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AbstratOptimal ontrol problems with delays in state and ontrol variables are studied.Constraints are imposed as mixed ontrol�state inequality onstraints. Neessaryoptimality onditions in the form of Pontryagin's minimum priniple are established.The proof proeeds by augmenting the delayed ontrol problem to a nondelayedproblem with mixed terminal boundary onditions to whih Pontryagin's minimumpriniple is appliable. Disretization methods for the delayed ontrol problem aredisussed whih amount to solving a large-sale nonlinear programming problem. Itis shown that the Lagrange multipliers assoiated with the programming problemprovide a onsistent disretization of the advaned adjoint equation for the delayedontrol problem. An analytial example and two numerial examples from hemialengineering and eonomis illustrate the results.1 IntrodutionDi�erential ontrol systems with delays in state or ontrol variables play an importantrole in the modelling of real�life phenomena in various �elds of appliations. Many papershave been devoted to delayed (other terminology: time lag, retarded, hereditary) optimalontrol problems and the derivation of neessary optimality onditions. Let us brie�yreview some papers onerning di�erent lasses of ontrol problems. An introdution totime delay ontrol problems an be found in O�guztöreli [24℄. Kharatishvili [17℄ was �rstto provide a maximum priniple for optimal ontrol problems with a onstant state delay.In [18℄, he gave similar results for ontrol problems with pure ontrol delays. Halany[14℄ proves a maximum priniple for optimal ontrol problems with multiple onstantdelays in state and ontrol variables whih, however, are hosen to be equal for stateand ontrol. Similar results were obtained by Ray, Soliman [30℄. Guinn [13℄ skethes asimple method for obtaining neessary onditions for ontrol problems with a onstantdelay in the state variable. He suggests to augment the delayed ontrol problem whihyields a higher-dimensional undelayed ontrol problem to whih the standard maximumpriniple is appliable. Banks [3℄ derives a maximum priniple for ontrol systems with atime-dependent delay in the state variable. Delays in the ontrol are admitted for systemslinear in the ontrol variable. Colonius and Hinrihsen [8℄ provide a uni�ed approah toontrol problems with delays in the state variable by applying the theory of neessaryonditions for optimization problems in funtion spaes. All artiles mentioned so far donot onsider general ontrol or state inequality onstraints.Angell and Kirsh [1℄ treat funtional di�erential equations with funtion-spae stateinequality onstraints. However, they do not disuss the regularity of the multiplier as-soiated with the state onstraint and do not provide a numerial example with a purestate spae onstraint. To our knowledge, optimal ontrol problems with onstant delaysin state and ontrol variables and mixed ontrol-state inequality onstraints have not yet1



been onsidered in the literature. The �rst goal in this paper is to derive a Pontryagintype minimum (maximum) priniple for this lass of delayed ontrol problems. Con-erning the development of numerial methods and the numerial treatment of pratialexamples, our impression is that this topi has not yet been adequately addressed in theliterature. Bader [2℄ applies shooting methods to the boundary value problem for theretarded state variable and the advaned adjoint variable. He suessfully solves severalaademi examples, but his method is not apable of solving ontrol problems with a moreompliated ontrol struture, e.g., the CSTR reator problem desribed in Soliman, Ray[29, 30℄. A similar CSTR reator problem is onsidered in Oh, Luus [25℄ and Dadebo,Luus [9℄ who use the di�erential dynami programming method with a moderate numberof stages. Therefore, the seond goal of this paper is the presentation of disretizationand nonlinear programming methods whih provide the optimal state, ontrol and adjointfuntions and allow for an aurate hek of the neessary onditions.The organization of the paper is as follows. Setion 2 presents the statement of the delayedontrol problem with mixed state�ontrol onstraints. In setion 3, we reall the minimumpriniple for undelayed ontrol problems with ontrol�state onstraints. Here, a ruialfeature is that initial and terminal boundary onditions must be onsidered in a generalmixed form. Setion 4 is devoted to the derivation of �rst order neessary optimalityonditions for the delayed optimal ontrol problem given in Setion 2. Essentially, theaugmentation approah of Guinn [13℄ is generalized whih allows to use the minimumpriniple in setion 3. For tehnial reasons, we need the assumption that the ratio ofthe time delays in state and ontrol is a rational number. The analysis in this setion isbased on the theses of Göllmann [12℄ and Kern [19℄. In setion 5, the Euler disretizationfor the delayed ontrol problem is disussed whih leads to a high-dimensional nonlinearprogramming problem. As in the undelayed ase it an be shown that the Lagrangemultipliers orresponding to the optimization problem onstitute a Euler disretizationfor the advaned adjoint equations. In setion 6, we disuss an analytial example whihallows to test the auray of the numerial solution for various stepsizes. Setions 7 and8 are devoted to the numerial solution and the veri�ation of the minimum priniple fortwo pratial examples. The �rst example is taken from [29, 30℄ and desribes the optimalontrol of a hemial tank reator (CSTR reator), while the seond example arises in theoptimal harvesting of a resoure (optimal �shing).2 Optimal ontrol problems with delays in state andontrolWe onsider retarded optimal ontrol problems with onstant delays r ≥ 0 in the statevariable x(t) ∈ Rn and s ≥ 0 in the ontrol variable u(t) ∈ Rm. The following retardedontrol problem with mixed ontrol-state inequality onstraints will be referred to asproblem (ROCP):Minimize J(u, x) = g(x(b)) +

∫ b

a

L(t, x(t), x(t− r), u(t), u(t− s)) dt (1)
2



subjet to the retarded di�erential equation, boundary onditions and mixed ontrol-stateinequality onstraintṡ
x(t) = f(t, x(t), x(t− r), u(t), u(t− s)), a.e. t ∈ [a, b], (2)
x(t) = ϕ(t), t ∈ [a− r, a], (3)
u(t) = ψ(t), t ∈ [a− s, a), (4)

w(x(b)) = 0, (5)
C(x(t), u(t)) ≤ 0, t ∈ [a, b]. (6)For onveniene, all funtions

g : Rn → R,

L : [a, b] × Rn × Rn × Rm × Rm → R,

f : [a, b] × Rn × Rn × Rm × Rm → Rn,

w : Rn → Rq, 0 ≤ q ≤ n,

C : Rn × Rm → Rp,are assumed to be we twie ontinuously di�erentiable w.r.t. all arguments. A pair offuntions (u, x) ∈ L∞([a, b],Rm)×W1,∞([a, b],Rn) is alled an admissible pair for problem(ROCP), if the state x and ontrol u satisfy the restritions (2)�(6). An admissible pair
(û, x̂) is alled a loally optimal pair or weak minimum for (ROCP), if

J(û, x̂) ≤ J(u, x)holds for all (u, x) admissible in a neighborhood of (û, x̂) with ‖x(t)−x̂(t)‖, ‖u(t)−û(t)‖ <
ε for all t ∈ [a, b] and ε > 0 su�iently small. Instead of onsidering a weak minimumwe ould work with the more general notion of a Pontryagin minimum; f. Milyutin,Osmolovskii [22℄.The Hamiltonian or Pontryagin funtion H for the delayed ontrol problem (ROCP) isde�ned in analogy to the one for nondelayed problems. However, in ontrast to thenondelayed Hamiltonian, two additional arguments y ∈ Rn and v ∈ Rm denoting thedelayed state and ontrol variable are needed:

H(t, x, y, u, v, λ, µ) := L(t, x, y, u, v) + λ∗f(t, x, y, u, v) + µ∗C(t, x, u),

λ ∈ Rn, µ ∈ Rp.
(7)Here and in the sequel ∗ denotes the transposition. We shall obtain neessary optimalityonditions for the retarded ontrol problem (ROCP) by �rst transforming (augmenting)problem (ROCP) to a higher-dimensional nondelayed ontrol problem. To further studythe augmented problem, we need Pontryagin minimum priniple for nondelayed ontrolproblems with mixed ontrol-state onstraints whih will be reviewed in the next setion.3 First order neessary optimality onditions for un-delayed optimal ontrol problems with mixed on-straintsFormally, any undelayed ontrol problem is ontained in the retarded problem (ROCP)by hosing r = s = 0. Due to the absene of delays, the initial value pro�les given by3



onditions (3) and (4) are omitted. However, the ontinuity of the state variables in theaugmented problem neessitates to introdue a general boundary ondition of mixed type,
w(x(a), x(b)) = 0, (8)whih replaes the terminal boundary ondition (5). The Hamiltonian or Pontryaginfuntion for the nondelayed ontrol problem is given by

H(t, x, u, λ, µ) := L(t, x, u) + λ∗f(t, x, u) + µ∗C(t, x, u). (9)The extension of the lassial Pontryagin minimum priniple to mixed ontrol�state on-straints (6) requires a regularity ondition or onstraint quali�ation. For a loally optimalpair (û.x̂) and t ∈ [a, b] , let J0(t) := {j ∈ {1, . . . , p} |Cj(t, x̂(t), û(t)) = 0} denote the setof ative indies for the inequality onstraint (6). Then we assume the rank ondition:rank (

∂Cj(t, x̂(t), û(t)

∂u

)

j∈J0(t)

= #J0(t) . (10)The following neessary optimality onditions are to be found in Hestenes [15℄, Milyutin,Osmolovskii [22℄ and Neustadt [23℄.Theorem 3.1 (Pontryagin's Minimum Priniple.) Let (û, x̂) be a loally optimal pair forthe ontrol problem (ROCP) without delays, i.e., r = s = 0, and the mixed boundaryondition (8). Assume that the regularity ondition (10) is satis�ed. Then there exist aostate (adjoint) funtion λ̂ ∈ W1,∞([a, b],Rn), a multiplier funtion µ̂ ∈ L∞([a, b],Rp)and a multiplier ν̂ ∈ Rq, suh that the following onditions hold for a.e. t ∈ [a, b]:(i) adjoint di�erential equation:
˙̂
λ(t)∗ = −Hx(t, x̂(t), û(t), λ̂(t), µ̂(t)); (11)(ii) transversality onditions:

λ̂(a)∗ = −gxα(x̂(a), x̂(b)) − ν̂∗wxα(x̂(a), x̂(b)), (12)
λ̂(b)∗ = gxβ(x̂(a), x̂(b)) + ν̂∗wxβ(x̂(a), x̂(b)); (13)(iii) minimum ondition for the Hamiltonian funtion:

H(t, x̂(t), û(t), λ̂(t), µ̂(t)) ≤ H(t, x̂(t), u, λ̂(t), µ̂(t)), (14)for all u ∈ Rm satisfying C(t, x̂(t), u) ≤ 0;(iv) multiplier ondition and omplementarity:
µ̂(t) ≥ 0 and µ̂i(t)Ci(t, x̂(t), û(t)) = 0, i = 1, . . . , p. (15)Herein, gxα, gxβ , wxα and wxβ denote partial derivatives of g = g(xα, xβ) and w =

w(xα, xα) with respet to their �rst and seond argument. In partiular, the minimumondition (14) yields the loal minimum ondition
Hu(t, x̂(t), û(t), λ̂(t), µ̂(t)) = 0 for a.e. t ∈ [a, b]. (16)In the next setion, Theorem 3.1 will be used to derive neessary onditions for theretarded ontrol problem (ROCP). 4



4 Neessary optimality onditions for delayed optimalontrol problems with mixed ontrol-state onstraintsNow we study the retarded ontrol problem (ROCP) with onstant delays r, s ≥ 0 and
(r, s) 6= (0, 0). We shall use a transformation tehnique whih requires the tehnialassumption that the ratio of the delays is a rational number.Assumption 4.1 (Rationality Assumption) Assume that r, s ≥ 0, (r, s) 6= (0, 0) and

r

s
∈ Q for s > 0, or s

r
∈ Q for r > 0 . (17)In partiular, this assumption holds for any ouple of rational numbers (r, s), where atleast one number is non-zero. The following �rst order neessary onditions an be foundin Göllmann [12℄; a preise proof under Assumption 4.1. has been given by Kern [19℄.Theorem 4.2 (Minimum priniple for the retarded optimal ontrol problem (ROCP).) Let

(û, x̂) be loally optimal for (ROCP) with delays satisfying Assumption 4.1. Then there ex-ist a ostate (adjoint) funtion λ̂ ∈ W1,∞([a, b],Rn), a multiplier funtion µ̂ ∈ L∞([a, b],Rp)and a multiplier ν̂ ∈ Rq, suh that the following onditions hold for a.e. t ∈ [a, b]:(i) adjoint di�erential equation:
˙̂
λ(t)∗ = − Ĥx(t) − χ[a,b−r](t)Ĥy(t+ r)

= −Hx(t, x̂(t), x̂(t− r), û(t), û(t− s), λ̂(t), µ̂(t))

− χ[a,b−r](t)Hy(t+ r, x̂(t+ r), x̂(t), û(t+ r), û(t+ r − s), λ̂(t+ r), µ̂(t+ r)),

(18)where Ĥx(t) and Ĥy(t) denote the evaluation of the partial derivatives Hx and Hy along
x̂(t), x̂(t− r), û(t), û(t− s), λ̂(t), µ̂(t);(ii) transversality ondition:

λ̂(b)∗ = gx(x̂(b)) + ν̂∗wx(x̂(b)); (19)(iii) minimum ondition for the Hamiltonian funtion:
Ĥ(t) + χ[a,b−s](t)Ĥ(t+ s)

= H(t, x̂(t), x̂(t− r), û(t), û(t− s), λ̂(t), µ̂(t))

+ χ[a,b−s](t)H(t+ s, x̂(t+ s), x̂(t+ s− r), û(t+ s), û(t), λ̂(t+ s), µ̂(t+ s))

≤ H(t, x̂(t), x̂(t− r), u, û(t− s), λ̂(t), µ̂(t))

+ χ[a,b−s](t)H(t+ s, x̂(t+ s), x̂(t+ s− r), û(t+ s), u, λ̂(t+ s), µ̂(t+ s)),

(20)
for all u ∈ Rm satisfying C(t, x̂(t), u) ≤ 0;(iv) multiplier ondition and omplementarity ondition:

µ̂(t) ≥ 0 and µ̂i(t)Ci(t, x̂(t), û(t)) = 0, i = 1, . . . , p. (21)
5



Proof. The proof uses a transformation tehnique suggested by Guinn [13℄ to derive �rstorder neessary onditions for unonstrained optimal ontrol problems with pure statedelays. In view of the rationality assumption (17) there exists integers k, l ∈ N with
r

s
=
k

l
for s 6= 0,

s

r
=
l

k
for r 6= 0.Without loss of generality we may assume the �rst ase. Then the delays r, s are integermultiples of the interval length h := s/l,

r = k · h, s = l · h, k, l ∈ N.The time interval [a, a+h] will be used below as the basis time interval for the augmentedontrol problem. Without loss of generality we may further assume that the intervallength b− a represents an integer multiple of h, i.e., we have b− a = Nh with N ∈ N+.Now we introdue the state variable Ξ∗ = (ξ∗0 , . . . , ξ
∗
N−1) ∈ RNn, ξi ∈ Rn, and ontrolvariable Θ∗ = (θ∗0, . . . , θ

∗
N−1) ∈ RNm, θi ∈ Rm, whih are de�ned by

ξi(t) := x(t+ (ih), θi(t) := u(t+ ih), for t ∈ [a, a+ h], i = 0, . . . , N − 1. (22)The ontinuity of the state x(t) in [a, b] implies the following boundary onditions for theaugmented state Ξ(t),
ξi(a+ h) = ξi+1(a), i = 0, . . . , N − 2,whih an be written as

Vi(ξi+1(a), ξi(a+ h)) := ξi(a+ h) − ξi+1(a) = 0, i = 0, . . . , N − 2. (23)In terms of the new state and ontrol variables Ξ and Θ, the retarded ontrol problem(ROCP) is equivalent to the following undelayed optimal ontrol problem on the timeinterval [a, a + h]:Minimize J(Θ,Ξ) = g(ξN−1(a + h)) +

∫ a+h

a

N−1
∑

i=0

L(t+ ih, ξi(t), ξi−k(t), θi(t), θi−l(t)) dt(24)subjet to
ξ̇i(t) = f(t+ ih, ξi(t), ξi−k(t), θi(t), θi−l(t)), i = 0, . . . , N − 1, t ∈ [a, a+ h], (25)

Vi(ξi+1(a), ξi(a+ h)) = 0, i = 0, . . . , N − 2,

VN−1(ξN−1(a+ h)) := w(ξN−1(a+ h)) = 0,
(26)

C(t+ ih, ξi(t), θi(t)) ≤ 0, i = 0, . . . , N − 1, t ∈ [a, a+ h]. (27)The �xed starting pro�les (3) and (4) are inluded in this notation by onsidering thevariables ξ−k, . . . , ξ−1 and θ−l, . . . , θ−l de�ned by
ξi(t) := ϕ(t+ ih), i = −k, . . . ,−1,

θi(t) := ψ(t+ ih), i = −l, . . . ,−1.6



However, note that ξ−k, . . . , ξ−1 and θ−l, . . . , θ−1 do not represent optimization variables.Introduing adjoint variables and multipliers for the augmented problem by (24)�(27) by
Λ = (Λ0, . . . ,ΛN−1)

∗ ∈ RN ·n, M = (M0, . . . ,MN−1)
∗ ∈ RN ·p,the Hamiltonian (9) for the nondelayed augmented ontrol problem is given by

K(t,Ξ,Θ,Λ,M) =
N−1
∑

i=0

[L(t+ ih, ξi, ξi−k, θi, θi−l) + Λ∗
iL(t+ ih, ξi, ξi−k, θi, θi−l)]

+

N−1
∑

i=0

M∗
i C(t+ ih, ξi, θi). (28)Every loally optimal pair (û(·), x̂(·)) for (ROCP) de�nes a pair (Θ̂(·), Ξ̂(·)) that min-imizes the augmented problem (24)�(27). Pontryagin's minimum priniple for nonde-layed problems (Theorem 3.1) assures the existene of a ostate (adjoint) funtion Λ̂ ∈

W1,∞([a, a + h],RN ·n), a multiplier funtion M̂ ∈ L∞([a, a + h],RN ·p) and a vetor
ν ∈ R(N−1)n+q, ν̂ = (ν̂∗0 , . . . , ν̂

∗
N−2, ν̂

∗
N−1)

∗ where ν̂0, . . . ν̂N−2 ∈ Rn and ν̂N−1 ∈ Rq, suhthat the following onditions hold for almost every t ∈ [a, a+ h]:1. adjoint di�erential equation:
d

dt
Λ̂(t)∗ = −KΞ(t, Ξ̂(t), Θ̂(t), Λ̂(t), M̂(t)); (29)2. transversality ondition:

Λ̂i(a)
∗ = −ν̂∗i

∂

∂ξi
Vi(ξ̂i+1(a), ξ̂i(a+ h)), i = 0, . . . , N − 2, (30)

Λ̂i(a + h)∗ = ν̂∗i
∂

∂ξi+1
Vi(ξ̂i+1(a), ξ̂i(a+ h)), i = 0, . . . , N − 2, (31)

Λ̂N−1(a + h)∗ = gx(ξ̂N−1(a+ h)) + ν̂∗N−1wx(ξ̂N−1(a + h)); (32)3. minimum ondition for the Hamiltonian:
K(t, Ξ̂(t), Θ̂(t), Λ̂(t), M̂(t)) ≤ K(t, Ξ̂(t),Θ, Λ̂(t), M̂(t)) (33)for all admissible Θ = (θ∗0, ..., θ

∗
N−1)

∗ ∈ RNm with C(t + ih, ξ̂i(t), θi) ≤ 0 and i =
0, . . . , N − 1;4. multiplier ondition and omplementarity:

M̂(t) ≥ 0, M̂i(t)
∗C(t+ ih, ξ̂i(t), θ̂i(t)) = 0, i = 0, . . . , N − 1. (34)Evaluating the adjoint equation for the omponent Λ̂j, (0 ≤ j ≤ N − 1) yields

d

dt
Λ̂j(t)

∗ = − Lx(t+ jh, ξ̂j(t), ξ̂j−k(t), θ̂j(t), θ̂j−l(t))

− χ{0,...,N−1−k}(j)Ly(t+ (j + k)h, ξ̂j+k(t), ξ̂j(t), θ̂j+k(t), θ̂j+k−l(t))

− Λ̂j(t)
∗fx(t+ jh, ξ̂j(t), ξ̂j−k(t), θ̂j(t), θ̂j−l(t))

− χ{0,...,N−1−k}(j)Λ̂j+k(t)
∗Ly(t+ (j + k)h, ξ̂j+k(t), ξ̂j(t), θ̂j+k(t), θ̂j+k−l(t))

− M̂j(t)
∗Cx(t+ jh, ξ̂j(t), θ̂j(t)).7



Now we are able to de�ne the adjoint funtion λ̂ ∈ W1,∞([a, b],Rn) and multiplier funtion
µ̂ ∈ L∞([a, b],Rp) for the retarded ontrol problem (ROCP) in the following way. For
t ∈ [a, b] there exists 0 ≤ j ≤ N − 1 with a+ jh ≤ t ≤ a + (j + 1)h. We put

λ̂(t) := Λ̂j(t− jh), µ̂(t) := M̂(t− jh) (35)and obtain from the previous adjoint equation:
˙̂
λ(t) =

d

dt
Λ̂j(t− jh)

= − Lx(t, x̂(t), x̂(t− kh), û(t), û(t− lh))

− χ{0,...,N−1−k}(j)Ly(t+ kh, x̂(t+ kh), x̂(t), û(t+ kh), û(t+ kh− lh))

− λ̂(t)∗fx(t, x̂(t), x̂(t− kh), û(t), û(t− lh))

− χ{1,...,N−1−k}(j)λ̂(t+ kh)∗fy(t+ kh, x̂(t+ kh), x̂(t), û(t+ kh), û(t+ kh− lh))

− µ̂(t)∗Cx(t, x̂(t), û(t))

= −H(t, x̂(t), x̂(t− r), û(t), û(t− s), λ̂(t), µ̂(t))

− χ[a,b−r](t)H(t+ r, x̂(t+ r), x̂(t), û(t+ r), û(t+ r − s), λ̂(t+ r)µ̂(t+ r)).Thus we have found the adjoint equation (18). The transversality ondition (32) for ΛN−1,
Λ̂N−1(a+ h)∗ = gx(ξ̂N−1(a + h)) + ν̂∗N−1wx(ξ̂N−1(a+ h)),gives the desired transversality ondition (19) for (ROCP) in view of b = a+Nh:

λ̂(a +Nh) = gx(x̂(a +Nh)) + ν̂∗wx(x̂(a +Nh)), ν̂ := ν̂N−1 ∈ Rq.To verify the minimum ondition for the Hamiltonian H, we onsider t ∈ [a, b] and theorresponding index j ∈ {0, . . . , N − 1} with a + jh ≤ t ≤ a + (j + 1)h. Putting
t′ := t− jh ∈ [a, a+ h], the minimum ondition (33) gives

K(t′, Ξ̂(t′), Θ̂(t′), Λ̂(t′), M̂(t′)) ≤ K(t′, Ξ̂(t′),Θ, Λ̂(t′), M̂(t′)), (36)for all admissible Θ ∈ RNm. We now de�ne an admissible ontrol poliy Θ(·) = (θ∗0, ...,
θ∗N−1)

∗ ∈ RNm by
θi :=

{

û(t′ + ih), i 6= j
u, i = j

, i = 0, . . . , N − 1,where the ontrol vetor u ∈ Rm is admissible for (ROCP), i.e., C(t, x̂(t), u) ≤ 0. Evalu-ating the inequality (36) for this vetor Θ and removing equal expressions on both sides,we get for the remaining terms assoiated with j and j + l:
8



L(t′ + jh, ξ̂j(t
′), ξ̂j−k(t

′), û(t′ + jh), û(t′ + (j − l)h))

+ Λ̂j(t
′)∗f(t′ + jh, ξ̂j(t

′), ξ̂j−k(t
′), û(t′ + jh), û(t′ + (j − l)h))

+ M̂j(t
′)∗C(t′, ξ̂j(t

′), û(t′ + jh))

+ χ{0,...,N−1−l}(j)L(t′ + (j + l)h, ξ̂j+l(t
′), ξ̂j+l−k(t

′), û(t′ + (j + l)h), û(t′ + jh))

+ χ{0,...,N−1−l}(j)Λ̂j+l(t
′)∗f(t′ + (j + l)h, ξ̂j+l(t

′), ξ̂j+l−k(t
′), û(t′ + (j + l)h), û(t′ + jh))

+ χ{0,...,N−1−l}(j)M̂j+l(t
′)∗C(t′, ξ̂j+l(t

′), û(t′ + (j + l)h))

≤L(t′ + jh, ξ̂j(t
′), ξ̂j−k(t

′), u, û(t′ + (j − l)h))

+ Λ̂j(t
′)∗f(t′ + jh, ξ̂j(t

′), ξ̂j−k(t
′), u, û(t′ + (j − l)h))

+ M̂j(t
′)∗C(t′, ξ̂j(t

′), u)

+ χ{0,...,N−1−l}(j)L(t′ + (j + l)h, ξ̂j+l(t
′), ξ̂j+l−k(t

′), û(t′ + (j + l)h), u)

+ χ{0,...,N−1−l}(j)Λ̂j+l(t
′)∗f(t′ + (j + l)h, ξ̂j+l(t

′), ξ̂j+l−k(t
′), û(t′ + (j + l)h), u)

+ χ{0,...,N−1−l}(j)M̂j+l(t
′)∗C(t′, ξ̂j+l(t

′), û(t′ + (j + l)h))Rede�ning the funtions aording to (35), we obtain the desired minimum ondition (20)for H sine t′ = t − jh. Condition (34) immediately implies the multiplier and omple-mentarity ondition (21) in view of (35). 2Remark: Soliman, Ray [30℄ have disussed bang-bang and singular ontrols whih appearin ontrol problems, where the ontrol u ∈ Rm is partitioned into ontrols u1 ∈ Rm1and
u2 ∈ Rm2 with ontrol u1 appearing linearly in the system. The ontrol-state onstraint(6) then redues to bounds for u1,

u1,min ≤ u1(t) ≤ u1,max for t ∈ [a, b], u1,min, u1,max ∈ Rm1 .The minimum ondition (20) shows that the ontrol u1(t) is determined by the sign ofthe omponents of the swithing vetor funtion
σ(t) = Hu1

(t) + χ[a,b](t+ s)Hv1
(t+ s), (37)while the ontrol u2 satis�es the equation

0 = Hu2
(t) + χ[a,b](t+ s)Hv2

(t+ s). (38)The CSTR ontrol problem in setion 6 provides an example with suh a partitioning of theontrol vetor. Soliman, Ray [30℄ study juntion phenomena for bang-bang and singularars. They give onditions under whih juntion results for ontrol systems without delayarry over to delayed systems, but also give examples for delayed systems whih exhibitunusual features whih require further work to develop fully the theory. Further examplesillustrating these unusual features have been worked out by Kern [19℄.
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5 Disretization, optimization and the onsisteny ofadjoint variablesWithout restritions we may assume that the ost funtional for the retarded ontrolproblem (ROCP) is given in Mayer form
J(u, x) = g(x(b)).The redution of the more general ost funtional (1) to Mayer form proeeds as forundelayed ontrol systems by introdution of the additional state variable x0 through theretarded equation

ẋ0(τ) = L(t, x(t), x(t− r), u(t), u(t− s)), x0(a) = 0.Then the ost funtional (1) is rewritten in Mayer form J(u, x̃) = g(x(b))+x0(b) with thenew state variable x̃ = (x0, x
∗) ∈ Rn+1.As for undelayed di�erential equations, there exist standard integration shemes of Eu-ler or Runge�Kutta type for the retarded di�erential equation ẋ(t) = f(t, x(t), x(t −

r), u(t), u(t− s)). Using an uniform stepsize h > 0, it is ruial to math the delays r and
s to the stepsize h by the following assumption:

r

h
= k ∈ N,

s

h
= l ∈ N . (39)Note that, if h satis�es (39), any fration h/ν with ν ∈ N also does. Therefore, therestrition (39) is satis�ed for all �ner grids. For simpliity, we disuss Euler's integrationmethod with stepsize h = (b−a)/N for N ∈ N+ and grid points ti = a+ ih, i = 0, 1, ..., N.Using the approximations x(ti) ≈ xi ∈ Rn, u(ti) ≈ ui ∈ Rm, we obtain the followingnonlinear programming problem (NLP):Minimize J(u, x) = g(xN) (40)subjet to

−xi+1 + xi + hf(ti, xi, xi−k, ui, ui−l) = 0, i = 0, .., N − 1, (41)
x−i = ϕ(a− ih), i = 0, .., k, (42)
u−i = ψ(a− ih), i = 1, .., l, (43)

w(xN) = 0, (44)
C(ti, xi, ui) ≤ 0, i = 0, .., N. (45)The optimization variable in (NLP) is represented by the vetor

z := (u0, x0, u1, x1, ..., uN , xN) ∈ R(N+1)(m+n).The neessary optimality onditions for (NLP) by Karush-Kuhn-Tuker yield Lagrangemultipliers λ̂i ∈ Rn (i = 0, ..., N − 1) for the equation (41), a multiplier µ̂i ∈ Rp (i =
0, ..., N) for the inequality onstraint (45) and a multiplier ν ∈ Rq for the boundary on-dition (44). Upon de�ning the multiplier λ̂N := gx(x̂N) + ν∗Nwx(x̂N), it is straightforwardto verify that the following approximations hold:

λ̂(ti) ≈ λ̃i, µ̂(ti) ≈
1

h
µ̂i (i = 0, .., N), ν̂ ≈ ν̂N . (46)10



The important point to note here is the proper saling of the multiplier µ̂i ∈ Rp. Themultipliers λ̂i ∈ Rn (i = 0, ..., N − 1) an be identi�ed as solutions to the disretizedadvaned adjoint equation (18) with boundary ondition (19).To solve the optimization problem (NLP) in (40) � (45), we employ the programminglanguage AMPL in Fourer, Gay and Kernighan [11℄ together with the optimization solversLOQO developed by Vanderbei [31℄ or IPOPT by Wähter et al. [33, 34℄. Both solversalso provide the Lagrange multipliers and hene a disretization of the adjoint variablesfor the ontrol problem (ROCP). Alternatively, the optimization problem (NLP) anbe solved using the ode NUDOCCCS developed by Büskens [4℄. Instead of Euler'sdisretization sheme we also may use any Runge�Kutta type integration sheme of anorder less than four.For notational ease in the following examples, we suppress the �hat� to denote optimalsolutions.6 An analytial exampleWe onsider the following optimal ontrol problem with the delay r = 1 in the state and
s = 2 in the ontrol: Minimize ∫ 3

0

(x2(t) + u2(t)) dt (47)subjet to
ẋ(t) = x(t− 1)u(t− 2), t ∈ [0, 3], (48)
x(t) = 1, t ∈ [−1, 0], (49)
u(t) = 0, t ∈ [−2, 0]. (50)A ontrol-state onstraint will be imposed later. The Hamiltonian (7) for this problem is
H(t, x, y, u, v) = x2 + u2 + λyv. (51)For an optimal pair (u, x), the adjoint equations (18) in Theorem 4.2 yield

λ̇(t) = −Hx(t, x(t), x(t− 1), u(t), u(t− 2), λ(t))

−χ[0,2](t)Hy(t+ 1, x(t+ 1), x(t), u(t+ 1), u(t− 1), λ(t+ 1))

= −2x(t) − χ[0,2](t)λ(t+ 1)u(t− 1).It immediately follows from (48)�(50) that
x(t) = 1 for t ∈ [0, 2] .The state variable an only be in�uened by the ontrol u(t− 2) on the terminal interval

[2, 3]. Hene, it su�es to determine the optimal ontrol u(t) on the interval [0, 1]. Themininum ondition (20) requires the minimization of the expression
H(t, x(t), x(t− 1), u, u(t− 2)) + χ[0,1](t)H(t+ 2, x(t+ 2), x(t+ 1), u(t+ 2), u)w.r.t. the ontrol variable u for t ∈ [0, 3]. For t ∈ [0, 1], we obtain 2u(t)+λ(t+2)x(t+1) =

0, whih yields the ontrol
u(t) = −

1

2
λ(t+ 2)x(t+ 1) = −

1

2
λ(t+ 2), t ∈ [0, 1].11



On the interval [1, 3], we immediately get
u(t) = 0 for t ∈ [1, 3].Then on [2, 3], the adjoint and state equation beome

λ̇(t) = 2x(t) − 2u(t) = 2x(t), ẋ(t) = u(t− 2) = −
1

2
λ(t− 2 + 2) = −

1

2
λ(t).This yields a seond order di�erential equation for λ,

λ̈(t) = −2ẋ(t) = λ(t), for t ∈ [2, 3],whih has the general solution
λ(t) = Aet +Be−t, x(t) = −

1

2

(

Aet − Be−t
)

.The onstants A and B an be determined from the transversality ondition (19) and theontinuity of the state x(t) at t = 2,
λ(3) = 0, x(2) = 1,from whih we �nd

A =
−2e−2

e2 + 1
, B =

2e4

e2 + 1
.Then the ontrol u on the �rst segment [0, 1] is given by

u(t) =
e−2

e2 + 1
et+2 −

e4

e2 + 1
e−(t+2) for t ∈ [0, 1].Now we evaluate the ostate on the seond interval [1, 2]. The advaned di�erentialequation

λ̇(t) = −2x(t) − λ(t+ 1)u(t− 1) = −2 +
1

2
(λ(t+ 1))2

= −2 +
1

2

(

−2e−2

e2 + 1
et+1 +

2e4

e2 + 1
e−(t+1)

)2and the ontinuity of the ostate, λ(2−) = λ(2+) = 2(e2−1)
e2+1

≈ 1.523188311, yield theexpliit solution
λ(t) = λ(2+) +

∫ t

2

(

−2 +
1

2
(λ(τ + 1))2

)

dτ

=
e2t−2 − e6−2t

(e2 + 1)2
− t ·

(

4e2

(e2 + 1)2
+ 2

)

+
4(e2 − 1)

(e2 + 1)2
+ 6 for t ∈ [1, 2].Similarly, we an ompute λ(t) on [0, 1]. Sine x(t) = 1 and u(t) = 0 on [0, 1], the adjointequation redues to

λ̇(t) = −2x(t) − λ(t+ 1)u(t− 1) = −2.Then the ontinuity of λ in t = 1, λ(1−) = λ(1+) = 2(e2−1)
(e2+1)2

+ 3 ≈ 3.181568497, leads tothe following representation
λ(t) = λ(1+) + 2 − 2t = −2t+

2(e2 − 1)

(e2 + 1)2
+ 5 for t ∈ [0, 1].12



Summing up our �ndings, we have obtained the optimal solution (x, u, λ):for t ∈ [0, 1] : x(t) = 1, u(t) =
e−2

e2 + 1
et+2 −

e4

e2 + 1
e−(t+2),

λ(t) = −2t+
2(e2 − 1)

(e2 + 1)2
+ 5,for t ∈ [1, 2] : x(t) = 1, u(t) = 0,

λ(t) =
e2t−2 − e6−2t

(e2 + 1)2
− t ·

(

4e2

(e2 + 1)2
+ 2

)

+
4(e2 − 1)

(e2 + 1)2
+ 6,for t ∈ [2, 3] : x(t) =

e−2

e2 + 1
et +

e4

e2 + 1
e−t, u(t) = 0, λ(t) =

−2e−2

e2 + 1
et +

2e4

e2 + 1
e−t.The analytial optimal solution allows us to determine the optimal performane indexexpliitly after some lengthy omputations:

J =

∫ 3

0

(x2(t) + u2(t)) dt =
3

2
−

3e2 + 1

(e2 + 1)2
+ 1 +

e4 + 4e2 − 1

2(e2 + 1)2
= 3 −

2

e2 + 1
≈ 2.76159 .Let us now ompare the analytial solution with the numerial results whih are obtainedby applying the disretization and optimization methods in setion 5. We solve theEuler-disretized nonlinear optimization problem (40) � (43) using the interior-point odeIPOPT developed by Wähter et al. [33, 34℄ with error tolerane tol =10−10. Thestarting solution is x(t) ≡ 1 and u(t) ≡ 0. Using a oarse disretization with N = 600grid points, we �nd the performane index J(x, u) = 2.765928244 in 0.0127 CPU seonds.This value means a deviation of about 0.16% from the analytial value J = 2.761594156.Inreasing the disretization by a fator 100, i.e., using N = 60000 gridpoints, we get

J(x, u) = 2.761638 in 2.5 CPU seonds. The extremely �ne disretization with N =
480000 gridpoints yields J(x, u) = 2.761599 whih is orret in 5 deimals. In Fig. 1, thenumerial solution trajetories for a mesh of N = 600 grid points are presented.Next, we impose the mixed ontrol-state-onstraint

u(t) + x(t) ≥ 0.3 for t ∈ [0, 6]. (52)We have doubled the length of the time interval to get a more interesting struture ofboundary ars for the mixed ontrol-state onstraint. Here, it is not possible any moreto determine an optimal solution analytially. Again, we use an Euler disretization with
N = 600 or N = 60000 grid points. The numerial results for the optimal state, theoptimal ontrol and the adjoint variable arising from a mesh size of N = 600 points aredisplayed in Fig. 2. The onstraint funtion x(t) + u(t) and the orresponding multiplier
µ(t) are presented in Fig. 3.The performane index for N = 600 is J(x, u) = 3.121827278 with CPU = 0.32 se, while
N = 60000 gives J(x, u) = 3.108259352 with CPU = 65.8 se. The neessary optimalityonditions in Theorem 4.2 provide the existene of a multiplier funtion µ̂ satisfying

µ(t) ≥ 0, µ(t)(0.3 − u(t) − x(t)) = 0 for t ∈ [0, 6]. (53)Fig. 3 learly shows that the omputed multiplier does satisfy this ondition. We have twoboundary ars [0, t1], t1 ≈ 0.46, and [t2, 6], t2 ≈ 3.18, where the ontrol-state onstraintbeomes ative. In the interior of the boundary ars, the multiplier µ(t) is stritly positive,while µ(t) vanishes on the interior ar. 13
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7 A nonlinear hemial tank reator modelWe onsider a ontinuous nonlinear stirred tank reator system (CSTR) that runs anirreversible hemial reation. The model is taken from Soliman and Ray [27, 29℄; f.also Bader [2℄. The proess is desribed by the relative onentration x1 of the produt,the relative onentration x2 of the atalyst and the relative temperature in the reationvessel. All these quantities represent the relative deviation to an equilibrium and thusheld ompletely dimensionless. This model is based upon earlier work by Soliman and Ray[27℄ and has been slightly modi�ed. The hemial agents in the vessel are stirred by an
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Figure 4: Continuous stirred tank reator (CSTR) after Soliman and Ray.agitator and thus kept in a permanent movement. The reation is steered by two ontrolfuntions. The atalyst feed is split into a fration γ u2(t) entering the vessel diretlyand a remaining fration (1 − γ) u2(t− s) entering the vessel with a time delay r due toprior mixing with the reatant feed. The temperature inside the vessel is ontrolled by afuntion u1(t) representing a time dependent proportional gain of a heat exhanger devie.The adjustment of the temperature depends on a feedbak p-ontroller that depends onthe outlet temperature x3(t− r).Our goal is to transfer the system in a balane within a �xed time interval optimally. Theobjetive funtional essentially represents the deviation of the state to its equilibrium.Problem (CSTR) Minimize

J(u, x) =

∫ 0.2

0

(‖x(t)‖2
2 + 0.01u2

2(t))dt
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subjet to
ẋ1(t) = −x1(t) −R(t),

ẋ2(t) = −x2(t) + 0.9u2(t− s) + 0.1u2(t),

ẋ3(t) = −2x3(t) + 0.25R(t) − 1.05u1(t)x3(t− r),for a.e. t ∈ [0, 0.2], where
R(t) = R(t, x1(t), x2(t), x3(t)) := (1 + x1(t))(1 + x2(t)) exp

(

25x3(t)

1 + x3(t)

)

,and the initial and terminal onditions, resp., ontrol onstraint
x3(t) = −0.02, t ∈ [−r, 0),

u2(t) = 1, t ∈ [−s, 0),

x(0) = (0.49,−0.0002, 0.02)∗,

x(0.2) = (0, 0, 0)∗,

|u1(t)| ≤ 500, t ∈ [0, 0.2].We hoose the state delay r = 0.015 and ontrol delay s = 0.02. Bader [2℄ attempted tosolve this CSTR problem by using shooting methods. However, due to the ompliatedstruture of the ontrol, Bader ould only obtain a oarse approximation of the optimalsolution. We solve the disretized ontrol problem (NLP) in setion 5 by utilizing theInterior Point ode IPOPT. The numerial omputations have been arried out with
N = 16000 grid points. We obtain an optimized performane index of J = 0.011970541.Due to the �xed terminal ondition for the state x(0.2) the algorithm requires the rathervast amount of 63,932 seonds of CPU time. One an expet an aeleration by onsideringa free terminal state instead and a quadratially appearing ontrol omponent u1 in theobjetive funtional. The omputed optimal solution and the adjoint variables λ1, λ2, and
λ3 are shown in �gs. 5 � 7.Let us disuss the minimum priniple in Theorem 4.2 in greater detail. Sine there areno mixed ontrol-state onstraints, the Hamiltonian funtion (7) is given by

H(t, x1, x2, x3, y3, λ, u1, u2, v2) = ‖x‖2
2 + 0.01u2

2 + λ1(−x1 − R(x))

+ λ2(−x2 + 0.9v2 + 0.1u2) + λ3(−2x3 + 0.25R(x) − u1y3(x3 + 0.125)).
(54)The adjoint advaned ODE (18) beomes

λ̇1 = −2x1 + λ1 + (λ1 − 0.25λ3)
∂R(x)

∂x1

,

λ̇2 = −2x2 + λ2 + (λ1 − 0.25λ3)
∂R(x)

∂x2
,

λ̇3 = −2x3 + 2λ3 + (λ1 − 0.25λ3)
∂R(x)

∂x3
+ λ3u1y3 + χ[0, 0.2−r](t)λ

+
3 u

+
1 (x+

3 + 0.125) ,where y3 = x3(t−r), x+
3 = x3(t+r), u+

1 = u1(t+r) and λ+
3 = λ3(t+r). Sine the terminalstate x(0.2) is �xed, no boundary onditions are presribed for λ(0.2). The omputed17
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σ1(t) =

∂H

∂u1
(t) = −λ3(t)x3(t− r)(x3(t) + 0.125). (55)Bang-bang ars of u1 are determined by the ontrol law

u1(t) =

{

−500, if σ(t) > 0
+500, if σ(t) < 0

} (56)A singular ar of u1 is haraterized by the property that σ(t) ≡ 0 holds on a nontrivialsubinterval. However, in ontrast to undelayed ontrol problems, it is not possible to �nda losed expression for a singular ontrol u1 by di�erentiating the swithing funtion. Fig.6 shows that the ontrol u1 has 6 bang-bang ars and one intermediate singular ar. Wehave jointly plotted u1(t) and the adequately saled σ(t) to demonstrate that the behaviorof the swithing funtion perfetly mathes the ontrol law (56).As the ontrol omponent u2 appears quadratially in the ost funtional and is unon-strained, it is determined uniquely by minimum ondition (20) whih yields
∂H

∂u2
(t) + χ[0,0.2](t+ s)

∂H

∂u2
(t+ s) = 0 for t ∈ [0, 0.2].Thus we have

0.02u2(t) + 0.1λ2(t) + χ[0,0.2](t+ s) 0.9λ2(t+ s) = 0 for t ∈ [0, 0.2],whih in view of 0.2 − s = 0.18 determines the ontrol u2 by
u2(t) =

{

−5λ2(t) − χ[0,0.2](t+ s) · 45λ2(t+ s) for t ∈ [0, 0.18]
−5λ2(t) for t ∈ [0.18, 0.2]

}

. (57)18
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The ontrol law (57) shows that the ontrol u2 exhibits here a single disontinuity at
t = 0.18 provided that λ2(0.18) 6= 0 holds. This behavior is di�erent from the undelayedase where the regularity ondition of the Hamiltonian funtion implies the ontinuity ofontrol.Remark: The rather large omputing time of several hours for this CSTR problem isaused by three fators: (1) the delay in the ontrol variable u2, (2) the ontrol u1 isnot penalized in the ost funtional, and (3) the presribed terminal onditions x(0.2) =
(0, 0, 0). The onvergene is speeded up onsiderably by introduing the penalty term
0.01u1(t)

2 in the ost funtional and deleting the terminal onditions. This situationours in a similar CSTR problem with n = 4 state variables but no delay in the ontrolvariable; f. Dadebo, Luus [9℄. Using a �ne grid with N = 20000, the CPU time foromputing the optimal solution of this CSTR problem is in the range of a minute.8 Optimal ontrol of a renewable resoureIn this setion, we disuss the optimal ontrol of a logisti growth proess. Suh a modelan be used in biology to desribe pathogeni ell growth in in�ammatory proesses,whereas in eonomy it desribes the interation between prodution and onsumption orthe harvesting of a renewable resoure.A well-known example is optimal �shing, where the fat, that over�shing redues thepro�t for the �shing industry in the long run, indiates the importane of developing of along-time �shing strategy.The following model is based on models developed by May [20, 21℄ and has been studiedby Feddermann [10℄. Let x(t) denote the biomass population and u(t) the harvestinge�ort. In the following ontrol model with �xed �nal time tf > 0, only the state variable
x(t) has a delay r ≥ 0:Maximize J(u, x) =

∫ tf

0

e−dt(pu(t) − cEx(t)
−1u(t)3) dt (58)subjet to

ẋ(t) = ax(t)

(

1 −
x(t− r)

b

)

− u(t), (59)
x(t) ≡ x0, t ∈ [−r, 0], (60)
x(t) ≥ x0, t ∈ [0, tf ], (61)
u(t) ≥ 0, t ∈ [0, tf ]. (62)A similar model with a linear ost funtional was onsidered in Clarke, Wolenski [7℄ as anillustrative example to ompute the sensitivity of the value funtion with respet to thetime-lag r. The data are hosen as follows: market prie p = 2, disount rate d = 0.05,harvesting ost cE = 0.2, growth rates a = 3 and b = 5, initial value x0 = 2 and �nal time

tf = 20.For these data, our omputations show the state and ontrol inequality onstraints (61)and (62) do not beome ative. Hene, we do need to take into aount the multiplier µ20
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H(t, x, y, u, λ) = e−dt(−pu+ cEx

−1u3) + λ
(

ax
(

1 −
y

b

)

− u
)

.The adjoint equation (18) and transversality ondition (19) yield
λ̇(t) = cEe

−dtx−2(t)u3(t) − aλ(t)

(

1 −
x(t− r)

b

)

+ χ[0,tf ](t+ r)λ(t+ r)
a

b
x(t+ r), λ(tf ) = 0.

(63)The minimum ondition (20) implies
0 =

∂H

∂u
(t) = e−dt(−p + 3cex

−1(t)u2(t)) − λ(t),whih gives the ontrol relation using the above data:
u(t) =

√

5

3
exp(0.05t) x(t) λ(t) +

10

3
x(t) . (64)We apply the disretization methods in setion 5 and solve the resulting nonlinear pro-gramming problem (NLP) with a mesh size of N = 40000 grid points by the Interior PointCode LOQO developed by Vanderbei [31, 32℄. For di�erent delays r ≥ 0, the unontrolledstate trajetories x(t) with u(t) = 0 are shown in Fig. 8(a) and are ontrasted in Fig. 8(b)with the optimal state trajetories. Optimal ontrols and the assoiated adjoint funtionsare depited in Fig. 9. Feddermann [10℄ has obtained similar results using the optimalontrol pakage NUDOCCCS developed by Büskens [4℄. We onlude this setion bylisting the omputed values of the (maximized) objetive funtional (58) and the initialvalues λ(0) for di�erent delays: 21



r = 0.0 : J = 56.290449, λ(0) = −0.797255
r = 0.1 : J = 56.416287, λ(0) = −0.801229
r = 0.2 : J = 56.542214, λ(0) = −0.805113
r = 0.3 : J = 56.662908, λ(0) = −0.808916
r = 0.4 : J = 56.780054, λ(0) = −0.812444
r = 0.5 : J = 56.876896, λ(0) = −0.815298Clarke, Wolenski [7℄ have presented onditions under whih the optimal value funtion

V = V (r) is di�erentiable w.r.t. the delay r. It would be of interest to verify their expliitformula numerially for the derivative dV/dr of the value funtion at r = 0. The aboveresults yield the rude approximation dV (r)/dr ≈ 1.2 at r = 0.9 ConlusionThe purpose of this paper was twofold. Firstly, a Pontryagin type minimum priniplewas derived for retarded optimal ontrol problems with delays in the state and ontrolvariable when the ontrol system is subjet to a mixed ontrol-state onstraint. Underthe assumption that the ratio of state and ontrol delay is a rational number (this is nota restrition for numerial omputation), the retarded ontrol system was transformed toan augmented nondelayed ontrol problem, to whih the lassial Pontryagin minimumpriniple is appliable. Then a suitable retransformation of state, ontrol and adjointvariables yields the minimum priniple for the retarded ontrol problem. The seond goalwas to develop e�ient numerial methods for omputing the optimal state, ontrol andadjoint variables. In partiular, the adjoint variables enable us to hek the the neessaryoptimality onditions with high auray. We have presented a disretization method (forsimpliity only Euler's method) whereby the ontrol problem is transribed into a high-dimensional nonlinear programming problem. Exellent results have been obtained usingthe optimization solvers LOQO by Vanderbei [31℄, IPOPT by Wähter et al. [33, 34℄ or,alternatively, the solver NUDOCCCS by Büskens [4℄.Several issues for retarded ontrol problems, whih ould not adequately be addressed inthis paper, require further work. The theory of bang�bang and singular ontrol problemsinitiated by Soliman, Ray [30℄ should be studied in more detail; f. also Kern [19℄. Thetransformation tehniques in setion 4 an also be applied to retarded ontrol problemswith pure state inequality onstraints. This approah will eventually lead to onditions,under whih the multipliers assoiated with state onstraints (f. Angell, Kirsh [1℄) aresu�iently regular. Finally, the theory of seond order su�ient onditions (f. Chan,Yung [6℄ for unonstrained ontrol problems) should be generalized to ontrol problemswith onstraints and must be made amenable to numerial veri�ation.Referenes[1℄ Angell, TS, Kirsh, A. On the neessary onditions for optimal ontrol of retardedsystems. Applied Mathematis and Optimization 1990; 22: 117�145.
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