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Abstra
tThis paper dis
usses the 
onvergen
e of kineti
 variational inequalitiesto rate-independent quasi-stati
 variational inequalities. Mathemati
al for-mulations as well as existen
e and uniqueness results for kineti
 and rate-independent quasi-stati
 problems are provided. Sharp a priori estimates forthe kineti
 problem are derived that imply that the kineti
 solutions 
onvergeto the rate-independent ones, when the size of initial perturbations and therate of appli
ation of the for
es tend to 0. An appli
ation to three-dimensionalelasti
-plasti
 systems with hardening is given.1 Introdu
tionMartins et al. [MS*04, MMP07℄ have dis
ussed the 
onne
tion between kineti
and quasi-stati
 problems in me
hani
s, whi
h is a problem of singular perturbations.They used the distin
t time s
ales involved in kineti
 and quasi-stati
 problems, andperformed a 
hange of variables in the governing system of kineti
 equations that
onsists of repla
ing the physi
al time t by a loading parameter τ = εt. This leadsto a system of equations where the derivatives with respe
t to the loading parameterappear multiplied by ε. The quasi-stati
 problem and its solutions are expe
ted tobe approa
hed when ε tends to 0. In this paper the notions di�er slightly fromthose in many engineering papers. On the one hand, often the term �quasi-stati
�is used for me
hani
al systems, where the kineti
 term Mq̈ is dropped, but variousfri
tion me
hanisms (like vis
ous fri
tion) may still be kept. This also in
ludes thespe
i�
 
ase of rate-independent fri
tion, whi
h is present in many plasti
ity models.Sin
e we are interested in that 
ase in the remainder of this paper we simply write�rate-independent system� to indi
ate �rate-independent quasi-stati
 systems�. Onthe other hand, we use the term �kineti
 problem� for the me
hani
al problem within
lusion of the inertial term Mq̈ (whi
h is also often known as �dynami
 problem�).We present here a generalization of the 
onvergen
e result obtained in [MMP07℄ togeneral evolutionary variational inequalities in
luding three-dimensional elastoplas-ti
ity with hardening. In 
ontrast to [MMP07℄, where Yosida regularization andtime di�erentiation were used, we rely on a di�eren
e quotient te
hnique that isni
ely adapted to nonsmooth variational inequalities and allows for relatively sim-ple, expli
it bounds. More pre
isely, we prove that the kineti
 evolutions remain
lose to a rate-independent path when the load is applied su�
iently slowly and thekineti
 evolutions start su�
iently 
lose to that rate-independent path. In other1



words, we prove the stability of the quasi-stati
 path in the sense of the de�nition in[MS*04, MMP07℄.The paper is organized as follows. In Se
tion 2, the mathemati
al formulations forkineti
 and rate-independent problems as well as existen
e results are presented.We provide a priori estimates for the kineti
 problem in Se
tion 3. For example,using the slow time τ = εt one of our results shows that the unique solution of theproblem
ε2Mq

′′(τ) + Aq(τ) + ∂R(q′(τ)) ∋ ℓ(τ), q(0) = q0, q
′(0) = 0, (1.1)with (·)′ = d

dτ
(·) and Aq0 + ∂R(0) ∋ ℓ(0), satis�es the a priori bound

‖εM1/2
q
′′(τ)‖H+‖A1/2

q
′(τ)‖H ≤ C

(
‖ℓ′(0)‖∗+

∫ τ

0

‖ℓ′′(s)‖∗ ds
) for a.e τ ∈ [0, T0],where C is independent of ε, ℓ, and q0. These estimates enable us to 
ompare thekineti
 solution to the rate-independent one in Se
tion 4. If qε solves (1.1) and q̄solves (1.1) with ε = 0, we obtain

(
‖εM1/2

q
′
ε(τ)‖2

H + ‖A1/2(qε(τ)−q̄(τ))‖2
H

)1/2

≤
(
‖εM1/2

q
′
ε(0)‖2

H + ‖A1/2(qε(0)−q̄(0))‖2
H

)1/2
+ Cℓ

√
ε,where Cℓ is given expli
itly in terms of ℓ ∈ W2,1([0, T0];D(A−1/2)). In Se
tion 5, weshow that this 
onvergen
e result 
an be applied for three-dimensional elastoplas-ti
ity with linear kinemati
 hardening.2 Mathemati
al formulationWe start with a Hilbert spa
e H with dual H∗, the dual pairing and the normare respe
tively denoted by 〈 · , · 〉 : H × H∗ → R and ‖ · ‖H. Let V be su
h that

V ⊂ H ⊂ V ∗ with dual V ∗. We denote by A : H → H∗ a symmetri
, stri
tlypositive operator with the domain of A1/2 su
h that D(A1/2) = V . We use belowthe following norms: ‖ · ‖ def
=

√
〈A · , · 〉, ‖ · ‖∗ def

=
√

〈 · , A−1 · 〉 and the following semi-norm: | · |M def
= ‖M1/2 · ‖H . We 
onsider the variational in
lusion

Mq̈(t) + Aq(t) + ∂R(q̇(t)) ∋ l(t), (2.1)where (˙) denotes the time derivative d
dt

(), M is a mass matrix operator, and l servesas input datum, also 
alled external loading in me
hani
s. The dissipation fun
tional
R : H → [0,∞] is assumed to be 
onvex, lower-semi
ontinuous, homogeneous ofdegree 1, i.e., R(γq) = γR(q) for all γ ≥ 0 and q ∈ H . Its subdi�erential is givenby ∂R(v) =

{
σ ∈ H∗ | ∀w ∈ H : R(w) ≥ R(v) + 〈σ, w−v〉

}. Using the de�nition ofthe subdi�erential ∂R(q̇) leads to the variational inequality
∀v ∈ H : 〈Mq̈+Aq−l(t), v−q̇〉 + R(v) −R(q̇) ≥ 0. (2.2)2



The energy asso
iated with (2.1) is given by E(t, q, q̇) = 1
2
〈Mq̇, q̇〉+ 1

2
〈Aq, q〉−〈l(t), q〉.The 
orresponding rate-independent system is obtained from (2.1) res
aling timevia τ = εt, letting ℓ(τ) = l(τ/ε) and taking the limit ε → 0:

Aq̄(τ) + ∂R(q̄′(τ)) ∋ ℓ(τ), (2.3)where (·)′ = d
dτ

(·) and the energy is given by Ē(τ, q̄, ˙̄q) = 1
2
〈Aq̄, q̄〉 − 〈ℓ(τ), q̄〉. Anal-ogously to the kineti
 system, the variational inequality asso
iated with (2.3) is

∀v̄ ∈ H : 〈Aq̄−ℓ(τ), v̄−q̄′〉 + R(v̄) −R(q̄′) ≥ 0. (2.4)Sin
e we are interested in elastoplasti
ity, we want to be able to treat the 
ase that
M is degenerate. Thus, we assume that it has blo
k stru
ture and that q de
omposesinto two 
omponents 
orrespondingly, i.e., H = H1 × H2, V = V1 × V2, q

def
= (u, z)with u ∈ H1 and z ∈ H2 and

M
def
=

(
m 0
0 0

)
, A

def
=

(
a11 a12

a21 a22

)
, R(q̇)

def
= R̃(ż), l(t)

def
=

(
f(t)
0

)
. (2.5)For m we assume that it is invertible, more pre
isely

m = m∗ ∈ Lin(H1, H1) and m−1 ∈ Lin(H1, H1). (2.6)We denote by R∗(·) the Legendre transform of R̃(·). The assumptions on R implythat R∗ has the form I{0}×K , where K
def
= ∂R̃(0) is a 
losed 
onvex set in H∗

2 . Thenusing the previous notations, the variational in
lusion (2.1) 
an be rewritten in aform that may be studied using the theory of maximal monotone operators, namelythe governing kineti
 system
{

mü+ a11u + a12z = f(t),

ż + ∂R̃∗(a21u+a22z) ∋ 0,
(2.7)together with the initial 
onditions

(u̇(0), q(0)) = (u̇(0), u(0), z(0)) = (u̇0, u0, z0) = (u̇0, q0). (2.8)The rate-independent system (2.3) 
an be rewritten as
{

a11ū + a12z̄ = f̄(τ),

z̄′ + ∂R̃∗(a21ū+a22z̄) ∋ 0,
(2.9)where f̄(τ) = f(τ/ε), with initial 
onditions

q̄(0) = (ū(0), z̄(0)) = (ū0, z̄0) = q̄0. (2.10)Existen
e and uniqueness results for the kineti
 and the rate-independent problemfollow from [Gr78b℄ and [Gr78a, Joh78℄, respe
tively. In what 
on
erns the kineti
problem, the theory of maximal monotone operators is used for this purpose. Thereader 
an �nd this theory in many textbooks, see, e.g., [Bre73, Zei85℄. In [Gr78b℄it is assumed that l ∈ W1,2([0, T ]; H) but it 
an be easily proved, using [ShS97,Thm.A℄, that the same result remains valid for l ∈ W1,1([0, T ]; H).3



Proposition 2.1 Assume that (u̇0, q0) ∈ H1 ×V su
h that 0 ∈ a21u0+a22z0+∂R̃(0)is satis�ed and l = (f, 0)T ∈ W1,1([0, T ]; H1×{0}). Then there exists a uniquesolution q ∈ W1,∞([0, T ]; V ) that solves (2.7) and (2.8). This solution additionallysatis�es Mq ∈ W2,∞([0, T ]; H).The existen
e and uniqueness theory for the rate-independent 
ase is 
lassi
al, seee.g. [Gr78a, Joh78℄ or the surveys [Kre99, Thm. 3.6℄, [Mie05, Thm. 2.1℄.Proposition 2.2 Assume that q̄0 ∈ V and ℓ ∈ W1,∞([0, T0]; V
∗) su
h that ℓ(0) ∈

Aq̄0 + ∂R(0) is satis�ed. Then, the variational inequality (2.4) and hen
e also (2.9)have a unique solution q̄ ∈ W1,∞([0, T0]; V ) satisfying (2.10).In parti
ular, the solutions of (2.3) satisfy the relation
〈Aq̄′(s), q̄′(s)〉 = 〈ℓ′(s), q̄′(s)〉 for a.e. s ∈ [0, T0]. (2.11)Indeed, 
onsider the variational inequality (2.4) with v̄ = λq̄′(s), divide by λ andlet λ → ∞. We obtain 〈Aq̄(τ)−ℓ(τ), q̄′(s)〉+R(q̄′(s)) ≥ 0 for all τ ∈ [0, T0] and a.a.

s ∈ [0, T0]. Moreover, for s = τ we have the opposite inequality by taking v̄ = 0 in(2.4). Di�erentiating with respe
t to τ we �nd (2.11), from whi
h we easily obtainthe a priori estimate
‖q̄′(τ)‖ ≤ ‖ℓ′(τ)‖∗ for a.a. τ ∈ [0, T0]. (2.12)Remark 2.3 In what 
on
erns the rate-independent problem, Johnson [Joh78℄formulates the plasti
ity problem as a variational inequality thereby extending theformulation of Duvaut & Lions [DuL76℄ to the 
ase of a hardening material. Us-ing Yosida regularization, the author has proved existen
e of a strong solution and,under some assumptions, he obtained a regularity result for the velo
ity �eld. Anal-ogous results were obtained by Gröger [Gr78a℄, but remained largely unknown inthe western world.3 A priori estimates for the kineti
 problemThe aim of this se
tion is to provide a priori estimates for the problem whi
h allowus to 
ontrol the term Mq̈ in H instead of the usual estimates in V ∗. The problemo

urs through the fa
t that ∂R is nonsmooth and 
lassi
al te
hniques for smoothproblems do not su�
e. One way to handle this is to use Yosida regularizationleading to smooth systems and to show that a priori estimates stay uniform in theregularization parameter, see [MMP08℄. Here we 
hoose a di�erent te
hnique thatis based on di�eren
e quotients.To explain the methods we start with the basi
 energy estimate. We 
onsider asolution and let E(t)
def
= E(t, q(t), q̇(t)). Using 〈σ, q̇〉 ≥ 0 for all σ ∈ ∂R(q̇) weimmediately �nd

d

dt
E(t) ≤ −〈l̇(t), q(t)〉. (3.1)4



Our a priori estimates 
an be derived most easily by using the quadrati
 form B :
V × H × V ∗ → R de�ned via

B[q, q̇, l]
def
= |q̇|2M + ‖q−A−1l‖2 + ‖l‖2

∗. (3.2)The 
onstru
tion is su
h that for solutions we have
B[q(t), q̇(t), l(t)] = 2E(t, q(t), q̇(t)) + 2‖l(t)‖2

∗ = 2E(t) + 2‖l(t)‖2
∗. (3.3)Moreover, one 
an noti
e that

1

g2

(
‖q‖2+|q̇|2M+‖l‖2

∗
)
≤ B[q, q̇, l] ≤ g2

(
‖q‖2+|q̇|2M+‖l‖2

∗
)
, (3.4)with g

def
= 1+

√
5

2
≈ 1.618 is the golden ratio.We now let β(t) = B[q(t), q̇(t), l(t)] and, 
ombining (3.1), (3.3) and (3.4) gives

d

dt
β(t) ≤ ‖l̇(t)‖∗

(
2‖q(t)‖+4‖l(t)‖∗

)
≤ ‖l̇(t)‖∗4g

√
2
√

β(t).Dividing by 2
√

β and integrating both sides we �nd the estimate
√

β(t) ≤
√

β(s) + 2g
√

2

∫ t

s

‖l̇(τ)‖∗ dτ for 0 ≤ s ≤ t ≤ T.This provides a �rst, simple a priori bound for (q, M1/2q̇) in V × H in terms of theinitial 
onditions, namely, using (3.4) we �nd
(
‖q(t)‖2+|q̇(t)|2M

)1/2 ≤ g2
(
‖q(0)‖2+|q̇(0)|2M+‖l(0)‖2

∗
)1/2

+ 2g2
√

2

∫ t

0

‖l̇(τ)‖∗ dτ.
(3.5)Similarly, using (3.3) we obtain the a priori bound for the energy, namely

E(t) ≤
(√

E(0)+‖l(0)‖2
∗ + 2g

∫ t

0

‖l̇(τ)‖∗ dτ
)2

− ‖l(t)‖2
∗.The above estimates are just preliminary, but they already show the essential featurethat the loading l appears on the right-hand side with a L1 integral of l̇ whereasthe left-hand side provides an L∞ estimate for (q, M1/2q̇) in V × H . The 
ru
ialobservation is now that the analogous estimate holds for the di�eren
e of two solu-tions, even if we treat di�erent loadings l. These estimates are well known (see e.g.,[Kre99, Mie05℄) but we repeat it for the readers 
onvenien
e and to have expli
it
onstants.Proposition 3.1 Let l1, l2 ∈ W1,1([0, T ]; V ∗) and q1 and q2 be solutions of (2.1) withright-hand sides l1 and l2 respe
tively, then w = q1−q2 satis�es, for all t ∈ [0, T ],the estimate

B[w(t), ẇ(t), l1(t)−l2(t)]
1/2 ≤ B[w(0), ẇ(0), l1(0)−l2(0)]1/2

+ 2g
√

2

∫ t

0

‖l̇1(τ)−l̇2(τ)‖∗ dτ.
(3.6)5



Proof. We use the variational inequalities (2.2) for q1 and q2 respe
tively and insertas test fun
tions v1 = q̇2 and v2 = q̇1, respe
tively. Adding these two inequalitiesleads to a 
an
ellation of all terms involving R and we �nd, with l = l1 − l2,
d

dt

(1

2
|ẇ|2M +

1

2
‖w‖2 − 〈l, w〉

)
≤ −〈l̇, w〉.For β(t) = B[w(t), ẇ(t), l(t)] we �nd the estimate

d

dt
β(t) ≤ ‖l̇(t)‖

(
2‖q(t)‖ + 4‖l(t)‖

)
≤ ‖l̇(t)‖4g

√
2
√

β(t).Now (3.6) is obtained as above. �We apply this result for deriving a priori estimates for the derivatives. Re
all thatCorollary 2.1 states q ∈ W1,∞([0, T ]; V ) and Mq ∈ W2,∞([0, T ]; H). The idea is to
onsider di�eren
e quotients as a multiple of the di�eren
e between a solution andits time translation.For arbitrary fun
tions y ∈ L∞([0, T ]; Y ), h > 0, and t ∈ [0, T−h] we use thenotation
δhy(t)

def
=

1

h

(
y(t+h)−y(t)

)
.We use the fa
t that the norm of di�eren
e quotients 
an be bounded by the normof the derivative. For all p ∈ [1,∞] and y ∈ W1,p([0, T ]; Y ) we have

‖δhy‖Lp([0,T−h];Y ) ≤ ‖ẏ‖Lp([0,T ];Y ). (3.7)For p ∈ (1,∞] the left-hand side even 
onverges to the right-hand side for h → 0.Applying Proposition 3.1 with q1(t) = q(t+h) and q2(t) = q(t) and dividing by h > 0we immediately �nd the a priori estimate
B[δhq(t), δhq̇(t), δhl(t)]

1/2 ≤ B[δhq(s), δhq̇(s), δhl(s)]
1/2

+ 2g
√

2

∫ t

s

‖δhl̇(τ)‖∗ dτ,
(3.8)for all 0 ≤ s ≤ t ≤ T−h. If it would be possible to pass to the limit h ց 0 onthe right-hand side, then we would �nd the desired a priori bound for (q, M1/2q̇)in W1,∞([0, T ]; V × H). However, in the general situation the initial 
onditions

q(0) = q0 ∈ V and u̇(0) = u̇0 ∈ H1 do not guarantee the boundedness
lim sup

hց0

(
‖δhq(0)‖ + |δhq̇(0)|M

)
< ∞.Even the additional assumptions u̇0 ∈ V1 and l(0) ∈ ∂R(0) + Aq(0) do not help.Here we have to make an additional assumption, whi
h allows us to handle thenonsmoothness. For 
onsisten
y we let l0 = l(0) = limhց0 l(h).

∃ ρ > 0 ∃ l̂ ∈ W2,1([−ρ, 0]; V ∗) ∃ q = (u, z) ∈ W1,∞([−ρ, 0]; V ) :

(q(0),u̇(0),l̂(0))=(q0,u̇0,l0), u ∈ W2,∞([−ρ,0];H1), (2.1) is satis�ed on [−ρ,0].
(3.9)6



Sin
e l in (3.9) is de�ned on the t-interval [−ρ, 0] the 
ondition l0 = l̂(0) = limsր0 l̂(s)is needed to guarantee that the 
on
atenation of l̂ and l : [0, T ] → V ∗ is 
ontinuous,and we will denote this 
on
atenation simply by l : [−ρ, T ] → V ∗ in the sequel. This
ondition also implies that the stability 
ondition l(0) ∈ ∂R(0)+Aq0 holds and thatthe following limits for h ց 0 exist:
δhq(−h) → Q̇ in V, δhu̇(−h) → Ü in H1, δhl(−h) → L̇ in V ∗.Remark 3.2 There are two 
ases where this 
ondition 
an be easily satis�ed. The�rst one will be essential in the next se
tion.(i) If u̇0 = 0, then we may 
hoose q(t) = q0 for all t ∈ [−ρ, 0] and let l̂(t) = l0.The limits then read Q̇ = 0, Ü = 0, and L̇ = 0.(ii) If u̇0 ∈ V1 and if the blo
k stru
ture of (2.5) is present, we may 
hoose q(t) =

q0 + t(u̇0, 0)T and let l̂(t) = l0 + tA(u̇0, 0)T. The limits here read Q̇ = (u̇0, 0)T,
Ü = 0, and L̇ = A(u̇0, 0)T.Theorem 3.3 Let l ∈ W2,1([0, T ]; V ∗) and (q0, u̇0) ∈ V × V1 be given su
h that
ondition (3.9) holds. Then, the unique solution q of (2.7) and (2.8) satis�es the apriori estimate
B[q̇(t), (ü(t), 0)T, l̇(t)]1/2 ≤ B[Q̇, (Ü , 0)T, L̇]1/2

+ 2g
√

2
(
‖L̇−l̇(0)‖∗ +

∫ t

0

‖l̈(τ)‖∗ dτ
)
.

(3.10)Proof. The idea is to 
on
atenate the arti�
al solution q ∈ W1,∞([−ρ, 0]; V ) and thegiven solution q ∈ W1,∞([0, T ]; V ) as well as the loadings. The imposed 
onditionsat t = 0 guarantee that we have a solution on all of [−ρ, T ] and estimate (3.8)holds for −ρ ≤ s ≤ t ≤ T−h. In parti
ular we may 
hoose s = −h and we seethat the �rst term on the right-hand side of (3.8) 
onverges to the �rst term on theright-hand side of (3.10).The se
ond term on the right-hand side of (3.8) 
an be estimated expli
itly by taking
are of the fa
t, that l : [−h, T ] → V ∗ is de�ned pie
ewise. With
∫ t

−h

‖δhl̇(τ)‖∗ dτ =
1

h

∫ 0

−h

‖l̇(τ+h)−l̇(τ)‖∗ dτ +

∫ t

0

‖δhl̇(τ)‖∗ dτ,we see that the �rst term 
onverges to ‖L̇−l̇(0)‖∗, sin
e on the one hand l̇(τ) → L̇as −h < τ < 0 and l̇ ∈ C0([−ρ, 0]; V ∗) and on the other hand l̇(τ+h) → l̇(0) for theanalogous reasons. Finally the se
ond term 
an be estimated by (3.7) with p = 1applied to y = l̇, and the result is established. �7



4 Rate-independent limit ε → 0To 
onsider systems with very slow loading rates we introdu
e the slow pro
ess time
τ = εt and assume that the loading l used in (2.1) and Se
tion 3 is given in theform l(t) = ℓ(εt), where now ℓ : [0, T0] → H∗ is �xed, and the loading rate ε > 0eventually tends to 0. We introdu
e

qε(τ) = (uε(τ), zε(τ))
def
= (u(τ/ε), z(τ/ε)) = q(τ/ε)for the solution as a fun
tion of the slow pro
ess time.Applying this transformation to system (2.1) and using that the rate-independentfri
tion term remains un
hanged, as ∂R(·) is homogeneous of degree 0, we arrive atthe res
aled problems

ε2Mq
′′
ε (τ) + Aqε(τ) + ∂R(q′

ε(τ)) ∋ ℓ(τ), qε(0) = q0, u
′
ε(0) = u1, (4.1)and

Aq̄(τ) + ∂R(q̄′(τ)) ∋ ℓ(τ), q̄(0) = q̄0. (4.2)The whole theory in Se
tion 3 remains valid when M is repla
ed by ε2M and ˙(·) by
(·)′ with now |q′

ε|ε2M = ε|q′
ε|M = ε‖M1/2

q
′
ε‖H .As in [MMP08℄ we have the following estimate between the kineti
 solution qε andthe rate-independent quasistati
 limit q̄.Proposition 4.1 Assume that ℓ ∈ W1,1([0, T0]; V

∗), (M(u1, 0)T, q0) ∈ H × V and
q̄0 ∈ V . Then, for all τ ∈ [0, T0] we have

ε2|q′
ε(τ)|2M + ‖qε(τ)−q̄(τ)‖2 ≤ ε2|(u1, 0)T|2M + ‖q0−q̄0‖2

+ 2 ε2
(

ess sup
s∈[0,T0]

|q′′
ε (s)|M

)∫ τ

0

|q̄′(s)|M ds.Proof. Theorem 3.3 guarantees that all quantities on the right-hand side are �nite.To obtain the estimate we use the standard tri
k of adding the 
orresponding vari-ational inequalities, 
f. (2.2) and (2.4), but now in the slow pro
ess time. Choosing
v = q̄′ and v̄ = q

′
ε all terms involving R 
an
el and we obtain 〈ε2Mq

′′
ε , q

′
ε−q̄′〉 +

〈A(qε−q̄), q′
ε−q̄′〉 ≤ 0. Integrating over [0, τ ] yields

ε2|q′
ε(τ)|2M + ‖qε(τ)−q̄(τ)‖2 ≤ ε2|(u1, 0)T|2M + ‖q0−q̄0‖2 + 2

∫ τ

0

〈ε2Mq
′′
ε (s), q̄′(s)〉 ds.The Cau
hy-S
hwarz inequality and taking out the essential supremum provides thedesired result. �The �nal result provides an estimate between qε and q̄ that is expli
itly given interms of the data. For this we need the a priori estimates on the solutions q̄ and8



qε derived in Se
tion 2 and 3, respe
tively. Moreover, following [MMP08℄ we willestimate the distan
e between qε and q̄ by introdu
ing a spe
ial intermediate solution
q̂ε for whi
h Theorem 3.3 is appli
able. In our 
ase, this spe
ial kineti
 solution
q̂ε = (ûε, ẑε) satis�es (4.1) together with initial 
onditions (û′

ε(0), ûε(0), ẑε(0)) =
(0, ū0, z̄0). In parti
ular, we impose that the initial velo
ity û

′
ε(0) = 0 whereas in[MMP08℄ the initial velo
ity ũ

′
ε(0) = εū′

0 was used, whi
h lead to the additionalassumption ū′
0 ∈ V1, whi
h is not needed any more. Nevertheless, our �nal estimate(4.3) is the same as the one obtained in [MMP08℄.Theorem 4.2 Let the above assumptions on M , A and R hold and assume ℓ =

(f̄ , 0)T ∈ W2,1([0, T0], V
∗). For q̄0 ∈ V with ℓ(0) ∈ ∂R(0) + Aq̄0 ⊂ {0} ×H2 let q̄ bethe unique solution of (4.2). For arbitrary q0 = (u0, z0) ∈ V and u1 ∈ H1 satisfying

0 ∈ a21u0+a22z0 + ∂R̃(0) let qε be the unique solution of (4.1). Then the di�eren
ebetween qε and q̄ 
an be estimated via
(
|εq′

ε(τ)|2M + ‖qε(τ)−q̄(τ)‖2
)1/2 ≤

(
|(εu1, 0)T|2M+‖q0−q̄0‖2

)1/2
+

√
εC[ℓ](τ), (4.3)where

C[ℓ](τ)
def
= 2g2

√
2 µ

∫ τ

0

‖ℓ′(s)‖∗ ds
(
‖ℓ′(0)‖∗ +

∫ τ

0

‖ℓ′′(s)‖∗ ds
) and µ

def
= sup

‖v‖=1

|v|M .Proof. Proposition 2.1 provides the existen
e of the spe
ial kineti
 solution q̂ε solving(4.1) with q̂ε(0) = q̄0 and û
′(0) = 0. This 
hoi
e allows us to satisfy 
ondition (3.9)via Part (i) in Remark 3.2. Using Q′ = U ′′ = L′ = 0 estimate (3.10) provides the apriori bound

ε|q̂′′
ε (τ)|M ≤ gB[q̂′

ε(τ), q̂′′
ε (τ), ℓ′(τ)]1/2 ≤ gB[0, 0, 0]1/2 + C1[ℓ](τ),with C1[ℓ](τ)

def
= 2g2

√
2
(
‖ℓ′(0)‖∗ +

∫ τ

0
‖ℓ′′(s)‖∗ ds

), and the right-hand side is inde-pendent of ε. Now Proposition 4.1 
an be used to obtain
ε2|q̂′

ε(τ)|2M + ‖q̂ε(τ)−q̄(τ)‖2 ≤ 2C1[ℓ](τ)

∫ τ

0

ε|q̄′(s)|M ds ≤ εC[ℓ](τ), (4.4)where we used |q̄′(s)|M ≤ µ‖q̄′(s)‖ ≤ µ‖ℓ′(s)‖∗ with the last estimate following from(2.12). For the di�eren
e between the given solution qε and the spe
ial solution q̂εwe use Proposition 3.1 and obtain, be
ause of ℓ1 = ℓ2 = ℓ, the simple estimate
ε2|q′

ε(τ)−q̂
′
ε(τ)|2M + ‖qε(τ)−q̂ε(τ)‖2

≤ ε2|(u1, 0)T|2M + ‖q0−q̄0‖2 for all τ ∈ [0, T0].
(4.5)Taking the square roots of (4.4) and (4.5) and using the triangle inequality givesthe desired result. �In [DuL76, Ch.V.3.5℄ the limit ε → 0 is used to prove existen
e for the quasistati

ase. However, the vis
oplasti
 
ase is treated there, i.e., the vis
osity parameter9



µ > 0 (see [DuL76, p.234℄) and the ne
essary ε-independent a priori estimates
orresponding to our estimate (3.10) are simply obtained by di�erentiating in time.The 
onvergen
e stated in [DuL76℄ is weak ∗ only, whereas our result providesquantitative error estimates.5 Elasti
-plasti
 systems with hardeningWe relate now the result obtained in the Theorem 4.2 to an elasti
-plasti
 modelwith linear kinemati
 hardening whi
h leads to a generalization of the 
onvergen
eresult obtained by Martins et al. in [MMP08℄.We 
onsider a material with a referen
e 
on�guration Ω ⊂ R
d with d ∈ {2, 3}.We assume that Ω is an open bounded set with a 1-regular smooth boundary (see[RaT83℄) and |Ω| < ∞. This body may undergo displa
ements u(τ, · ) : Ω → R

d.The plasti
 strain will be 
hara
terized by z = epl : Ω → S
d
0 where S

d
0 is the spa
eof symmetri
 d × d tensors with vanishing tra
e. Further, we will denote by S

d thespa
e of symmetri
 d × d tensors endowed with the s
alar produ
t v:w
def
= tr(vTw)and the 
orresponding norm is given by |v|2 def

= v:v for all v, w ∈ S
d. Here tr(·)denotes the tra
e of the matrix (·).The set of admissible displa
ements F is 
hosen as a suitable subset of W1,2(Ω; Rd)by pres
ribing Diri
hlet data on the subset ΓDir of ∂Ω, i.e.,

F def
=

{
u ∈ W1,2(Ω; Rd) | u|ΓDir = 0

}
.The plasti
 variables epl belongs to Z def

= L2(Ω; Sd
0) and the linearized strain tensor

e = e(u) is given by e(u)
def
= 1

2
(∇u+∇uT) ∈ S

d. We assume that ∂Ω is smoothenough and that mes(ΓDir) > 0 su
h that the Korn's inequality holds, i.e. thereexists cKorn > 0 with
∀u ∈ F :

∫

Ω

|e(u)|2 dx ≥ cKorn‖u‖2
W1,2 . (5.1)For more details on Korn's inequality and its 
onsequen
es, we refer to [DuL76℄ or[KoO88℄.We 
onsider now the following kineti
 equation

ε2ρu′′ − div(E(e(u)−epl)) = ℓext(τ), x ∈ Ω, τ ∈ [0, T0], (5.2)where ρ > 0, ℓext are the density and the applied me
hani
al loading respe
tively; Eis a symmetri
, uniformly positive de�nite elasti
ity tensor. The behavior of plasti
element is 
hara
terized by the plasti
 �ow rule in the form
−E(e(u)−epl) + Hepl + ∂R(e′pl) ∋ 0, x ∈ Ω, τ ∈ [0, T0], (5.3)where H is a symmetri
, uniformly positive de�nite hardening tensor. The dissipa-tion potential is given by

R̃(e′pl) def
=

∫

Ω

R(x, e′pl(x)) dx,10



with R ∈ L∞lo
(Ω̄ × S
d
0) su
h that there exist r1, r2 with 0 < r1 < r2 with
∀ (x, v) ∈ Ω̄ × S

d
0 : r1|v| ≤ R(x, v) ≤ r2|v|.We assume also that R(x, ·) : S

d
0 → [0,∞) is 1-homogeneous and 
onvex. Noti
ethat (5.3) is equivalent to

e′pl ∈ ∂R∗(
E(e(u)−epl) − Hepl), x ∈ Ω, τ ∈ [0, T0], (5.4)where R∗ is the Legendre transform of R(·). From (5.2) and (5.4), we �nally obtainthe governing system

ε2ρu′′ = div(E(e(u)−epl)) − ℓext(τ),

e′pl ∈ ∂R∗(
E(e(u)−epl) − Hepl), }

x ∈ Ω, τ ∈ [0, T0], (5.5)together with Diri
hlet boundary 
onditions
u = 0 on ΓDir × [0, T0], (5.6)and initial 
onditions

(u(0), u′(0), epl(0)) = (u0, u1, e
0pl). (5.7)The 
orresponding rate-independent system is then

0 = div(E(e(u)−epl)) − ℓext(τ),

e′pl ∈ ∂R∗(
E(e(u)−epl) − Hepl), }

x ∈ Ω, τ ∈ [0, T0], (5.8)with Diri
hlet boundary 
onditions ū = 0 on ΓDir × [0, T0], and initial 
onditions
(ū(0), ēpl(0)) = (ū0, ē

0pl). (5.9)Further, the energy asso
iated with (5.5) is given by
E(τ, u, epl, u′) =

1

2

∫

Ω

(
ρ|εu′|2 + (e(u)−epl):E(e(u)−epl) + epl:Hepl) dx − 〈ℓext(τ), u〉.For a given external loading ℓext, a given elasti
ity tensor E and a given hardeningtensor H with

ℓext ∈ C1([0, T0]; W
1,2(Ω; Rd)∗), (5.10a)

E ∈ L∞(Ω;Lin(Sd, Sd)) with E(x) ≥ η1 a.e., (5.10b)
H ∈ L∞(Ω;Lin(Sd

0, S
d
0)) with H(x) ≥ η1 a.e., (5.10
)where η > 0, we re
all existen
e and uniqueness result for kineti
 and rate-independ-ent problems. First, one 
an identify H = H1 × H2

def
= L2(Ω; Rd) × L2(Ω; Sd

0) and
V = V1 × V2

def
= F × H2. Se
ond, (5.5) and (5.8) 
an be rewritten in the form of(2.7) and (2.9), respe
tively. More pre
isely, one has to 
hoose a11 = −div(Ee(·)),

a12 = div(E(·)), a21 = −Ee(·), a22 = E(·)+H(·), f(τ) = ℓext(τ) and m = ε2ρ. Then,Proposition 2.1 gives the following result.11



Proposition 5.1 Assume that (5.10) holds and that (u0, u
′
0, e

0pl) ∈ F ×F ×Z su
hthat 0 ∈ E(epl0−e(u0)) + He0pl + ∂R(0) ⊂ Z is satis�ed. Then there exists a uniquesolution (u, epl) ∈ W1,∞([0, T0]; V ) that solves (5.6) and (5.7).The existen
e and uniqueness theory for the rate-independent elastoplasti
ity prob-lem is standard, see [Gr78a, Joh78℄.Proposition 5.2 Assume that (5.10) holds and that (ū0, ē
0pl) ∈ F × Z su
h that

(ℓext(0), 0)T ∈ A(ū0, ē
0pl)T + {0} × ∂R(0) ⊂ F × Z is satis�ed. Then, there exists aunique solution (ū, ēpl) ∈ W1,∞([0, T0]; V ) that solves (5.8) and (5.9).Applying Theorem 4.2 and using (5.1), we dedu
e the following result.Corollary 5.3 Assume that (5.10) holds and (u0, u

′
0, e

0pl) ∈ F×F×Z and (ū0, ē
0pl) ∈

F×Z satisfy 0 ∈ E(e0pl−e(u0))+He0pl+∂R(0) and (ℓext(0), 0)T ∈ A(ū0, ē
0pl)T+{0}×

∂R(0), respe
tively. Then there exist c, C > 0 su
h that for all ε > 0, we have
(
‖ερ1/2u′(τ)‖2

L2+‖u(τ)−ū(τ)‖2
W1,2+‖epl(τ)−ēpl(τ)‖2

L2

)1/2

≤ c
(
‖ερ1/2u′

0‖2
L2+‖u0−ū0‖2

W1,2+‖e0pl−ē0pl‖2
L2

)1/2
+ C

√
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