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Abstract

This paper discusses the convergence of kinetic variational inequalities
to rate-independent quasi-static variational inequalities. Mathematical for-
mulations as well as existence and uniqueness results for kinetic and rate-
independent quasi-static problems are provided. Sharp a priori estimates for
the kinetic problem are derived that imply that the kinetic solutions converge
to the rate-independent ones, when the size of initial perturbations and the
rate of application of the forces tend to 0. An application to three-dimensional
elastic-plastic systems with hardening is given.

1 Introduction

MARTINS ET AL. [MS*04, MMPO7| have discussed the connection between kinetic
and quasi-static problems in mechanics, which is a problem of singular perturbations.
They used the distinct time scales involved in kinetic and quasi-static problems, and
performed a change of variables in the governing system of kinetic equations that
consists of replacing the physical time ¢ by a loading parameter 7 = £t. This leads
to a system of equations where the derivatives with respect to the loading parameter
appear multiplied by €. The quasi-static problem and its solutions are expected to
be approached when ¢ tends to 0. In this paper the notions differ slightly from
those in many engineering papers. On the one hand, often the term “quasi-static”
is used for mechanical systems, where the kinetic term M¢ is dropped, but various
friction mechanisms (like viscous friction) may still be kept. This also includes the
specific case of rate-independent friction, which is present in many plasticity models.
Since we are interested in that case in the remainder of this paper we simply write
“rate-independent system” to indicate “rate-independent quasi-static systems”. On
the other hand, we use the term “kinetic problem” for the mechanical problem with
inclusion of the inertial term M§ (which is also often known as “dynamic problem”).

We present here a generalization of the convergence result obtained in [MMPO07| to
general evolutionary variational inequalities including three-dimensional elastoplas-
ticity with hardening. In contrast to [MMPO7|, where Yosida regularization and
time differentiation were used, we rely on a difference quotient technique that is
nicely adapted to nonsmooth variational inequalities and allows for relatively sim-
ple, explicit bounds. More precisely, we prove that the kinetic evolutions remain
close to a rate-independent path when the load is applied sufficiently slowly and the
kinetic evolutions start sufficiently close to that rate-independent path. In other



words, we prove the stability of the quasi-static path in the sense of the definition in
[MS*04, MMPO7].

The paper is organized as follows. In Section 2, the mathematical formulations for
kinetic and rate-independent problems as well as existence results are presented.
We provide a priori estimates for the kinetic problem in Section 3. For example,
using the slow time 7 = £t one of our results shows that the unique solution of the
problem

e’Mq"(7) + Aq(r) + OR(q'(7)) 2 U(7), q(0)=q, 4¢'(0)=0, (L1)

with (-) = L(-) and Ago + IR(0) > £(0), satisfies the a priori bound

waﬂwvawAmdeHSCMNmm+/nwwwmgfmaeTemﬂm
0

where C' is independent of ¢, ¢, and ¢g. These estimates enable us to compare the
kinetic solution to the rate-independent one in Section 4. If g. solves (1.1) and ¢
solves (1.1) with e = 0, we obtain

(Mg () + 14" (a (1) -a() )
< (leM"2g.(0) 1% + 11A2(g-(0)=a(0)[1F) "~ + Cev/e,
where C; is given explicitly in terms of £ € W21([0, Tg]; D(A~1/2)). In Section 5, we

show that this convergence result can be applied for three-dimensional elastoplas-
ticity with linear kinematic hardening.

1/2

2 Mathematical formulation

We start with a Hilbert space H with dual H*, the dual pairing and the norm
are respectively denoted by (-, ) : H x H* — R and |- ||g. Let V be such that
V ¢ H C V* with dual V*. We denote by A : H — H* a symmetric, strictly
positive operator with the domain of A2 such that D(AY?) = V. We use below

the following norms: [|- || = \/(A-,-), |||+ = /(-,A=1-) and the following semi-

norm: |- L MY2 .||, We consider the variational inclusion
M H

M(t) + Aq(t) + OR(4(t)) 3 (1), (2.1)

where (*) denotes the time derivative <(), M is a mass matrix operator, and [ serves
as input datum, also called external loading in mechanics. The dissipation functional
R : H — [0,00] is assumed to be convex, lower-semicontinuous, homogeneous of
degree 1, i.e., R(vq) = vR(q) for all ¥ > 0 and ¢ € H. Tts subdifferential is given
by OR(v) = {o € H*|Vw € H : R(w) > R(v) + (0,w—v)}. Using the definition of

the subdifferential OR(§) leads to the variational inequality
Yo e H: (Mj+Aq—I(t),v—¢) + R(v) — R(¢) > 0. (2.2)
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The energy associated with (2.1) is given by £(¢, q, ¢) = %(Mq', Q)—i—%(Aq, q)—(l(t), q).
The corresponding rate-independent system is obtained from (2.1) rescaling time
via 7 = et, letting ¢(7) = I(7/¢) and taking the limit ¢ — 0:

Aq(T) + OR(q (1)) (), (2.3)
where (-)’ = £ (.) and the energy is given by £(7,4.¢) = $(Aq,q) — (¢(7),q). Anal-
ogously to the kinetic system, the variational inequality associated with (2.3) is

Vo e H: (Ag—0(1),v—q) + R(v) — R(7) > 0. (2.4)

Since we are interested in elastoplasticity, we want to be able to treat the case that
M is degenerate. Thus, we assume that it has block structure and that ¢ decomposes
into two components correspondingly, i.e., H = Hy X Hy, V =V} x V5, ¢ o (u, 2)
with v € H; and z € Hy and

act (M0 act (11 Q1o . def 50 aet [ f(1)
v () as () rp e, 0 (1)), @)
For m we assume that it is invertible, more precisely

m=m" € Lin(H,,H;) and m~' € Lin(H,, H,). (2.6)

We denote by R*(-) the Legendre transform of 7%() The assumptions on R imply
that R* has the form Ifgyxx, where K < OR(0) is a closed convex set in Hj. Then
using the previous notations, the variational inclusion (2.1) can be rewritten in a
form that may be studied using the theory of maximal monotone operators, namely
the governing kinetic system

mi+ _anutapz = f(t), 2.7)
Z 4+ OR*(asiu+taxz) > 0, '

together with the initial conditions

(%(0), ¢(0)) = (4(0),u(0), 2(0)) = (o, uo, z0) = (to, qo)- (2.8)
The rate-independent system (2.3) can be rewritten as
Canti+apz = f(7), (2.9)
7+ OR* (a21ﬂ+a222) > 0, ’

where f(7) = f(7/¢), with initial conditions

q(0) = (u(0), 2(0)) = (o, 20) = Go- (2.10)

Existence and uniqueness results for the kinetic and the rate-independent problem
follow from |Gr78b| and |Gr78a, JohT78|, respectively. In what concerns the kinetic
problem, the theory of maximal monotone operators is used for this purpose. The
reader can find this theory in many textbooks, see, e.g., [Bre73, Zei85]. In [Gr78b]
it is assumed that [ € W2([0,T]; H) but it can be easily proved, using [ShS97,
Thm. A], that the same result remains valid for [ € WY([0, T]; H).
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Proposition 2.1 Assume that (g, qo) € Hy XV such that 0 € agluo—l—amzo—l—@'fé(O)
is satisfied and | = (f,0)7 € WYL([0,T]; H x{0}). Then there erists a unique
solution ¢ € WL>°([0,T]; V) that solves (2.7) and (2.8). This solution additionally
satisfies Mq € W»>([0,T); H).

The existence and uniqueness theory for the rate-independent case is classical, see
e.g. |Gr78a, Joh78| or the surveys |Kre99, Thm. 3.6|, [Mie05, Thm. 2.1].

Proposition 2.2 Assume that g € V and { € WH([0,Tp); V*) such that £(0) €
Ago+ OR(0) is satisfied. Then, the variational inequality (2.4) and hence also (2.9)
have a unique solution g € W->°([0,Ty); V) satisfying (2.10).

In particular, the solutions of (2.3) satisfy the relation

(AG'(s),q'(s)) = (l'(s),q'(s)) for a.e. s €0, Tp). (2.11)

Indeed, consider the variational inequality (2.4) with © = Ag'(s), divide by A and
let A — 0o. We obtain (Ag(7)—((7),7(s)) + R(¢(s)) > 0 for all 7 € [0,Tj] and a.a.
s € [0, Tp). Moreover, for s = 7 we have the opposite inequality by taking v = 0 in
(2.4). Differentiating with respect to 7 we find (2.11), from which we easily obtain
the a priori estimate

N7 (D) < 1 ()]« for a.a. T € [0, Ty). (2.12)

Remark 2.3 In what concerns the rate-independent problem, JOHNSON [Joh78]
formulates the plasticity problem as a variational inequality thereby extending the
formulation of DUVAUT & LIONS [DuL76] to the case of a hardening material. Us-
ing Yosida reqularization, the author has proved existence of a strong solution and,
under some assumptions, he obtained a reqularity result for the velocity field. Anal-
ogous results were obtained by GROGER [Gr78a/, but remained largely unknown in
the western world.

3 A priori estimates for the kinetic problem

The aim of this section is to provide a priori estimates for the problem which allow
us to control the term Mg in H instead of the usual estimates in V*. The problem
occurs through the fact that OR is nonsmooth and classical techniques for smooth
problems do not suffice. One way to handle this is to use Yosida regularization
leading to smooth systems and to show that a priori estimates stay uniform in the
regularization parameter, see [MMPO08|. Here we choose a different technique that
is based on difference quotients.

To explain the methods we start with the basic energy estimate. We consider a
solution and let E(t) = £(t,q(t),q(t)). Using (o,¢) > 0 for all o € IR(4) we

immediately find
d .

SE() < (i), a(0) (3.1



Our a priori estimates can be derived most easily by using the quadratic form B :
V x HxV* — R defined via
def

Blg, 4,1 = |q13, + llg—A7"1> + |12, (3.2)
The construction is such that for solutions we have
Blq(t),q(t), 1(t)] = 2E(t, q(t),4(t)) + 21@X) |2 = 2E(t) + 2|L(®)]1Z. (3.3)

Moreover, one can notice that

1 , . .
?(||q||2+|qﬁ\/l+||l”z) < Blg, 4,1 < g*(llall*+1ala+I1112). (3-4)

with g o % ~ 1.618 is the golden ratio.
We now let 3(t) = Blq(t),q(t),l(t)] and, combining (3.1), (3.3) and (3.4) gives

%5@) < O la®l+41i® 1) < 1iOl49v2V/B(0).

Dividing by 24/ and integrating both sides we find the estimate

V@ < VBE) + 20v2 / N, dr for 0 <s<t<T.

This provides a first, simple a priori bound for (¢, M'/2¢) in V x H in terms of the
initial conditions, namely, using (3.4) we find

(laO1+1d03) " < g2 (Ia(0)1>+1d(0) 3+ 111(0)[12) 2

t 3.5
+%%?Awmmw- &

Similarly, using (3.3) we obtain the a priori bound for the energy, namely
b, 2
B < (VEQHTOTE +2g [ litr)l.dr) = o)
0

The above estimates are just preliminary, but they already show the essential feature
that the loading | appears on the right-hand side with a L! integral of [ whereas
the left-hand side provides an L™ estimate for (¢, M'/2§) in V x H. The crucial
observation is now that the analogous estimate holds for the difference of two solu-
tions, even if we treat different loadings [. These estimates are well known (see e.g.,
[Kre99, Mie05]) but we repeat it for the readers convenience and to have explicit
constants.

Proposition 3.1 Letly,l, € WYH([0, T]; V*) and qi and gy be solutions of (2.1) with
right-hand sides l; and ly respectively, then w = q1—qo satisfies, for all t € [0,T],
the estimate

Blw(t),w(t), 1 (t)—12(t)]"? < Blw(0),w(0),1,(0)—I5(0)]*/?

o . 3.6
+wﬂAnu¢wmmw. 30



Proof. We use the variational inequalities (2.2) for ¢; and ¢ respectively and insert
as test functions v; = ¢ and vy = ¢y, respectively. Adding these two inequalities
leads to a cancellation of all terms involving R and we find, with [ = [} — [,

d /1 1 .
= (GHils + Sl = (@ w)) < (i w.
For (t) = Blw(t),w(t),l(t)] we find the estimate

%ﬁ(t) < iONlla®] +4lL@)) < 1) l149v2+/B(0).

Now (3.6) is obtained as above. O

We apply this result for deriving a priori estimates for the derivatives. Recall that
Corollary 2.1 states ¢ € Wh>°([0,T]; V) and Mq € W»>([0,T]; H). The idea is to
consider difference quotients as a multiple of the difference between a solution and
its time translation.

For arbitrary functions y € L*>([0,T];Y), h > 0, and ¢ € [0,7—h] we use the
notation

(1) < 3 (y(r+h) (1))
We use the fact that the norm of difference quotients can be bounded by the norm
of the derivative. For all p € [1,00] and y € WHP([0,T];Y) we have
10ny e o, r—n1vy < [9lleo,1v)- (3.7)
For p € (1, 00| the left-hand side even converges to the right-hand side for h — 0.
Applying Proposition 3.1 with ¢,(t) = ¢(t+h) and ¢2(t) = ¢(t) and dividing by h > 0

we immediately find the a priori estimate

Bong(t), 0nd(t), o1()]/? < Bong(s), ong(s), nl(s)]"/?

+20v3 [ (o). (38)

forall 0 < s <t < T—h. If it would be possible to pass to the limit A \, 0 on
the right-hand side, then we would find the desired a priori bound for (q, M'/?q)
in Wh>°([0,T];V x H). However, in the general situation the initial conditions
q(0) = qo € V and @(0) = 19 € Hy do not guarantee the boundedness

lim sup ([|0ng(0) | + [64G(0)|ar) < oo,
N

Even the additional assumptions 4, € V; and [(0) € OR(0) + Ag(0) do not help.

Here we have to make an additional assumption, which allows us to handle the
nonsmoothness. For consistency we let Iy = [(0) = limy, o [(h).

Ip>031e W ([=p,0;V*) Tg = (u,2) € W-([—p,0]; V) :

. 3.9
(¢(0),1(0),1(0))=(qo,tt0,l0), u € W>**([—p,0];H,), (2.1) is satisfied on [—p,0]. (39)
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Since [ in (3.9) is defined on the t-interval [—p, 0] the condition I = (0) = limg - I(s)
is needed to guarantee that the concatenation of [ and [ : [0,7] — V* is continuous,
and we will denote this concatenation simply by [ : [—p, T| — V* in the sequel. This
condition also implies that the stability condition I(0) € OR(0) + Ago holds and that
the following limits for h ™\, 0 exist:

ong(=h) = Q inV, 6&,u(—h) — Uin Hy, 0ul(—h) — L in V*.

Remark 3.2 There are two cases where this condition can be easily satisfied. The
first one will be essential in the next section.

(i) If g = 0, then we may choose q(t) = qo for all t € [~p,0] and let I(t) = lo.
The limits then read Q) =0, U =0, and L = 0.

(ii) Ifdo € Vi and if the block structure of (2.5) is present, we may choose q(t) =
qo + t(t,0)" and let I(t) = lo + tA(ig,0)". The limits here read Q) = (1, 0)T,
U =0, and L = A(1,0)T.

Theorem 3.3 Let | € W([0,T); V*) and (qo,u0) € V x Vi be given such that
condition (3.9) holds. Then, the unique solution q of (2.7) and (2.8) satisfies the a
priori estimate

B[4(t)., (i(t), 0)T,i(t)]* < B[Q. (U,0)T, L]'/*

.. b 3.10
+29v2(1L—I(0)]]. + / i)l dr). 10

Proof. The idea is to concatenate the artifical solution ¢ € W°([—p, 0]; V) and the
given solution ¢ € WH([0, T]; V) as well as the loadings. The imposed conditions
at ¢ = 0 guarantee that we have a solution on all of [—p,T] and estimate (3.8)
holds for —p < s <t < T—h. In particular we may choose s = —h and we see
that the first term on the right-hand side of (3.8) converges to the first term on the
right-hand side of (3.10).

The second term on the right-hand side of (3.8) can be estimated explicitly by taking
care of the fact, that [ : [—h,T] — V" is defined piecewise. With

t . 1 o . t .
/ ()] dr = 7 / li(r+h)—i(r)]. dr + / 18ui()]l, dr,
h h 0

we see that the first term converges to ||L—i(0)|., since on the one hand i(7) — L
as —h <7 < 0and [ € C°([—p,0]; V*) and on the other hand [(74h) — [(0) for the
analogous reasons. Finally the second term can be estimated by (3.7) with p = 1
applied to y = f, and the result is established. O



4 Rate-independent limit ¢ — 0

To consider systems with very slow loading rates we introduce the slow process time
T = et and assume that the loading [ used in (2.1) and Section 3 is given in the
form [(t) = {(et), where now ¢ : [0,Ty] — H* is fixed, and the loading rate ¢ > 0
eventually tends to 0. We introduce

g (1) = (uc(7), 2:(7)) = (u(r/e), 2(7/2)) = q(7/e)
for the solution as a function of the slow process time.

Applying this transformation to system (2.1) and using that the rate-independent
friction term remains unchanged, as OR(-) is homogeneous of degree 0, we arrive at
the rescaled problems

e2Mq" (1) + Aq.(1) + OR(q.(7)) 2 £(7), q.(0) =qo, u.(0)=uy, (4.1)
and
Aq(1) +OR(7 (7)) 3 U(1), q(0) = Go- (4.2)

The whole theory in Section 3 remains valid when M is replaced by €2M and () by
(-) with now |ql| o), = elgi|,, = el M'ql|n.

As in [MMPO8| we have the following estimate between the kinetic solution g. and
the rate-independent quasistatic limit q.

Proposition 4.1 Assume that ¢ € WH([0,To); V*), (M(u1,0)T,q0) € H x V and
Go € V. Then, for all T € [0,Ty] we have

_ 2 _
e21gL(r)] 5 + lg=(r)=a(n)I* < &3)(ur, 0)T [y + lao—dol®

+252<esssup|qg(s)\M)/ 7' (5)] 5 ds.
0

s€[0,To]

Proof. Theorem 3.3 guarantees that all quantities on the right-hand side are finite.
To obtain the estimate we use the standard trick of adding the corresponding vari-
ational inequalities, cf. (2.2) and (2.4), but now in the slow process time. Choosing
v =¢ and v = ¢, all terms involving R cancel and we obtain (e*Mq”,q.—q') +
(A(g-—q),q.—7') < 0. Integrating over [0, 7] yields

_ 2 _ T _
2lqL(7)| 3 + llg(1)—a(r)[1* < (w1, 0) |3y + llao—ol|* + 2/ (e2Mq!(s),q (s)) ds.
0

The Cauchy-Schwarz inequality and taking out the essential supremum provides the
desired result. U

The final result provides an estimate between g. and ¢ that is explicitly given in
terms of the data. For this we need the a priori estimates on the solutions ¢ and
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g. derived in Section 2 and 3, respectively. Moreover, following [MMPO08] we will
estimate the distance between g. and g by introducing a special intermediate solution
q- for which Theorem 3.3 is applicable. In our case, this special kinetic solution
qg- = (u., 2.) satisfies (4.1) together with initial conditions (4.(0),u.(0), 2.(0)) =
(0,4, Zp). In particular, we impose that the initial velocity @.(0) = 0 whereas in
IMMPO8]| the initial velocity @.(0) = eug was used, which lead to the additional
assumption @) € V;, which is not needed any more. Nevertheless, our final estimate

(4.3) is the same as the one obtained in [MMPOS].

Theorem 4.2 Let the above assumptions on M, A and R hold and assume { =
(f.0)T € W21([0, To], V*). For go € V with £(0) € OR(0) + Ao C {0} x Ho let  be
the unique solution of (4.2). For arbitrary qo = (ug,20) € V and u; € Hy satisfying
0 € asiug+asnzy + 87%(0) let q. be the unique solution of (4.1). Then the difference
between q. and q can be estimated via

(leq. ()% + llg-()—a(™) 1) " < ((eur, 0) o +llgo—wl?) > + VECTAR), (4.3

where

Cl() = 20V3u [ 1665 (1O + [ 1. ds) and 1 sup fol,

[[ol=1

Proof. Proposition 2.1 provides the existence of the special kinetic solution g. solving
(4.1) with g.(0) = go and @/(0) = 0. This choice allows us to satisfy condition (3.9)
via Part (i) in Remark 3.2. Using ' = U” = L' = 0 estimate (3.10) provides the a
priori bound

el g (7|5 < 9BlaL(7), 4! (1), ¢'(7)]''* < gB[0,0,0]"% + Cu[()(7),
with Cy[0](1) = 2g2\/_<||€’ N+ Sy 1€7(s)])- ds), and the right-hand side is inde-

pendent of . Now Proposition 4.1 can be used to obtain

E1aL(r)13 + lld-(r)—a(m)|* < 2Ci[A)(r )/OT‘SW/(S)‘M ds <eCl(r),  (44)

where we used |¢'(s)|,, < ul|@(s)|| < p||¢'(s)||« with the last estimate following from
(2.12). For the difference between the given solution g. and the special solution q.
we use Proposition 3.1 and obtain, because of /1 = ¢, = ¢, the simple estimate

elgL(r)=aL(r)ly + llg=(r)—g:(7)II”

) 72 L (4.5)
< e(u1,0)" |3, + llgo—qo||” for all 7 € [0, T].

Taking the square roots of (4.4) and (4.5) and using the triangle inequality gives
the desired result. U

In [DuL76, Ch.V.3.5] the limit ¢ — 0 is used to prove existence for the quasistatic
case. However, the viscoplastic case is treated there, i.e., the viscosity parameter

9



i > 0 (see [DuL76, p.234|) and the necessary e-independent a priori estimates
corresponding to our estimate (3.10) are simply obtained by differentiating in time.
The convergence stated in [Dul76] is weak * only, whereas our result provides
quantitative error estimates.

5 Elastic-plastic systems with hardening

We relate now the result obtained in the Theorem 4.2 to an elastic-plastic model
with linear kinematic hardening which leads to a generalization of the convergence
result obtained by MARTINS ET AL. in [MMPOS].

We consider a material with a reference configuration Q@ C R¢ with d € {2,3}.
We assume that 2 is an open bounded set with a 1-regular smooth boundary (see
|RaT83|) and || < co. This body may undergo displacements u(r, -) : Q — R<.
The plastic strain will be characterized by z = e, : Q — SI where S is the space
of symmetric d x d tensors with vanishing trace. Further, we will denote by S the
space of symmetric d X d tensors endowed with the scalar product v:w = tr(vTw)

and the corresponding norm is given by |v]?> = wvw for all v,w € S%. Here tr(.)
denotes the trace of the matrix (-).

The set of admissible displacements F is chosen as a suitable subset of W2(2; R?)
by prescribing Dirichlet data on the subset I'py;, of 0€), i.e.,

F = {ue WH(QRY |, = 0}.
The plastic variables e, belongs to Z = L2(Q;S¢) and the linearized strain tensor
e = e(u) is given by e(u) = L(Vu+VuT) € S We assume that 9Q is smooth

enough and that mes(I'p;;) > 0 such that the Korn’s inequality holds, i.e. there
exists ckorn > 0 with

Yu e F: /|e(u)|2da7 > Ciorn||U||3y1.2- (5.1)
Q
For more details on Korn’s inequality and its consequences, we refer to [Dul.76] or
|KoO88|.
We consider now the following kinetic equation
epu” — div(E(e(u)—ep)) = bt (T), z€Q, T€[0,T0), (5.2)

where p > 0, o are the density and the applied mechanical loading respectively; E
is a symmetric, uniformly positive definite elasticity tensor. The behavior of plastic
element is characterized by the plastic flow rule in the form

—E(e(u)—ep) + Hey + 0R(ey) 20, z€Q, 7€(0,Ty, (5.3)

where H is a symmetric, uniformly positive definite hardening tensor. The dissipa-
tion potential is given by

R(el)) / Rz, ¢y (x)) da,
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with R € L (Q x S?) such that there exist 71,7, with 0 < r; < 75 with

loc
V(x,v) € A xSt ri|v] < R(z,v) < rolv].

We assume also that R(z,-) : S¢ — [0,00) is 1-homogeneous and convex. Notice
that (5.3) is equivalent to

e € OR* (E(e(u)—ep) —Hep), x€Q, 7€[0,T), (5.4)

where R* is the Legendre transform of R(-). From (5.2) and (5.4), we finally obtain
the governing system

ot = div(B(e(w)n)) — bon ), } e, Te0,T, (5.5)
ey € OR (E(e(u)—epl) — Hepl),
together with Dirichlet boundary conditions
u=0 on I'py x [0, 7], (5.6)
and initial conditions
(u(0),u'(0), ep(0)) = (ug, us, egl). (5.7)

The corresponding rate-independent system is then

0 = diV(E(e(U)—epl))_gext(T)v
e, € 8R*(E(e(u)—€p1)—H€p1)7

pl

} reQ, 71|07, (5.8)

with Dirichlet boundary conditions @ =0 on I'p; x [0, Tp], and initial conditions

(@(0), &:1(0)) = (o, &)- (5.9)
Further, the energy associated with (5.5) is given by
1
E(ryu,ep,u’) = 3 /Q(,o|a€u'|2 + (e(u)—ep):E(e(u)—ep) + epiHey) dz — (lexe(7), u).

For a given external loading /., a given elasticity tensor E and a given hardening
tensor H with

lext € CH([0, Tp]; WH2(Q; R, (5.10a)
E € L*>°(Q; Lin(S?, $%)) with E(z) > n1 a.e., (5.10Db)
H € L*°(Q; Lin(S¢, S¢)) with H(x) > n1 a.e., (5.10c)

where > 0, we recall existence and uniqueness result for kinetic and rate-independ-
ent problems. First, one can identify H = Hy x Hy = L2(Q;R%) x L2(Q;S%) and
V = Vi x Vo © F x Hy. Second, (5.5) and (5.8) can be rewritten in the form of
(2.7) and (2.9), respectively. More precisely, one has to choose a;; = —div(Ee(+)),
ay = div(E(+)), as1 = —Ee(-), aze = E(-) +H(-), f(7) = lox:(7) and m = &2p. Then,
Proposition 2.1 gives the following result.
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Proposition 5.1 Assume that (5.10) holds and that (ug, uy, e)) € F x F X Z such
that 0 € E(epp—e(ug)) + Hed + OR(0) C Z is satisfied. Then there exists a unique
solution (u, ep) € W ([0, Ty]; V) that solves (5.6) and (5.7).

The existence and uniqueness theory for the rate-independent elastoplasticity prob-
lem is standard, see [Gr78a, Joh78|.

Proposition 5.2 Assume that (5.10) holds and that (i, &) € F x Z such that

(Lext (0),0)T € A(ag, &))" + {0} x OR(0) C F x Z is satisfied. Then, there exists a
unique solution (u,ey) € Wh°([0, Tp|; V') that solves (5.8) and (5.9).

Applying Theorem 4.2 and using (5.1), we deduce the following result.

Corollary 5.3 Assume that (5.10) holds and (ug, ug, €9)) € FXFxZ and (g, &) €
F x Z satisfy 0 € E(egl—e(uo))+Hegl+8R(O) and (Lex:(0),0)T € A(, égl)T+{O} X
OR(0), respectively. Then there exist ¢,C' > 0 such that for all ¢ > 0, we have

_ _ 1/2
(lepu (P12 +[lu(m) =a() |[fyr.2+llep () —ep(T)[1F2)

_ | 1/2
< e(|lepM2ub||Za+|uo—io | Zyr.a €% —% 172) 2 + CVE,

for all T € [0, Tp).
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