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Abstract

We consider the stationary Maxwell system in a domain filled with different
materials. The magnetic permeability being only piecewise smooth, we have to
take into account the natural interface conditions for the electromagnetic fields.
We present two sets of hypothesis under which we can prove the existence of weak
solutions to the Maxwell system such that the Lorentz force jxB is integrable to a
power larger than 6/5. This property is important for the investigation of problems
in magnetohydrodynamics, with many industrial applications such as crystal growth.

1 Introduction

The purpose of this note is to formulate some consequences of recent regularity results
that are relevant for the mathematical theory of Maxwell’s equations. More specifically,
we want to show how the theory of the papers [Zan00], [ERS07| can help us to deal with
the difficulties that arise from coupling the weak formulation of Maxwell’s system to the
equation of momentum balance in complex geometries.

In this introduction, we first describe the type of geometrical setting that we have in
mind.

We consider finitely many bounded domains Qo,...,Qn C R3, that represent disjoint
materials with different electromagnetic properties, and we define a domain {2 C R3 by

a=J%. (1)
i=0
We assume that the set  is connected. Introducing an index set I. C {0,...,m} by

iel, <= (€ is electrically conducting, (2)

we can gather the electrical conductors in a domain €. given by

Qc - U QZ .
i€l
We denote by QCO C . a part of the conductors where we the current is prescribed.
Throughout the paper, we consider only the simplest case that the set (2., is isolated

from the rest of the conductors. We denote by €. := Q. \ QCO the part of the conductors
where the current is unknown.



In the domain ©, we consider the stationary Maxwell’s equations. Ampére’s law

curlH =35, inQ, (3)

and Ohm’s law for the electrical conductors

j=oc(E+vxB), inQ,., (4)
can be written in the short form
0 in Q\ Q.
curl H = < jj in Q. , (5)
o(E+vxB) inf,.,

where jy is a given density of direct current, and the function o represents the electrical
conductivity of the medium. Further, the magnetic induction B satisfies

divB=0, in . (6)
For the electric field FE, it holds that
curl E=0, in Q. (7)
In the non-conducting parts, the displacement current D has to satisfy
divD =0, inQ\Q.. (8)

We still need a constitutive relation between B and H, and between £/ and D. We consider
only linear materials, that is

B=uH, D=¢E, (9)

with the function p of magnetic permeability and the function e of electrical permittivity.
In the interior of €2, the fields B, H, E have to satisfy the natural interface conditions

[Hx#] =0, [B-f],. =0, [Exid] =0 ondnoy (10)

1] 1] 1]
where H” denotes the jump of a quantity across the surface aQimaﬁj for i,7=0,...,m.

We consider that the outer boundary 9Q models a magnetic shield, and prescribe the
conditions

B-i=0, Exii=0 ondf. (11)

Definition 1.1. We denote the problem of finding fields H, B, E, D, j that satisfy (5),
(6), (7), (8) together with the constitutive relations (9) and the boundary conditions (10)
and (11) as Problem (P).



The problem of the integrability of the force j x B. For given current source j
and velocity field v, the problem (P) has been successfully solved in the past, also for
more general geometrical settings than (1) and for nonlinear constitutive relations (9) (see
e. g. [PM99]). This was mainly achieved thanks to the theory of generalized curl and div
operators, and the use of decomposition theorems of the space L? relying on this theory.

For the field H that weakly solves the problem (P), the generalized theory of electromag-
netics gives the following basic informations (see for example [DL76], [PM99] or [Bos04]):

HeV,o(Q) = {w e [L2Q) | curlw € [L2(Q)]?, div(uw) =0, 2 -7 =0 on a(z} ,
(12)

where the operators curl, div, and the normal trace v - 7 are intended in the generalized
sense.

However, for the study of the coupled problem involving for example the Navier-Stokes
equations, the use of such weak solutions can lead to considerable difficulties. Assume
for example that a subset of the described system, say €, C €, consists of a rotating
cylindrical vessel filled with an electrically conducting fluid. Whenever a direct current
is applied in the conductors QCO, it will generate a steady state magnetic field in the
entire region ©, and influence the fluid motion. This type of interaction is described by
the stationary MHD system. The Navier-Stokes equations for an incompressible fluid are
then written as follows:

pv-Vv=Vp+nlAv+jx B, divv=0, in Q, (13)

where p is the mass density of the fluid, 7 its kinematical viscosity, and j x B denotes the
electromagnetic force (Lorentz force). Since we assume that Ampére’s law (3) and the
linear relation (9) are valid, we can write for the electromagnetic force in (13) also

jxB=culH xpuH.

Therefore, if our knowledge about the regularity of H is limited to (12), we cannot expect

in general more than j x B € [L'(Q)]*.

Situation and structure of the paper. A basic message of most papers about mag-
netohydrodynamics is that the difficulties described in the previous paragraph can be
avoided by making suitable assumptions on the regularity of the function u, and on the
structure of the domain Q. We briefly describe the main ideas. A first idea, applied e. g.
in [DL72|, [ST83], consists in supposing that p is a globally smooth function in the domain
Q. From (12) it then follows that

divH:_—w-HeLZ(Q).
o}

Whenever the function p is bounded away from zero, a vector field H that satisfies (12)
then belongs to the space

V= {w e (L) curly € [LX(Q)], dive € LX), ¢ -7 = 0 on a@} L (149



In [DL76], it is shown that if the boundary 0L is of class C2, then the topological identity
V= {H e [H' Q)| H-ii=0on 00}, (15)

is valid. With the help of Sobolev’s embedding theorems, we immediately obtain that
H € [LS(Q)]®. This gives curl H x B € L*?(Q). Thanks to recent advances in regularity
theory (see e. g. the paper [ABDG98| and the references therein), this type of result can
be extended to less regular, Lipschitz domains. Still supposing that the permeability u is
globally smooth, one proves that the embedding

Vs [H'2(Q)F, (16)

is continuous (see [Mon03], Theorem 3.47, for a proof). This gives for a vector field H
that satisfies (12) that H € [L?(Q)]*. Therefore, one obtains that curl H x B belongs to
[LS/5(2)]? even in Lipschitz domains, which is still sufficient for solving (13) via standard
theory.

However, it is not always a good approximation to assume the smoothness of the perme-
ability p. In real-life applications, the magnetic permeability has jumps at the interfaces
that separate different materials, and it is necessary to take into account transmission
conditions at the interfaces.

In this sense, the authors of the paper [LS60| considered a setting with two disjoint
subdomains Q = O U €2y, where the set 2, is supposed to be simply connected and
compactly included in €. Under the assumption that the outer boundary 99, as well as
the interface 0Q; are of class C?, one can prove the topological identity

Vio(€) = Viuo(@) 0 ﬂ[W1’2(Qi)]3 : (17)

This result was confirmed by other methods in the more recent papers [MS96|, [MS99|.
One must note, however, that restriction to interfaces that are globally in the class C? (or
at least in C1'!) excludes most situations that one expects to find in complex applications,
such as triple jump points of the magnetic permeability, or interfaces with corners.

In the present note, our aim is to take advantage of recent regularity results to derive
weaker conditions than in [LS60] on the data pair (p, 2) under which we can obtain the
higher integrability of j x B.

We present two different sets of hypotheses that yield the existence of a number ¢ > 3 such
that the space V},0(€2) embeds continuously into [L(2)]>. This gives that curl H x B €
[L7(Q)]? for some r > 6/5.

First, exploiting the regularity theory of [ERS07], the higher integrability follows if we
require that the interfaces 9Q; N 99, are of class C', that the outer boundary 9€2 is of
class C%!, and that the function p is uniformly continuous on each subdomain ;.

Second, exploiting the results of [Zan00], the higher integrability follows without further
conditions on the interfaces, provided that the domain €2 is Lipschitzian and that the
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function p € L*°(€2) is nearly constant (in a sense to be made more precise below). The
latter situation quite often occurs in practice, since the ratio of the magnetic permeability
of non-magnetic materials to the magnetic permeability of the vacuum is nearly one.

2 Embedding results for vector fields that satisfy a curl
and a div constraint.

Several embedding results have been stated in the past for vector fields that satisfy a curl
and a div constraint, and in general also a constraint on the normal or on the tangential
values taken at the boundary. A typical example is given by the embedding (15) of the
space V defined in (14), which relies on the inequality

IVih[li2@ye < (|| curl¥|ipzys + [ div || 2wy) (18)

valid whenever the domain U C R? is of class C? (see [DL76], Ch. 7, Th. 6.1 for a proof).
The inequality (18) is known as Gaffney’s inequality, see [Pic84]). Inequalities of this
type can be generalized in smooth domains to the case 1 < p < 400, as was shown in
[vW92|, Th. 2.1, and to Sobolev spaces of fractional order. With respect to nonsmooth
domains, these results mostly extend to convex polyhedra (see [GR86| and references),
but examples of Lipschitz domains in three space dimensions are known for which (18)
fails. One can still hope, though, to prove an embedding result in higher IL”—spaces, i. e.
an inequality of the type

U] a@ye < e (| curl ey + || div | ze@))

with ¢ > p. An example of a similar result obtained via embedding results for Sobolev
spaces of fractional order is given by (16). In the following of this preliminary section,
we first recall basic notions concerning the generalized operators curl and div, and then
investigate embedding results that can be obtained directly.

2.1 The generalized operators curl and div.

We at first recall the definitions of the generalized differential operators curl and div.

Definition 2.1. Let U C R? be a bounded domain, and 1 < p < 0.

(1) For a vector field ¢ € [LP(U)]3, we write curl+ € [LP(U)]? if there exists a ¢ € [LP(U)]?

such that
. 1 = )
/Uw curl® /Uf ¢

for all ¢ € [C2°(U)]. The uniquely determined vector field £ is called the generalized
curl of ¢, and we define curly = &.



(2) For a vector field ¢ € [LP(U)]?, we write divy € LP(U) if there exists a function

¢ € LP(U) such that
Vo =— ,
/Uw i /Ug(b

for all ¢ € C°(U). The uniquely determined function ¢ is called the generalized
divergence of ¢, and we define div := (.

For a bounded domain U C R3, we then introduce

La(U) = {v € PO

curly € [LP(U)]? } ,

Ly (U) = { € [P | dive e () |

where the operators curl and div are intended in the sense of Definition 2.1. These spaces
are Banach spaces with respect to the graph topologies

[¥llzr, ¢

curl

[Ny, ) = [l + | div e - (19)

v = lllwrys + et ¢llizays

For p = 2, they are Hilbert spaces. For vector fields that belong to a space (19), it is
possible to define trace operators. Denoting by 7 the outward-pointing unit normal to
U, we have for ¢, v € [C(U)]* the well-known formula

/U@/)-curlqﬁ—/Ucurlw-czS:—/aU(ibXﬁ)-cb:: (), 6).

Thanks to results for the density of the smooth functions in the spaces (19), it can be
shown (see for example [DL76], [PM99]) that the operator 7, extends to a linear bounded
operator on the space L2 ,(U). For ¢ € L% ,(U), we then call v,.(¢) the trace of 1. In
general, this trace need not to be identical to an integrable function on the boundary.

Nevertheless, for ¢, 1 € LZ,,(U), we often abuse notation and write [, (1) x 77) - ¢ instead
of <%(¢), ¢>

Similarly, for ¢ € [C*°(U)]? and ¢ € C>(U) , we have the formula
/¢-V¢+/divw-¢: w-ﬁ¢::<”yn(w),(b>.
U U ouU

The operator v, extends to a linear bounded operator on the space L3 (U). For ¢ €
L% (U), we call v,(¢) the trace of 1. For ¢ € L2 (U) and ¢ € L% (U), we often write

fan -1 ¢ instead of <%(¢), ¢>.



2.2 Embedding of L. (U)N L (U) into LY(U) for (¢ > p).

curl

Let U C R3 be a simply connected bounded domain. For 1 < p, a < 0o, we consider the
spaces

Wre(U) = {u € L, (U) N L (U) [ (w) € L2@U) } (20)
We denote by p* the Sobolev embedding exponent
3 .
3Tpp if1 <p<3,
p"i=4¢1<s< oo arbitrary ifp=3,
00 ifp>3.

In this section, we prove:

Proposition 2.2. Let U C R? be a simply connected bounded Lipschitz domain. Then,
there exists a ¢; > 3 such that for all p €]¢, ¢i[, the space WP*(U) embeds continuously
in [LS(U)]? for € := min {32, p*, ¢ }. If the domain U is of class C', one may take
q1 = +00.

In order to prove Proposition 2.2, we first need an extension result.

Lemma 2.3. Let U C R® be a bounded Lipschitz domain. Let f € LF.(Q) such that
div f = 0 in the sense of the generalized div operator. Let U C R3 be a bounded domain
such that U cC U.

Then, there exists a ¢; > 3 such that for all p €]¢;, q:[, we can find an extension foff
to U \ U such that f € L%, (U) and

div f = 0 in the weak sense in U, f-7 =0 on dU.
In addition, there exists a constant ¢ = ¢(U, p) such that
HfH[Lp(i/)]B <c HfH[LP(U)F” :

Proof. Denoting by p’ the conjugated exponent to p, we define a functional F' € [W"#' (U \
U)J" by

F(o):= | f-ig.
ouU
for ¢ € W' (U \ U). Since f is weakly divergence-free in U, we see that F(1) = 0, and
we can find a positive constant ¢ such that

HFH[WLP/(U\U)}* <c HfH[LgiV(U)P = | fllizewys -



Theorem 1.6 in [Zan00] (see also Proposition 4.5 below) provides the existence of some
q1 > 3 such that for all p €]q, ¢1[, the Neumann problem to find some a € W'?(U \ U)
such that the relation

Va- V¢ =F(¢),
U\U

holds for all ¢ € W'»(U \ U) possesses a weak solution, which is unique up to constants.
In addition, the estimate
lallwro@noy < CIF @y -

is valid, with a constant C' that only depends on the Lipschitz constant of the domain U.
We define

- f in U,
Va inU\U.
It is then easy to verify that this extension has the required properties. O

Proof of Proposition 2.2. We consider an arbitrary u € WP(U).

Define f := curlu. Since div f = 0 almost everywhere in U, we see immediately that
f e L, (U) for all 1 < p < co. We now choose some p in the range ]q;, ¢i[, where ¢
is g1ven by Lemma 2.3, and we fix some smoothly bounded domain U C R? such that
U cc U. Applying Lemma 2.3, we find an extension f € L”._(U) such that

f=fin[LP(U)}, divf=0weaklyin U, f-7 =0 in the sense of traces on oU .
In view of Lemma 2.3, we have the estimate

HfH[LP(U)P < cllfllize@ye - (21)

Since the domain U is regular, we can apply Theorem 3.3 in |Gri90], valid for C' domains,
to find a vector field A € [W,?(U)]? such that

curl A= fin U, HAH W ()3 < CHfH[LP(U

with a constant ¢ that depends on U and on p. Using (21), it follows that
HAH[Wol,p(U)]g S C H CurluH[Lp(U)]s . (22)

Observe that curlu = f = curl A almost everywhere in U. Since we assume that U is
simply connected, we find a function r € W*(U) such that u — A = Vr. Our goal is now
to obtain an estimate on r.

We define g := —div(u — A). Since u € L, (U), we have g € LP(U). The function r
satisfies

/U Vr-Vé = F(¢), (23)



for all ¢ € W' (U), where F is the functional

=/Ug¢+/aU(A—U)-ﬁ¢-

Using Gausses formula, we see that F'(1) = 0. On the other hand,

£0)] < llallorwn 16l + 1A g 1012 o+ 0 Tl N6y
(24)

For o and p fixed, we now consider a real number 3 > ¢ > 1 such that

2 2p
3—_qq > max{o/, ?p} . (25)

This choice of ¢ ensures, on the one hand, the continuity of the embeddings

Wh(U) — LY (0U), WW(U) — L% (0U).

On the other hand, we see that for this choice also 3—‘1q > p/, so that the embedding

W'(U) — LP (U) is continuous. From (24), we then deduce that

F(0)| < e gl + 1 Alwasans + lu- lzeou) [9llwiao

With the help of (22), it now follows that

F(9)| < e(lldivulla + Il eurlull gy + - #lleou) [¢lwiaw

Applying Proposition 4.5 (see the appendix), we find the existence of some ¢; > 3 such
that for all ¢ €]¢}, ¢1[, the solution r of (23) belongs to W¢ (U). In addition, the estimate

[rllwra @y < cllFllwraeys < C(1divull o) + || curlullzo@ye + [lu - 7| Lo @u))
is valid. Note that ¢ is the same as in Lemma 2.3. Setting ¢ := min {p*, ¢'}, we have
lullizewys < e [Allze wys + IV lze @)
< C (| divul| oy + | curlul|po@ys + llu - 7|l e @u)) -

It remains to compute the optimal exponent ¢’ < ¢; by taking into account the condition
(25). We obtain that ¢’ := mln{ 5 DY, ql} and the claim follows. If the domain U is of
class C!, we can apply Theorem 3.3 of [Gri90] directly in U, and we do not need Lemma
2.3. By the results of [SS92|, Theorem 1.4, the solution 7 of (23) belongs to W< (U) for
1 < ¢’ < 0. Therefore, ¢, = +00. O



2.3 Functional spaces for the problem (P).

We now want to study functional spaces more specifically needed for the analysis of the
problem (P). From now on, we assume that the domain Q is simply connected and has a
Lipschitz boundary. Denoting by x the magnetic permeability in €, we assume through
the remainder of the paper that p is a measurable function such that

0 < < p(x) < p, <oo forallzeq, (26)

with positive constants g, .

Consider the spaces

Vi) = {w e (L@

curlyp € [LA(Q)], div(u ) € L2(Q), (1) = 0 on a(z} :
(27)

Vo) := { € V()| div(uv) = 0} (28)

We endow V,(€2) with the norm of the graph
’WHVH(Q) = ’WH[B(Q)]B + | CUT1¢||[L2(§2)}3 + | diV(MWHm(Q)-

Obviously, V,(2) is a Hilbert space in this topology.

In the introduction, we have emphasized the importance of additional hypotheses on the

pair (u, ) for embedding results concerning space of the type of V,,(€2). In this respect,
an important class of domains consists of the domains O = U, Q); having the following
property:

(A0)  For 0 <i,j <m,i#j, the boundary 9€; N 8Qj is a closed, connected surface.
(29)

For the pair (i, ) we want to discuss the following cases:

— u‘Q.EC<Qi) fort=20,...,m,

., €CH(U fori =0,...,m, N B
o < ) (A2) ¢ 0\ 9 e Ct fori=0,...,m,

(A1)q
00, 00 eC®  fori=0,...,m. i
00 e CO!

The main result of this section is an embedding result for the space V,,(€2). In order to
complete its proof, we first need two auxiliary statements. For a real number ¢ €]1, oo],
we recall that ¢’ denotes the conjugated exponent to g.

Lemma 2.4. Let Q be a simply connected Lipschitz domain. Let ¢ € [L?(Q)]? be given,

and assume that p € W1?(Q) satisfies the integral relation

/Qqu-Vﬂb:/QuMW), (30)

for all ¢ € W2(Q).
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(1) If the pair (u, Q) satisfies (A0) and (A1), and if v € [WH2(Q2)]3, then for i =0, ..., m,
one has

pEW(Q),  Npllwes@y < clléllwra@ys

(2) Suppose that (u, 2) satisfies (A0) and (A2). Then there exists some ¢; > 3 such that

if ¢ € [L9(Q)]? for a ¢ €]¢}, ¢, then
pe Wl’q(ﬁ)u HPHWLq(Q) < 5||¢||[Lq(§z)]3 :

If 9Q € C', then one may take ¢; = +oc.

(3) If the number 1 — 11/, is sufficiently small, then the same as in (2) is valid without
further assumption on the function p and on the domain €.

Proof. The assertion (1) was proved in the paper [LS60|, Lemma 1.
(2): Obviously, the functional

F(Q) :=/Quw-vc,

is a well-defined element of (W14 (Q)]*. Under our geometrical assumption on the domain
€2, the remark 3.16 in [ERS07] shows that the operator

Vo (1Y) s WH(Q) — W Q)]

is a topological isomorphism. This proves the claim.

(3): In view of Lemma 4.1 (see the appendix), there exists a constant C' such that if the

smallness assumption C <1 — 5—l < 1 is satisfied, the assertion follows. 0

We still need another auxiliary result concerning the possibility to find vector potentials
in the space V.

Lemma 2.5. We consider a simply connected Lipschitz domain Q. Let j € thv(ﬁ) be
such that divj = 0 in  in the generalized sense. Then we can find a vector potential

B €V, () such that

curl B=j, |Blly,@ < ellilla@ys - (31)
In addition, the following results are valid:
(1) If (A0) and (A1) are satisfied, then for i = 0,...,m we have

Be W), [Blwragyp < clilja@yp-

11



(2) If (A0) and (A2) are satisfied, or if the number 1 — yi;/p, is sufficiently small, then
there exists some & > 3 such that

B e [LS())°, HBH[Lé(Q)]S < cllglliz2@ye -

It 9Q € C, then we can choose & = 6.

Proof. By Lemma 1.3.6 in [GR86], we find a potential A in the space L2, ,(Q) N L3 (Q)
such that

divA=0, cwlA=j, inQQ,
Y(A) =0 on Q. (32)
In addition, there exists a positive constant C' independent of j such that

[ A z2@yp < Cllillirzye -

We consider the (up to constants) unique function p € WH2(Q) that satisfies

/QMVP-Vcb:/QuA-Wﬁ

for all ¢ € W'2(Q2), and we set B := A — Vp. We verify easily that B € V,,(Q), and
that curl B = j.

(1): If (A0) and (A1) are satisfied, then Theorem 1.3.8 in [GR86] even gives that the

potential A in (32) belongs to [W1%(Q)]?, and that

[Allrz@ys < €l 2y -

Then, Lemma 2.4 implies that p € W22(€);) for i = 0,...,m, and that

1Pl w2z@n < CllAlge@yes < Cllillzz@ys -

Thus, B belongs to [IW2(€2;)] and satisfies the assertion.

(2): If 9Q € C*', we see that A € W?>(Q) (c. p. (20)). Proposition 2.2 then implies the
existence of a number £ > 3 such that

Al e @z < € llillipz@ys -

If 9Q € C!, the choice & = 6 is possible. Under the hypothesis of the present lemma, it
follows from Lemma 2.4 that there exists some & €]3,¢] such that p € W14(Q2), and that

||p||W1»5(Q) <C HAH[L&(Q)]S <C ||j||[L2(§z)]3 :

Therefore, B = A+ Vp belongs to [L5()]? and satisfies the assertion. Again, if Q) € C?,
one can prove that the choice & = 6 is possible. O

12



Proposition 2.6. Let  be a simply connected Lipschitz domain .

(1) If (p,2) satisfy (A0) and (A1), then the topological identity

m

V(€)= V() n ﬂ[Wl’Q(Qi)P
is valid.

(2) If the pair (u,Q) satisfies (A0) and (A2), then there exists a number £ > 3 such

that V,,(Q) — [L$(Q)]® with continuous embedding. If 9 € C', then one can choose
£—6.

(3) If the number 1 — y;/pu, is sufficiently small, then the same as in (2) is valid, without
further assumption on the function p and on the domain €.

Proof. We consider an arbitrary ¢ € V,.(€2). Since curlt) is divergence-free almost every-
where in Q, we find by Lemma 2.5 a B € V,,((Q2) such that

curl B =curly  in Q.
Since € is simply connected, we conclude from the fact that curl (1) — B) = 0 that
Y=DB+Vp, (33)

for some p € W12(Q2). The function p is a weak solution to the transmission problem

/QWP-Vﬂb:—/Qdiv(uwwg;/mi - o,

for all ¢ € W*(Q). (1): Suppose that (A0) and (A1) are satisfied. Then it is shown in
[LS60], Lemma 1, that p € W22(€;) for : = 0,...,m, and that

Ipllw2z@,) < elldivp )l 2

Since by Lemma 2.5, we know that B € [W'2(;)]? for i = 0,...,m, we obtain from (33)
the norm estimate

||77Z)||[W1!2(Qi)]3 < ||pHW2!2(Qi) + ||B||[W1,2(Qi)}3 <c(| diV(MWHL%Q) + | CUT1¢||[L2(Q)}3)‘

(2): If (A0) and (A2) are satisfied, resp. if the number 1 — y;/p,, is sufficiently small, we
can use the arguments of [ERSO7], resp. of the appendix, to obtain the existence of some
¢ > 3 such that p € W¢(Q). In addition, we find the norm estimate

Pl < elldiv(p )|z -
Using Lemma 2.5 and (33), the claim follows. O
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Finally, we introduce functional spaces that will help us to deal with the constraint on
curl H in (P).

We introduce the space

H(QY) = {HE L? (Q)) curlH:OinQ\Qc}.

curl

Naturally, H(€2) is a Hilbert space with respect to the topology of L? ,(€2). We also need
the space of homogenized fields

HO(Q) = {He L? (Q)’ curl H =0 in Q\QC}

curl

In order to satisfy the divergence constraint, we introduce the space

M, () = {w e H(Q) ] div(py) =0 in Q, pe-7=0 on aQ} ,
and

Hg(fl) = {¢ e H'(Q) ‘ div(py) =0 inQ, pey-i=0 on 8@} :
Naturally, the space H,,(Q) is a closed subspace of V,,(Q).

Lemma 2.7. Let the assumption (26) on the function u be satisfied. Then we have:
(1) The embedding H,(Q) — [L*(Q)]? is compact.

(2) There exists a constant C' > 0 such that for all ¢ € H,(Q),
[ teul v = ol

Proof. (1): This is only a special case of more general results (see [PM99]).

(2): In view of (1), we use the usual contradiction argument to prove the existence of a

constant ¢ > 0 such that for all ¢ € H,(Q), ]WH?LQ(Q)P <c [o]curly|?. O

3 Solution of (P).

3.1 Definition of a weak solution.

We first make precise the assumptions on the coefficients and data under which we intend
to solve (P).

For « = 0,...,m, we denote by o; the electrical conductivity of the medium Q,. We
assume that o; is a Lebesgue measurable function. We additionally assume that there
exist positive constants o;, o, such that for ¢ € I,

0<o0 <oix) <o, <oo foralmost all z € Q. (34)

14



We recall that (26) is assumed to hold. For notational commodity, we introduce the
auxiliary function r : 2 — R defined by

I inQ
T::{" 2o (35)

1  elsewhere.

Since modeling the current source is not our main concern, we suppose that the current
is imposed in the conductor (2., and that the given current density j, satisfies

divjo=0 inQ,, Jjo-7=0 ondQy,, (36)

which ensures the conservation of charge. Since we want to allow for the motion of some
of the conductors, we suppose that a velocity vector v : . — R? is given. We denote
by © the extension by zero of v to Q. In order to derive a variational formulation of (P),
we start from equation (5):

curl H=0(E+4+vxB) inQ,..

For an arbitrary 1) € H°(Q), we then deduce that

1
/—curlH-curl¢:/ E-curl@b—i—/(va)-curl@/).
QC Qc QC

g

Since ¢ € H(Q), we have in view of (7) and of (11) that

/Q E-Curlw:/§2E~curlw:/ﬁcurlE-w+/aQ(Exw)-ﬁzo.

Therefore, we can write for all 1 € H°(Q) the integral identity

ﬁrcurlH-curlw:ﬁ(ﬁxB)-curlw, (37)
Q Q

which is in particular true for all ¢ € HJ(€2).

Definition 3.1. Assume that the conditions (34), (26) and (36) on o, u and j; are
satisfied. We call a vector field H € H,,(2) a weak solution to the problem (P) if curl H =
Jo almost everywhere in the set )., and if the relation

/Q(T curl H— o x pH) - curly =0 (38)

is satisfied for all ¢ € Hg(ﬁ).

Remark 3.2. We briefly show in which sense Definition 3.1 states an equivalent formula-

tion of the problem (P). Assume that [ € H,(Q) satisfies (38) for all ¢» € H_,(€2). Then,
the integral relation

/Q(T curl H—o x pH) - curly =0, (39)
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is even satisfied for i € HO(Q). (As a matter of fact, to every u € HO(Q), we can find a
function p € WH%(Q) such that ¢» — Vp belongs to H,(€2).) In particular, we can choose
Y € [C(2.)]?, and obtain

/ (reurlH—v x pH)-curly) =0.
Qe

This means nothing else but
curl (r cartl H —v x p H) =0  in the sense of the generalized curl operator in €.
Define the electric field in Q. by
Eq =rculH —vxpuH in Q..

In Qcm consistency with Ohm’s law requires that the electric field Eflco satisfies Eflco =
jo/o. Thus, the electric field

EQC in QC s
E. .= e
EQCO in

Cco

is known in the electrical conductors of the system. Then, the electric field in Q \ Q. is
determined as the solution of the problem

curl £ =0, divD=0 in 2\ €.
ExfAi=FE,xfi ondQ\Q, Exfi=0 ondQ.

O

3.2 An existence result with higher integrability of the Lorentz
force.

Proposition 3.3. Let Q € C! be a simply connected domain. Let j, € [L?(Q,,)]? satisfy
(36), let o satisfy (34), and let v € [L>°(€.)]>. Assume that p satisfies (26).

Then, the problem (P) possesses at least one weak solution H. In addition, we have:

(1) Tf (11, Q) satisfies (A0) and (A1), then curl H x B € [L*/*(Q)?.

(2) If (u, Q) satisfies (A0) and (A2) , then curl H x B € [L"(Q)]? for some r > 6/5.

(3) If the number 1 — p/p, is sufficiently small, then the result (2) holds true without
further assumptions on (u, §2).
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Proof. First, we can homogenize the problem (P) by finding a field H, € HH(Q) such that

curl Hy = jo  in €.

Given jo € [L*(€,)]* having the property (36), the existence of H, follows from Lemma
2.5. We then reformulate (P) as problem for the reaction field H = H — Hy. If H is a
weak solution of (P), then H € H)(f2), and the integral relation

ﬁrcurlf[-curlw—ﬁ(ﬁxuﬁ)-curlw
Q O

:—ﬁrcurlecurlw—i—ﬁ(@quO)-curlw (40)
9

Q

is satisfied for all 1) € H}(€2). Using Young’s inequality, we find that

1

20,

JRCEYE: IH\ < 5o [ leul B+ 258 ol 1 sy

for all H € Hg(fl) Thus,

ﬂr|curlﬁ|2—[ (ﬂxu]:])-cuﬂ]:]
Q Q

1

20,

> /Q |curl H|* — 2 1 o [[0]Fpoe e 1720

Since according to Lemma 2.7, (1), the injection Hg(fl) < [L*(Q)]? is compact, we find by
the generalized Lax-Milgram theorem the existence of a H € Hg(ﬁ) such that (40) holds

for all ¢ € Hg(Q). The additional claims follow from the properties stated in Proposition
2.6. [

4 Appendix

In this appendix, we prove the auxiliary result needed for the proof of Proposition 2.6,
(3)-

Let U C R? be a simply connected Lipschitz domain. Let 1 < ¢ < oo and g € [LY(U)]?
be given. We assume that the function p: U — R is measurable and satisfies (c. p. (26))

0 <y <plx)<p,<oo forallzeU. (41)

We consider the problem of finding p € W19(U) that satisfies the integral relation
/qu-Vcb:/g-Vcb, (42)
U U
for all ¢ € Wh'(U).
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Lemma 4.1. Assume that the domain U is Lipschitzian, and let 1 < ¢ < co. Let u be
a measurable function that satisfies (41). Then, there exists some ¢; > 3 such that for
all ¢ €]¢], qi[, we can find a positive constant C' = C(U, q), so that if in addition the
assumption

0(1—%)<1 (43)

is satisfied, then the problem (42) possesses a (up to constants) unique solution p €
Wh4(U), and the estimate

Hi
(1 —C (1 _ u_)) IVollipawys < llgllpawys

u

is valid.

Proof. In view of Proposition 4.5 below, there exists some ¢; > 3 such that for all ¢ €
|4}, @[ and u € [LY(U)]3, there exists a (up to constants) unique ¢ € W4(U) such that

/UvngfUuw,

for all ¢ € W' (U). In addition, the solution ¢ satisfies a continuous estimate

IVClizays < Cllullizays -
For w € W14(U) arbitrary, we can thus find a unique ¢ € W4(U) such that

/Uvg-v@p:/U(ui) Vw-V¢+/Uig~V¢, (44)

for all ¢ € W4 (U). In addition, in view of Propostion 4.5, we find the norm estimate

Hi 1
IVCra < C (1 _ /T) IVl + - C lalluswp- (15)

U

We define the space TW,;(U) as the closed subspace of W¢(U) that contains the functions
with vanishing mean value over U. This space is a Banach space with respect to the norm
HUHW}/}‘I(U) = || Vullz@ys. We define a mapping 7 : W, /(U) — Wy (U) by setting
7 (w) := ¢, where ( satisfies (44). From existence and unicity of ¢, we conclude that 7 is
well defined. We prove easily that 7 is strictly contractive. As a matter of fact, we can

write
17 (w1) — T(UJ?)HWJ{;I(U) <C sup / (1 - ﬁ) V(wy —wsq) - Vo
196l sy U\
<0 (1= Jjwr — wall e (46)
= [L 1 2 Wi o) -
Now, the Banach fixed point theorem proves the existence of a unique fixed point of 7.
In view of (44), this fixed point is the unique solution of (42). O

18



In order to interpret the assumption (43), it would be interesting to know the exact
dependence both on the domain U and on the exponent ¢ of the constant C' appearing
in Lemma 4.1. Still having at this time to restrict ourselves to qualitative considerations,
we can make the statement somewhat more precise. To this aim, we first recall some
well-known notions. Let U C R? be a bounded domain. We define

D(U) = {¢ e [C=(U)]P ‘ divé =0 in U} .
For 1 < ¢ < 0o, we introduce closed subspaces H,(U), G,(U) of [L4(U)]? defined by

H,(U) := closure of D(U) in the norm || - ||{zaqys ,

Gy(U) = {o € L) W)}
Definition 4.2. If the decomposition
[LU(U))* = Hy(U) & Go(U), (47)

is valid, it is called Helmholtz-Weyl decomposition of the space [LI(U)]?.

Lemma 4.3. Let the assumptions of Lemma 4.1 be satisfied. Then, for all ¢ €]q], ¢1],
the Helmholtz-Weyl decomposition of [L4(U)]? is valid, and the smallest constant C for
which (43) holds is given by C' = || Pagl| £((zewy3, paqy)s), Where Pgq is the projection onto
the space G (U).

Proof. The validity of (47) in the range |¢}, ¢1 follows from the equivalent characterization
of the Helmholtz-Weyl decomposition recalled in Lemma 4.4 below, and of Theorem 1.6
in [Zan00].

If the decomposition (47) is valid in [L?(U)]?, then one can show that for all p € W14(U)

/Vp V(b’

This was proved for example in [SS92|, Th. 1.3., Th. 6.1. Applying this result to estimate
(46), the claim follows. O

IVollizawys < |Paqllcqre@ys, iawy?)
v ¢>|| L

The following equivalent characterization is well known.

Lemma 4.4. The following statements are equivalent.

(1) The Helmholtz-Weyl decomposition of the space [L4(U))? is valid.

(2) For u € [L4(U))?, there exists an (up to constants) unique ¢ € WH4(U) such that

/VCV(b /uV¢,

for all ¢ € Wh'(U).
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Proof. See |Gal94], III. 1, Lemma 1.2, or [SS92|, Th. 6.1. O

Assume that U C R? is a bounded Lipschitz domain. For numbers 1 < ¢ < 0o, we denote
by ¢’ := q/(q — 1) the conjugated exponent. For some linear functional F' € [Wh7 (U)]*
such that F(1) = 0, we consider the variational problem to find a function w € W4(Q)
such that

/U V- Vé = F(¢), (48)

for all ¢ € W7 (U)]*. Thanks to the results of the paper [Zan00], we can state a very
general result on the solvability of (48).

Proposition 4.5. Assume that U C R3 is a bounded Lipschitz domain. Then, there
exists some number 3 < ¢; < 0o, such that for all ¢ €]q], ¢1[, the problem (48) possesses
an up to a constant unique weak solution w € W9(U) whenever the right-hand side F
belongs to [W1' (U)]* and satisfies (1) = 0. In addition, the estimate

lwllwrawy < CNE e @y
is valid.

Proof. We apply Theorem 1.6 in [Zan00] with oo = 1 therein. O
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