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Abstract

We use the traveling wave model for simulating and analyzing nonlinear
dynamics of complex semiconductor ring laser devices. This modeling allows
to consider temporal-spatial distributions of the counter-propagating slowly
varying optical fields and the carriers, what can be important when studying
non-homogeneous ring cavities, propagation of short pulses or fast switching.
By performing numerical integration of the model equations we observe several
dynamic regimes as well as transitions between them. The computation of ring
cavity modes explains some peculiarities of these regimes.

1 INTRODUCTION

Semiconductor ring lasers (SRLs) are interesting devices for their applications in
photonic integrated circuits [1, 2, 3]. To simulate the SRL a two-mode ODE model
consisting of a pair of complex equations for the counter-propagating longitudinal
modes and a rate equation for the carrier density is frequently used [4, 5]. It can
give an adequate explanation of different operation regimes such as alternating oscil-
lations, bidirectional and unidirectional continuous wave (cw) states or transitions
between these regimes. This rather simple model admits a variety of ODE analysis
methods. For example, it can be studied by means of numerical path-following and
bifurcation analysis tools [6], or by means of asymptotic analysis methods [7].

However, this model can not recover different multi-mode effects of SRLs such as
modelocking [8] or transitions between multiple longitudinal modes [9]. Moreover, it
is based on mean-field approximations and does not allow considering inhomogeneity
of laser parameters and dynamical variables along the ring cavity. That is, its usage
for modeling of long SRLs with non-homogeneous parameters or for description of
propagating short pulses along the cavity remains questionable.

There exist different approaches allowing to overcome the limitations listed above.
The representation of the optical field as a superposition of several coupled longi-
tudinal modes yields an ODE model [10] describing multi-mode dynamics, but not
longitudinal inhomogeneities of SRLs. Another approach allowing to take into ac-
count both above mentioned effects can be given by a DDE model [11], which was
successfully used for studying modelocking (ML) regimes in semiconductor lasers.
This model, however, assumes a unidirectional ring configuration.

In the present paper we discuss a PDE modeling approach with a single spatial di-
mension corresponding to the longitudinal direction along the ring cavity. This
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model considers the clockwise (CW) and counter-clockwise (CCW) propagating
slowly varying optical fields governed by the traveling wave (TW) equations [12],
which are mutually coupled through linear backscattering terms, through nonlinear
cross- and self- saturations, and are both coupled to the spatially parameterized car-
rier rate equation. This approach allows simulating ring structures consisting from
differently driven sections, considering longitudinal distributions of the carriers and
of the optical fields, which can be also expressed as a superposition of the longitudi-
nal optical modes. Moreover, this modeling can take into account optical injections,
localized reflections and, therefore, delayed feedbacks of the optical fields.

Comparing to the above listed models, our TW modeling approach is computation-
ally more demanding and is much more difficult to analyze. Fortunately, for these
reasons we could adapt our own software package LDSL-tool [13], originally devel-
oped to simulate and to analyze [14, 15] different linear multisection semiconductor
lasers.

The main aim of our paper is to introduce the basic structural elements of our
model, to explain the construction of different laser devices from these elements,
to demonstrate the performance of our modeling approach when simulating SRLs,
and to perform a spectral analysis of ring lasers, what is very helpful for a better
understanding of some numerically observed regimes.

Our paper is organized as follows. In Section 2 we introduce the model equations and
the field transmission-reflection conditions at the different interfaces of the complex
SRL device. Section 3 gives several examples of different dynamic states. The
computation of the optical modes and the explanation of some dynamical regimes
are made in Section 4. Finally, some conclusions are drawn in Section 5.

2 Model of the SRL

2.1 Laser configuration

For simulation and analysis of the SRLs we apply our own software LDSL-tool [13]
used to investigate the (L)ongitudinal (D)ynamics of multisection (S)emiconductor
(L)asers. This software allows considering a large variety of laser devices or coupled
laser systems composed from different sections connected to each other by their
edges at some junctions: see Fig. 1, where schemes of SRLs considered in Refs. [8,
4, 1, 2, 3, 16] are shown. If needed, we can apply one or several optical injections

through free edges of some sections: see thick arrows in Fig. 1(b). The sections, the
junctions of these sections and the optical injections are three basic structures of
our software.

Each section Sr can be identified by a unique spatial interval (z′r, z
′′
r ), where z′r and

z′′r are the spatial coordinates of the section edges, and z′′r − z′r is the length of
Sr. Within each section the spatial-temporal dynamics of the optical fields and the
carrier density is governed by the TW model [12]. Passive waveguides and air gaps
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Figure 1: Schemes of several ring laser configurations with indication of sections
(S·), junctions (J·, black intervals), optical injections (O·, thick black arrows), prop-
agation directions of the CW and CCW fields (thin black arrows) and some field
transmission - reflection - outcoupling directions (grey arrows). (a): an all-active
modelocked ring laser with a saturable absorber and (b): a simple ring laser with
optical injections as considered in this paper. (c): some other ring laser devices
[1, 2, 3, 16] which can be also treated by our software.

between different lasers can also be treated as sections. In this case, one should
neglect the carrier rate equations and consider the optical fields alone.

At each junction we define the field transmission and reflection conditions. For
each edge of all sections we can attribute a unique junction. From the other hand,
each junction has at least one section joining it from one or another side: see the
black intervals in Fig. 1 indicating all junctions. Some typical junctions of the SRLs
considered in this paper are listed below.

First, simple junctions connecting opposite edges of two consequent sections with,
possibly, different material or control parameters (e.g., J3 in Fig. 1a). Second,
junctions corresponding to a free edge of some section (e.g., J1 in Fig. 1a,b). Here
we describe a field reflectivity, record an outgoing optical field or apply optical
injections. Third, junctions connecting two left and two right edges and representing
a localized coupling of the ring laser to the output waveguide (J2 in Fig. 1a,b).

Finally, each optical injection O(t) is attached to a unique junction (e.g., O1 in
Fig. 1(b) is connected to J1).

2.2 Laser sections

Within each laser section the slowly varying complex counter-propagating optical
fields E(z, t) = (E+, E−)T , the complex polarization functions p(z, t) = (p+, p−)T

and the real carrier density n(z, t) are governed by the TW model. Here, E+ and
E− denote the CW and CCW propagating fields, respectively. By proper scaling,
|E(z, t)|2 = |E+|2+|E−|2 is the local photon density.
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We consider the Traveling Wave model given in the following form:

∂t E±(z, t) = vgr

(

[∓∂z−iβ± (n, |E±|2)] E± − ḡ
2
(E± − p±)−iκE∓

)

+ F±
sp,

∂t p±(z, t) = γ̄(E±− p±) + iω̄p±,

∂t n(z, t) = J (z, t) − R(n) − vgrℜe

[

∑

ν=±
g(n)σν

G|Eν |2 − ḡEν∗ (Eν − pν)

]

,

(1)

where β+, β−, R(n), and J (z, t) denote the complex propagation factors of the CW
and CCW fields, the cubic recombination law, and the non-homogeneous injection
model [17]:

β± =
(

δ ± ∆ + ñ(n)σ±
I

)

+ i
2

(

−(α ± ∆α) + g(n)σ±
G

)

,

σ±
G = [1 + εGs|E±|2 + εGc|E∓|2]−1

, σ±
I = [1 + εIs|E±|2 + εIc|E∓|2]−1

;

R(n) =
(

n
τN

+Bn2+Cn3
)

, J (z, t) = I
eV

+
U ′

F

eV rs

(

1
|S·|

∫

S·
n(z)dz − n

)

.

(2)

The complex factor κ = κc − iκd is used to describe the distributed linear backscat-
tering of the fields, with κc and κd denoting its conservative and dissipative parts,
respectively [4]. Note, that in linear semiconductor lasers this factor is defining the
field coupling by Bragg gratings.

The parameters ḡ, ω̄, and γ̄ are the amplitude, the central frequency, and the half
width at half maximum of the Lorentzian, which fits the material gain profile in the
frequency domain [12]. The index change and gain functions ñ(n) and g(n) can be
defined independently of each other. Accordingly, we use different notations for the
self- and cross-gain saturation (εGs, εGc) and for the self- and cross-index satura-
tion (εIs, εIc) coefficients. For simplicity, however, we can assume the commonly
used relation ñ(n) = αH

2
g(n), g(n) = g′ (n − ntr), εGs = εIs, εGc = εIc, with g′,

αH and ntr denoting the differential gain, the linewidth enhancement factor, and
the transparency carrier density, respectively. In the passive sections, where β± is
independent of n and |E±|2, we adjust g(n) = ñ(n) = ḡ = 0.

The real parameters vgr, δ, α, ∆ and ∆α are the group velocity, the frequency
detuning, the mean internal absorption of the fields, the rotation induced frequency
detuning between the CW and CCW fields [18], and the asymmetric field absorption
[2], respectively. The parameters τN , B, C, I, V , U ′

F , Rs, and e are the linear
carrier life time, the bimolecular and Auger recombinations, the current injection,
the volume of the active zone in the considered laser section, the derivative of the
Fermi level separation, the series resistivity, and the electron charge, respectively.
F±

sp represents the amplified spontaneous emission.

The TW model of similar type was successfully used to simulate dynamics of different
multisection semiconductor lasers. In our ring laser case, however, we allow for
different propagation factors β+ and β−. It will be shown in Section 4 how this
difference is responsible for different operation regimes.
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2.3 Field transmission and reflection conditions

For completing the TW model (1) we still need to describe the fields incoming into
the device sections. That is, we need to define the forward (CW) fields E+ at
the left edges z′ and the backward (CCW) fields E− at the right edges z′′ of all
sections. These values are determined by the fields E+(z′′, t), E−(z′, t) outgoing

from all sections and by all applied optical injections O(t).

These relations are defined by the following field transmission-reflection conditions
at all junctions. Assume that some junction Js connects the left edges of sec-
tions Ss′

1
, . . . , Ss′

s̄′
, the right edges of sections Ss′′

1
, . . . , Ss′′

s̄′′
, and optical injections

Os1
, . . . , Oss̄

. In addition, the factor so = 1 (or 0) indicates the presence (or the
absence) of the field emission from the laser device at this junction. Then the
field transmission and reflection conditions at this junction can be defined by the
(s̄′ + s̄′′ + so) × (s̄′ + s̄′′ + s̄) complex valued matrix Ts:







~E+
s′

~E−
s′′

Eout





 = Ts







~E+
s′′

~E−
s′

~O−
s





 , where

~E±
s′

def
=









E±(z′s′
1

, t)
...

E±(z′s′
s̄′
, t)









, ~E±
s′′

def
=









E±(z′′s′′
1

, t)
...

E±(z′′s′′
s̄′′

, t)









, ~Os
def
=







Os1
(t)
...

Oss̄
(t)





 ,

(3)

and Eout represents a possible field emission at this junction. To avoid an artificial
field amplification, the matrix Ts should satisfy the inequality ‖Ts~x‖2 ≤ ‖~x‖2.

For the typical junctions J1 and J2 discussed in Subsection 2.1 and shown in Fig. 1(b)
these conditions read as follows:

(

E+(z′2, t)
ECCW,out(t)

)

=
(−R∗

1 1
T1 0

) (

E−(z′2, t)
O1(t)

)

, |R1|2 ≤ 1,











E+(z′1, t)
E+(z′3, t)
E−(z′′1 , t)
E−(z′′2 , t)











=











T2 T̄2 −R∗
2 0

T̄2 T2 0 0
R2 0 T2 T̄2

0 0 T̄2 T2





















E+(z′′1 , t)
E+(z′′2 , t)
E−(z′1, t)
E−(z′3, t)











, |T2|2 + |T̄2|2 + |R2|2 ≤ 1.

The real factors T2 and T̄2 represent the field amplitude transmission and outcoupling

coefficients at J2, respectively. The non-vanishing field reflection factor R2 allows us
to consider the localized linear backscattering of the fields. In general, the estimation
of these coefficients requires some more appropriate modeling, which takes into
account the curvature of the ring cavity, the field diffraction and the overlapping of
the lateral modes in the coupling region [19].

Finally, at all simple junctions Js (s = 3, 4, 5, 6 in Fig. 1a) we have s̄′ = s̄′′ = 1, s̄ =
so = 0, and Ts is the 2× 2 identity matrix. In some cases, when the heterostructure
of these neighboring sections is different, it has sense to introduce non-vanishing
off-diagonal terms representing some field reflection at this interface.
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3 Examples

The spatial distributions of the optical fields and the carrier density can be impor-
tant when considering lasers composed from different sections, or when analyzing
propagation of optical pulses significantly shorter then the field roundtrip time in
the ring cavity.

Modelocked laser. An all-active modelocked ring laser with a saturable absorber
[8] (see Fig. 1a) possess both above mentioned properties, which, nevertheless, can
be easily treated by our TW modeling approach. One of the observed ML regimes is
represented in Fig. 2. The field roundtrip time in the considered laser corresponds to
the ∼15 GHz frequency of the ML pulsations. The switching-on of the ML pulsations
and their quality (pulse width, jitter, amplitude noise, signal to noise ratio, etc.) can
be seen from panels (a-d) of this figure. The field intensity and carrier distributions
along the ring cavity at some fixed time moment are shown in Fig. 2(e) and (f),
respectively. Here, the abscissa axis represents coordinates on the ring cavity, while
the left and right edges of these two diagrams correspond to the position of the
localized coupler. The vertical dotted line indicates the symmetric location of the
saturable absorber. The nonuniform and non-monotone carrier distribution is a
consequence of the counter-propagating short optical pulses which are colliding at
the saturable absorber.

Figure 2: ML regime in the all-
active ring laser with the sat-
urable absorber. (a): switching-
on of the ML pulsations. (b):
sampled pulsating fields. (c,d):
radio-frequency (rf) and opti-
cal spectra. (e,f): field in-
tensity and carrier distributions
along the ring cavity at the fixed
time moment. Solid grey and
black curves indicate the CW
and CCW propagating fields.

Switching between different stable states. In our next example we consider
a simple all-active ring laser [5] schematically represented in Fig. 1(b). It is known
[4] that these lasers can possess two simultaneously stable stationary states charac-
terized by the dominant contribution of the CW or CCW propagating field (unidi-
rectional bistable regime). We simulate the switching between the stable stationary
states by corresponding optical injections

O(t) = o(t)Aeiωt with ω = −2πc

λ2
0

λ, (4)
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where ω, λ, A, o(t), λ0 and c denote the relative optical frequency and the related
wavelength, the amplitude of the injection, the normalized injection profile, the
central wavelength, and the speed of light in vacuum, respectively. Grey and black
curves in Fig. 3 show the evolution of the outgoing CW and CCW propagating
fields. Since we have neglected the linear backscattering, during the unperturbed
operation of the laser one of the fields was totally suppressed: see the time traces
and the optical spectra of the CW and CCW fields at the initial and the final time
intervals, respectively. Within [20, 40]ns time interval we have injected several nearly
resonant 200 ps long optical pulses traveling in CW and CCW directions: see middle
insert of Fig. 3. All these pulses could induce switching between both stable states
when applied during the dominance of the opposite field. One can see from Fig. 3
that these switchings can be realized with at least 1GHz repetition frequency.

Figure 3: Switching between the
CW (grey) and CCW (black) fields
by injecting the corresponding op-
tical pulses (middle insert). Op-
tical spectra of the initial and
the final states are shown in the
left and the right inserts, respec-
tively. The backscattering param-
eters κ = R2 = 0. The bistable
operation is induced by the condi-
tion εGc = 2εGs.

Optical frequency of the injection. In the previous example the switching was
imposed by the injection (4) with the optical frequency ω located close to the reso-
nance of the ring cavity. Three such resonances are represented by three peaks of the
optical spectra at the top of Fig. 5. Let us consider now the importance of the in-
jection frequency ω for switching between the stationary states. We have performed
a series of simulations applying the optical injection (4) with the same injection
profile o(t) but different intensity A and relative wavelengths λ. Our observations
are summarized in Fig. 4. We have found, that the switching can be realized only
for near-resonant injections: compare the optical spectra of the CCW state at the
top of Fig. 4 with the injection wavelengths allowing this switching (panels (a,b) of
the same figure). We note also the presence of several stable states determined by
the ring laser modes at different wavelengths [9]. It is obvious that their presence
can not be observed in the simple two mode model [4].

Self- and cross- gain saturation. In the next example we consider the asym-
metry of the self- and cross- gain saturations. We have fixed εGs + εGc and have
tuned the relative contribution of these factors in the sum: see Fig. 5(a). We have
observed four different dynamic regimes, which are represented in panels (b-e) of

7



Figure 4: Switching of the ini-
tial CCW field (top) by injecting a
CW propagating and 100 ps long
optical pulse in dependence on the
wavelength and the maximal in-
tensity of this pulse. (a): wave-
length of the dominant field af-
ter the propagation of the injected
pulse with 200 mW maximal in-
tensity. Here and at the top: grey
and black correspond to the CW
and CCW fields. (b): different
grey shadings represent the wave-
length of the CW field after the
successful switching.

the same figure. The first three regimes occurring with a consequent increase of
the cross-gain saturation are the bidirectional stable stationary state (b), the alter-
nate oscillations (c), and the unidirectional bistable state (d)1. These three regimes
are well known already from the two-mode ODE model. The last regime (e) was
observed for the dominant cross-gain saturation. Like ML pulsations it is charac-
terized by large short pulses occurring with the ring roundtrip frequency. However,
in contrast to the modelocking demonstrated in Fig. 2, this regime is unidirectional
and does not require any fast saturable absorption.

Figure 5: Dynamic regimes for
different contributions of the
cross- and self- gain saturations.
(a): maximal and minimal in-
tensities of the emitted field for
different values of εGc − εGs. (b-
e) typical representatives of the
observed regimes. Grey and
black: CW and CCW propagat-
ing fields. A small distributed
coupling (κ|S| = (10 + 0.4i) ·
10−3, |S|: length of the ring cav-
ity) was assumed. εGs + εGc =
20 · 10−24m3.

1even though that only one of two available stable stationary states is represented in Fig. 5
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4 Mode analysis

The concept of optical modes plays a big role for understanding laser dynamics in
general. They represent the natural oscillations of the electromagnetic field and
determine the optical frequency and the life time of the photons contained in the
given laser cavity. The instantaneous optical modes of straight multisection lasers
were discussed, e.g., in Ref. [14]. We demonstrate below in this paper how this
concept can be applied for analysis of ring lasers.

Let us consider optical modes of the ring cavity alone. That is, we assume that
the ring consists of a single or several consequently joined sections S1, . . . , Sm: see,
e.g., SRLs shown in Fig. 1(a) with m = 5 and (b) with m = 1. By S = [z′1, z

′′
m]

and τ we denote the whole ring cavity and the field roundtrip time, respectively.
We assume that no external optical fields penetrate the ring cavity, i.e., we have no
optical injections nor field reflectivities at the edges of the coupling waveguide.

Within such ring cavity the field and the polarization equations (1) together with
the field transmission-reflection conditions (3) can be written in following form:

−i∂tΨ(z, t) = H(β)Ψ(z, t) + F̄sp, z ∈ (z′1, z
′′
m);

{

E+(z′1, t) = TE+(z′′m, t) − R∗E−(z′1, t)
E−(z′′m, t) = TE−(z′1, t) + RE+(z′′m)

.
(5)

Here, Ψ =
(

E
p

)

is the field function, and H is a linear β = (β+, β−)-dependent 4× 4
operator.

Optical equations (5) imply the following spectral problem:

Ω(β)Θ(z, β) = H(β)Θ(z, β), Θ
def
=

(

ΘE

Θp

)

, ΘE satisfy b.c. from Eq. (5). (6)

The instantaneous modes are some β(z, t)-dependent pairs (Ω(β), Θ(z, β)) solving
the spectral equation (6). The imaginary and the real parts of the complex eigen-
values Ω are mainly determining the angular frequency and the damping of the
corresponding mode [14].

Assume for simplicity2 a vanishing distributed backscattering factor κ = 0 . Then
the optical fields within the ring cavity are coupled only indirectly through the
propagation factor β. Suppose that for a fixed β we have a complex frequency Ω(β)
solving the spectral problem (6). Then we can easily find [14, 15] the field ΘE and

2If κ 6= 0, many analytic expressions are no more available, and we need to solve the arising
problems numerically.
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the polarization Θp parts of the eigenvector Θ(z, β):

ΘE(z, β) =
(

m(Ω, β̄; z, z′′m)m∆(∆β; z, z′′m)s+

m−1(Ω, β̄; z, z′1)m∆(∆β; z, z′1)s
−

)

,

Θ±
p (z, β) = γ̄(z)

γ̄(z)+i(Ω−ω̄(z))
Θ±

E(z, β), where

m(Ω, β̄; y, x)
def
= exp

(

−i
∫ y
x

[

β̄(ζ) + Ω
vgr

+ χ(Ω, ζ)
]

dζ
)

,

m∆(∆β; y, x)
def
= e−i

∫ y

x
∆β(ζ)dζ ,

(

s+

s−

)

def
=

(

Θ+
E(z′′m, β)

Θ−
E(z′1, β)

)

,

β̄
def
= β+(z)+β−(z)

2
, ∆β

def
= β+(z)−β−(z)

2
, χ

def
= − iḡ(z)

2
i(Ω−ω̄(z))

γ̄(z)+i(Ω−ω̄(z))
.

(7)

The complex mode scaling factors s± represent the incoming into the coupler CW
and CCW components of ΘE.

By our assumption Ω and Θ±(z, β) satisfy the spectral problem (6), which can be
substituted by the system

{

m∆(∆β; z′1, z
′′
m) − m(Ω, β̄; z′′m, z′1)T s+ + m(Ω, β̄; z′′m, z′1)R

∗ s− = 0
−m(Ω, β̄; z′′m, z′1)R s+ + m∆(∆β; z′′m, z′1) − m(Ω, β̄; z′′m, z′1)T s− = 0

, (8)

having a nontrivial solution (s+, s−)T , i.e., a nonzero eigenfunction Θ(z, β), if only

e−iΩτe−i〈χ(Ω)〉 = F±(〈∆β〉, |R|) ei〈β̄〉, where 〈y〉 def
=

∫

S y(z)dz,

F±(〈∆β〉, |R|) def
= T

T 2+|R|2

[

cos (〈∆β〉) ± i
(

sin2 (〈∆β〉) + |R|2

T 2

)1/2
]

.
(9)

In the case of a vanishing R we have a simple expression F± = 1
T

exp (±i〈∆β〉).
A set of all complex numbers Ω solving Eq. (9) coincide with the set of all eigenvalues
of the spectral problem (6). Assuming that the gain dispersion function χ(Ω) is small
we can get the approximations

Ωkν ≈
[

2πk − 〈β̄〉 − arg (Fν(〈∆β〉, |R|)) + i log
∣

∣

∣Fν(〈∆β〉, |R|)
∣

∣

∣

]

τ
, ν = ±, k ∈ Z,

(10)
of the most important eigenvalues3 which we can later improve numerically [14]: see
Fig. 6.

Formula (10) shows that the eigenvalues Ωkν are appearing in pairs (ν = ±), and the
different pairs are separated by the roundtrip frequency 2π

τ
. A less obvious separation

of the eigenvalues Ωk+ and Ωk− can be understood by considering the expression of
F± given in Eq. (9). The nontrivial factor ℑm〈∆β〉 (induced by non-vanishing ∆α

or εGs − εGc) is mainly responsible for the separation of the imaginary parts (gain
thresholds) of Ωk± . Similarly, the separation of the real parts (frequencies) of Ωk±

is mainly due to non-vanishing R or ℜe〈∆β〉 (i.e., non-vanishing ∆ and εIs − εIc).

3Other roots of Eq. (9) are due to the non-vanishing nonlinear function χ(Ω, z). However, all
these roots have large positive imaginary parts [20], and the corresponding modes are well damped.
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Mode beating. Fig. 6 gives an illustration of this statement. The mode splitting
here is imposed by R 6= 0, while 〈∆β〉 = 0. Since the thresholds of the modes
k+ and k− are similar one can expect both of them contributing to the dynam-
ics of the optical fields producing beating type pulsations with the beat frequency
fslow ≈ |ℜe (Ωk+ − Ωk−)| /2π. And indeed, this type of dynamics was observed: see
Fig. 7. Panels (a) and (b) of this figure indicate the presence of two character-
istic frequencies of this regime. The slow frequency fslow coincides perfectly with
the mode pair frequency separation formula given a few lines above. This agree-
ment is also illustrated in Fig. 7(c,d): compare the mode separation in (c) and the
separation of the spectral peaks in (d). The less pronounced fast frequency ffast

in Fig. 7(b) corresponds to the field roundtrip time in the ring cavity, i.e., to the
frequency separation of the neighboring mode pairs: |Ωk± − Ω(k−1)±|/2π.

Figure 7: A dynamic regime
induced by beating of different
modes. (a): intensity of the
outgoing CCW (grey) and CW
(black) field. (b): rf spectra
of the outgoing CW field (note
the logarithmic scale of the fre-
quency axis). (c): four main
eigenvalues Ω(β(t)) at several
time instants t. (d,e): opti-
cal spectra. Parameters as in
Fig. 6.

Stability of unidirectional states. The mode spectra can also explain the sta-
bility or the instability of stationary (rotational wave) states determined by some
modes with real eigenvalues Ω:

(Ψ(z, t), n(t)) =
(

Θ(z, β)eiωt, n̄
)

, where Ω(β) = ω ∈ R.
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To make the explanation more transparent, let us consider a simple case with R =
χ(ω) = ∆α = 0.

Let us assume the complex factor s+ 6= 0 (we have a non-vanishing emission of the
CW field). As it follows from Eqs. (8,10), the angular frequency ω of this state
can be identified with some eigenvalue Ωk+ . In the same manner, the assumption
s− 6= 0 (a non-vanishing emission of the CCW field) implies ω = Ωk− . Thus, both
non-vanishing fields are available if only Ωk+ = Ωk− what can be realized only for
〈∆β〉 = 0 mod(π).

In the unidirectional stationary state determined by, for example, k+-th mode we

have s+ 6= 0, s− = 0, Ωk+ = ω and Ωk− = ω+
2〈∆β〉

τ
. The dominance of the cross-gain

saturation over the self-saturation (εGc > εGs) and notations (2) imply the inequal-
ities ℑm〈∆β〉 > 0, ℑmΩk− > 0, what indicate damping of this neighboring k−-th
mode. Thus, one can expect a stable operation at this unidirectional stationary
state: see Fig. 5(d), where we could demonstrate such regime even in the presence
of some small backscattering factor κ. In the opposite (εGc < εGs) case we have
ℑm〈∆β〉 > 0 > ℑmΩk− , what implies the growth of k−-th mode and, therefore, the
instability of this unidirectional stationary state.

We admit, however, that this mode analysis gives only hints, whether some state
can be stable or not. The performance of the accurate stability analysis is much
more demanding problem and is out of the scope of the present paper.

5 Conclusions

The traveling wave model can be used for simulating and analyzing the nonlinear dy-
namics in various semiconductor ring laser devices. This model could recover Typical
operation regimes such as bistable unidirectional and stable bidirectional stationary
states, or alternate oscillations known from experiments and modeling with a sim-
ple two-mode ODE model can also be recovered by the TW model. Moreover, our
model can also reproduce typical multi-mode regimes such as multiple stable states,
mode jumping or modelocking pulsations, which are not accessible to the simple
ODE model. In addition, we have shown how computation of optical modes may
help us for understanding the observed dynamical regimes.
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