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Abstract

Optimal control problems with delays in state and control variables are studied.
Constraints are imposed as mixed control state inequality constraints. Necessary
optimality conditions in the form of Pontryagin’s minimum principle are established.
The proof proceeds by augmenting the delayed control problem to a nondelayed
problem with mixed terminal boundary conditions to which Pontryagin’s minimum
principle is applicable. Discretization methods for the delayed control problem are
discussed which amount to solving a large-scale nonlinear programming problem. It
is shown that the Lagrange multipliers associated with the programming problem
provide a consistent discretization of the advanced adjoint equation for the delayed
control problem. An analytical example and two numerical examples from chemical
engineering and economics illustrate the results.

1 Introduction

Differential control systems with delays in state or control variables play an important
role in the modelling of real-life phenomena in various fields of applications. Many papers
have been devoted to delayed (other terminology: time lag, retarded, hereditary) optimal
control problems and the derivation of necessary optimality conditions. Let us briefly
review some papers concerning different classes of control problems. An introduction to
time delay control problems can be found in Oguztoreli [24]|. Kharatishvili [17] was first
to provide a maximum principle for optimal control problems with a constant state delay.
In [18], he gave similar results for control problems with pure control delays. Halany
[14] proves a maximum principle for optimal control problems with multiple constant
delays in state and control variables which, however, are chosen to be equal for state
and control. Similar results were obtained by Ray, Soliman [30]. Guinn [13| sketches a
simple method for obtaining necessary conditions for control problems with a constant
delay in the state variable. He suggests to augment the delayed control problem which
yields a higher-dimensional undelayed control problem to which the standard maximum
principle is applicable. Banks [3] derives a maximum principle for control systems with a
time-dependent delay in the state variable. Delays in the control are admitted for systems
linear in the control variable. Colonius and Hinrichsen 8| provide a unified approach to
control problems with delays in the state variable by applying the theory of necessary
conditions for optimization problems in function spaces. All articles mentioned so far do
not consider general control or state inequality constraints.

Angell and Kirsch [1] treat functional differential equations with function-space state
inequality constraints. However, they do not discuss the regularity of the multiplier as-
sociated with the state constraint and do not provide a numerical example with a pure
state space constraint. To our knowledge, optimal control problems with constant delays
in state and control variables and mized control-state inequality constraints have not yet



been considered in the literature. The first goal in this paper is to derive a Pontryagin
type minimum (maximum) principle for this class of delayed control problems. Con-
cerning the development of numerical methods and the numerical treatment of practical
examples, our impression is that this topic has not yet been adequately addressed in the
literature. Bader [2] applies shooting methods to the boundary value problem for the
retarded state variable and the advanced adjoint variable. He successfully solves several
academic examples, but his method is not capable of solving control problems with a more
complicated control structure, e.g., the CSTR reactor problem described in Soliman, Ray
[29, 30]. A similar CSTR reactor problem is considered in Oh, Luus [25] and Dadebo,
Luus [9] who use the differential dynamic programming method with a moderate number
of stages. Therefore, the second goal of this paper is the presentation of discretization
and nonlinear programming methods which provide the optimal state, control and adjoint
functions and allow for an accurate check of the necessary conditions.

The organization of the paper is as follows. Section 2 presents the statement of the delayed
control problem with mixed state—control constraints. In section 3, we recall the minimum
principle for undelayed control problems with control state constraints. Here, a crucial
feature is that initial and terminal boundary conditions must be considered in a general
mixed form. Section 4 is devoted to the derivation of first order necessary optimality
conditions for the delayed optimal control problem given in Section 2. Essentially, the
augmentation approach of Guinn [13| is generalized which allows to use the minimum
principle in section 3. For technical reasons, we need the assumption that the ratio of
the time delays in state and control is a rational number. The analysis in this section is
based on the theses of Géllmann [12] and Kern [19]. In section 5, the Euler discretization
for the delayed control problem is discussed which leads to a high-dimensional nonlinear
programming problem. As in the undelayed case it can be shown that the Lagrange
multipliers corresponding to the optimization problem constitute a Euler discretization
for the advanced adjoint equations. In section 6, we discuss an analytical example which
allows to test the accuracy of the numerical solution for various stepsizes. Sections 7 and
8 are devoted to the numerical solution and the verification of the minimum principle for
two practical examples. The first example is taken from [29, 30| and describes the optimal
control of a chemical tank reactor (CSTR reactor), while the second example arises in the
optimal harvesting of a resource (optimal fishing).

2 Optimal control problems with delays in state and
control

We consider retarded optimal control problems with constant delays » > 0 in the state
variable z(t) € R™ and s > 0 in the control variable u(t) € R™. The following retarded
control problem with mixed control-state inequality constraints will be referred to as
problem (ROCP):

Minimize J(u,z) = g(x(b)) + / L(t,x(t),z(t —r),u(t),u(t —s))dt (1)



subject to the retarded differential equation, boundary conditions and mixed control-state
inequality constraints

x(t) = f(t,x(t),z(t —r),u(t),u(t —s)), ae.teEla,bl, (2)

x(t) = o(t), te€la—ral, (3)

u(t) =9(t), tela—s,a), (4)

w(z(b)) =0, (5)
C(z(t),u(t)) <0, te]a,b]. (6)

For convenience, all functions

:R"” — R,

L:a,b] x R" x R" x R™ x R™ — R,
fi]a,b] x R* x R" x R™ x R™ — R",
w: R" — R, 0<qg<n,
C:R"xR™ — RP,

s

are assumed to be we twice continuously differentiable w.r.t. all arguments. A pair of
functions (u,x) € L2([a,b],R™) x W1>([a, b], R") is called an admissible pair for problem
(ROCP), if the state x and control u satisfy the restrictions (2)—(6). An admissible pair
(@, z) is called a locally optimal pair or weak minimum for (ROCP), if

J(u,z) < J(u,z)

holds for all (u, x) admissible in a neighborhood of (u, ) with ||z(t)—2(t)]|, [Ju(t)—a(t)| <
e for all t € [a,b] and € > O sufficiently small. Instead of considering a weak minimum
we could work with the more general notion of a Pontryagin minimum; cf. Milyutin,
Osmolovskii [22].

The Hamiltonian or Pontryagin function H for the delayed control problem (ROCP) is
defined in analogy to the one for nondelayed problems. However, in contrast to the
nondelayed Hamiltonian, two additional arguments y € R™ and v € R™ denoting the

delayed state and control variable are needed:
H(t? x’ y7 u? U? )\7 /”L) = L(t7 $7 y7 u? U) _l_ )\*f(t’ x? y? u7 ,U) _l_ M*C(t? x’ u)’ (7)
AeR" pueRP.

Here and in the sequel % denotes the transposition. We shall obtain necessary optimality
conditions for the retarded control problem (ROCP) by first transforming (augmenting)
problem (ROCP) to a higher-dimensional nondelayed control problem. To further study
the augmented problem, we need Pontryagin minimum principle for nondelayed control
problems with mixed control-state constraints which will be reviewed in the next section.

3 First order necessary optimality conditions for un-
delayed optimal control problems with mixed con-
straints

Formally, any undelayed control problem is contained in the retarded problem (ROCP)
by chosing r = s = 0. Due to the absence of delays, the initial value profiles given by



conditions (3) and (4) are omitted. However, the continuity of the state variables in the
augmented problem necessitates to introduce a general boundary condition of mixed type,

w(z(a), (b)) = 0, (8)

which replaces the terminal boundary condition (5). The Hamiltonian or Pontryagin
function for the nondelayed control problem is given by

H(t,z,u, A\, ) :== L(t,x,u) + X f(t,z,u) + p*C(t, x,u). 9)

The extension of the classical Pontryagin minimum principle to mixed control-state con-
straints (6) requires a regularity condition or constraint qualification. For a locally optimal
pair (4.2) and t € [a,b] , let Jo(t) :={j € {1,...,p}| C;(t,2(t),a(t)) = 0} denote the set
of active indices for the inequality constraint (6). Then we assume the rank condition:

oC;(t, z(t), u(t) B
rank ( oM )jejo(t) = #Jo(t). (10)

The following necessary optimality conditions are to be found in Hestenes |15, Milyutin,
Osmolovskii [22] and Neustadt [23].

Theorem 3.1 (Pontryagin’s Minimum Principle.) Let (u,) be a locally optimal pair for
the control problem (ROCP) without delays, i.e., r = s = 0, and the mized boundary
condition (8). Assume that the regularity condition (10) is satisfied. Then there ezist a
costate (adjoint) function X\ € W ([a,b],R"), a multiplier function i € £>(|a,b], R?)
and a multiplier v € RY, such that the following conditions hold for a.e. t € [a,b]:

(i) adjoint differential equation:

A1) = —H (8, 2(t), (1), A1), Ah)); (11)

(i) transversality conditions:
Ma)" = —guo(2(0), 3(0)) = P"wpa (i (a), &(0), (12)
A" = gus(2(a), 2()) + P wys (E(a), #(b)); (13)

(iii) minimum condition for the Hamiltonian function:
H(t, 2(t), 6(0), A1), 1)) < H(t, 5(0),u, A1)
for all uw € R™ satisfying C(t,z(t),u) < 0;

(iv) multiplier condition and complementarity:

=
—~
~+
S~—
S~—
—~
—
Ny
N—r

A >0 and () Ci(t,2(t),a(t) =0, i=1,....p. (15)

Herein, gya, ¢,6, Wy and w,s denote partial derivatives of ¢ = g(z®, 2%) and w =
w(z®, x*) with respect to their first and second argument. In particular, the minimum
condition (14) yields the local minimum condition

Ho(t, 2(8), (), M¢), u(t)) =0 fora.e. t € [a,b]. (16)

In the next section, Theorem 3.1 will be used to derive necessary conditions for the
retarded control problem (ROCP).



4 Necessary optimality conditions for delayed optimal
control problems with mixed control-state constraints

Now we study the retarded control problem (ROCP) with constant delays r,s > 0 and
(r,s) # (0,0). We shall use a transformation technique which requires the technical
assumption that the ratio of the delays is a rational number.

Assumption 4.1 (Rationality Assumption) Assume that r,s >0, (r,s) # (0,0) and

EEQ for s>0, or ;e@ for r>20. (17)

In particular, this assumption holds for any couple of rational numbers (r,s), where at
least one number is non-zero. The following first order necessary conditions can be found
in Gollmann [12]; a precise proof under Assumption 4.1. has been given by Kern [19].

Theorem 4.2 (Minimum principle for the retarded optimal control problem (ROCP).) Let
(@, Z) be locally optimal for (ROCP) with delays satisfying Assumption 4.1. Then there ex-
ist a costate (adjoint) function A € WH([a, b, R™), a multiplier function ji € £>°([a, b], R?)
and a multiplier v € RY, such that the following conditions hold for a.e. t € [a,b]:

(i) adjoint differential equation:

~

)‘(t)* = 7:{:(: (t) - X[a,b—r] (t)ﬂy(t + ’l“)
= — H,(t,&(t), &(t — r), a(t), alt — s), M¢), alt
u(t +r),

) (18)
— Xfap—r] () Hy(t + 1, 2(t + 1), 8(2), i

+7), it 41— s), At +71), it +7)),
where ﬂx(t) and ﬂy(t) denote the evaluation of the partial derivatives H, and H, along
2(t), £(t —r),a(t), a(t — s), A(t), A(t);

(1) transversality condition:

AB)" = go(#(0)) + 07w, (#(0)); (19)

(111) minimum condition for the Hamiltonian function:

)
= H(t, 2(t), &(t — r), a(t), a(t — s), A\(t), a(t))
+ Xiab-o (VH(E+ 5, 2(t + ), 8(t+ 5 — ), 0t + ), 8(1), A+ 5), it +5))  (20)
< H(E, (), 2(t — ), u, 2t — s), \(t), (1))
 Xaps (OVH(E + 5, 2(t + 8), 2t + 5 — 1), Ut + 8), u, At + 5), it + 5)),
for all uw € R™ satisfying C(t,z(t),u) < 0;

(iv) multiplier condition and complementarity condition.:

A >0 and () Ci(t,2(t),a(t) =0, i=1,....p. (21)



Proof. The proof uses a transformation technique suggested by Guinn [13] to derive first
order necessary conditions for unconstrained optimal control problems with pure state
delays. In view of the rationality assumption (17) there exists integers k,[ € N with

f:ﬁ for s+#0, f:i for r #0.
s 1 r k

Without loss of generality we may assume the first case. Then the delays r, s are integer
multiples of the interval length h := s/l,

r=k-h, s=1-h  klcN.

The time interval [a, a+h] will be used below as the basis time interval for the augmented
control problem. Without loss of generality we may further assume that the interval
length b — a represents an integer multiple of h, i.e., we have b —a = Nh with N € N,.

Now we introduce the state variable =% = (&;,..., &4 ;) € RY? & € R™ and control
variable ©* = (6, ...,0%x_,) € RN™ 6, € R™, which are defined by

&(t) :==x(t + (ih), 6;(t) :=wu(t+th), for te€a,a+h], i=0,....,N—1. (22)

The continuity of the state z(¢) in [a, b] implies the following boundary conditions for the
augmented state =(t),

Gla+h)=¢&4(a), i=0,...,N—=2,
which can be written as
Vi(&ii1(a),&(a+h) == &a+h) — &pala) =0,  i=0,....,N—2. (23)

In terms of the new state and control variables = and ©, the retarded control problem
(ROCP) is equivalent to the following undelayed optimal control problem on the time
interval [a,a + h:

at+h N-1
Minimize J(0,Z) = g({n_1(a+ h)) + / Z L(t +ih,&(t), &i—k(t), 0;(t),0,—(t)) dt
- (24)

subject to

gz(t) = f(t + Zha gz(t)7 gi—k@)v 92(t>7 Hi—l(t>>7 L= 07 R N — 17 te [CL, a+ h]7 (25)

‘/Z(€Z+l(a)>€z(a’+h)) :07 iZO,...,N—Q, (26)

VN_l(fN_l(CL + h)) = w(fN_l(CL + h) =
C(t+ih,&(1),0,(t)) <0, i=0,....N—1, t€l[a,a+h (27)

The fixed starting profiles (3) and (4) are included in this notation by considering the
variables & _,...,&_ 1 and 0_;,...,0_; defined by

&i(t) ==

o(t+1ih), i=—k,...,—1,
Yt +ih), i=—I,...,—1.



However, note that &_,...,&_1 and 6_;,...,0_1 do not represent optimization variables.
Introducing adjoint variables and multipliers for the augmented problem by (24)—(27) by

A= (No,...,Av_1)* € RN M = (My,...,My_1)* € RNP,

the Hamiltonian (9) for the nondelayed augmented control problem is given by

K(t.2,0,A, M) Z (t +ih, &, &imrs 05, 0it) + A L(E + ih, &, §imk, 03, 05-1)]

=0

N-1
+ Y M;CO(t+ih, &, 0;). (28)
=0

Every locally optimal pair (a(-),Z(-)) for (ROCP) defines a pair (©(-),Z(-)) that min-
imizes the augmented problem (24)-(27). Pontryagin’s minimum principle for nonde-
layed problems (Theorem 3.1) assures the existence of a costate (adjoint) function A €
Wh([a,a + k], RN™), a multiplier function M € L£>([a,a + h],RV?) and a vector
v € RWN=Unta o — (pF ... D% 5, Uk ,)" where Dy, ...0n_ o € R™ and Dy_; € RY, such
that the followmg conditions hold for almost every t € [a, a + hl:

1. adjoint differential equation:

d -

A" = —Ka=(t,2(1), 0(1), A(t), M(t)); (29)
2. transversality condition:
M) = =97 - VlGna(o) o+ 1) Pi—0,... N -2, (30)
Rila+ by = a;aim(gm(@,g(a L B)), i=0. . N—2 (31)
Cit1
Av-i(a+h)" = go(nala+ ) + Dr_ywa(Ena(a+h)); (32)

3. munimum condition for the Hamiltonian:
(8, 2(1), (1), A1), M(1)) < K(t,Z(t), 0, A(t), M(t)) (33)

for all admissible © = (07, ...,0%_,)* € RN™ with C(t + ih,&(t),6;) < 0 and i =
0,...,N —1,;

4. multiplier condition and complementarity:

M(t) >0, M;t)*C(t+ih,&(t),0:(t) =0, i=0,...,N—1. (34)

Evaluating the adjoint equation for the component f\ , (0<j <N —1) yields

SR = = Lalt + 30, E5(0). &-al0) 0,(0), O,4(1)
= X0, N1k () Ly (G B)h, €5 (), €50 040 (1), O50-0(1)
= A0 £l + 65 (0),€(8). 6,0 0,49)
— X0, N1y () Ak () Ly (t + (G + E) R, §n(t), §(1), 051(8), 05 1a(2))
— N8 Cult + R, & (1), 65(1).



Now we are able to define the adjoint function A€ Whee([a, b], R™) and multiplier function
i € L>([a,b],RP) for the retarded control problem (ROCP) in the following way. For
t € [a,b] there exists 0 < j < N — 1 with a+ jh <t <a+ (j+1)h. We put

~

Mt) == Ayt = jh), Qt) = M(t — jh) (35)

and obtain from the previous adjoint equation:

d -
Z At —jh
o j(t—jh)

=~ Lo(t, (1), 3(t — kh), (t). alt — 1))

at
= Xq0.. N1k} () Ly (t + kD, B (t + ), 2(2), 0t + Kh), i(t + Kh — 1))
= MO falt, (1), (t = kh), a(t), alt — Uh))
(

u(t
- X{1,... le}() t+ kh) f,(t + kh,2(t + kh), 2(t), a(t + kh), u(t + kh — lh))

\t) =

— () Co(t, 2(t),a(t))
= — H(t, &(t), (t —r),a(t), 4t — s), A(t), ()
— Xapr) (OVH(E + 7,2t +7),8(), @t + 1), 4t + 1 — 5), At + )it +7)).

Thus we have found the adjoint equation (18). The transversality condition (32) for Ay_1,
An-i(a+h)" = go(€vr(a+h) + Uy ywe(Ena(a+h)),
gives the desired transversality condition (19) for (ROCP) in view of b = a + Nh:
Ma+ Nh) = go(#(a + NR)) + 0wy (i(a + NR)), 7 :=idy_, € R

To verify the minimum condition for the Hamiltonian H, we consider ¢ € [a,b] and the
corresponding index j € {0,...,N — 1} with a + jh < t < a+ (j + 1)h. Putting
t':=t— jh € [a,a + h], the minimum condition (33) gives

K(,2(t'), 0(t), A(t'), M(t')) < K(t', 2(t'), 0, At), M (1)), (36)
for all admissible © € RY™. We now define an admissible control policy O(-) = (6, ...,
On_1)" € RN™ by

ei::{“(t“h)’ PET 0. N-1,
u, i=37

where the control vector u € R™ is admissible for (ROCP), i.e., C(t, z(t),u) < 0. Evalu-
ating the inequality (36) for this vector © and removing equal expressions on both sides,
we get for the remaining terms associated with j and j + [



Lt + jh, &(t'), &§-4(t),
+ A () F(E + jh,&(
+ M;(t') Ot §(1),

HLE + (G + Db, &), §ra(t), @t + (G + Dh), a(t' + jh))

DA @) FE + G+ DB &), §ai(t), alt' + (G + Dh), @t + jh))
+ X{0,...N—1-1}(J VM () CH, &), alt + (j + h))

<SL(t + jh,&(t), &5 (t),u at' +(j — Dh))

+ A ) FE A+ 3R G(E), &r(t), At + (5 = DR))

+ M;(t') Ot

ﬂ(t +jh), a(t’ + (7 — Dh))
); §—k(t), (" + jh), a(t" + (j — 1))
(" +jh))

it

'), u)

(DL + (G + Dl (), €, (' + (G + Dh), w)

+ X{0,..n—1-1} (J ) () FE 4 G+ Dh G, §rai®), At + (G + 1h), u)
(DMt O, ), it + (5 + DR))

Redefining the functions according to (35), we obtain the desired minimum condition (20)

for H since t' = ¢t — jh. Condition (34) immediately implies the multiplier and comple-
mentarity condition (21) in view of (35). O

Remark: Soliman, Ray [30] have discussed bang-bang and singular controls which appear
in control problems, where the control u € R™ is partitioned into controls u; € R™and
uy € R™? with control u; appearing linearly in the system. The control-state constraint
(6) then reduces to bounds for g,

ul,min S ul(t> S ul,max for t € [CL, b], ul,mina ul,max € le-

The minimum condition (20) shows that the control u,(¢) is determined by the sign of
the components of the switching vector function

U(t) = Hm (t) + X[a,b} (t + S>Hv1 (t + S)v (37)
while the control uy satisfies the equation
0 = Huy (t) + Xap)(t + 8)Ho, (t + 5). (38)

The CSTR control problem in section 6 provides an example with such a partitioning of the
control vector. Soliman, Ray [30] study junction phenomena for bang-bang and singular
arcs. They give conditions under which junction results for control systems without delay
carry over to delayed systems, but also give examples for delayed systems which exhibit
unusual features which require further work to develop fully the theory. Further examples
illustrating these unusual features have been worked out by Kern [19].



5 Discretization, optimization and the consistency of
adjoint variables

Without restrictions we may assume that the cost functional for the retarded control
problem (ROCP) is given in Mayer form

J(u, z) = g(z(b)).

The reduction of the more general cost functional (1) to Mayer form proceeds as for
undelayed control systems by introduction of the additional state variable zy through the
retarded equation

To(T) = L(t,z(t), x(t —r),u(t),u(t —s)), x¢(a)=0.

Then the cost functional (1) is rewritten in Mayer form J(u, Z) = g(x(b)) +xo(b) with the
new state variable T = (zg,z*) € R"L.

As for undelayed differential equations, there exist standard integration schemes of Eu-
ler or Runge-Kutta type for the retarded differential equation @(t) = f(¢, z(t), x(t —
r),u(t),u(t — s)). Using an uniform stepsize h > 0, it is crucial to match the delays r and
s to the stepsize h by the following assumption:

r S
E—keN, E—leN. (39)

Note that, if h satisfies (39), any fraction h/v with v € N also does. Therefore, the
restriction (39) is satisfied for all finer grids. For simplicity, we discuss Euler’s integration
method with stepsize h = (b—a)/N for N € N, and grid points t; = a+ih, : = 0,1, ..., N.
Using the approximations z(t;) ~ z; € R", u(t;) =~ u; € R™, we obtain the following
nonlinear programming problem (NLP):

Minimize J(u,z) = g(zn) (40)
subject to

—Ziv1 +xi + hf (b, vy v g, upuiy) =0, i=0,..,N—1, (41)
x_i=p(a—1h), i=0,..k, (42)

u_y =vP(a—1ih), i=1,.,1, (43)

w(zy) =0, (44)

C(ty, xyu;) <0, i=0,..,N. (45)

The optimization variable in (NLP) is represented by the vector
2= (ug, Tg, U1, T1, ..., Uy, Ty ) € RAFVOmFR),

The necessary optimality conditions for (NLP) by Karush-Kuhn-Tucker yield Lagrange
multipliers \; € R (i = 0,..., N — 1) for the equation (41), a multiplier j; € R? (i =
0,..., N) for the inequality constraint (45) and a multiplier v € R? for the boundary con-
dition (44). Upon defining the multiplier Ay := ¢, (Zn) + Vi wy (), it is straightforward
to verify that the following approximations hold:

2 T - L. N
)‘(tz) ~ )\ia :u(t ) E:U“ (Z = 07 ">N)> V=UVUN. (46)

10



The important point to note here is the proper scaling of the multiplier ji; € RP. The
multipliers \; € R" (i = 0,..., N — 1) can be identified as solutions to the discretized
advanced adjoint equation (18) with boundary condition (19).

To solve the optimization problem (NLP) in (40) - (45), we employ the programming
language AMPL in Fourer, Gay and Kernighan [11] together with the optimization solvers
LOQO developed by Vanderbei [31] or IPOPT by Wéchter et al. [33, 34]. Both solvers
also provide the Lagrange multipliers and hence a discretization of the adjoint variables
for the control problem (ROCP). Alternatively, the optimization problem (NLP) can
be solved using the code NUDOCCCS developed by Biiskens [4]. Instead of Euler’s
discretization scheme we also may use any Runge Kutta type integration scheme of an
order less than four.

For notational ease in the following examples, we suppress the “hat” to denote optimal
solutions.

6 An analytical example

We consider the following optimal control problem with the delay » = 1 in the state and
s = 2 in the control:

Minimize /0 (2% (t) + u?(t)) dt (47)
subject to
(t) =x(t — Du(t —2), te€]0,3], (48)
x(t) =1, te[-1,0], (49)
u(t) =0, te[-2,0]. (50)

A control-state constraint will be imposed later. The Hamiltonian (7) for this problem is

H(t,z,y,u,v) = 2> +u® + Ayv. (51)
For an optimal pair (u, z), the adjoint equations (18) in Theorem 4.2 yield

At) = —Hu(t,z(t), z(t —1),ut), u(t — 2), A(t))
—Xj0,2(O)Hy(t + 1, z(t + 1), 2(t), u(t + 1), u(t — 1), A(t + 1))
= —20(t) — oz (DA + Du(t - 1).
It immediately follows from (48) (50) that
z(t)=1  for t€]0,2].

The state variable can only be influenced by the control u(t — 2) on the terminal interval
2,3]. Hence, it suffices to determine the optimal control u(t) on the interval [0, 1]. The
mininum condition (20) requires the minimization of the expression

H(t,z(t), z(t — 1), u,u(t — 2)) + xpO)HE + 2,2t +2),2(t + 1), u(t + 2),u)

w.r.t. the control variable u for t € [0, 3]. For ¢t € [0, 1], we obtain 2u(t)+ A(t+2)z(t+1) =
0, which yields the control

u(t) = —% M+ 2)n(t+ 1) = —% ME+2), teo1]

11



On the interval [1, 3], we immediately get
u(t)=0 for tell,3]

Then on [2, 3], the adjoint and state equation become

. 1 1

A(t) =22(t) — 2u(t) = 2z(t), Z(t) =u(t—2) = —5)\(15 —-2+42)= —§A(t).
This yields a second order differential equation for A,

At) = =2i(t) = A(t), for te[2,3],
which has the general solution
1
At) = Ae' + Be™,  x(t) = ~3 (Ae' — Be™").

The constants A and B can be determined from the transversality condition (19) and the
continuity of the state x(t) at t = 2,

A3)=0, =z(2)=1,

from which we find

— ﬂ ’ B = 2764 )
e?+1 e?+1
Then the control u on the first segment [0, 1] is given by
-2 4
_ ¢ 42 € —(t+2)
U(t) = 62 T 16 — 6274—16 for ¢ S [O, 1]

Now we evaluate the costate on the second interval [1,2]. The advanced differential
equation

At) = =2z(t) = Mt + Du(t —1) = =2+ %(A(t +1))2

1 [—2e72 2¢* 2
S, DI (A oS ST (8 Y
+2(62+16 +e2+16

and the continuity of the costate, A(27) = A(2T) = 2(:22;11) ~ 1.523188311, yield the
explicit solution

At) = A2 + /; (—2 - %(A(T + 1))2) dr

€2t—2 _ 66_2t 462 4(62 _ 1)
=———“t- | ———= +2 ——— 46 f tell,?2|.
(2 +1)2 ((e2+1)2+ >+(62—|—1)2+ or tel,2]

Similarly, we can compute A(t) on [0, 1]. Since z(¢) = 1 and u(¢t) = 0 on [0, 1], the adjoint
equation reduces to

At) = —2z(t) = ANt + Du(t — 1) = —2.

Then the continuity of Aint =1, A17) =X(1") = fé;i_l)lz) + 3 &~ 3.181568497, leads to
the following representation

2(e? — 1)

At) =A(1F) +2 -2t = -2t + e

+5 for telo,1].

12



Summing up our findings, we have obtained the optimal solution (z,u, \):

fort€[0,1]: z(t)=1, u(t)= %et” — %e‘(t“),
2
A(t) = —2t + % +5,
fort € [1,2]:  z(t)=1, wu(t)=0,
2-2 _ 62t Ae2 Ale? — 1
A(t) :ﬁ—t- <(62T61)2+2) +ﬁ+6,
fort e [2,3]: x(t) = ;jlet + efj_ el u(t) =0, ) = ;Qi_lzet + effle_t

The analytical optimal solution allows us to determine the optimal performance index
explicitly after some lengthy computations:

3 2 4 2
3 3ec +1 e* +4e” — 1 2
J = 2(¢ NMNdt==—- ——— 414+ —— =3 " _ ~276159.
/O(x(H“()) 2 @i T T ey e+ 1

Let us now compare the analytical solution with the numerical results which are obtained
by applying the discretization and optimization methods in section 5. We solve the
Euler-discretized nonlinear optimization problem (40) (43) using the interior-point code
IPOPT developed by Wichter et al. [33, 34] with error tolerance tol —1071°. The
starting solution is z(¢) = 1 and u(t) = 0. Using a coarse discretization with N = 600
grid points, we find the performance index J(z,u) = 2.765928244 in 0.0127 CPU seconds.
This value means a deviation of about 0.16% from the analytical value J = 2.761594156.
Increasing the discretization by a factor 100, i.e., using N = 60000 gridpoints, we get
J(z,u) = 2.761638 in 2.5 CPU seconds. The extremely fine discretization with N =
480000 gridpoints yields J(z,u) = 2.761599 which is correct in 5 decimals. In Fig. 1, the
numerical solution trajectories for a mesh of N = 600 grid points are presented.

Next, we impose the mixed control-state-constraint
u(t) +z(t) > 0.3 for te]l0,6]. (52)

We have doubled the length of the time interval to get a more interesting structure of
boundary arcs for the mixed control-state constraint. Here, it is not possible any more
to determine an optimal solution analytically. Again, we use an Euler discretization with
N = 600 or N = 60000 grid points. The numerical results for the optimal state, the
optimal control and the adjoint variable arising from a mesh size of N = 600 points are
displayed in Fig. 2. The constraint function z(t) 4+ u(t) and the corresponding multiplier
w(t) are presented in Fig. 3.

The performance index for N = 600 is J(z,u) = 3.121827278 with CPU — 0.32 sec, while
N = 60000 gives J(z,u) = 3.108259352 with CPU = 65.8 sec. The necessary optimality
conditions in Theorem 4.2 provide the existence of a multiplier function j satisfying

u(t) >0, u(®)(0.3 —ult) —z(t) =0 for tel0,6]. (53)

Fig. 3 clearly shows that the computed multiplier does satisfy this condition. We have two
boundary arcs [0,t1], t; =~ 0.46, and [t9, 6], t; ~ 3.18, where the control-state constraint
becomes active. In the interior of the boundary arcs, the multiplier u(t) is strictly positive,
while p(t) vanishes on the interior arc.

13
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7 A nonlinear chemical tank reactor model

We consider a continuous nonlinear stirred tank reactor system (CSTR) that runs an
irreversible chemical reaction. The model is taken from Soliman and Ray [27, 29]; cf.
also Bader [2]. The process is described by the relative concentration x; of the product,
the relative concentration z, of the catalyst and the relative temperature in the reaction
vessel. All these quantities represent the relative deviation to an equilibrium and thus
held completely dimensionless. This model is based upon earlier work by Soliman and Ray
|27| and has been slightly modified. The chemical agents in the vessel are stirred by an

Reactant Inlet

(%) (t)
Catalyst Inlet_%f Yua(t) |(1—7)ua(t —s)

uy (t) zs(t — )

Ty, T Coolant

¥J TL. P-Controller

Ah Product

l’g(t — 7’)
Temperature

Figure 4. Continuous stirred tank reactor (CSTR) after Soliman and Ray.

agitator and thus kept in a permanent movement. The reaction is steered by two control
functions. The catalyst feed is split into a fraction yus(t) entering the vessel directly
and a remaining fraction (1 — ) ua(t — s) entering the vessel with a time delay r due to
prior mixing with the reactant feed. The temperature inside the vessel is controlled by a
function u(t) representing a time dependent proportional gain of a heat exchanger device.
The adjustment of the temperature depends on a feedback p-controller that depends on
the outlet temperature x3(t — 7).

Our goal is to transfer the system in a balance within a fixed time interval optimally. The
objective functional essentially represents the deviation of the state to its equilibrium.

Problem (CSTR) Minimize

J(u,x):/()'(||x(t)||§+o.o1ug(t))dt

16



subject to

i1 (t) = —a1(t) — R(1),

for a.e. t € [0,0.2], where

R(t) = R(t. 2 (), 2(), 23(t)) = (L+ 2 (D) (1 + o(t)) exp (M)

1+ ZL’3(t)

and the initial and terminal conditions, resp., control constraint

w3(t) = —0.02, t e [-r0),
us(t) =1, t € [—s,0),
2(0) = (0.49, —0.0002, 0.02)*,

2(0.2) = (0,0,0)*,

luyi ()| < 500, t €10,0.2].

We choose the state delay » = 0.015 and control delay s = 0.02. Bader [2] attempted to
solve this CSTR problem by using shooting methods. However, due to the complicated
structure of the control, Bader could only obtain a coarse approximation of the optimal
solution. We solve the discretized control problem (NLP) in section 5 by utilizing the
Interior Point code IPOPT. The numerical computations have been carried out with
N = 16000 grid points. We obtain an optimized performance index of J = 0.011970541.
Due to the fixed terminal condition for the state x(0.2) the algorithm requires the rather
vast amount of 63,932 seconds of CPU time. One can expect an acceleration by considering
a free terminal state instead and a quadratically appearing control component wu; in the
objective functional. The computed optimal solution and the adjoint variables Ay, Ay, and
Az are shown in figs. 5 7.

Let us discuss the minimum principle in Theorem 4.2 in greater detail. Since there are
no mixed control-state constraints, the Hamiltonian function (7) is given by

H(taxla X2,T3,Y3, )\7u17u2a U?) = ||$||§ + OOlUg + )\1(_1'1 - R(ZL'))

04
+ )\2(—372 + 0.91)2 + 01UQ) + )\3(—21’3 + 025R(ﬂ7) — u1y3($3 + 0125)) ( )

The adjoint advanced ODE (18) becomes

- OR
)\1 = —2?171 + >\1 + ()\1 — 025)\3)ﬂ s

81’1
: OR
)\2 = —21’2 + )\2 + ()\1 - 025)\3) 8;’1') 5

2
: OR(x) +o (ot
)\3 = —2?173 + 2)\3 + ()\1 — 025)\3) O + >\3u1y3 + X[0,0.2—7] (t)>\3 Uq (373 + 0125) s
3

where y3 = z3(t—7r), 25 = x3(t+7), uf = uy(t+r) and \j = A\3(t+7r). Since the terminal
state 2(0.2) is fixed, no boundary conditions are prescribed for A\(0.2). The computed
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Figure 5: Optimal concentrations x1, xs and optimal temperature x3

initial value is A(0) = (0.048251674, —0.000949667, —0.123610902). The evaluation of
the minimum condition (14) is as follows. The control component u; appears linearly in
the system and is not delayed. Then the switching function (37) is given by

o1 (t) = S—Z(t) = ()t — ) (ws(t) +0.125). (55)

Bang-bang arcs of u; are determined by the control law

=500, if o(t) >0
u(®) _{ +500, if o(t) <0 } (56)

A singular arc of uy is characterized by the property that o(t) = 0 holds on a nontrivial
subinterval. However, in contrast to undelayed control problems, it is not possible to find
a closed expression for a singular control u; by differentiating the switching function. Fig.
6 shows that the control u; has 6 bang-bang arcs and one intermediate singular arc. We
have jointly plotted u;(¢) and the adequately scaled o(t) to demonstrate that the behavior
of the switching function perfectly matches the control law (56).

As the control component us appears quadratically in the cost functional and is uncon-
strained, it is determined uniquely by minimum condition (20) which yields

OH OH
a—u2(t) + Xjo.0.2)(t + s)a—u2(t +s)=0 for te][0,0.2].

Thus we have
OOQU/Q(t) + 01)\2@) + X[0,0.2] (t + S) 09)\2(t + S) =0 for te [O, 02],
which in view of 0.2 — s = 0.18 determines the control u, by

—5>\2(t) — X[0,0.2 (t -+ S) . 45)\2(t —+ 5) for te [0, 018]
u(t) = { “5M(t) o for ¢ e 0.18, 0.2] } - 7)
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The control law (57) shows that the control uy exhibits here a single discontinuity at
t = 0.18 provided that \y(0.18) # 0 holds. This behavior is different from the undelayed
case where the regularity condition of the Hamiltonian function implies the continuity of
control.

Remark: The rather large computing time of several hours for this CSTR problem is
caused by three factors: (1) the delay in the control variable ug, (2) the control u, is
not penalized in the cost functional, and (3) the prescribed terminal conditions z(0.2) =
(0,0,0). The convergence is speeded up considerably by introducing the penalty term
0.01uy(t)? in the cost functional and deleting the terminal conditions. This situation
occurs in a similar CSTR, problem with n = 4 state variables but no delay in the control
variable; cf. Dadebo, Luus [9]. Using a fine grid with N = 20000, the CPU time for
computing the optimal solution of this CSTR problem is in the range of a minute.

8 Optimal control of a renewable resource

In this section, we discuss the optimal control of a logistic growth process. Such a model
can be used in biology to describe pathogenic cell growth in inflammatory processes,
whereas in economy it describes the interaction between production and consumption or
the harvesting of a renewable resource.

A well-known example is optimal fishing, where the fact, that overfishing reduces the
profit for the fishing industry in the long run, indicates the importance of developing of a
long-time fishing strategy.

The following model is based on models developed by May |20, 21| and has been studied
by Feddermann [10]. Let z(¢) denote the biomass population and wu(t) the harvesting
effort. In the following control model with fixed final time ¢; > 0, only the state variable
x(t) has a delay r > 0:

Maximize J(u,z) = /0 ' e (pu(t) — cpx(t) " u(t)®) dt (58)
subject to
#(t) = az(t) (1 _ ot - 7’)) —u(b), (59)
x(t) = xo, te[—r0], (60)
x(t) > zo, tel0,ty], (61)
u(t) >0, tel0,ty] (62)

A similar model with a linear cost functional was considered in Clarke, Wolenski [7] as an
illustrative example to compute the sensitivity of the value function with respect to the
time-lag r. The data are chosen as follows: market price p = 2, discount rate d = 0.05,
harvesting cost cg = 0.2, growth rates a = 3 and b = 5, initial value xq = 2 and final time
ty = 20.

For these data, our computations show the state and control inequality constraints (61)
and (62) do not become active. Hence, we do need to take into account the multiplier u
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in the Hamiltonian (7) which is given here by (note that we are minimizing):
H(ta T,Y,u, )‘) = e_dt(_pu + CEz_lug) + A <al' <1 - %) B u) ’

The adjoint equation (18) and transversality condition (19) yield

A(t) = epea2()u’(t) — aA(t) (1 R T))

a (63)
+ Xloag) (E+T)AE +r)pa(t+7), Alty) =0.

The minimum condition (20) implies

0
0= T (t) = e (—p + Ber™ (EJ7(1)) — M),
which gives the control relation using the above data:
5 10
u(t) = \/§ exp(0.05t) x(t) A(t) + ?x(t) . (64)

We apply the discretization methods in section 5 and solve the resulting nonlinear pro-
gramming problem (NLP) with a mesh size of N = 40000 grid points by the Interior Point
Code LOQO developed by Vanderbei |31, 32|. For different delays r > 0, the uncontrolled
state trajectories (t) with u(¢) = 0 are shown in Fig. 8(a) and are contrasted in Fig. 8(b)
with the optimal state trajectories. Optimal controls and the associated adjoint functions
are depicted in Fig. 9. Feddermann [10] has obtained similar results using the optimal
control package NUDOCCCS developed by Biiskens [4]. We conclude this section by
listing the computed values of the (maximized) objective functional (58) and the initial
values A(0) for different delays:
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r=00: J=056290449, A(0)=—0.797255
r=01: J=056416287, A(0)=—0.801229
r=02: J=056542214, A(0)= —0.805113
r=03: J=>56.662908, A(0)=—0.808916
r=04: J=>56.780054, A(0)=—0.812444
r=05: J=D56876896, A(0)=—0.815298

Clarke, Wolenski |7] have presented conditions under which the optimal value function
V' = V/(r) is differentiable w.r.t. the delay r. It would be of interest to verify their explicit
formula numerically for the derivative dV/dr of the value function at » = 0. The above
results yield the crude approximation dV (r)/dr ~ 1.2 at r = 0.

9 Conclusion

The purpose of this paper was twofold. Firstly, a Pontryagin type minimum principle
was derived for retarded optimal control problems with delays in the state and control
variable when the control system is subject to a mixed control-state constraint. Under
the assumption that the ratio of state and control delay is a rational number (this is not
a restriction for numerical computation), the retarded control system was transformed to
an augmented nondelayed control problem, to which the classical Pontryagin minimum
principle is applicable. Then a suitable retransformation of state, control and adjoint
variables yields the minimum principle for the retarded control problem. The second goal
was to develop efficient numerical methods for computing the optimal state, control and
adjoint variables. In particular, the adjoint variables enable us to check the the necessary
optimality conditions with high accuracy. We have presented a discretization method (for
simplicity only Euler’s method) whereby the control problem is transcribed into a high-
dimensional nonlinear programming problem. Excellent results have been obtained using
the optimization solvers LOQO by Vanderbei [31|, IPOPT by Wichter et al. [33, 34| or,
alternatively, the solver NUDOCCCS by Biiskens [4].

Several issues for retarded control problems, which could not adequately be addressed in
this paper, require further work. The theory of bang bang and singular control problems
initiated by Soliman, Ray |30] should be studied in more detail; cf. also Kern [19]. The
transformation techniques in section 4 can also be applied to retarded control problems
with pure state inequality constraints. This approach will eventually lead to conditions,
under which the multipliers associated with state constraints (cf. Angell, Kirsch [1]) are
sufficiently regular. Finally, the theory of second order sufficient conditions (cf. Chan,
Yung [6] for unconstrained control problems) should be generalized to control problems
with constraints and must be made amenable to numerical verification.
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