ,N (m) ≤ Fβ,N (x̂) ≤ Fβ,N (m) +O(n lnN/N). (3.32)

Remark. Note that the minimal energy curves x̂(·) defined by (3.30) pass through the min-
ima and saddle points, but are in general not the integral curves of the gradient flow con-
necting them. Note also that since we assume that random fields {hi(ω)} have bounded
support, for every δ > 0 there exist two universal constants 0 < c1 ≤ c2 <∞, such that

c1ρℓ ≤
dx̂ℓ(m)

dm
≤ c2ρℓ, (3.33)

uniformly in N , m ∈ [−1 + δ, 1 − δ] and in ℓ = 1, . . . , n.
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4. UPPER BOUNDS ON CAPACITIESThis and the next setion are devoted to proving Theorem 1.3. In this setion we deriveupper bounds on apaities between two loal minima. The proedure to obtain thesebounds has two steps. First, we show that using test funtions that only depend on theblok variables m(σ), we an always get upper bounds in terms of a �nite dimensionalDirihlet form. Seond, we produe a good test funtion for this Dirihlet form.
4.1. First blocking. Let us onsider two sets, A,B ⊂ SN , that are de�ned in terms ofblok variables m. This means that for some A,B ⊆ Γn

N , A = SN [A] and B = SN [B].Later we will be interested in pre-images of two minima of the funtion Fβ,N . We get theobvious upper boundap(A,B) = inf
h∈HA,B

1

2

∑

σ,σ′∈SN

µβ,N [ω](σ)p(σ, σ′)
[
h(σ) − h(σ′)

]2

≤ inf
u∈GA,B

1

2

∑

σ,σ′∈SN

µβ,N [ω](σ)p(σ, σ′)
[
u(m(σ)) − u(m(σ′))

]2

= inf
u∈GA,B

∑

x,x′∈Γn
N

[
u(x) − u(x′)

]2 ∑

σ∈SN [x]

µβ,N [ω](σ)
∑

σ′∈SN [x′]

p(σ, σ′)

≡ inf
u∈GA,B

∑

x,x′∈Γn
N

Qβ,N [ω](x)rN (x,x′)
[
u(x) − u(x′)

]2

≡ Capn
N (A,B). (4.1)with

rN (x,x′) ≡ 1

Qβ,N [ω](x)

∑

σ∈SN [x]

µβ,N [ω](σ)
∑

σ′∈SN [x′]

p(σ, σ′). (4.2)Here
HA,B ≡ {h : SN → [0, 1] : ∀σ ∈ A,h(σ) = 1,∀σ ∈ B,h(σ) = 0} (4.3)and

GA,B ≡ {u : Γn
N → [0, 1] : ∀x ∈ A, u(x) = 1,∀x ∈ B, u(x) = 0}. (4.4)

4.2. Sharp upper bounds for saddle point crossings. Let now z∗ be a saddle point, i.e.a ritial point of Qβ,N suh that the matrix A(z∗) has exatly one negative eigenvalue andthat all its other eigenvalues are stritly positive. Let A,B be two disjoint neighborhoodsof minima of Fβ,N that are onneted through z∗, i.e. A and B are stritly ontained intwo di�erent onneted omponents of the level set {x : Fβ,N (x) < Fβ,N (z∗)}, and thereexists a path γ from A to B suh that maxx∈γ Fβ,N (x) = Fβ,N (z∗).To estimate suh apaities it su�es to ompute the apaity of some small set nearthe saddle point (see e.g. [3℄ or [8℄ for an explanation). For a given (small) onstant
ρ = ρ(N) ≪ 1, we de�ne

DN (ρ) ≡ {x ∈ Γn
N : |z∗

ℓ − xℓ| ≤ ρ,∀1 ≤ ℓ ≤ n}, (4.5)In this setion we will later hoose ρ = C
√

lnN/N , with C <∞. DN (ρ) is the hyperubein Γn
N entered in z∗ with sidelenght 2ρ. For a �xed vetor, v ∈ Γn

N , onsider three disjointsubsets,
W0 = {x ∈ Γn

N : |(v, (x − z∗))| < ρ}
W1 = {x ∈ Γn

N : (v, (x − z∗)) ≤ −ρ}
W2 = {x ∈ Γn

N : (v, (x − z∗)) ≥ ρ}. (4.6)We will ompute the apaity of the Dirihlet form restrited to the set DN (ρ) with bound-ary onditions zero and one, respetively, on the sets W1 ∩DN (ρ) and W2 ∩DN (ρ). This
14



will be done by exhibiting an approximately harmoni funtion with these boundary on-ditions. Before doing this, it will however be useful to slightly simplify the Dirihlet formwe have to work with.Cleaning of the Dirihlet form. One problem we are faed with in our setting is thatthe transition rates rN (x,x′) are given in a somewhat unpleasant form. At the same timeit would be nier to be able to replae the measure Qβ,N by the approximation given in(3.18). That we are allowed to do this follows from the simple assertion below, that isan immediate onsequene of the positivity of the terms in the Dirihlet form, and of theDirihlet priniple.
Lemma 4.1. Let ΦN , Φ̃N be two Dirichlet forms defined on the same space, Γ, corresponding

to the measure Q and transition rates r, respectively Q̃ and r̃. Assume that, for all x,x′ ∈ Γ,
∣∣∣∣∣
Q(x)

Q̃(x)
− 1

∣∣∣∣∣ ≤ δ, ,

∣∣∣∣
r(x,x′)
r̃(x,x′)

− 1

∣∣∣∣ ≤ δ. (4.7)

Then for any sets A,B

(1 − δ)2 ≤ Capn
N (A,B)

C̃ap
n

N (A,B)
≤ (1 − δ)−2. (4.8)

Proof. Note that Capn
N (A,B) ≡ infu∈GA,B

ΦN (u) = ΦN (u∗), and

C̃ap
n

N (A,B) ≡ infu∈GA,B
Φ̃N (u) = Φ̃N (ũ∗). But clearly

ΦN (u∗) =
1

2

∑

x,x′∈Γ

Q̃(x)
Q(x)

Q̃(x)
r̃(x,x′)

r(x,x′))
r̃(x,x′)

(
u∗(x) − u∗(x′)

)
(4.9)

≥ 1

2

∑

x,x′∈Γ

Q̃(x)(1 − δ)r̃(x,x′)(1 − δ)
(
u∗(x) − u∗(x′)

)

≥ (1 − δ)2 inf
u∈GA,B

1

2

∑

x,x′∈Γ

Q̃(x)r̃(x,x′)
(
u(x) − u(x′)

)

= (1 − δ)2C̃ap
n

N (A,B).

By the same token,

Φ̃N (u∗) ≥ (1 − δ)2Capn
N (A,B). (4.10)

The claimed relation follows. �To make use of this observation, we need to ontrol the rates rN (x,x′) and the measure
Qβ,N (x) in terms of suitable modi�ed rates and measures. In fat, we see easily that

Q̃β,N (x) ≡ Qβ,N (z∗) exp

(
−βN

2
((x − z∗),A(z∗)(x − z∗))

)
, (4.11)so that, for all x ∈ DN (ρ) and for some K <∞, it holds

∣∣∣∣∣
Qβ,N (x)

Q̃β,N (x)
− 1

∣∣∣∣∣ ≤ KNρ3. (4.12)For that onerns the rates, let us �rst de�ne, for σ ∈ SN ,
Λ±

k (σ) ≡ {i ∈ Λk : σ(i) = ±1} . (4.13)
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For all x ∈ Γn
N , we then have

rN (x,x + eℓ) = Qβ,N (x)−1
∑

σ∈SN [x]

µβ,N [ω](σ)
∑

i∈Λ−
ℓ (σ)

p(σ, σi) (4.14)

= Qβ,N (x)−1
∑

σ∈SN [x]

µβ,N [ω](σ)
∑

i∈Λ−
ℓ (σ)

1
N e

−2β
h
m(σ)− 1

N +hi

i

+ .Notie that for all σ ∈ SN (x), |Λ−
ℓ (σ)| is a onstant just depending on x. Using that

hi = h̄ℓ + h̃i, with h̃i ∈ [−ε, ε], we get the bounds
rN (x,x + eℓ) =

|Λ−
ℓ (x)|
N e

−2β[m(σ)+h̄ℓ]+(1 +O(ε)). (4.15)It follows easily that, for all x ∈ DN (ρ),
∣∣∣∣
rN (x,x + eℓ)

rN (z∗,z∗ + eℓ)
− 1

∣∣∣∣ ≤ β(ε+ nρ) (4.16)With this in mind, we let L̃N be the generator of the dynamis on DN (ρ) with rates
r̃(x,x + eℓ) ≡ rN (z∗,z∗ + eℓ) ≡ rℓ and r̃(x + eℓ,x) ≡ rℓ

eQβ,N (x)
eQβ,N (x+eℓ)

, and thus withreversible measure Q̃β,N (x). For u ∈ GA,B, we write the orresponding Dirihlet form as
Φ̃DN

(u) ≡ Qβ,N (z∗)
∑

x∈DN (ρ)

n∑

ℓ=1

rℓe
−βN((x−z∗),A(z∗)(x−z∗)) (u(x) − u(x + eℓ))

2 . (4.17)

4.3. Approximately harmonic functions for Φ̃DN
. We will now desribe a funtion thatwe will show to be almost harmoni with respet to the Dirihlet form Φ̃DN

. De�ne thematrix B(z∗) ≡ B with elements
Bℓ,k ≡ √

rℓA(z∗)ℓ,k
√
rk. (4.18)Let v̂(i), i = 1, . . . , n be the normalized eigenvetors of B, and γ̂i be the orrespondingeigenvalues. We denote by γ̂1 the unique negative eigenvalue of B, and haraterize it inthe following lemma.

Lemma 4.2. Let z∗ be a solution of the equation (3.21) and assume in addition that

β

N

N∑

i=1

(
1 − tanh2 (β (z∗ + hi))

)
> 1. (4.19)

Then, z∗ defined through (3.20) is a saddle point and the unique negative eigenvalue of B(z∗)
is the unique negative solution, γ̂1 ≡ γ̂1(N,n), of the equation

n∑

ℓ=1

ρℓ

1
|Λℓ|
∑

i∈Λℓ
(1 − tanh(β(z∗ + hi))) exp (−2β

[
z∗ + h̄ℓ

]
+
)

1
|Λℓ|

P
i∈Λℓ

(1−tanh(β(z∗+hi))) exp (−2β[z∗+h̄ℓ]+)

β
|Λℓ|

P
i∈Λℓ

(1−tanh2(β(z∗+hi)))
− 2γ

= 1. (4.20)

Moreover, we have that

lim
n↑∞

lim
N↑∞

γ̂1(N,n) ≡ γ̄1, (4.21)

where γ̄1 is the unique negative solution of the equation

Eh


(1 − tanh(β(z∗ + h))) exp (−2β [z∗ + h]+)

exp (−2β[z∗+h]+)

β(1+tanh(β(z∗+h))) − 2γ


 = 1. (4.22)
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Proof. The particular form of the matrix B allows to obtain a simple characterization of all
eigenvalues and eigenvectors. The eigenvalue equations can be written as

−
n∑

ℓ=1

√
rℓrkuℓ + (rkλ̂k − γ)uk = 0,∀1 ≤ k ≤ n. (4.23)

Assume for simplicity that all rkλ̂k take distinct values. Then there is no non-trivial solu-

tion of these equation with γ = rkλ̂k, and thus
∑n

ℓ=1

√
rℓuℓ 6= 0. Thus,

uk =

√
rk
∑n

ℓ=1

√
rℓuℓ

rkλ̂k − γ
. (4.24)

Multiplying by
√
rk and summing over k, uk is a solution if and only if γ satisfies the

equation
n∑

k=1

rk

rkλ̂k − γ
= 1. (4.25)

Using (4.15) and noticing that
|Λ−

k |
N = 1

2(ρk − z∗
k), we get

rk = 1
2(ρk − z∗

k) exp
(
−2β

[
m(σ) + h̄k

]
+

)
(1 +O(ε)). (4.26)

Inserting the expressions for z∗
k/ρk and λ̂k given by (3.20) and (3.22) into (4.26) and

substituting the result into (4.25), we recover (4.20).

Since the left-hand side of (4.25) is monotone decreasing in γ as long as γ ≥ 0, it follows
that there can be at most one negative solution of this equation, and such a solution exists
if and only if left-hand side is larger than 1 for γ = 0. The claimed convergence property
(4.21) follows easily. �We ontinue our onstrution de�ning the vetors v(i) by

v
(i)
ℓ ≡ v̂

(i)
ℓ /

√
rℓ, (4.27)and the vetors v̌(i) by

v̌
(i)
ℓ ≡ v̂

(i)
ℓ

√
rℓ = rℓv

(i)
ℓ . (4.28)We will single out the vetors v ≡ v(1) and v̌ ≡ v̌(1). The important fats about thesevetors is that

Av̌(i) = γ̂iv
(i), (4.29)and that

(v̌(i),v(j)) = δij . (4.30)This implies the following non-orthogonal deomposition of the quadrati form A,
(y,Ax) =

n∑

i=1

γ̂i(y,v
(i))(x,v(i)). (4.31)A onsequene of the omputation in the proof of Lemma 4.2, on whih we shall rely inthe sequel, is the following:

Lemma 4.3. There exists a positive constant δ > 0 such that independently of n,

δ ≤ min
k

vk ≤ max
k

vk ≤ 1

δ
. (4.32)
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Proof. Due to our explicit computations,

rkλ̂k =
1

2

(
1 − z∗

k

ρk

)
β 1

|Λk|
∑

i∈Λk

(
1 − tanh2 (β(z∗ + hi))

)


−1

e
−2β[z∗+h̄k]+ . (4.33)

Consequently, the quantities φk ≡ rkλ̂k−γ̂1(N,n) are bounded away from zero and infinity,
uniformly in N , n and k = 1, . . . , n. Since by (4.27) and (4.24) the entries of v are given
by

vk =
1

φk

{
∑

ℓ

rℓ
φ2

ℓ

}−1/2

, (4.34)

the assertion of the lemma follows. �Finally, de�ne the funtion f : R → R+ by
f(a) =

∫ a
−∞ e−βN |γ̂1|u2/2du∫∞
−∞ e−βN |γ̂1|u2/2du

(4.35)

=

√
βN |γ̂1|

2π

∫ a

−∞
e−βN |γ̂1|u2/2du.We laim that the funtion

g(x) ≡ f((v,x)) (4.36)is the desired approximately harmoni funtion.Notie �rst, that g(x) = o(1) for all x ∈ W1 ∩ DN (ρ), while g(x) = 1 − o(1) for all
x ∈W2 ∩DN (ρ). Moreover, the following holds:
Lemma 4.4. Let g be defined in (4.36). Then, for all x ∈ DN (ρ), there exists a constant
c <∞ such that

∣∣∣
(
L̃Ng

)
(x)
∣∣∣ ≤

(√
β|γ̂1|
2πN

e−βN |γ̂1|(x,v)2/2
n∑

ℓ=1

rℓvℓ

)
cρ2. (4.37)

Remark. The point of the estimate (4.37) is that it is by a factor ρ2 smaller than what we
would get for an arbitrary choice of the parameters v and γ1. We will actually use this
estimate in the proof of the lower bound.

Proof. To simplify the notation we will assume throughout the proof that coordinates are
chosen such that z∗ = 0. We also set A ≡ A(z∗). Using the detailed balance condition, we
get

r̃(x,x − eℓ) =
Q̃β,N (x − eℓ)

Q̃β,N (x)
r̃(x − eℓ,x) =

Q̃β,N (x − eℓ)

Q̃β,N (x)
rℓ. (4.38)

Moreover, from the definition of Q̃β,N and using that we are near a critical point, we have
that

Q̃β,N (x − eℓ)

Q̃β,N (x)
= exp

(
−βN

2

[(
x,Ax

)
−
(
(x − eℓ),A(x − eℓ)

)])
(4.39)

= exp
(
−β
(
eℓ,Ax

)) (
1 +O

(
N−1

))
.

From (4.38) and (4.39), the generator can be written as

(
L̃Ng

)
(x) =

n∑

ℓ=1

rℓ (g(x + eℓ) − g(x)) (4.40)

×
(

1 − exp
(
−β
(
eℓ,Ax

)) g(x) − g(x − eℓ)

g(x + eℓ) − g(x)

(
1 +O(N−1)

))
.
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Now we use the explicit form of g to obtain

g(x + eℓ) − g(x) = f((x,v) + vℓ/N) − f((x,v) (4.41)

= f ′((x,v))vℓ/N + v2
ℓN

−2f ′′(x,v)/2 + v3
ℓN

−3f ′′′((x̃,v))/6

= vℓ

√
β|γ̂1|
2πN

e−βN |γ̂1|(x,v)2/2
(
1 − vℓβ|γ̂1|(x,v)/2 +O

(
ρ2
))
.

In particular, we get from here that

g(x) − g(x − eℓ)

g(x + eℓ) − g(x)
= exp

(
−βN |γ̂1|

[
(x − eℓ,v)2 − (x,v)2

]
/2
)

(4.42)

×1 − vℓβ|γ̂1|[(x,v) − vℓ/N ]/2 +O
(
ρ2
)

1 − vℓβ|γ̂1|(x,v)/2 +O (ρ2)

= exp (−β|γ̂1|vℓ(x,v))

(
1 +

v2
ℓβ|γ̂1|/2N +O

(
ρ2
)

1 − vℓβ|γ̂1|(x,v) +O (ρ2)

)

= exp (−β|γ̂1|vℓ(x,v))
(
1 +O(ρ2)

)

Let us now insert these equations into (4.40):

(
L̃Ng

)
(x) =

√
β|γ̂1|
2πN

e−βN |γ̂1|(x,v)2/2
n∑

ℓ=1

rℓvℓ

(
1 − vℓβ|γ̂1|(x,v)/2 +O

(
ρ2
))
.

×
(
1 − exp

{
−β
(
eℓ,Ax

)
− β|γ̂1|vℓ(x,v)

} (
1 +O(ρ2)

))
. (4.43)

Now

1 − exp
(
−β
(
eℓ,Ax

)
− β|γ̂1|vℓ(x,v)

) (
1 +O(ρ2)

)

= β
(
eℓ,Ax

)
+β|γ̂1|vℓ(x,v) +O(ρ2). (4.44)

Using this fact, and collecting the leading order terms, we get

(
L̃Ng

)
(x) =

√
β|γ̂1|
2πN

e−βN |γ̂1|(x,v)2/2

×
n∑

ℓ=1

rℓvℓ

[(
β
(
eℓ,Ax

)
+β|γ̂1|vℓ(x,v)

)
+O(ρ2)

]
. (4.45)

Thus we will have proved the lemma provided that
n∑

ℓ=1

rℓvℓ

((
eℓ,Ax

)
−γ̂1vℓ(x,v)

)
= 0. (4.46)

But note that from (4.31) we get that

(
eℓ,Ax

)
− γ̂1vℓ(x,v) =

n∑

j=2

γ̂jv
(j)
ℓ (x,v(j)). (4.47)

Hence using that by (4.28) rℓvℓ = v̌ℓ and that by (4.30) v̌ is orthogonal to v(j) with j ≥ 2,
(4.46) follows and the lemma is proven. �Having established that g is a good approximation of the equilibrium potential in a neigh-borhood of z∗, we an now use it to ompute a good upper bound for the apaity. Fixnow ρ = C

√
lnN/N .

Proposition 4.5. With the notation introduced above and for every n ∈ N, we getap(A,B) ≤ Qβ,N (z∗)
β|γ̂1|
2πN

(
πN

2β

)n/2 n∏

ℓ=1

√
rℓ
|γ̂j |

(
1 +O(ε+

√
(lnN)3/N)

)
. (4.48)
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Proof. The upper bound on ap(A,B) is inherited from the upper bound on the mesoscopic
capacity Capn

N (A,B). As for the latter, we first estimate the energy of the mesoscopic
neighborhood DN ≡ DN (ρ) of the saddle point z∗. By Lemma 4.1, this can be controlled

in terms of the modified Dirichlet form Φ̃DN
in (4.17). Thus, let g the function defined in

(4.36) and choose coordinates such that z∗ = 0. Then

Φ̃DN
(g) ≡ Q̃β,N (0)

∑

x∈DN

n∑

ℓ=1

e−βN((x,Ax))/2rℓ (g(x + eℓ) − g(x))2 (4.49)

= Q̃β,N (0)
β|γ̂1|
2πN

∑

x∈DN

e−βN |γ̂1|(x,v)2e−βN((x,Ax))/2
n∑

ℓ=1

rℓv
2
ℓ

×
(
1 − vℓβ|γ̂1|(x,v) +O

(
N−1 lnN

))2

= Q̃β,N (0)
β|γ̂1|
2πN

∑

x∈DN

e−βN |γ̂1|(x,v)2e−βN((x,Ax))/2
(
1 +O

(√
lnN/N

))
.

Here we used that
∑

ℓ rℓv
2
ℓ =

∑
ℓ v̂2

ℓ = 1. It remains to compute the sum over x. By a
standard approximation of the sum by an integral we get

∑

x∈DN

e−βN |γ̂1|(x,v)2e−βN((x,Ax))/2 (4.50)

=

(
N

2

)n ∫
dnxe−βN |γ̂1|(x,v)2e−βN((x,Ax))/2

(
1 +O(

√
lnN/N)

)

=

(
N

2

)n
(

n∏

ℓ=1

√
rℓ

)∫
dnye−βN |γ̂1|(y,v̂)2e−βN((y,By))/2

(
1 +O(

√
lnN/N )

)

=

(
N

2

)n
(

n∏

ℓ=1

√
rℓ

)∫
dnye−βN(|γ̂1|(y,v̂)2+

Pn
j=1 γ̂j(v̂

(j),y)2/2)
(
1 +O(

√
lnN/N)

)

=

(
N

2

)n
(

n∏

ℓ=1

√
rℓ

)∫
dnye−βN

Pn
j=1 |γ̂j |(v̂(j),y)2/2

(
1 +O(

√
lnN/N )

)

=

(
N

2

)n
(

n∏

ℓ=1

√
rℓ

)(
2π

βN

)n/2 1√∏n
j=1 |γ̂j |

(
1 +O(

√
lnN/N)

)

=

(
πN

2β

)n/2 n∏

ℓ=1

√
rℓ
|γ̂ℓ|

(
1 +O(

√
lnN/N)

)
.

Inserting (4.50) into (4.49) we see that the left-hand side of (4.49) is equal to the right-
hand side of (4.48) up to error terms.

It remains to show that the contributions from the sum outside DN in the Dirichlet form
do not contribute significantly to the capacity. To do this, we define a global test function
g̃ given by

g̃(x) ≡





0, x ∈W1

1, x ∈W2

g(x), x ∈W0

(4.51)

Clearly, the only non-zero contributions to the Dirichlet form ΦN (g̃) come from W 0 ≡
W0 ∪ ∂W0, where ∂W0 denotes the boundary of W0. Let us thus consider the sets W in

0 =

W0∩DN and W out
0 = W0∩Dc

N (see Figure 4.3). We denote by Φ
||
W in

0
(g̃) the Dirichlet form

of g̃ restricted to W in
0 and to the part of its boundary contained in DN , i.e. to W

in
0 ∩DN ,
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FIGURE 2. Domains for the construction of the test function in the upper bound

and by Φ�

W out
0

(g̃) the Dirichlet form of g̃ restricted to W
out
0 . With this notation, we have

ΦN (g̃) = Φ
||
W in

0
(g̃) + Φ�

W out
0

(g̃) (4.52)

= Φ̃
||
W in

0
(g̃)
(
1 +O

(√
lnN/N

))
+ Φ�

W out
0

(g̃)

=
(
Φ̃
||
W in

0
(g) −

(
Φ̃
||
W in

0
(g) − Φ̃

||
W in

0
(g̃)
))(

1 +O
(√

lnN/N
))

+ Φ�

W out
0

(g̃).

The first term in (4.52) satisfies trivially the bound

Φ̃D′
N

(g) ≤ Φ̃
||
W in

0
(g) ≤ Φ̃DN

(g), (4.53)

where D′
N ≡ DN (ρ′) is defined as in (4.53) but with constant ρ′ = C ′√lnN/N such that

D′
N ⊂ W in

0 . Performing the same computations as in (4.49) and (4.50) it is easy to show

that Φ̃D′
N

(g) = Φ̃DN
(g)(1 + o(1)), and then from (4.52) it follows that

Φ̃
||
W in

0
(g) = Φ̃DN

(g)(1 − o(1)). (4.54)

Consider now the second term in (4.52). Since g̃ ≡ g on W0, we get

Φ̃
||
W in

0
(g) − Φ̃

||
W in

0
(g̃) =

∑

x∈∂W in
0 ∩W1

n∑

ℓ=1

Q̃(x)rℓ

[
(g(x + eℓ) − g(x))2 − g(x)2

]

+
∑

x∈∂W in
0 ∩W2

n∑

ℓ=1

Q̃(x)rℓ

[
(g(x + eℓ) − g(x))2 − (1 − g(x))2

]
, (4.55)

where we also used that the function g̃ has boundary conditions zero and one respectively
on W1 and W2. By symmetry, let us just consider the first sum in the r.h.s. of (4.55). For

x ∈ ∂W in
0 ∩W1 it holds that (x,v) ≤ −ρ = −C

√
lnN/N , and hence

g(x)2 ≤ 1√
2πβ|γ̂1|C

√
lnN

e−βN |γ̂1|ρ2
. (4.56)
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Using this bound together with inequality (4.41) to control (g(x + eℓ) − g(x))2, we get

∑

x∈∂W in
0 ∩W1

n∑

ℓ=1

Q̃(x)rℓ

[
(g(x + eℓ) − g(x))2 − g(x)2

]

≤ β|γ̂1|
2πN

e−βN |γ̂1|ρ2
∑

x∈∂W in
0 ∩W1

Q̃(x)

(
1 +

cN√
lnN

)

≤ Q̃β,N (0)
β|γ̂1|
2πN

e−βN |γ̂1|ρ2
∑

x∈∂W in
0 ∩W1

e−βN((x,Ax))/2

(
1 + c

N√
lnN

)
(4.57)

for some constant c independent on N . The sum over x ∈ ∂W in
0 ∩W1 in the last term

can then be computed as in (4.50). However, in this case the integration runs over the
(n− 1)-dimensional hyperplane orthogonal to v and thus we have

∑

x∈∂W in
0 ∩W1

e−βN((x,Ax))/2

=

(
N

2

)n−1 ∫
dn−1xe−βN((x,Ax))/2

=

(
N

2

)n−1
(

n∏

ℓ=2

√
rℓ

)∫
dn−1ye−βN((y,By))/2

≤
(
N

2

)n−1
(

n∏

ℓ=2

√
rℓ

)
e−βNγ̂1ρ2/2

∫
dn−1ye−βN(

Pn
j=2 γ̂j(v̂

(j),y)2/2)

=

(
πN

2β

)n−1
2

n∏

ℓ=2

√
rℓ
|γ̂ℓ|

e−βNγ̂1ρ2/2. (4.58)

Inserting (4.58) in (4.57), and comparing the result with Φ̃DN
(g), we get that the l.h.s of

(4.57) is bounded as
(

1 + c
N

lnN

)√
Ne−βN |γ̂1|ρ2/2Φ̃DN

(g) = o(N−K)Φ̃DN
(g), (4.59)

with K = β|γ̂1|C−1
2 , which is positive if C is large enough. A similar bound can be obtained

for the second sum in (4.55), so that we finally get
∣∣∣Φ̃||

W in
0

(g) − Φ̃
||
W in

0
(g̃)
∣∣∣ ≤ o(N−K)Φ̃DN

(g). (4.60)

The last term to analyze is the Dirichlet form Φ�

W out
0

(g̃). But it is easy to realize that this

is negligible with respect to the leading term. Indeed, since for all x ∈ Dc
N it holds that

Fβ,N (x) ≥ Fβ,N (z∗) +K ′ lnN/N , for some positive K ′ <∞ depending on C, we get

Φ�

W out
0

(g̃) ≤ Z−1
β,Ne

−βNFβ,N (z∗)N−(K ′−n) = o(N−K ′′
)Φ̃DN

(g). (4.61)

From (4.52) and the estimates given in (4.54), (4.59) and (4.61), we get that ΦN (g̃) =

Φ̃DN
(g)(1 + o(1)) provides the claimed upper bound. �Combining this proposition with Proposition 3.1, yields, after some omputations, thefollowing more expliit representation of the upper bound.

Corollary 4.6. With the same notation of Proposition 4.5,

Zβ,Nap(A,B) ≤ β|γ̄1|
2πN

exp (−βNFβ,N (z∗)) (1 + o(1))√
βNEh

(
1 − tanh2 (β (z∗ + h))

)
− 1

, (4.62)
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where γ̄1 is defined through Eq. (4.22).

Proof. First, we want to show that

|det(A(z∗))| =

(
n∏

ℓ=1

rℓ

)−1 n∏

ℓ=1

γ̂ℓ. (4.63)

To see this, note that

B = RA(z∗)R,

where R is the diagonal matrix with elements Rℓ,k = δk,ℓ
√
rℓ. Thus

n∏

ℓ=1

|γ̂ℓ| = |det(B)| = |det(RA(z∗)R)| = |det(A(z∗))|det(R2) = |det(A(z∗))|
n∏

ℓ=1

rℓ.

(4.64)
as desired. Substituting in (4.48) the expression of Qβ,N (z∗) given in Proposition (3.1),
and after the cancellation due to (4.63), we obtain an upper bound which is almost in
the form we want. The only n-dependent quantity is the eigenvalue γ̂1 of the matrix
B. Taking the limit of n → ∞ and using the second part of Lemma 4.2, we recover the
assertion (4.62) of the corollary. �This orollary onludes the �rst part of the proof of Theorem 1.3. The seond part,namely the onstrution of a mathing lower bound, will be disussed in the next setion.

5. LOWER BOUNDS ON CAPACITIESIn this setion we will exploit the variational priniple form Proposition 2.24 to derive lowerbounds on apaities. Our task is to onstrut a suitable non-negative unit �ow. This willbe done in two steps. First we onstrut a good �ow for the oarse grained Dirihlet formin the mesosopi variables and then we use this to onstrut a �ow on the mirosopivariables.
5.1. Mesoscopic lower bound: The strategy. Let A and B be mesosopi neighborhoodsof two minima mA and mB of Fβ,N , exatly as in the preeding setion, and let z∗ bethe highest ritial point of Fβ,N whih lies between mA and mB. It would be onvenientto pretend that mA,z

∗,mB ∈ Γn
N : In general we should substitute ritial points bytheir losest approximations on the latter grid, but the proofs will not be sensitive to theorresponding orretions. Reall that the energy landsape around z∗ has been desribedin Subsetion 3.2.Reall that the mesosopi apaity, Capn

N (A,B), is de�ned in (4.1). We will onstrut aunit �ow, fA,B, from A to B of the form
fA,B(x,x′) =

Qβ,N (x)rN (x,x′)

ΦN (g̃)
φA,B(x,x′), (5.1)suh that the assoiated Markov hain, (P

fA,B

N ,XA,B

), satis�es
P

fA,B

N


 ∑

e∈XA,B

φA,B(e) = 1 + o(1) = 1 − o(1). (5.2)
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In view of the general lower bound (2.22), Eq. (5.2) implies that the mesosopi apaitiessatisfy
Capn

N (A,B) ≥ E
fA,B

N





∑

e=(x,x′)∈X

fA,B(e)

Qβ,N (x)rN (e)





−1

≥ ΦN (g̃) (1 − o(1)) , (5.3)whih is the lower bound we want to ahieve on the mesosopi level.We shall hannel all of the �ow fA,B through a ertain (mesosopi) neighborhood GN of
z∗ . Namely, our global �ow, fA,B, in (5.1) will onsist of three (mathing) parts, fA, fand fB, where fA will be a �ow from A to ∂GN , f will be a �ow through GN , and fB willbe a �ow from ∂GN to B. We will reover (5.2) as a onsequene of the three estimates

P
f
N

(
∑

e∈X
φ(e) = 1 + o(1)) = 1 − o(1), (5.4)whereas,

P
fA
N


∑

e∈XA

φA(e) = o(1) = 1−o(1) and P
fB
N


∑

e∈XB

φB(e) = o(1) = 1−o(1). (5.5)The onstrution of f through GN will be by far the most di�ult part. It will rely ruiallyon Lemma 4.4.
5.2. Neighborhood GN . We hose again mesosopi oordinates in suh a way that z∗ =
0. Set ρ = N−1/2+δ and �x a (small) positive number, ν > 0. De�ne

GN ≡ GN (ρ, ν) ≡ DN (ρ) ∩ {x : (x, v̌) ∈ (−νρ, νρ)} , (5.6)where v̌ ≡ v̌(1) is de�ned in (4.28), andDN is the same as in (4.5). Note that in view of thedisussion in Setion 4, within the region GN we may work with the modi�ed quantities,
Q̃β,N and rℓ; ℓ = 1, . . . , n, de�ned in (4.11) and (4.17).The boundary ∂GN of GN onsists of three disjoint piees, ∂GN = ∂AGN ∪∂BGN ∪∂rGN ,where
∂AGN = {x ∈ ∂GN : (x, v̌) ≤ −νρ} and ∂BGN = {x ∈ ∂GN : (x, v̌) ≥ νρ} . (5.7)We hoose ν in (5.6) to be so small that there exists K > 0, suh that

Fβ,N (x) > Fβ,N (0) +Kρ2, (5.8)uniformly over the remaining part of the boundary x ∈ ∂rGN .Let g̃ be the approximately harmoni funtion de�ned in (4.36) and (4.51). Proeedingalong the lines of (4.49) and (4.50) we infer that,
ΦN (g̃) (1 + o(1)) =

∑

x∈GN∪∂AGN

Q̃β,N (x)
∑

ℓ∈IGN
(x)

rℓ (g̃(x + eℓ) − g̃(x))2 , (5.9)where IGN
(x) ≡ {ℓ : x + eℓ ∈ GN}. For funtions, φ, on oriented edges, (x,x + eℓ), of

DN , we use the notation φℓ(x) = φ(x,x + eℓ), and set
Fℓ[φ](x) ≡ Q̃β,N (x)rℓφℓ(x),

dF [φ](x) ≡
n∑

ℓ=1

(Fℓ[φ](x) −Fℓ[φ](x − eℓ)) .In partiular, the left hand side of (4.37) an be written as |dF [∇g̃]|/Q̃β,N (x).
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Let us sum by parts in (5.9). By (5.8) the ontribution oming from ∂rGN is negligibleand, onsequently, we have, up to a fator of order (1 + o(1)),
∑

x∈GN

g̃(x)dF [∇g̃](x) +
∑

x∈∂AGN

∑

ℓ∈IGN
(x)

Fℓ[∇g](x). (5.10)Furthermore, omparison between the laim of Lemma 4.4 and (4.49) (reall that ρ2 =

N2δ−1 ≪ N−1/2) shows that the �rst term above is also negligible with respet to ΦN (g̃).Hene,
ΦN (g̃) (1 + o(1)) =

∑

x∈∂AGN

∑

ℓ∈IGN
(x)

Fℓ[∇g̃](x). (5.11)

5.3. Flow through GN . The relation (5.11) is the starting point for our onstrution ofa unit �ow of the form
fℓ(x) =

c

ΦN (g̃)
Fℓ[φ](x) (5.12)through GN . Above c = 1 + o(1) is a normalization onstant. Let us �x 0 < ν0 ≪ ν smallenough and de�ne,

G0
N = GN ∩

{
x :

∣∣∣∣x − (x, v̌)v̌

‖v̌‖2

∣∣∣∣ < ν0ρ

}
. (5.13)Thus, G0

N is a narrow tube along the prinipal v̌-diretion (Figure 5.3). We want toonstrut φ in (5.12) suh that the following properties holds:
P1: f is on�ned to GN , it runs from ∂AGN to ∂BGN and it is a unit �ow. That is,

∀x ∈ GN , dF [φ](x) = 0 and ∑

x∈∂AGN

∑

ℓ∈IGN
(x)

fℓ[φ](x) = 1. (5.14)

P2: φ is a small distortion of ∇g̃ inside G0
N ,

φℓ(x) = ∇ℓg̃(x) (1 + o(1)) , (5.15)uniformly in x ∈ G0
N and ℓ = 1, . . . , n.

P3: The �ow f is negligible outside G0
N in the following sense: For some κ > 0,

max
x∈GN\G0

N

max
ℓ

fℓ(x) ≤ 1

Nκ
. (5.16)One we are able to onstrut f whih satis�es P1-P3 above, the assoiated Markov hain(

P
f
N ,X

) obviously satis�es (5.4).The most natural andidate for φ would seem to be ∇g̃. However, sine g̃ is not stritlyharmoni, this hoie does not satis�es Kirho�'s law, and we would need to orret this byadding a (hopefully) small perturbation, whih in priniple an be onstruted reursively.It turns out, however, to be more onvenient to use as a starting hoie
φ

(0)
ℓ (x) ≡ vℓ

√
β|γ̂1|
2πN

exp
(
−βN |γ̂1|(x,v)2/2

)
, (5.17)whih, by (4.41), satis�es

φ
(0)
ℓ (x) = (g̃(x + eℓ) − g̃(x)) (1 +O(ρ)) , (5.18)uniformly in GN . Notie that, by (5.12), this hoie orresponds to the Markov hain withtransition probabilities

q(x,x + eℓ) =
v̌ℓ∑
k v̌k

(1 + o(1)) ≡ qℓ(1 + o(1)). (5.19)
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From (3.16) and the deomposition (4.31) we see that
1 +O(ρ)

Q̃N,β(0)
Fℓ[φ

(0)] = rℓvℓ

√
β|γ̂1|
2πN

exp
(
−βN

2

(
|γ̂1|(x,v)2 + (x,Ax)

))

= v̌ℓ

√
β|γ̂1|
2πN

exp


−βN

2




n∑

j=2

γ̂j(x,v
(j))2




 .In partiular, there exists a onstant χ1 > 0 suh that

Fℓ[φ
(0)](x)

Q̃N,β(0)
≤ exp

(
−χ1N

2δ
)
, (5.20)uniformly in x ∈ GN \G0

N and l = 1, . . . , n.Next, by inspetion of the proof of Lemma 4.4, we see that there exists χ2, suh that,∣∣∣dF [φ(0)](x)
∣∣∣ ≤ χ2ρ

2Fℓ[φ
(0)](x), (5.21)uniformly in x ∈ GN and ℓ = 1, . . . , n. Notie that we are relying on the strit uniform (in

n) positivity of the entries vℓ, as stated in Lemma 4.3Trunation of ∇g, on�nement of f and property P1. Let C+ be the positive onespanned by the axis diretions e1, . . . ,en. Note that the vetor v̌ lies in the interior of C+.De�ne (see Figure 5.3)
G1

N = int (∂BG
0
N − C+

)
∩GN and G2

N =
(
∂AG

1
N + C+

)
∩GN . (5.22)We assume that the onstants ν and ν0 in the de�nition of GN and, respetively, in thede�nition of G0

N are tuned in suh a way that G2
N ∩ ∂rGN = ∅. Let φ̃(0) be the restrition

PSfrag replaements
GN

G0
N

G1
N

G2
N

z∗

v̌

∂AGN

∂BGN

FIGURE 3. Narrow tube G0
N and sets G1

N and G2
Nof φ(0) to G1

N ,
φ̃

(0)
ℓ (x) ≡ φ

(0)
ℓ (x)1{x∈G1

N}. (5.23)Now we turn to the onstrution of the full �ow. To this end we start by setting the valuesof φℓ on ∂AGN equal to φ̃(0) if ℓ ∈ IGN
(x) and zero otherwise. By (5.11) and the bound

(5.20), the seond of the relations in (5.14) is satis�ed.
26



In order to satisfy Kirho�'s law inside GN , we write φ as φ = φ̃(0) + u with u satisfyingthe reursion,
n∑

ℓ=1

Fℓ[u](x) =
n∑

ℓ=1

Fℓ[u](x − eℓ) − dF [φ̃(0)](x). (5.24)Sine φ̃(0) ≡ 0 on GN \G1
N , we may trivially take u ≡ 0 on GN \G2

N and then solve (5.24)on G2
N using the latter as an insulated boundary ondition on ∂G2

N ∩GN .Interpolation of the �ow inside G2
N . We �rst solve (5.24) inside G1

N . By onstrution,if x ∈ G1
N then x − eℓ ∈ G1

N ∪ ∂AG
1
N , for every ℓ = 1, . . . , n. Aordingly, let us slie G1

Ninto layers Lk as follows: Set
L0 = ∂AG

1
N , (5.25)and, for k = 0, 1, . . . ,

Lk+1 =



x ∈ GN : x − eℓ ∈

k⋃

j=0

Lj for all ℓ = 1, . . . , n



 . (5.26)Sine all entries of v are positive, there exists χ3 = c3(n) and M ≤ χ3/ρ, suh that

G1
N =

M⋃

j=0

Lj. (5.27)Now de�ne reursively, for eah x ∈ Lk+1,
Fℓ[u](x) = qℓ




n∑

j=1

Fj [u](x − ej) − dF [φ̃(0)](x)


 , (5.28)where the probability distribution, q1, . . . , qn, is de�ned as in (5.19). Obviously, thisprodues a solution of (5.24). The partiular hoie of the onstants qℓ in (5.19) leads toa rather miraulous looking anellation we will enounter below.Properties P2 and P3. We now prove reursively a bound on u that will imply thatProperties P2 and P3 hold. Let ck be onstants suh that, for all y ∈ Lk,

|Fℓ[u](y)| ≤ ckρ
2Fℓ[∇g̃](y). (5.29)Then, for x ∈ Lk+1, we get by onstrution (5.28) and in view of (5.21) that

|Fℓ[u](x)|
Fℓ[φ̃(0)](x)

≤ qℓ
∑

j

|Fj [u](x − ej)|
Fℓ[φ̃(0)](x)

+ χ2ρ
2 (5.30)

≤ ρ2


ckqℓ

∑

j

Fj [φ̃
(0)](x − ej)

Fℓ[φ̃(0)](x)
+ χ2


 .By our hoie of φ(0) in (5.23),

Fj [φ̃
(0)](x − ej)

Fℓ[φ̃(0)](x)
=

v̌j

v̌ℓ
exp

{
βN

2

n∑

i=2

γ̂i

(
(x,v(i))2 − (x − ej,v

(i))2
)}

(5.31)

=
v̌j

v̌ℓ
exp

{
βN

n∑

i=2

γ̂i(x,v
(i))(ej,v

(i))

}
(1 +O (1/N))

=
v̌j + 2β(ej , v̂)

∑n
i=2(ej , v̂

(i))(x,v(i))

v̌ℓ

(
1 +O(ρ2)

)
.
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However, for eah i = 2, . . . , n,
n∑

j=1

(ej , v̂)(ej , v̂
(i)) = 0. (5.32)Therefore, with the hoie qℓ = v̌ℓP

k v̌k
(1 + o(1)), we get

qℓ
∑

j

Fj [φ̃
(0)](x − ej)

Fℓ[φ̃(0)](x)
= 1 +O(ρ2), (5.33)uniformly in x ∈ G1

N and l = 1, . . . , n. Thus, the oe�ients ck satisfy the reursive bound
ck+1 ≤ ck

(
1 +O(ρ2)

)
+ χ2ρ

2, (5.34)with c0 = 0. Consequently, there exists a onstant, c, suh that
ck ≤ kρ2cekcρ2

, (5.35)and hene, sine M ≤ χ3/ρ, cM = O(ρ). As a result, we have onstruted u on G1
N suhthat

|Fℓ[u](x)| = O (ρ)Fℓ[∇g](x), (5.36)uniformly in x ∈ G1
N and ℓ = 1, . . . , n. In partiular, (5.15) holds uniformly in x ∈ G1

Nand hene, by (5.20), P3 is satis�ed on G1
N \G0

N . Moreover, sine by onstrution φ ≡ 0on GN \G2
N , P3 is trivially satis�ed in the latter domain. Hene both P2 and P3 hold on

G1
N ∪

(
GN \G2

N

).It remains to reonstrut u on G2
N \G1

N . Sine we have trunated ∇g outside G1
N , Kirho�'sequation (5.24), for x ∈ G2

N \ G1
N , takes the form F [u](x) = 0. Therefore, whatever wedo in order to reonstrut φ, the total �ow through G2

N \G1
N equals

1 + o(1)
ΦN (g̃)

∑

x∈G1
N

n∑

ℓ=1

Fℓ[φ](x)1{x+eℓ 6∈G1
N}. (5.37)By (5.36) and (5.20), the latter is of the order O (ρ1−ne−χ1N2δ
). Thus, P3 is established.

5.4. Flows from A to ∂AGN and from ∂BGN to B. Let f be the unit �ow through GNonstruted above. We need to onstrut a �ow
fA(x,y) = (1 + o(1))Qβ,N (x)rN (x,y)

ΦN (g̃)
φA(x,y) (5.38)from A to ∂AGN and, respetively, a �ow

fB(x,y) = (1 + o(1))Qβ,N (x)rN (x,y)

ΦN (g̃)
φB(x,y) (5.39)from ∂BGN to B, suh that (5.5) holds and, of ourse, suh that the onatenation

fA,B = {fA, f, fB} omplies with Kirho�'s law. We shall work out only the fA-ase, the
fB-ase is ompletely analogous.The expressions for ΦN (g̃) and Qβ,N (x) appear on the right-hand sides of (4.48) and
(3.13). For the rest we need only rough bounds: There exists a onstant L = L(n), suhthat we are able to rewrite (5.38) as,

φA(x,y) =
(1 + o(1))ΦN (g̃)fA(x,y)

Qβ,N (x)rN (x,y)
≤ LNn/2+1e−N(Fβ,N (z∗)−Fβ,N (x)). (5.40)
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This would imply a uniform strethed exponentially small upper bound on φA at points
x whih are mesosopially away from z∗ in the diretion of ∇Fβ,N , for example for xsatisfying

Fβ,N (z∗) − Fβ,N (x) > cN2δ−1. (5.41)With the above disussion in mind let us try to onstrut fA in suh a way that itharges only bonds (x,y) for whih (5.41) is satis�ed. Atually we shall do muh bet-ter and give a more or less expliit onstrution of the part of fA whih �ows through
G0

N : Namely, with eah point x ∈ ∂AG
0
N we shall assoiate a nearest neighbor path

γx = (γx(−kA(x)), . . . , γx(0)) on Γn
N suh that (5.41) holds for all y ∈ γx and,

γx(−kA(x)) ∈ A, γx(0) = x and m(γx(· + 1)) = m(γx(·)) + 2/N. (5.42)The �ow from A to ∂AG
0
N will be then de�ned as
fA(e) =

∑

x∈∂AG0
N

1{e∈γx}
∑

ℓ∈IGN
(x)

fℓ(x). (5.43)By onstrution fA above satis�es the Kirho�'s law and mathes with the �ow f through
GN on ∂AG

0
N . Stritly speaking, we should also speify how one extends f on the remainingpart ∂AGN \∂AG

0
N . But this is irrelevant: Whatever we do the P

fA,B

N -probability of passingthrough ∂AGN \ ∂AG
0
N is equal to

∑

x∈∂AGN\∂AG0
N

∑

ℓ

fℓ(x) = o(1). (5.44)It remains, therefore, to onstrut the family of paths {γx} suh that (5.41) holds.Eah suh path γx will be onstruted as a onatenation γx = γ̂ ∪ ηx.STEP 1 Constrution of γ̂. Pik δ suh that δ − 1 < mA = m(mA) and onsider the part
x̂[δ−1, z∗] of the minimal energy urve as desribed in (3.30). Let γ be a nearest neighbor
Γn

N -approximation of x̂[δ− 1, z∗], whih in addition satis�es m(γ̂(·+ 1)) = m(γ̂(·)) + 2/N .Sine by (3.33) the urve x̂[δ− 1, z∗] is oordinate-wise inreasing, the Hausdor� distanebetween γ̂ and x̂[δ − 1, z∗] is at most 2
√
n/N . Let xA be the �rst point where γ hitsthe set DN (ρ), and let uA be the last point where γ hits A (we assume now that theneighborhood A is su�iently large so that uA is well de�ned). Then γ̂ is just the portionof γ from uA to xA.STEP 2 Constrution of ηx. At this stage we assume that the parameter ν in (5.6) is sosmall that GN lies deeply inside DN (ρ). In partiular, we may assume that

Fβ,N (xA) < min
{
Fβ,N (x) : x ∈ ∂AG

0
N

}
,and, in view of (3.33), we may also assume that

xA

ℓ < xℓ ∀x ∈ ∂AG
0
N and ℓ = 1, . . . , n. (5.45)Therefore, x − xA has stritly positive entries and, as it now follows from (4.29),

(
Av̌,x − xA

)
=
(
v,x − xA

)
> 0.By onstrution G0

N is a small tube in the diretion of v̌. Aordingly, we may assumethat (Ax,x − xA
)
> 0 uniformly on ∂AG

0
N . But this means that the funtion

t : [0, 1] 7→
(
A(xA + t(x − xA), (xA + t(x − xA)

)is stritly inreasing. Therefore, Fβ,N is, up to negligible orretions, inreasing on thestraight line segment, [xA,x] ⊂ R
n whih onnets xA and x. Then, our target path ηx isa nearest neighbor Γn

N -approximation of [xA,x] whih runs from xA to x . In view of thepreeeding disussion it is possible to prepare ηx in suh a way that Fβ,N (z∗)− Fβ,N (·) >
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cN2δ−1 along ηx. Moreover, by (5.45) it is possible to ensure that the total magnetizationis inreasing along ηx .This onludes the onstrution of a �ow fA,B satisfying 5.3. �In the sequel we shall index verties of γx = γ̂ ∪ ηx as,
γx = (γ̂x(−kA), . . . γ̂x(0)) . (5.46)Sine,

Fβ,N (y) ≤ Fβ,N (z∗) − c1 (y − z∗,v)2 , (5.47)for every y lying on the minimal energy urve x̂[δ − 1, z∗] and sine the Hessian of Fβ,Nis uniformly bounded on x̂[δ − 1, z∗], we onlude that if ν0 is hosen small enough, thenthere exists c2 > 0 suh that
Fβ,N (γx(·)) ≤ Fβ,N (z∗) − c2 (γx(·) − z∗,v)2 , (5.48)uniformly in x ∈ ∂AG
0
N . Finally, sine the entries of v are uniformly stritly positive, itfollows from (5.48) that,
Fβ,N (γx(−k)) ≤ Fβ,N (z∗) − c3

(N1/2+δ + k)2

N2
, (5.49)uniformly in x ∈ ∂A and k ∈ {0, . . . , kA(x)}.

5.5. Lower bound on ap(A,B) via microscopic flows. Reall that A and B are meso-sopi neighborhoods of two minima of Fβ,N , z∗ is the orresponding saddle point, and
A = SN [A], B = SN [B] are the mirosopi ounterparts of A and B. Let fA,B =
{fA, f, fB} be the mesosopi �ow from A to B onstruted above. In this setion we aregoing to onstrut a subordinate mirosopi �ow, fA,B, from A to B. In the sequel, givena mirosopi bond, b = (σ, σ′), we use e(b) = (m(σ),m(σ′)) for its mesosopi pre-image.Our subordinate �ow will satisfy

fA,B(e) =
∑

b:e(b)=e

fA,B(b). (5.50)In fat, we are going to employ a muh more stringent notion of subordination on the levelof indued Markov hains: Let us label the realizations of the mesosopi hain XA,B as
x = (x−ℓA

, . . . ,xℓB
), in suh a way that x−ℓA

∈ A, xℓB
∈ B, and m(x0) = m(z∗). If eis a mesosopi bond, we write e ∈ x if e = (xℓ,xℓ+1) for some ℓ = −ℓA, . . . , ℓB − 1. Toeah path, x, of positive probability, we assoiate a subordinate mirosopi unit �ow, fx,suh that

fx(b) > 0 if and only if e(b) ∈ x. (5.51)Then the total mirosopi �ow, fA,B, an be deomposed as
fA,B =

∑

x

P
fA,B

N (XA,B = x) fx. (5.52)Evidently, (5.50) is satis�ed: By onstrution,
∑

b:e(b)=e

fx(b) = 1 for every x and eah e ∈ x. (5.53)On the other hand, fA,B(e) =
∑

x
P

fA,B

N (XA,B = x)1{e∈x}.Therefore, (5.52) gives rise to the following deomposition of unity,1{fA,B(b)>0} =
∑

x∋e(b)

∑

σ∋b

P
fA,B

N (XA,B = x) P
x (Σ = σ)

fA,B(e(b))fx(b)
, (5.54)
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where (Px,Σ) is the mirosopi Markov hain from A to B whih is assoiated to the �ow
fx.Consequently, our general lower bound (2.24) implies thatap(A,B) ≥

∑

x

P
fA,B

N (XA,B = x) E
x





ℓB−1∑

ℓ=−ℓA

fA,B(xℓ,xℓ+1)f
x(σℓ, σℓ+1)

µβ,N (σℓ)pN (σℓ, σℓ+1)





−1

≥
∑

x

P
fA,B

N (XA,B = x)



E

x

ℓB−1∑

ℓ=−ℓA

fA,B(xℓ,xℓ+1)f
x(σℓ, σℓ+1)

µβ,N (σℓ)pN (σℓ, σℓ+1)





−1

(5.55)We need to reover ΦN (g̃) from the latter expression. In view of (5.1), write,
fA,B(xℓ,xℓ+1)f

x(σℓ, σℓ+1)

µβ,N(σℓ)pN (σℓ, σℓ+1)
=

φA,B(xℓ,xℓ+1)

ΦN (g̃)
(5.56)

× Qβ,N (xℓ)rN (xℓ,xℓ+1)f
x(σℓ, σℓ+1)

µβ,N(σℓ)pN (σℓ, σℓ+1)
.Sine we prove lower bounds, we may restrit attention to a subset of good realizations xof the mesosopi hain XA,B whose P

fA,B

N -probability is lose to one. In partiular, (5.4)and (5.5) insure that the �rst term in the above produt is preisely what we need. Theremaining e�ort, therefore, is to �nd a judiious hoie of fx suh that the seond fator in
(5.56) is lose to one. To this end we need some additional notation: Given a mesosopitrajetory x = (x−ℓA

, . . . ,xℓB
), de�ne k = k(ℓ) as the diretion of the inrement of ℓ-thjump. That is, xℓ+1 = xℓ +ek. On the mirosopi level suh a transition orresponds to a�ip of a spin from the Λk slot. Thus, realling the notation Λ±

k (σ) ≡ {i ∈ Λk : σ(i) = ±1},we have that, if σℓ ∈ SN [xℓ] and σℓ+1 ∈ SN [xℓ+1], then σℓ+1 = θ+
i σℓ for some i ∈ Λ−

k(ℓ)(σℓ).By our hoie of transition probabilities, pN , and their mesosopi ounterparts, rN , in
(4.2),

rN (xℓ,xℓ+1)

pN (σℓ, σℓ+1)
=
∣∣∣Λ−

k(ℓ)(σℓ)
∣∣∣ (1 +O(ǫ)) , (5.57)uniformly in ℓ and in all pairs of neighbors σℓ, σℓ+1. Note that the ardinality, ∣∣∣Λ−

k(ℓ)(σℓ)
∣∣∣,is the same for all σℓ ∈ SN [xℓ].For x ∈ Γn

N , de�ne the anonial measure,
µx

β,N (σ) =
1{σ∈SN [x]}µβ,N (σ)

Qβ,N (x)
. (5.58)The seond term in (5.56) is equal to

fx(σℓ, σℓ+1)

µxℓ
β,N (σℓ) · 1/

∣∣∣Λ−
k(ℓ)(σℓ)

∣∣∣
(1 +O(ǫ)) . (5.59)If the magneti �elds, h, were onstant on eah set Ik, then we ould hose the �ow

fx(σℓ, σℓ+1) = µxℓ
β,N (σℓ) ·1/

∣∣∣Λ−
k(ℓ)(σℓ)

∣∣∣, and onsequently we would be done. In the generalase of ontinuous distribution of h, this is not the ase. However, sine the �utuations of
h are bounded by 1/n, we an hope to onstrut fx in suh a way that the ratio in (5.59)is kept very lose to one.Constrution of fx. We onstrut now a Markov hain, P

x, on mirosopi trajetories,
Σ = {σ0, . . . , σℓB

}, from S[x0] to B, suh that σℓ ∈ S[xℓ], for all ℓ = 0, . . . , ℓB . Themirosopi �ow, fx, is then de�ned through the identity P
x (b ∈ Σ) = fx(b).
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The onstrution of a mirosopi �ow from A to S[x0] is ompletely similar (it is just thereversal of the above) and we will omit it.We now onstrut P
x.STEP 1. Marginal distributions: For eah ℓ = 0, . . . , ℓB we use νx

ℓ to denote the marginaldistribution of σℓ under P
x. The measures νx

ℓ are onentrated on S[xℓ]. The initialmeasure, νx

0 , is just the anonial measure µx0
β,N . The measures ν

x

ℓ+1 are then de�nedthrough the reursive equations
ν

x

ℓ+1(σℓ+1) =
∑

σℓ∈S[xℓ]

ν
x

ℓ (σ)qℓ(σℓ, σℓ+1). (5.60)STEP 2. Transition probabilities. The transition probabilities, qℓ(σℓ, σℓ+1), in (5.60) arede�ned in the following way: As we have already remarked, all the mirosopi jumps areof the form σℓ 7→ θ+
j σℓ, for some j ∈ Λ−

k(ℓ)(σ), where θ+
j �ips the j-th spin from −1 to 1.For suh a �ip de�ne

qℓ(σℓ, θ
+
j σℓ) =

e2βh̃j

∑
i∈Λ−

k (σℓ)
e2βh̃i

. (5.61)Then the mirosopi �ow through an admissible bound, b = (σℓ, σℓ+1), is equal to
fx(σℓ, σℓ+1) = P

x (b ∈ Σ) = ν
x

ℓ (σℓ)qℓ(σℓ, σℓ+1) =
ν

x

ℓ (σℓ)∣∣∣Λ−
k(ℓ)(σℓ)

∣∣∣
(1 +O(ǫ)) . (5.62)Consequently, the expression in (5.59), and hene the seond term in (5.56), is equal to

ν
x

ℓ (σℓ)

µxℓ
β,N(σℓ)

(1 +O(ǫ)) ≡ Ψℓ(σℓ) (1 +O(ǫ)) . (5.63)Main result. We laim that there exists a set, TA,B, of good mesosopi trajetories from
A to B, suh that

P
fA,B

N (XA,B ∈ TA,B) = 1 − o(1), (5.64)and, uniformly in x ∈ TA,B,
E

x




ℓB−1∑

ℓ=−ℓA

Ψℓ(σℓ)φA,B(xℓ,xℓ+1)


 ≤ 1 +O(ǫ). (5.65)This will imply that, ap(A,B) ≥ ΦN (g̃) (1 −O(ǫ)) , (5.66)whih is the lower bound neessary to prove Theorem 1.3.The rest of the Setion is devoted to the proof of (5.65). First of all we derive reursiveestimates on Ψℓ for a given realization, x, of the mesosopi hain. After that it will beobvious how to de�ne TA,B.

5.6. Propagation of errors along microscopic paths. Let x be given. Notie that µxℓ
β,Nis the produt measure,

µxℓ
β,N =

n⊗

j=1

µ
xℓ(j)
β,N , (5.67)where µxℓ(j)

β,N is the orresponding anonial measure on the mesosopi slot S(j)
N = {−1, 1}Λj .On the other hand, aording to (5.61), the big mirosopi hain Σ splits into a di-ret produt of n small mirosopi hains, Σ(1), . . . ,Σ(n), whih independently evolve on

S(1)
N , . . . ,S(n)

N . Thus, k(ℓ) = k means that the ℓ-th step of the mesosopi hain indues astep of the k-th small mirosopi hain Σ(k). Let τ1[ℓ], . . . , τn[ℓ] be the numbers of steps
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performed by eah of the small mirosopi hains after ℓ steps of the mesosopi hainor, equivalently, after ℓ steps of the big mirosopi hain Σ. Then the orretor, Ψℓ, in
(5.63) equals

Ψℓ (σℓ) =

n∏

j=1

ψ
(j)
τj [ℓ]

(σ
(j)
ℓ ), (5.68)where σ(j)

ℓ is the projetion of σℓ on S(j)
N . Therefore we are left with two separate tasks:On the mirosopi level we need to ontrol the propagation of errors along small hainsand, on the mesosopi level, we need to ontrol the statistis of τ1[ℓ], . . . , τn[ℓ]. The lattertask is related to haraterizing the set, TA,B, of good mesosopi trajetories and it isrelegated to Subsetion 5.7Small mirosopi hains. It would be onvenient to study the propagation of errorsalong small mirosopi hains in the following slightly more general ontext: Fix 1 ≪

M ∈ N and 0 ≤ ǫ ≪ 1. Let g1, . . . , gM ∈ [−1, 1]. Consider spin on�gurations, ξ ∈ SM =

{−1, 1}M , with produt weights
w(ξ) = eǫ

P
i giξ(i). (5.69)As before, let Λ±(ξ) = {i : ξ(i) = ±1}. De�ne layers of �xed magnetization, SM [K] =

{ξ ∈ SM : |Λ+(ξ)| = K}. Finally, �x δ0, δ1 ∈ (0, 1), suh that δ0 < δ1.Set K0 = ⌊δ0M⌋ and r = ⌊(δ1−δ0)M⌋. We onsider a Markov hain, Ξ = {Ξ0,Ξ1, . . . ,Ξr}on SM , suh that Ξτ ∈ SM [K0 + τ ] ≡ Sτ
M for τ = 0, 1, . . . , r. Let µτ be the anonialmeasure,

µτ (ξ) =
w(ξ)1{ξ∈Sτ

M}
Zτ

. (5.70)We take ν0 = µ0 as the initial distribution of Ξ0 and, following (5.61), we de�ne transitionrates,
qτ (ξτ , θ

+
j ξτ ) =

e2ǫgj

∑
i∈Λ−(ξτ ) e2ǫgi

. (5.71)We denote by P the law of this Markov hain and let ντ be the distribution of Ξτ (whih isonentrated on Sτ
M ), that is, ντ (ξ) = P (Ξτ = ξ). The propagation of errors along pathsof our hain is then quanti�ed in terms of ψτ (·) ≡ ντ (·)/µτ (·).

Proposition 5.1. For every τ = 1, . . . , r and each ξ ∈ Sτ
M define

Bτ (ξ) ≡
M∑

i=1

e2ǫgi1{i∈Λ−(ξ)} and Aτ = µτ (Bτ (·)) =

M∑

i=1

e2ǫgiµτ

(
i ∈ Λ−(·)

)
. (5.72)

Then there exists c = c(δ0, δ1) such that the following holds: For any trajectory, ξ =
(ξ0, . . . , ξr), of positive probability under P, it holds that

ψτ (ξτ ) ≤
[ A0

B0(ξ0)

]τ

ecǫτ2/M , (5.73)

for all τ = 0, 1, . . . , r.

Proof. By construction, ψ0 ≡ 1. Let ξτ+1 ∈ Sτ+1
M . Since ντ satisfies the recursion

ντ+1(ξτ+1) =
∑

j∈Λ+(ξτ+1)

ντ (θ
−
j ξτ+1)qτ (θ

−
j ξτ+1, ξτ+1), (5.74)
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it follows that ψτ satisfies

ψτ+1(ξτ+1) =
∑

j∈Λ+(ξτ+1)

ντ (θ−j ξτ+1)qτ (θ
−
j ξτ+1, ξτ+1)

µτ+1(ξτ+1)

=
∑

j∈Λ+(ξτ+1)

µτ (θ
−
j ξτ+1)qτ (θ

−
j ξτ+1, ξτ+1)

µτ+1(ξτ+1)
ψτ (θ

−
j ξτ+1).

By our choice of transition probabilities in (5.71),

µτ (θ
−
j ξτ+1)qτ (θ

−
j ξτ+1, ξτ+1)

µτ+1(ξτ+1)
=
Zτ+1

Zτ





∑

i∈Λ−(θ−j ξτ+1)

e2ǫgi





−1

. (5.75)

Recalling that |Λ+(ξτ )| ≡ |Λ+
τ | = K0 + τ does not depend on the particular value of ξτ ,

Zτ+1

Zτ
=

1

Zτ

∑

ξ∈Sτ+1
M

w(ξ) =
1

Zτ

∑

ξ∈Sτ+1
M

1

|Λ+(ξ)|
∑

j∈Λ+(ξ)

w(θ−j ξ)e
2ǫgj

=
1

Zτ

∑

ξ∈Sτ
M

w(ξ) · 1∣∣Λ+
τ+1

∣∣
∑

j∈Λ−(ξ)

e2ǫgj = µτ


 1

|Λ+(ξτ+1)|
∑

j∈Λ−(·)
e2ǫgj


 .

We conclude that the right hand side of (5.75) equals

1

|Λ+(ξτ+1)|
·
µτ

(∑
i∈Λ−(·) e2ǫgi

)

∑
i∈Λ−(θ−j ξτ+1)

e2ǫgi
=

1

|Λ+(ξτ+1)|
· Aτ

Bτ (θ
−
j ξτ+1)

. (5.76)

As a result,

ψτ+1(ξτ+1) =
1

|Λ+(ξτ+1)|
∑

j∈Λ+(ξτ+1)

Aτ

Bτ (θ
−
j ξτ+1)

ψτ (θ−j ξτ+1). (5.77)

Iterating the above procedure we arrive to the following conclusion: Consider the set,
D(ξτ+1), of all paths, ξ = (ξ0, . . . , ξτ , ξτ+1), of positive probability from S0

M to Sτ+1
M to

ξτ+1. The number, Dτ+1 ≡ |D(ξτ+1)|, of such paths does not depend on ξτ+1. Then, since
ψ0 ≡ 1,

ψτ+1(ξτ+1) =
1

Dτ+1

∑

ξ∈D(ξτ+1)

τ∏

s=0

As

Bs(ξs)
. (5.78)

We claim that
As

Bs(ξs)
=

(
1 +

O(ǫ)

M

) As−1

Bs−1(ξs−1)
, (5.79)

uniformly in all the quantities under consideration. Once (5.79) is verified,

ψτ (ξτ ) ≤ eO(ǫ)τ2/M max
ξ0∼ξτ

[ A0

B0(ξ0)

]τ

, (5.80)

where for ξ0 ∈ S0
M , the relation ξ0 ∼ ξτ means that there is a path of positive probability

from ξ0 to ξτ . But all such ξ0’s differ at most in 2τ coordinates. It is then straightforward
to see that if ξ0 ∼ ξτ and ξ′0 ∼ ξτ , then

B0(ξ0)

B0(ξ′0)
≤ eO(ǫ)τ/M , (5.81)

and (5.73) follows.

It remains to prove (5.79). Let ξ ∈ Ss
M and ξ′ = θ−j ξ ∈ Ss−1

M . Notice, first of all, that

Bs−1(ξ
′) − Bs(ξ) = e2ǫgj = 1 +O(ǫ). (5.82)
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Similarly,

As−1 −As =

M∑

i=1

e2ǫgi
{
µs−1(i ∈ Λ−) − µs(i ∈ Λ−)

}

= 1 +
M∑

i=1

(
e2ǫgi − 1

) {
µs−1(i ∈ Λ−) − µs(i ∈ Λ−)

}
.

By usual local limit results for independent Bernoulli variables,

µs−1(i ∈ Λ−) − µs(i ∈ Λ−) = O

(
1

M

)
, (5.83)

uniformly in s = 1, . . . , r − 1 and i = 1, . . . ,M . Hence, As−1 −As = 1 +O(ǫ).

Finally, both As−1 and Bs−1(ξ
′) are (uniformly ) O(M), whereas,

As−1 − Bs−1(ξ
′) =

M∑

i=1

(
e2ǫgi − 1

) {
µs−1(i ∈ Λ−) − 1{i∈Λ−(ξ′)}

}
= O(ǫ)M. (5.84)

Hence,

As

Bs(ξ)
=

As−1 − 1 +O(ǫ)

Bs−1(ξ′) − 1 +O(ǫ)
=

As−1

Bs−1(ξ′)

(
1 +

O(ǫ)

M

)
, (5.85)

which is (5.79). �Bak to the big mirosopi hain. Going bak to (5.68) we infer that the orretorof the big hain Σ satis�es the following upper bound: Let σ = (σ0, σ1, . . . ) be a trajetoryof Σ (as sampled from Px). Then, for every ℓ = 0, 1, . . . , ℓB − 1,
Ψℓ(σℓ) ≤ exp



cǫ

n∑

j=1

τj [ℓ]
2

Mj





n∏

j=1

[
A(j)

0

B(j)
0 (σ

(j)
0 )

]τj [ℓ]

, (5.86)where Mj = |Λj | = ρjN ,
A(j)

0 =
∑

i∈Λj

e2h̃iµ
x0(j)
β,N

(
i ∈ Λ−

j

)
, and B(j)

0 (σ
(j)
0 ) =

∑

i∈Λj

e2h̃i1n
i∈Λ−

j (σ
(j)
0 )

o. (5.87)Of ourse, A(j)
0 = µ

x0(j)
β,N

(
B(j)

0

). It is enough to ontrol the �rst order approximation,
[

A(j)
0

B(j)
0 (σ

(j)
0 )

]τj [ℓ]

≈ exp

{
−τj[ℓ]

B(j)
0 (σ

(j)
0 ) −A(j)

0

B(j)
0 (σ

(j)
0 )

}
≡ exp (τj[ℓ]Yj) . (5.88)The variables Y1, . . . , Yn are independent one x0 is �xed. Thus, in view of our target,

(5.65), we need to derive an upper bound of order (1 +O(ǫ)) for
E

x

ℓB−1∑

ℓ=0

exp



cǫ

n∑

j=1

τj[ℓ]
2

Mj
+

n∑

j=1

τj [ℓ]Yj



φA,B(xℓ,xℓ+1)

=

ℓB−1∑

ℓ=0

exp



cǫ

n∑

j=1

τj[ℓ]
2

Mj





n∏

1

µ
x0(j)
β,N

(
eτj [ℓ]Yj

)
φA,B(xℓ,xℓ+1), (5.89)whih holds with P

fA,B

N -probability of order 1 −O(ǫ).
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5.7. Good mesoscopic trajectories. A look at (5.89) reveals what is to be expeted fromgood mesosopi trajetories. First of all, we may assume that it passes through the tube
G0

N (see (5.13)) of z∗. In partiular, x0 ∈ G0
N . Next, by our onstrution of the mesosopihain P

fA,B

N , and in view of (3.20) and (3.21), the step frequenies, τj [ℓ]/ℓ, are, on average,proportional to ρj. Therefore, there exists a onstant, C1, suh that, up to exponentiallynegligible P
fA,B

N -probabilities,
max

j

τj[ℓB ]

Mj
≤ C1 (5.90)holds.A bound on mirosopi moment-generating funtions. We will now use theestimate (5.90) to obtain an upper bound on the produt terms in (5.89). Clearly,

B(j)
0 (σ

(j)
0 ) = (1 +O(ǫ))Mj , uniformly in j and σ(j)

0 . Thus, by (5.88),
Yj(1 +O(ǫ)) =

1

Mj

∑

i∈Λj

(
1 − e2ehi

)(1{σ(i)=−1} − µ
x0(j)
β,N (σ(i) = −1)

)
≡ Ỹj . (5.91)Now, for any t ≥ 0,

lnµ
x0(j)
β,N

(
eteYj

)
≤ t2

2M2
j

max
s≤t

V
x0(j),s
β,N


∑

i∈Λj

(
1 − e2ehi

)1{σ(i)=−1}


 , (5.92)where V

x0(j),s
β,N is the variane with respet to the tilted onditional measure, µx0(j),s

β,N , de�nedthrough
µ

x0(j),s
β,N (f) ≡

µ
x0(j)
β,N

(
feseYj

)

µ
x0(j)
β,N

(
eseYj

) . (5.93)However, µx0(j),s
β,N (·) is again a onditional produt Bernoulli measure on S(j)

N , i.e.,
µ

x0(j),s
β,N (·) =

⊗

i∈Λj

Bpi(ǫ,s)


 ·

∣∣∣
∑

i∈Λj

σ(i) = Nx0(j)


 , (5.94)where

pi(ǫ, s) =
e

ehi

eehi + e
−ehi+

s
Mj

(1−e2
ehi )
. (5.95)By (5.90) we need to onsider only the ase s/Mj ≤ C1. Evidently, there exists δ1 > 0,suh that,

δ1 ≤ min
j

min
s≤C1Mj

min
i∈Λj

pi(ǫ, s) ≤ max
j

max
s≤C1Mj

max
i∈Λj

pi(ǫ, s) ≤ 1 − δ1. (5.96)On the other hand, sine x0 ∈ G0
N , there exists δ2 > 0, suh that

δ2 ≤ min
j

Nx0(j)

Mj
≤ max

j

Nx0(j)

Mj
≤ 1 − δ2. (5.97)We use the following general ovariane bound for produt of Bernoulli measures, whihan be derived from loal limit results in a straightforward, albeit painful manner.

Lemma 5.2. Let δ1 > 0 and δ2 > 0 be fixed. Then, there exists a constant, C = C(δ1, δ2) <
∞, such that, for all conditional Bernoulli product measures on SM , M ∈ N, of the form

M⊗

i=1

Bpi

(
·
∣∣∣

M∑

k=1

ξk = 2M0

)
, (5.98)
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with p1, . . . , pM ∈ (δ1, 1− δ1) and 2M0 ∈ (−M(1− δ2),M(1 − δ2)), and for all 1 ≤ k < l ≤
M , it holds that

∣∣Cov
(1{ξk=−1};1{ξl=−1}

)∣∣ ≤ C

M
. (5.99)Going bak to (5.92) we infer from this that

n∏

1

µ
x0(j)
β,N

(
eτj [ℓ]Yj

)
≤ exp



O(ǫ2)

n∑

j=1

τj[ℓ]
2

Mj



 , (5.100)uniformly in ℓ = 0, . . . , ℓB .Statistis of mesosopi trajetories. (5.89) together with the bound (5.100) suggeststhe following notion of goodness of mesosopi trajetories x:

Definition 5.3. We say that a mesoscopic trajectory x = (x−ℓA
, . . . ,xℓB

) is good, and

write x ∈ TA,B, if it passes through G0
N , satisfies (5.90) (and its analog for the reversed

chain) and, in addition, it satisfies

ℓB−1∑

ℓ=−ℓA

exp



O(ǫ)

n∑

j=1

τj [ℓ]
2

Mj



φA,B(xℓ,xℓ+1) ≤ 1 +O(ǫ). (5.101)By onstrution (5.65) automatially holds for any x ∈ TA,B. Therefore, our target lowerbound (5.66) on mirosopi apaities will follow from

Proposition 5.4. Let fA,B be the mesoscopic flow constructed in Subsections 5.3 and 5.4,
and let the set of mesoscopic trajectories TA,B be as in Definition 5.3. Then (5.64) holds.

Proof. By (5.49) we may assume that there exists C > 0 such that, for all x under consid-
eration and for all ℓ = −ℓA, . . . , ℓB − 1,

φA,B(xℓ,xℓ+1) ≤ e−Cℓ2/N . (5.102)

In view of (5.2) it is enough to check that

ℓB−1∑

ℓ=0


exp



O(ǫ)

n∑

j=1

τj [ℓ]
2

Mj



− 1


φA,B(xℓ,xℓ+1) = O(ǫ), (5.103)

with P
fA,B

N -probabilities of order 1−o(1). Fix δ > 0 small and split the sum on the left hand

side of (5.103) into two sums corresponding to the terms with ℓ ≤ N1/2−δ and ℓ > N1/2−δ

respectively. Clearly,
n∑

j=1

τj[ℓ]
2

Mj
= o(1), (5.104)

uniformly in 0 ≤ ℓ ≤ N1/2−δ. On the other hand, from our construction of the mesoscopic
flow fA,B, namely from the choice (5.19) of transition rates inside G0

N , and from the
property (3.33) of the minimizing curve x̂(·), it follows that there exists a universal (ǫ-
independent) constant, K <∞, such that

P
fA,B

N

(
max

j
max

ℓ>N1/2−δ

τj[ℓ]

ℓρj
> K

)
= o(1). (5.105)

Therefore, up to P
fA,B

N -probabilities of order o(1), the inequality

O(ǫ)

n∑

j=1

τ2
j [ℓ]

Mj
≤ O(ǫ)K2ℓ2

n∑

j=1

ρ2
j

Mj
= K2O(ǫ)

ℓ2

N
, (5.106)

holds uniformly in ℓ > N1/2−δ . A comparison with (5.102) yields (5.103). �
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The last proposition leads to the inequality (5.66), whih, together the upper bound givenin (4.62), onludes the proof of Theorem 1.3.
6. SHARP ESTIMATES ON THE MEAN HITTING TIMESIn this setion we onlude the proof of Theorem 1.2. To do this we will use Equation(2.12) with A = S[m∗

0] and B = S[M ], where m∗
0 is a loal minimum of Fβ,N and M isthe set of minima deeper than m∗

0. The denominator on the right-hand side of (2.12), theapaity, is ontrolled by Theorem 1.3. What we want to prove now is that the equilibriumpotential, hA,B(σ), is lose to one in the neighborhood of the starting set A, and so smallelsewhere that the ontributions from the sum over σ away from the valley ontaining theset A an be negleted. Note that this is not generally true but depends on the hoie ofsets A and B: the ondition that all minima m of Fβ,N suh that Fβ,N (m) < Fβ,N (m∗
0)belong to the target set B is ruial.In earlier work (see [4℄) the standard way to estimate the equilibrium potential hA,B(σ)was to use the renewal inequality hA,B(σ) ≤ ap(A,σ)ap(B,σ) and bounds on apaities. Thisbound annot be used here, sine the apaities of single points are too small. We willtherefore use another method to ope with this problem.

6.1. Mean hitting time and equilibrium potential. Let us start by onsidering a loalminimum m∗
0 of the one-dimensional funtion Fβ,N , and denote by M the set of minima

m suh that Fβ,N (m) < Fβ,N (m∗
0). We then onsider the disjoint subsets A ≡ S[m∗

0] and
B ≡ S[M ], and write Eq. (2.12) as

∑

σ∈A

νA,B(σ)EστB =
1ap(A,B)

∑

m∈[−1,1]

∑

σ∈S[m]

µβ,N (σ)hA,B(σ). (6.1)We want to estimate the right-hand side of (6.1). This is expeted to be of order Qβ,N (m∗
0),thus we an readily do away with all ontributions where Qβ,N is muh smaller. Morepreisely, we hoose δ > 0 in suh a way that, for all N large enough, there is no ritialpoint z of Fβ,N with Fβ,N (z) ∈ [Fβ,N (m∗

0), Fβ,N (m∗
0) + δ], and de�ne

Uδ ≡ {m : Fβ,N (m) ≤ Fβ,N (m∗
0) + δ}. (6.2)Denoting by Uc

δ the omplement of Uδ, we obviously have
Lemma 6.1. ∑

m∈Uc
δ

∑

σ∈S[m]

µβ,N(σ)hA,B(σ) ≤ Ne−βNδQβ,N (m∗
0). (6.3)The main problem is to ontrol the equilibrium potential hA,B(σ) for on�gurations σ ∈

S[Uδ]. To do that, �rst notie that
Uδ = Uδ(m

∗
0)
⋃

m∈M

Uδ(m), (6.4)where Uδ(m) is the onneted omponent of Uδ ontaining m (see Fig. 6.1). Note that itan happen that Uδ(m) = Uδ(m
′) for two di�erent minima m,m′ ∈M .With this notation we have the following lemma.

Lemma 6.2. There exists a constant, c > 0, such that,

(i) for every m ∈M ,
∑

σ∈S[Uδ(m)]

µβ,N(σ)hA,B(σ) ≤ e−βNcQβ,N (m∗
0), (6.5)
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∗
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∗
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Fβ,N (m)

Fβ,N (m∗
0) + δ

−1 1

FIGURE 4. Decomposition of the magnetization space [−1, 1]: U c
δ is repre-

sented by dotted lines, while the continuous lines correspond Uδ ≡
Uδ(m

∗
0)
⋃

m∈M Uδ(m).

and
(ii) ∑

σ∈S[Uδ(m∗
0)]

µβ,N(σ) [1 − hA,B(σ)] ≤ e−βNcQβ,N (m∗
0). (6.6)The treatment of points (i) and (ii) is ompletely similar, as both rely on a rough estimateof the probabilities to leave the starting well before visiting its minimum, and it will bedisussed in the next setion.Assuming Lemma 6.2, we an readily onlude the proof of Theorem 1.2. Indeed, using(6.5) together with (6.3), we obtain the upper bound

∑

σ∈SN

µβ,N (σ)hA,B(σ) ≤
∑

m∈Uδ(m∗
0)

Qβ,N (m) +O
(
Qβ,N (m∗

0)e
−βNc

)

= Qβ,N (m∗
0)

√
πN

2βa(m∗
0)

(1 + o(1)), (6.7)where a(m∗
0) is given in (1.19). On the other hand, using (6.6), we get the orrespondinglower bound∑

σ∈SN

µβ,N (σ)hA,B(σ) ≥
∑

m∈Uδ(m∗
0)

∑

σ∈S[m]

µβ,N (σ) [1 − (1 − hA,B(σ))]

≥
∑

m∈Uδ(m∗
0)

Qβ,N (m) −O(Qβ,N (m∗
0)e

−βNc)

= Qβ,N (m∗
0)

√
πN

2βa(m∗
0)

(1 + o(1)). (6.8)From Equation (1.12) for Qβ,N (m∗
0) and Equation (1.31) for ap(A,B), we �nally obtain

EνA,B
τB =

∑

σ∈SN

µβ,N(σ)hA,B(σ)ap(A,B)

= exp (βN (Fβ,N (z∗) − Fβ,N (m∗
0)))

× 2πN

β|γ̂1|

√
βEh

(
1 − tanh2 (β(z∗ + h))

)
− 1

1 − βEh

(
1 − tanh2 (β(m∗

0 + h))
)(1 + o(1)), (6.9)
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m∗
0

A = {x : m(x) = m∗
0}

U δ(m
∗
0)

U δ ≡ U δ(m
∗)

∂AGθ

∂BGθ

m∗
Gθ

B = {x : m(x) = m∗}

∂AU δ

∂BU δ

FIGURE 5. Neighborhoods of m∗
0 and m∗ in the space Γn

N . Here we de-
noted by U δ(m

∗
0) the mesoscopic counterpart of U(m∗

0).whih proves Theorem 1.2.
6.2. Upper bounds on harmonic functions. We now prove Lemma 6.2 giving a detailedproof only for (i), the proof of (ii) being ompletely analogous. This requires, for the �rsttime in this paper, to get an estimate on the minimizer of the Dirihlet form, the harmonifuntion hA,B(σ).First note that, sine hA,B(σ) ≡ Pσ(τA < τB) for all σ /∈ A ∪B, the only non zero ontri-butions to the sum in (i) ome from those sets Uδ(m) (at most two) whose orresponding
m is suh that there are no minima of M between m∗

0 and m. By symmetry we an justanalyze one of these two sets, denoted by Uδ(m
∗), assuming for de�niteness that m∗

0 < m∗.Note also that sine hA,B(σ) = 0 for all σ suh that m∗ ≤ m(σ), the problem an beredued further on to the set
U−

δ ≡ Uδ(m
∗) ∩ {m : m < m∗}. (6.10)De�ne the mesosopi ounterpart of U−
δ , namely, for �xed m∗ ∈ M and n ∈ N, let

m∗ ∈ Γn
N be the minimum of Fβ,N (x) orrespondent to m∗, and de�ne

U δ ≡ U δ(m
∗) ≡ {x ∈ Γn

N : m(x) ∈ U−
δ }. (6.11)We write the boundary of U δ as ∂U δ = ∂AU δ ⊔ ∂BU δ, where ∂BU δ = ∂U δ ∩ B, andobserve that, for all σ ∈ S[U δ]

hA,B(σ) = Pσ[τA < τB ] ≤ Pσ[τS[∂AUδ] < τS[∂BUδ]]. (6.12)Let maxℓ ρℓ ≪ θ(ε) ≪ 1, and for θ ≡ θ(ε) de�ne
Gθ ≡

{
m ∈ U δ :

n∑

ℓ=1

(mℓ − m∗
ℓ)

2

ρℓ
≤ ε2

θ

}
. (6.13)As before, we denote by ∂Gθ the boundary of Gθ, and write ∂Gθ = ∂AGθ ⊔ ∂BGθ, where

∂BGθ = ∂Gθ ∩ B (see Fig. 6.2).The strategy to ontrol the equilibrium potential, Pσ(τA < τB), onsists in estimating theprobabilities Pσ[τA < τS[∂AGθ]∪B ], for σ ∈ S[U δ \ Gθ], and Pσ[τS[∂AGθ ] < τB ], for σ ∈ Gθ,in order to apply a renewal argument and to get from these estimates a bound on theprobability of the original event.Proeeding on this line, we state the following:
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Proposition 6.3. For any α ∈ (0, 1), there exists n0 ∈ N, such that the inequality

Pσ(τA < τS[∂AGθ]∪B) ≤ e−(1−α)βN[Fβ,N (m∗
0)+δ−Fβ,N (m(σ))] (6.14)

holds for all σ ∈ S[U δ \ Gθ], n ≥ n0, and for all N sufficiently large.Proof of Proposition 6.3: Super-harmoni barrier funtions. Throughout the nextomputations, c, c′ and c′′ will denote positive onstants whih are independent on n butmay depend on β and on the distribution of h. The partiular value of c and c′ may hangefrom line to line as the disussion progresses.We �rst observe that, for all σ ∈ S[U δ \ Gθ],
Pσ[τA < τS[∂AGθ ]∪B] ≤ Pσ[τS[∂AUδ] < τS[∂AGθ ]∪B]. (6.15)The probability in the r.h.s. of (6.15) is the main objet of investigation here. The ideawhih is beyond the proof of bound (6.14) is quite simple. Suppose that ψ is a boundedsuper-harmoni funtion de�ned on S[U δ \ Gθ], i.e.

(Lψ)(σ) ≤ 0 for all σ ∈ S[U δ \ Gθ]. (6.16)Then ψ(σt) is a supermartingale, and T ≡ τS[∂AUδ ] ∧ τS[∂AGθ]∪B is an integrable stoppingtime, so that, by Doob's optional stopping theorem, ∀σ ∈ S[U δ \ Gθ],
Eσψ(σT ) ≤ ψ(σ). (6.17)On the other hand,

Eσψ(σT ) ≥ min
σ′∈S[∂AUδ ]

ψ(σ′)Pσ(τS[∂AUδ ] < τS[∂AGθ]∪B), (6.18)and hene
Pσ(τS[∂AUδ] < τS[∂AGθ ]∪B) ≤ max

σ′∈S[∂AUδ]

ψ(σ)

ψ(σ′)
. (6.19)The problem is to �nd a super-harmoni funtion in order to get a suitable bound in (6.19).

Proposition 6.4. For any α ∈ (0, 1), there exists n0 ∈ N such that the function ψ(σ) ≡
φ(m(σ)), with φ : R

n 7→ R defined as

φ(x) ≡ e(1−α)βNFβ,N (x), (6.20)

is super-harmonic in S[U δ \ Gθ] for all n ≥ n0 and N sufficiently large.The proof of Proposition 6.4 will involve omputations with di�erenes of the funtions
Fβ,N . We therefore �rst ollet some elementary properties that we will use later. Firstwe need some ontrol on the seond derivative of this funtion. From (3.14) we infer that

∂2Fβ,N (x)

∂x2
ℓ

=
2

N

(
−1 +

1

βρℓ
I ′′N,ℓ(xℓ/ρℓ)

)
. (6.21)Thus all the potential problems ome from the funtion IN,ℓ.

Lemma 6.5. For any y ∈ (−1, 1),

tanh−1(y) − βε ≤ I ′N,ℓ(y) ≤ tanh−1(y) + βε, (6.22)

In particular, as y → ±1, I ′N,ℓ(y) → ±∞.

Proof. Recall that I ′N,ℓ(y) = U ′−1
N,ℓ (y). Set I ′N,ℓ(y) ≡ t. Then

y =
1

|Λℓ|
∑

i∈Λℓ

tanh(t+ βh̃i) (6.23)

and hence

tanh(t− βε) ≤ y ≤ tanh(t+ βε), (6.24)
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or, equivalently, (6.22), which proves the lemma. �

Lemma 6.6. For any y ∈ (−1, 1) we have that

0 ≤ I ′′N,ℓ(y) ≤
1

1 − (|y| + εβ(1 − y2))2
. (6.25)

In particular, for all y ∈ [−1 + ν, 1 − ν], with ν ∈ (0, 1/2),

0 ≤ I ′′N,ℓ(y) ≤
1

2ν + ν2 +O(ε)
≤ c, (6.26)

and, for all y ∈ (−1,−1 + ν] ∪ [1 − ν, 1),

0 ≤ I ′′N,ℓ(y) ≤
1

1 − |y| . (6.27)

Proof. We consider only the case y ≥ 0, the case y < 0 is completely analogous. Using

the relation I ′′N,ℓ(x) =
(
U ′′

N,ℓ(I
′
N,ℓ(x))

)−1
and setting tℓ ≡ I ′N,ℓ(y)arctanh(y), and using

Lemma 6.5, we obtain

I ′′N,ℓ(y) =
1

1
|Λℓ(x)|

∑
i∈Λℓ(x)(1 − tanh2(βh̃i + tℓ))

≤ 1

1 − tanh2(εβ + tℓ)

≤ 1

1 − tanh2(tanh−1(y) + 2εβ)

≤ 1

1 −
(
y + 2εβ tanh′(tanh−1(y))

)2

=
1

1 − (y + 2εβ(1 − y2))2
, (6.28)

where we used that tanh is monotone increasing. The remainder of the proof is elementary
algebra. �Let us de�ne, for all m suh that xℓ/ρℓ ∈ [−1, 1 − 2/N ],

gℓ(x) ≡ N
2 (FN,β(x + eℓ) − FN,β(x)) . (6.29)Lemma 6.6 has the following orollary.

Corollary 6.7. (i) If xℓ/ρℓ ∈ [−1 + ν, 1 − ν], with ν > 0, then

gℓ(x) = −x− h̄ℓ + 1
β I

′
N,ℓ(xℓ/ρℓ) +O(1/N). (6.30)

(ii) If xℓ/ρℓ ∈ [−1,−1 + ν] ∪ [1 − ν, 1 − 2/N ], then

gℓ(x) = −x− h̄ℓ + 1
β I

′
N,ℓ(xℓ/ρℓ) +O(1), (6.31)

where O(1) is independent of N,n, and ν.
(iii) If xℓ/ρℓ ∈ [−1 + ν, 1 − ν], with ν > 0, then there exists c < ∞, independent of N ,

such that

|gℓ(x) − gℓ(x − eℓ)| ≤
c

N
. (6.32)

(iv) If xℓ/ρℓ ∈ [−1,−1 + ν] ∪ [1 − ν, 1 − 2/N ], then

|gℓ(x) − gℓ(x − eℓ)| ≤ C, (6.33)

where C is a numerical constant independent of N,n, and ν.
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The proof of this orollary is elementary and will not be detailed.The usefulness of (ii) results from the fat that |I ′N,ℓ| is large on that domain. Morepreisely, we have the following lemma.
Lemma 6.8. There exists ν > 0, independent of N and n, such that, if xℓ/ρℓ > 1 − ν, then
gℓ(x) is strictly increasing in xℓ and tends to +∞ as xℓ/ρℓ ↑ +1; similarly if xℓ/ρℓ < −1+ν,
then gℓ(x) is strictly decreasing in xℓ and tends to −∞ as xℓ/ρℓ ↓ −1.

Proof. Combine (ii) of Corollary 6.7 with Lemma 6.5 and note that h̄ℓ is bounded by
hypothesis. �The next step towards the proof of Proposition 6.4 is the following lemma.
Lemma 6.9. Let m ∈ U δ \ Gθ and denote by S(m) = {ℓ : mℓ/ρℓ 6= 1}. Then there exists a
constant c ≡ c(β, h) > 0, independent of N and n, such that the following holds. If

∑

ℓ 6∈S(m)

ρℓ ≤
ε2

8θ
, (6.34)

then
∑

ℓ∈S(m)

ρℓ (gℓ(m))2 ≥ c
ε2

θ
, (6.35)

Proof. From the relation I ′N,ℓ(x) = U ′−1
N,ℓ (x), we get that, for all ℓ ∈ S(m),

mℓ =
1

N

∑

i∈Λℓ

tanh (β (gℓ(m)(1 + o(1)) +m+ hi)) . (6.36)

Here o(1) tends to zero as N → ∞.

We are concerned about small gℓ(m). Subtracting 1
N

∑
i∈Λℓ

tanh (β (m+ hi)) on both sides

of (6.36) and expanding the right-hand side to first order in gℓ(m), and then summing
over ℓ ∈ S(m) , we obtain

∣∣∣∣∣∣
m− 1

N

N∑

i=1

tanh (β (m+ hi)) −
∑

ℓ 6∈S(m)


mℓ −

1

N

∑

i∈Λℓ

tanh (β(m+ hi))



∣∣∣∣∣∣

≤ c
∑

ℓ∈S(m)

ρℓ |gℓ(m)| ≤ c


 ∑

ℓ∈S(m)

ρℓg
2
ℓ (m)




1/2

. (6.37)

Notice that the function m 7→ m − 1
N

∑N
i=1 tanh (β (m+ hi)) has, by (1.20), non-zero

derivative atm∗. Moreover, by construction,m∗ is the only zero of this function in U−
δ (m∗).

From this observations, together with (6.37), we conclude that

(
n∑

ℓ=1

ρℓg
2
ℓ (m)

)1/2

≥ c|m−m∗| − 2
∑

ℓ 6∈S(m)

ρℓ, (6.38)

for some constant c <∞. Here we used the triangle inequality and the fact that∣∣∣mℓ − 1
N

∑
i∈Λℓ

tanh (β(m+ hi))
∣∣∣ ≤ 2ρℓ. Under the hypothesis of the lemma, this gives

the desired bound if |m −m∗| ≥ c′′ε/
√
θ for some constant c′′ < ∞. On the other hand,
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we can write, for ℓ ∈ S(m),

|mℓ − m∗
ℓ | ≤ 1

N

∑

i∈Λℓ

|tanh (β (gℓ(m)(1 + o(1)) +m+ hi)) − tanh (β (m+ hi))|

+
1

N

∑

i∈Λℓ

|tanh (β (m+ hi)) − tanh (β (m∗ + hi))|

≤ cρℓ|m−m∗| + c′ρℓ|gℓ(m)|. (6.39)

Hence we get the bound

 ∑

ℓ∈S(m)

ρℓg
2
ℓ (m)




1/2

≥ c


 ∑

ℓ∈S(m)

(mℓ−m∗
ℓ )2

ρℓ




1/2

− c′|m−m∗|

= c




n∑

ℓ=1

(mℓ−m∗
ℓ )2

ρℓ
−

∑

ℓ 6∈S(m)

(mℓ−m∗
ℓ )2

ρℓ




1/2

− c′|m−m∗|

≥ c


ε2/θ − 4

∑

ℓ 6∈S(m)

ρℓ




1/2

− c′|m−m∗|

≥ cε/
√

2θ − c′|m−m∗| (6.40)

where in the last line we just used that m 6∈ Gθ. The inequalities (6.38) and (6.40) now
yield (6.35), concluding the proof of the lemma. �

Proof of Proposition 6.4. Let σ ∈ S[U δ \ Gθ] and set x ≡ m(σ), so that, for ψ as in Propo-
sition 6.4, Lψ(σ) = Lφ(x). Let σi be the configuration obtained from σ after a spin-flip at
i, and introduce the notation

Lφ(x) =
n∑

ℓ=1

Lℓφ(x), (6.41)

where

Lℓφ(x) =
∑

i∈Λ−
ℓ (x)

pN (σ, σi)[φ(x+eℓ)−φ(x)]+
∑

i∈Λ+
ℓ (x)

pN (σ, σi)[φ(x−eℓ)−φ(x)]. (6.42)

Notice that when xℓ/ρℓ = ±1, then Λ±
ℓ (x) = ∅ and the summation over Λ±

ℓ (x) in (6.42)
disappears.

We define the probabilities

P
σ
±,ℓ ≡

∑

i∈Λ∓
ℓ (x)

pN (σ, σi), (6.43)

and observe that they are uniformly close to the mesoscopic rates defined in (4.2), namely

e−cε ≤
P

σ
±,ℓ

rN (x,x ± eℓ)
≤ ecε, (6.44)

for some c > 0 and ε = 1/n. Notice also that

cρℓ ≤ P
σ
+,ℓ + P

σ
−,ℓ ≤ c′ρℓ. (6.45)

With the above notation and using the convention 0/0 = 0, we get

Lℓφ(x) = φ(x)Pσ
+,ℓ [exp (2β(1 − α)gℓ(x)) − 1]

+φ(x)Pσ
−,ℓ [exp (−2β(1 − α)gℓ(x − eℓ)) − 1]

= φ(x)
(1{Pσ

+,ℓ≥Pσ
−,ℓ}P

σ
+,ℓG

+
ℓ (x) + 1{Pσ

−,ℓ>Pσ
+,ℓ}P

σ
−,ℓG

−
ℓ (x)

)
(6.46)
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where we introduced the functions

G+
ℓ (x) = exp (2β(1 − α)gℓ(x)) − 1 +

Pσ
−,ℓ

Pσ
+,ℓ

(exp (−2β(1 − α)gℓ(x − eℓ)) − 1) (6.47)

G−
ℓ (x) = exp (−2β(1 − α)gℓ(x − eℓ)) − 1 +

Pσ
+,ℓ

Pσ
−,ℓ

(exp (2β(1 − α)gℓ(x)) − 1) (6.48)

If xℓ/ρℓ = ±1, the local generator takes the simpler form

Lℓφ(x) =

{
φ(x)Pσ

−,ℓ [exp (−2β(1 − α)gℓ(x − eℓ)) − 1] if xℓ/ρℓ = 1

φ(x)Pσ
+,ℓ [exp (2β(1 − α)gℓ(x)) − 1] if xℓ/ρℓ = −1

(6.49)

From Lemma 6.8 and inequalities (6.45), it follows that, for all ℓ such that xℓ/ρℓ = ±1,

Lℓφ(x) ≤ −(1 + o(1))ρℓφ(x). (6.50)

Let us now return to the case when x is not a boundary point. By the detailed balance
conditions, it holds that

rN (x,x + eℓ) = exp (−2βgℓ(x))rN (x + eℓ,x)
rN (x,x − eℓ) = exp (2βgℓ(x − eℓ))rN (x − eℓ,x),

(6.51)

which implies, together with (6.44),

exp (−2βgℓ(x) − cε) ≤ Pσ
+,ℓ

Pσ
−,ℓ

≤ exp (−2βgℓ(x) + cε)

exp (2βgℓ(x − eℓ) − cε) ≤ Pσ
−,ℓ

Pσ
+,ℓ

≤ exp (2βgℓ(x − eℓ) + cε)
(6.52)

Inserting the last bounds in (6.47) and (6.48), and with some computations, we obtain

G+
ℓ (x) ≤ (exp (2β(1 − α)gℓ(x)) − 1) (1 − exp (2βαgℓ(x − eℓ) ∓ cε)) (6.53)

+ exp (2βgℓ(x − eℓ) ∓ cε) (exp 2β(1 − α) (gℓ(x) − gℓ(x − eℓ)) − 1)

G−
ℓ (x) ≤ (exp (−2β(1 − α)gℓ(x − eℓ)) − 1) (1 − exp (−2βαgℓ(x) ∓ cε)) (6.54)

+ exp (−2βgℓ(x) ∓ cε) (exp 2β(1 − α) (gℓ(x) − gℓ(x − eℓ)) − 1)

where ∓ ≡ −sign (gℓ(x)) = −sign (gℓ(x − eℓ)).

For all ℓ such that xℓ/ρℓ ∈ [−1 + ν, 1 − ν], we can use (6.32) to get

G+
ℓ (x) ≤ (exp (2β(1 − α)gℓ(x)) − 1) (1 − exp (2αβgℓ(x) ∓ cε)) + c/N (6.55)

G−
ℓ (x) ≤ (exp (−2β(1 − α)gℓ(x)) − 1) (1 − exp (−2αβgℓ(x) ∓ cε)) + c/N. (6.56)

The right hand sides of both (6.55) and (6.56) are negative if and only if |gℓ| > cε
2αβ . Let

us define the index sets

S< ≡ {ℓ : xℓ/ρℓ ∈ [−1 + ν, 1 − ν], |gℓ(x)| ≤ cε
αβ} (6.57)

S> ≡ {ℓ : xℓ/ρℓ ∈ [−1 + ν, 1 − ν], |gℓ(x)| > cε
αβ}. (6.58)

If ℓ ∈ S<, we get immediately that

max{G+
ℓ (x), G−

ℓ (x)} ≤ c
αε

2, (6.59)

and thus, from (6.46) and (6.45),

Lℓφ(x) ≤ c′

α ε
2ρℓφ(x). (6.60)

To control the r.h.s. of (6.55) and (6.56) when ℓ ∈ S>, set

yℓ ≡ min
{
β |gℓ(x)| , 1

2

}
≤ β |gℓ(x)| . (6.61)

If gℓ(x) > cε
αβ , then

exp (2β(1 − α)gℓ(x)) − 1 ≥ exp (2(1 − α)yℓ) − 1 ≥ 2(1 − α)yℓ (6.62)

and

1 − exp (2βαgℓ(x) − cε) ≤ 1 − exp (αyℓ) ≤ −αyℓ, (6.63)
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so that the product in the r.h.s. of (6.55) is bounded from above by −2(1−α)αy2
ℓ . On the

other hand, if gℓ(x) < − cε
αβ ,

exp (2β(1 − α)gℓ(x)) − 1 ≤ exp (−2(1 − α)yℓ) − 1 ≤ −(1 − α)yℓ (6.64)

and

1 − exp (2βαgℓ(x) + cε) ≥ 1 − exp (−αyℓ) ≥ 3
4αyℓ, (6.65)

and the product in the r.h.s. of (6.55) is bounded from above by −3
4(1−α)αy2

ℓ . Altogether,

this proves that, for all ℓ ∈ S>,

G+
ℓ (x) ≤ −3

4(1 − α)αy2
ℓ , (6.66)

and with a similar computation, that

G−
ℓ (x) ≤ −3

4(1 − α)αy2
ℓ . (6.67)

If ℓ ∈ S>, then we have

Lℓφ(x) ≤ −cαρℓy
2
ℓφ(x). (6.68)

It remains to control the case when xℓ/ρℓ ∈ (−1,−1 + ν] ∪ [1 − ν, 1). From Lemma 6.8 it

follows that, while the positive contribution to G+
ℓ (x) and G−

ℓ (x) remains bounded by a
constant, the negative contribution becomes very large as soon as ν is small enough. More
explicitly, for all ν small enough, we have

G+
ℓ (x) ≤ −(exp(±C ′) − 1)2 + exp(±C ′)(exp(2β(1 − α)c) − 1) ≤ −(1 + o(1))

G−
ℓ (x) ≤ −(1 − exp(∓C ′))2 + exp(∓C ′′)(exp(2β(1 − α)c) − 1) ≤ −(1 + o(1))

(6.69)

where C ′ and C ′′ are positive constants tending to +∞ as ν ↓ 0, and the sign ± is equal to
the sign of xℓ. Together with (6.45) and (6.46), we finally get

Lℓφ(x) ≤ −(1 + o(1))ρℓφ(x). (6.70)

From (6.50), (6.60), (6.68) and (6.70), it turns out that the positive contribution to the
generator Lφ(x) =

∑n
ℓ=1 Lℓφ(x), comes at most from the indexes ℓ ∈ S<, and can be

estimated by
c′

α ε
2
∑

ℓ∈S<

ρℓ ≤ c′

α ε
2. (6.71)

Now we distinguish two cases according to whether the hypothesis of Lemma 6.9 are
satisfied or not.

Case 1:
∑

ℓ 6∈S(x) ρℓ >
ε2

8θ . By (6.50), we get

n∑

ℓ=1

Lℓφ(x) ≤
∑

ℓ 6∈S(x)

Lℓφ(x) +
∑

ℓ∈S<

Lℓφ(x) (6.72)

≤ − ε
2

8θ
(1 + o(1))φ(x) + c′

αε
2,

which is negative as desired if θ is small enough, that is, with our choice, if ε is small
enough.

Case 2:
∑

ℓ 6∈S(x) ρℓ ≤ ε2

8θ . In this case, the assertion of Lemma 6.9 holds.

By (6.50), (6.68), and (6.70), we have that, for all ℓ ∈ S(x) \ L<,

Lℓφ(x) ≤ −ρℓφ(x)min{cαy2
ℓ , 1} ≤ −cαρℓy

2
ℓφ(x), (6.73)

where the last inequality holds for α < 4/c. Let us write the generator as

Lφ(x) ≤
∑

ℓ∈S(x)\S<

Lℓφ(x) +
∑

ℓ∈S<

Lℓφ(x). (6.74)
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The first sum in (6.74) is bounded from above by

−cαφ(x)
∑

ℓ∈S(x)\S<

ρℓy
2
ℓ ≤ −cαφ(x)

∑

ℓ∈s(x)\S<

ρℓ min
{
β2g2

ℓ (x); 1
4

}

≤ −cαφ(x)min



β

2
∑

ℓ∈S(x)\S<

ρℓg
2
ℓ (x); 1

4



 . (6.75)

But from Lemma 6.9, we know that, for all x ∈ U δ \ Gθ,

∑

ℓ∈S(x)\S<

ρℓg
2
ℓ (x) ≥ c

ε2

θ
− c′

α2
ε2 ≥ c′′

ε2

θ
, (6.76)

where c′′ is a positive constant provided that α ≥ cθ. Taking n large enough, it holds that

min



β

2
∑

ℓ∈s(x)\S<

ρℓg
2
ℓ (x); 1

4



 ≥ min

{
c′′
ε2

θ
; 1

4

}
= c′′

ε2

θ
, (6.77)

and then, from (6.71) and (6.75), we get

Lψ(σ) ≤ −ε2(1 − α)φ(x)(c′′αθ−1 − c′α−1). (6.78)

By our choice of θ and taking n large enough, the condition c′′αθ−1 − c′α−1 > 0 ⇔ α > cθ
is satisfied for any α ∈ (0, 1). Hence, for such n’s and for N large enough, we get that
Lψ(σ) = Lφ(x) ≤ 0 concluding the proof of Proposition 6.4. �Substituting the expression of the super-harmoni funtion (6.20) in (6.19), and togetherwith (6.15), we obtain that, for all σ ∈ S[U δ \ Gθ],

Pσ[τA < τS[∂AGθ]∪B ] ≤ max
σ′∈S[∂AUδ]

e−(1−α)βN[Fβ,N(m(σ′))−Fβ,N (m(σ))]

≤ e−(1−α)βN[Fβ,N(m∗
0)+δ−Fβ,N (m(σ))], (6.79)where the last inequality follows from the de�nition of U δ together with the bounds in(3.32). This onludes the proof of Proposition 6.3.Renewal estimates on esape probabilities. Let us now ome bak to the proof ofLemma 6.2. An easy onsequene of Eq. (6.14) is that, for all σ ∈ S[∂AGθ],

Pσ(τA < τS[∂AGθ]∪B) ≤ e−(1−α)βN(Fβ,N(m∗
0)+δ) max

m∈∂AGθ

e(1−α)βNFβ,N (m), (6.80)while obviously Pσ(τA < τS[∂AGθ]∪B) ≡ 0 for all σ ∈ S[Gθ \ ∂AGθ]. To ontrol the r.h.s.of (6.80), we need the following lemma:
Lemma 6.10. There exists a constant c <∞, independent of n, such that, for all m ∈ Gθ,

Fβ,N (m) ≤ Fβ,N (m∗) + cε. (6.81)

Proof. Fix m ∈ Gθ and set m − m∗ ≡ v. Notice that, from the definition of Gθ,

‖v‖2
2 ≤ max

ℓ
ρℓ

n∑

ℓ=1

(mℓ − m∗
ℓ)

2

ρℓ
≤ ε2. (6.82)

Using Taylor’s formula, we have

Fβ,N (m) = Fβ,N (m∗) +
1

2
(v,A(m∗)v) +

1

6
D3Fβ,N (x)v3, (6.83)
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where A(m∗) is the positive-definite matrix described in Sect. 3.2 (see Eq. (3.16)) and
x is a suitable element of the ball around m∗. From the explicit representation of the
eigenvalues of A(m∗), we see that ‖A(m∗)‖ ≤ cε−1, and hence

(v,A(m∗)v) ≤ cε−1‖v‖2
2 ≤ cε. (6.84)

The remainder is given in explicit form as

D3Fβ,N (x)v3 =

n∑

ℓ=1

∂3Fβ,N

∂x3
ℓ

(x)v3
ℓ =

1

β

n∑

ℓ=1

1

ρ2
ℓ

I ′′′N,ℓ(xℓ/ρℓ)v
3
ℓ (6.85)

= − 1

β

n∑

ℓ=1

1

ρ2
ℓ

U ′′′
N,ℓ(tℓ)(

U ′′
N,ℓ(tℓ)

)3 v3
ℓ

= − 1

β

n∑

ℓ=1

1

ρ2
ℓ

|Λℓ|−1
∑

i∈Λℓ
tanh(tℓ + βh̃i)(1 − tanh2(tℓ + βh̃i))

(
|Λℓ|−1

∑
i∈Λℓ

(1 − tanh2(tℓ + βh̃i))
)3 v3

ℓ ,

where tℓ = I ′N,ℓ(xℓ/ρℓ). Thus

∣∣D3Fβ,N (x)v3
∣∣ ≤ c

n∑

ℓ=1

1

ρ2
ℓ

v3
ℓ ≤ c′ε−1‖v‖2

2 ≤ c′ε, (6.86)

where we used that |vℓ/ρℓ| ≤ 1. Hence, for some c <∞, independent of n,

Fβ,N (m) ≤ Fβ,N (m∗) + cε (6.87)

which proves the lemma. �Inserting the result of Lemma 6.10 into (6.80), and realling that Fβ,N (m∗) = Fβ,N (m∗),we get that for all σ ∈ S[∂AGθ]

Pσ(τA < τS[∂AGθ ]∪B) ≤ e−(1−α)βN(Fβ,N (m∗
0)+δ−Fβ,N (m∗)−cε). (6.88)The last needed ingredient in order to get a suitable estimate on Pσ(τA < τB), is stated inthe following lemma.

Lemma 6.11. For any δ2 > 0, there exists n0 ∈ N, such that, for all n ≥ n0, for all
σ ∈ S[∂AGθ], and for all N large enough,

Pσ(τB < τS[∂AGθ]) ≥ e−Nβδ2 . (6.89)

Proof. Fix σ ∈ S[∂AGθ] and set m(0) ≡ m(σ). As pointed out in the proof of Lemma 6.10,
every m(0) ∈ ∂AGθ can be written in the form m(0) = m∗ + v, with v ∈ Γn

N such that
‖v‖2 ≤ ε. Then, let m = (m(0),m(1), . . . ,m(‖v‖1N) ≡ m∗) be a nearest neighbor path
in Γn

N from m(0) to m∗, of length N‖v‖1, with the following property: Denoting by ℓt the
unique index in {1, . . . , n} such that mℓt(t) 6= mℓt(t− 1), it holds that

mℓt(t) = mℓt(t− 1) + 2
N st, ∀t ≥ 1, (6.90)

where we define

st ≡ sign (m∗
ℓt
− mℓt(t− 1)

)
. (6.91)

Note that, by property (6.90), m(t) ∈ Gθ for all t ≥ 0. Thus, all microscopic paths,
(σ(t))t≥0, such that σ(0) = σ and m(σ(t)) = m(t), for all t ≥ 1, are contained in the event
{τB < τS[∂AGθ]}. Thus we get that
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Pσ(τB < τS[∂AGθ ]) ≥ Pσ(m(σ(t)) = m(t),∀t = 1, . . . , ‖v‖1N)

=

‖v‖1N∏

t=1

Pσ(m(σ(t)) = m(t)
∣∣m(σ(t− 1)) = m(t− 1))

=

‖v‖1N∏

t=1

∑

i∈Λ
st
ℓt

pN (σ(t− 1), σi(t− 1)). (6.92)

Note that Λst
ℓt

is the set of sites in which a spin-flip corresponds to a step from m(t− 1) to

m(t).

The sum of the probabilities in the r.h.s. of (6.92) corresponds to the quantity P
σ(t−1)
st,ℓt

de-

fined in (6.43). From the inequalities (6.44) and (4.15), it follows that, for some constant
c > 0 depending on β and on the distribution of the field,

P
σ(t−1)
st,ℓt

≥ c|Λst
ℓt

(m(t− 1))|/N ≥ c|Λst
ℓt

(m∗)|/N, (6.93)

where the second inequality follows by our choice of the path m. Now, since |Λ±
ℓ (m∗)|/N =

1
2 (ρℓ ± m∗

ℓ ), using the expression (3.20) for m∗
ℓt

and continuing from (6.93), we obtain

P
σ(t−1)
st,ℓt

≥ c′ρℓt . (6.94)

Inserting the last inequality in (6.92), and using that, by definition of the path m, the
number of steps corresponding to a spin-flip in Λℓ is equal to |vℓ|N , for all ℓ = {1, . . . , n}
, we get

Pσ(τB < τS[∂AGθ]) ≥
‖v‖1N∏

t=1

c′ρℓt

= e‖v‖1N ln(c′)
n∏

ℓ=1

ρ
|vℓ|N
ℓ

≥ eN
√

ε ln(c′)e−N
Pn

ℓ=1 vℓ ln(1/ρℓ)

≥ eN
√

ε ln(c′)e−N
Pn

ℓ=1 vℓ/
√

ρ
ℓ

≥ eNε ln(c′)e−N(
Pn

ℓ=1 v2
ℓ/ρℓ)

1/2
ε−1/2

≥ e
−N

“q
ε
θ−

√
ε ln(c′)

”

, (6.95)

where in the third line we used the inequality ‖v‖1 ≤ ε−1/2‖v‖2 ≤ √
ε, and in the last line

we used that m(0) = m∗ + v ∈ Gθ. By our choice of θ ≫ ε, there exists n0 ∈ N such

that, for all n ≥ n0,
√

ε
θ −

√
ε ln(c′) ≤ βδ2. For such n’s, inequality (6.95) yields the bound

(6.89) and concludes the proof of the Lemma. �We �nally state the following proposition:
Proposition 6.12. For all σ ∈ S[U δ] it holds that

Pσ(τA < τB) ≤ e−βN((1−α)(Fβ,N(m∗
0)+δ−Fβ,N (m∗)−cε)−δ2)(1 + o(1)) (6.96)
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Proof. Let us first consider a configuration σ ∈ S[∂AGθ]. Then it holds

Pσ(τA < τB) ≤ Pσ(τA < τS[∂AGθ ]∪B) +
∑

η∈S[∂AGθ]

Pσ(τA < τB, τη ≤ τS[∂AGθ]∪A∪B)

≤ Pσ(τA < τS[∂AGθ ]∪B) + max
η∈S[∂AGθ]

Pη(τA < τB)Pσ(τS[∂AGθ] < τB)

≤ Pσ(τA < τS[∂AGθ ]∪B) + max
η∈S[∂AGθ]

Pη(τA < τB)
(
1 − e−βNδ2

)
,

(6.97)

where in the second line we applied the Markov property, and in the last line we insert
the result (6.12). Taking the maximum over σ ∈ S[∂AGθ] on both sides of (6.97), and
rearranging the summation, we get

max
σ∈S[∂AGθ]

Pσ(τA < τB) ≤ max
σ∈S[∂AGθ∪B]

Pσ(τA < τS[∂AGθ])e
βNδ2

≤ e−βN((1−α)(Fβ,N(m∗
0)+δ−Fβ,N (m∗)−cε)−δ2), (6.98)

where in the last line we used the bound (6.88). This concludes the proof of (6.96) for
σ ∈ S[∂AGθ].

Then, let us consider σ ∈ S[U δ \ ∂AGθ]. As before, it holds

Pσ(τA < τB) ≤ Pσ(τA < τS[∂AGθ]∪B) +
∑

η∈S[∂AGθ ]

Pσ(τA < τB , τη ≤ τS[∂AGθ ]∪A∪B)

≤ Pσ(τA < τS[∂AGθ]∪B) + max
η∈S[∂AGθ ]

Pη(τA < τB)Pσ(τS[∂AGθ] < τB)

≤ Pσ(τA < τS[∂AGθ]∪B) + max
η∈S[∂AGθ ]

Pη(τA < τB), (6.99)

where Pσ(τA < τS[∂aGθ]∪B) is 0 for all σ ∈ S[Gθ \ ∂AGθ], and exponentially small in N
for all σ ∈ S[U δ \ Gθ] (due to Proposition 6.3). Inserting the bound (6.98) in the last
equation, provides Eq. (6.96) for σ ∈ S[U δ \ ∂AGθ] and concludes the proof. �The proof of formula (6.5) now follows straightforwardly. From (6.96), we get

∑

σ∈S[Uδ(m∗)]

µβ,N (σ)Pσ(τA < τB)

≤ e−βN[(1−α)(Fβ,N(m∗
0)+δ−Fβ,N (m∗)−cε)−δ2]

∑

m∈Uδ

Qβ,N (m)

= Qβ,N (m∗
0)e

βN[αFβ,N (m∗
0)−(1−α)(δ−Fβ,N (m∗)−cε)+δ2]

∑

m∈Uδ

e−βNFβ,N (m)

≤ Qβ,N (m∗
0)N

neβN[α(Fβ,N(m∗
0)−Fβ,N (m∗))−(1−α)(δ−cε)+δ2], (6.100)where in the seond inequality we used the expression (1.9) for Qβ,N (m∗

0), while in thelast line we applied the bound Fβ,N (m) ≤ Fβ,N (m∗) = Fβ,N (m∗), and then bounded theardinality of U δ by Nn. Finally, hoosing α small enough, namely
α <

δ − cε− δ2
Fβ,N (m∗

0) − Fβ,N (m∗) + δ − cε
, (6.101)we an easily ensure that (6.100) implies (6.5).In exatly the same way one proves (6.6). This onludes the proof of Lemma 6.2 and thusof Theorem 1.2.
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