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AbstratWe show that a weak transverse spatial modulation in (2+1) nonlinearShrödinger equation with saturable nonlinearity an result in nontrivial dy-namis of radially symmetri solitons. In partiular, in the ase of hexagonalpro�le of the modulation the soliton moves haotially.The nonlinear Shrödinger (NLS) equation plays a entral role in understanding var-ious physial phenomena in plasma physis, hydrodynamis, Bose-Einstein onden-sation, nonlinear optis. In partiular, NLS desribes pulse propagation in nonlinear�bers and self-fousing of paraxial beams of light in a homogeneous Kerr medium[1℄. In the ase of purely ubi nonlinearity, (2+1)-dimensional NLS possesses aloalized solution, known as Townes mode [2℄. However, this solution is always un-stable: small perturbations lead to a ollapse, i.e. to an unbounded growth of the�eld amplitude within a �nite time interval. A suppression of the ollapse an beahieved by various means. In partiular, replaing the ubi nonlinearity with asaturable one ahieves an arrest of the ollapse and a stable self-ollimated propa-gation of a light beam [3℄. In a spatially homogeneous medium the paraxial beampropagates with a onstant veloity along a straight line. However, beause of re-ent developments in fabriation of mirostrutured wave-guiding materials knownas photoni rystals [4℄, there is a growing interest to the study of nonlinear beampropagation in various inhomogeneous settings [1, 5, 6, 7, 8℄.In our paper we study mobility properties of the stable solitons of (2+1)-dimensionalNLS equation with a saturable nonlinearity in the situation where the refrativeindex of the medium is modulated periodially in the transverse diretions. It isknown that the e�etive partile approah is very e�ient in suh type of problems[9, 10, 11, 12, 13, 14, 15, 16, 17, 18℄. In partiular, in the ase of weak modulationamplitude we apply this approah to derive an equation, whih desribes the solitonas a Newtonian partile in the external potential reated by the refrative indexpro�le. This remains valid independently of the ratio of the soliton transverse sizeto the modulation period, even when the soliton is quite wide.We show that like a partile in a two-dimensional potential, the soliton in themedium with a transversely modulated refrative index an move both in a regularand haoti manner, and the hoie between these two types of motion is foremostdetermined by the geometry of the refrative index pro�le. Thus, when the refrativeindex forms a retangular lattie, the e�etive potential is integrable, and the solitontransverse motion is very lose to integrable one for long time intervals. In this asethere are two typial dynamial regimes: the �rst orresponds to low-energy quasi-periodi osillations around loal maximum of the refrative index (minimum of the1



e�etive potential), the seond orresponds to quasi-periodi osillations superim-posed on a onstant veloity drift. In the ase of hexagonal lattie the situation isdrastially di�erent. Here, with the inrease of energy the osillations near a loalmaximum of refrative index beome haoti and transform into a random walk �an unbounded transverse motion of the soliton wandering haotially between dif-ferent ells of the refrative index pro�le. Thus, our results show that even in simpleperiodi media a soliton an exhibit very ompliated motion patterns.Consider the equation
∂tA = i∆A + Af

(

|A|2
)

+ iε2g (r)A, (1)where r = (x, y), ∆ = ∂xx + ∂yy, and A(r, t) is a omplex �eld amplitude. Notethat when f is purely imaginary, Eq. (1) is Hamiltonian, with the energy funtionalgiven by
H =

1

2

∫

[

|∂xA|2 + |∂yA|2 + Φ
(

|A|2
)

− ε2g(x, y)|A|2
]

dxdy,where Φ′ ≡ if . The onservation of energy H means that the purely imaginary forresponds to the light propagation in a transparent medium. In order to ensurethe stability of the soliton we use the saturable nonlinearity [3℄
f

(

|A|2
)

=
−i

1 + |A|2 . (2)An important feature of Eq. (1) is that at ε = 0 it is invariant with respet to theGalilean transformation to a moving oordinate frame:
A(r, t) → A (r − vt, t) exp

(

ir · v/2 − i|v|2t/4
)

. (3)It follows that for ε = 0 any stationary solution of Eq. (1) oexists at with a family ofuniformly moving solutions parameterized by the veloity vetor v (here and belowwe use bold-fae letters to denote spatial 2-omponent vetors, while the entral dotdenotes a salar produt of suh vetors.The term iε2g in the right-hand side of Eq. (1) with small ε and real g (r) desribesthe spatial variation of the refrative index pro�le. If g is not spatially homogeneous,the translational and, hene, Galilean symmetries are broken at non-zero ε, whihresults in a non-trivial motion of the soliton in the (x, y)-plane.The propagation of paraxial light beams in a dissipative media an be desribedby the same equation (1), where the funtion f in the right-hand side is no longerpurely imaginary. In our simulations we take f real:
f

(

|A|2
)

= −1 +
G

1 + |A|2 − Q

1 + s|A|2 , (4)where G and Q are linear gain and, respetively, absorption oe�ients, and s > 1is the ratio of the saturation intensities of the gain and absorber media [19℄.2



In this ase, the Hamiltonian struture of the equation is lost, while the Galileansymmetry is preserved at ε = 0. As we show below, the presene of this symmetryresults in a great similarity between the harater of soliton motion in the onserva-tive and dissipative ases, in spite of the di�erene between the physial mehanismsof the soliton formation.Let Eq. (1) at ε = 0 have a radially symmetri stationary solitonA (r, t) = A0(r)e
iω0t,where A0 → 0 exponentially fast as r → ∞ (we denote r = |r|). Sine the equationat ε = 0 is symmetri with respet to spatial translations, the vetor-funtion

U = ∇A =
r

r
A′

0(r)satis�es LU = 0, where the operator
L : X 7→ [i (∆ − ω0) + f (E0) + E0f

′ (E0)] X + A2

0f
′ (E0) X∗yields the linearization of the right-hand side of Eq. (1) at the soliton solution. Herethe star denotes omplex onjugation, and E0 = |A0|2.Note that the Galilean symmetry of Eq. (1) implies the existene of the vetor-funtion Z suh that LZ = U. By di�erentiating formula (3) with respet to v, itis easy to �nd that Z = −irA0(r)/2.Let us de�ne the following inner produt of the funtions X and Y :

〈X, Y 〉 =
∫

(XY + X∗Y ∗)dxdy.Aording to this de�nition, the adjoint to L operator L† reads as
L† : X 7→ [i (∆ − ω0) + f (E0) + E0f

′ (E0)] X +
[

A2

0f
′ (E0)

]∗
X∗.Like L, the operator L† has a non-trivial odd solution to L†

U
† = 0. Due to therotational symmetry we an write this solution in the form U
† = r

r
U †(r), where

U †(r) is a salar funtion. An easy omputation gives
〈

Zx, U
†
x

〉

=
〈

Zy, U
†
y

〉

=
∫

Ψ(r)dxdy,where Ψ(r) =
∫

+∞
r Im

[

U †(r′)A0(r
′)

]

dr′, while the funtions Zx,y and Ux,y denotethe omponents of the vetor-funtions Z and U
†.Below we assume that ∫

Ψ(r)dxdy 6= 0, i.e. 〈

Z,U†
〉

6= 0, whih means that thereis no solution to LX = Z. Note that in the Hamiltonian ase where f is purelyimaginary and A0 is real, it is easy to see that L† (iX) = iLX, whih implies that
U

† = iU = i
r

r
A′

0(r), and Ψ(r) = −1

2
A2

0(r).In the non-Hamiltonian ase these relations are no longer true, and we do not haveexpliit formulas for U
† and Ψ. 3



At non-zero ε we will be looking for a slowly moving soliton solution in the form ofseries expansion
{

A0 [|r −R (εt)|] + εA1 [r − R (εt) , εt] + ε2A2 [r− R (εt) , εt] + . . .
}

eiω0t, (5)where R is the soliton enter position and A1,2,... desribe a small orretion to thesoliton shape. Substituting expansion (5) into Eq. (1) and olleting �rst orderterms in ε we �nd that
LA1 = −Ṙ · ∇A0 ≡ −Ṙ · U(the dot over R denotes the derivative with respet to the slow time εt). Sine

U = LZ, we an take A1 = −Ṙ · Z.Now, olleting the seond order terms in ε we obtain
LA2 = −R̈ · Z(r − R) − ig(r)A0(|r −R|) −F(r −R), with F(−r) = F(r).Aording to the Fredholm alternative, the solvability of this equation with respetto A2 requires the orthogonality of its right-hand side to the solutions of the homo-geneous equation L†X = 0. So, by taking the inner produt of the right-hand sideto U †

x(r − R) and U †
y(r − R), and notiing that 〈F , U †

x,y〉 = 0, we get the followingneessary solvability ondition:
R̈

∫

Ψ(r)dxdy − 2
∫

g (r + R) Im
[

U
†(r)A0(r)

]

dxdy = 0.Integrating by parts, we obtain �nally the following equation for the soliton motion:
R̈ = −∇V (R), (6)where

V (R) = −2

∫

g (r + R)Ψ(r)dxdy
∫

Ψ(r)dxdy
. (7)As we mentioned, Ψ = −A2

0/2 in the Hamiltonian ase. Formula (7) generalizes theexpression for the e�etive potential obtained for the integrable ase of 1D NLS inRefs. [11, 17℄.As we see, both in transparent and ative-dissipative media, the transverse solitonmotion is desribed, to the leading order, by the Hamiltonian equation (6). Thisis the equation of a unit mass partile moving in the external potential. Up to thefator of (−2) the potential is obtained by averaging the refrative index g with aweight determined by the soliton intensity. Note that Eqs. (6) and (7) are valid forarbitrary ratio of the soliton width to the harateristi period of the refrative indexmodulation. When this ratio is small, we obtain V (R) = −2g (R). As the ratiogrows, the averaging smooths the inhomogeneity of the refrative index. Therefore,when the soliton is su�iently wide it moves, essentially, like a free partile.Being a Hamiltonian system with two degrees of freedom, equation (6) may exhibitboth regular and haoti dynamial regimes, depending on the shape of the potentialand on the value of energy. Below we show that the transverse dynamis of the4



soliton depends strongly indeed on the struture of the refrative index pro�le. Weonsider square (g = g4) and hexagonal (g = g3) latties, de�ned by
gj (r) = −

l=j−1
∑

l=0

cos(~kjl · ~r), ~ksl = k

[

cos(πl/j)
sin(πl/j)

]

.Here j = 4 and k =
√

2π/d for the square lattie, j = 3 and k = 4π/ (3d) for thehexagonal lattie, with d being the size of the lattie ell de�ned as the distanebetween a loal maximum of g and its nearest loal minimum. Aording to Eq. (7),the e�etive potential that governs the soliton transverse motion is given by
V (x, y) = −g(x, y)S (k) ,where the response oe�ient S (k) is de�ned by

S (k) = 2

∫

cos (kx) Ψ(r)dxdy
∫

Ψ(r)dxdy
.In the limit of a narrow soliton (k → 0), we have S (k) → 2, while in the oppositelimit k → ∞ the response funtion deays exponentially. In Fig. 1 we plot thegraph of amplitude pro�le and the response oe�ient S(k) for the solitons whosedynamis we studied in our numeri simulations. As it an be seen from the �gure,

S(k) is not negligibly small for the soliton sizes up to roughly twie the size of thelattie ell.
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Figure 1: Considered soliton amplitude pro�les (a) and the response funtion S(k)(b). Solid and dotted lines orrespond, respetively, to onservative nonlinearity (2)and dissipative nonlinearity (4) with G = 2.11, Q = 2.0, and s = 10.
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V = S(k) [cos (kx) + cos (ky)]is separable, and therefore Eq. (6) is integrable, whih means a quasiperiodi motionfor the soliton. This result is on�rmed by diret numerial integration of Eq. (1).Indeed, as we see in Figs. 2a,b, the soliton in the square lattie is either trappedin a lattie ell and osillates quasiperiodially in it, or the quasiperiodi osilla-tions aompany a onstant veloity drift. This piture is the same both for theonservative nonlinearity (2) and for the ative-dissipative ase (4). However, in the
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