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Abstra
tOptimal 
ontrol problems with delays in state and 
ontrol variables are studied.Constraints are imposed as mixed 
ontrol�state inequality 
onstraints. Ne
essaryoptimality 
onditions in the form of Pontryagin's minimum prin
iple are established.The proof pro
eeds by augmenting the delayed 
ontrol problem to a nondelayedproblem with mixed terminal boundary 
onditions to whi
h Pontryagin's minimumprin
iple is appli
able. Dis
retization methods for the delayed 
ontrol problem aredis
ussed whi
h amount to solving a large-s
ale nonlinear programming problem. Itis shown that the Lagrange multipliers asso
iated with the programming problemprovide a 
onsistent dis
retization of the advan
ed adjoint equation for the delayed
ontrol problem. An analyti
al example and two numeri
al examples from 
hemi
alengineering and e
onomi
s illustrate the results.1 Introdu
tionDi�erential 
ontrol systems with delays in state or 
ontrol variables play an importantrole in the modelling of real�life phenomena in various �elds of appli
ations. Many papershave been devoted to delayed (other terminology: time lag, retarded, hereditary) optimal
ontrol problems and the derivation of ne
essary optimality 
onditions. Let us brie�yreview some papers 
on
erning di�erent 
lasses of 
ontrol problems. An introdu
tion totime delay 
ontrol problems 
an be found in O�guztöreli [24℄. Kharatishvili [17℄ was �rstto provide a maximum prin
iple for optimal 
ontrol problems with a 
onstant state delay.In [18℄, he gave similar results for 
ontrol problems with pure 
ontrol delays. Halany[14℄ proves a maximum prin
iple for optimal 
ontrol problems with multiple 
onstantdelays in state and 
ontrol variables whi
h, however, are 
hosen to be equal for stateand 
ontrol. Similar results were obtained by Ray, Soliman [30℄. Guinn [13℄ sket
hes asimple method for obtaining ne
essary 
onditions for 
ontrol problems with a 
onstantdelay in the state variable. He suggests to augment the delayed 
ontrol problem whi
hyields a higher-dimensional undelayed 
ontrol problem to whi
h the standard maximumprin
iple is appli
able. Banks [3℄ derives a maximum prin
iple for 
ontrol systems with atime-dependent delay in the state variable. Delays in the 
ontrol are admitted for systemslinear in the 
ontrol variable. Colonius and Hinri
hsen [8℄ provide a uni�ed approa
h to
ontrol problems with delays in the state variable by applying the theory of ne
essary
onditions for optimization problems in fun
tion spa
es. All arti
les mentioned so far donot 
onsider general 
ontrol or state inequality 
onstraints.Angell and Kirs
h [1℄ treat fun
tional di�erential equations with fun
tion-spa
e stateinequality 
onstraints. However, they do not dis
uss the regularity of the multiplier as-so
iated with the state 
onstraint and do not provide a numeri
al example with a purestate spa
e 
onstraint. To our knowledge, optimal 
ontrol problems with 
onstant delaysin state and 
ontrol variables and mixed 
ontrol-state inequality 
onstraints have not yet1



been 
onsidered in the literature. The �rst goal in this paper is to derive a Pontryagintype minimum (maximum) prin
iple for this 
lass of delayed 
ontrol problems. Con-
erning the development of numeri
al methods and the numeri
al treatment of pra
ti
alexamples, our impression is that this topi
 has not yet been adequately addressed in theliterature. Bader [2℄ applies shooting methods to the boundary value problem for theretarded state variable and the advan
ed adjoint variable. He su

essfully solves severala
ademi
 examples, but his method is not 
apable of solving 
ontrol problems with a more
ompli
ated 
ontrol stru
ture, e.g., the CSTR rea
tor problem des
ribed in Soliman, Ray[29, 30℄. A similar CSTR rea
tor problem is 
onsidered in Oh, Luus [25℄ and Dadebo,Luus [9℄ who use the di�erential dynami
 programming method with a moderate numberof stages. Therefore, the se
ond goal of this paper is the presentation of dis
retizationand nonlinear programming methods whi
h provide the optimal state, 
ontrol and adjointfun
tions and allow for an a

urate 
he
k of the ne
essary 
onditions.The organization of the paper is as follows. Se
tion 2 presents the statement of the delayed
ontrol problem with mixed state�
ontrol 
onstraints. In se
tion 3, we re
all the minimumprin
iple for undelayed 
ontrol problems with 
ontrol�state 
onstraints. Here, a 
ru
ialfeature is that initial and terminal boundary 
onditions must be 
onsidered in a generalmixed form. Se
tion 4 is devoted to the derivation of �rst order ne
essary optimality
onditions for the delayed optimal 
ontrol problem given in Se
tion 2. Essentially, theaugmentation approa
h of Guinn [13℄ is generalized whi
h allows to use the minimumprin
iple in se
tion 3. For te
hni
al reasons, we need the assumption that the ratio ofthe time delays in state and 
ontrol is a rational number. The analysis in this se
tion isbased on the theses of Göllmann [12℄ and Kern [19℄. In se
tion 5, the Euler dis
retizationfor the delayed 
ontrol problem is dis
ussed whi
h leads to a high-dimensional nonlinearprogramming problem. As in the undelayed 
ase it 
an be shown that the Lagrangemultipliers 
orresponding to the optimization problem 
onstitute a Euler dis
retizationfor the advan
ed adjoint equations. In se
tion 6, we dis
uss an analyti
al example whi
hallows to test the a

ura
y of the numeri
al solution for various stepsizes. Se
tions 7 and8 are devoted to the numeri
al solution and the veri�
ation of the minimum prin
iple fortwo pra
ti
al examples. The �rst example is taken from [29, 30℄ and des
ribes the optimal
ontrol of a 
hemi
al tank rea
tor (CSTR rea
tor), while the se
ond example arises in theoptimal harvesting of a resour
e (optimal �shing).2 Optimal 
ontrol problems with delays in state and
ontrolWe 
onsider retarded optimal 
ontrol problems with 
onstant delays r ≥ 0 in the statevariable x(t) ∈ Rn and s ≥ 0 in the 
ontrol variable u(t) ∈ Rm. The following retarded
ontrol problem with mixed 
ontrol-state inequality 
onstraints will be referred to asproblem (ROCP):Minimize J(u, x) = g(x(b)) +

∫ b

a

L(t, x(t), x(t− r), u(t), u(t− s)) dt (1)
2



subje
t to the retarded di�erential equation, boundary 
onditions and mixed 
ontrol-stateinequality 
onstraintṡ
x(t) = f(t, x(t), x(t− r), u(t), u(t− s)), a.e. t ∈ [a, b], (2)
x(t) = ϕ(t), t ∈ [a− r, a], (3)
u(t) = ψ(t), t ∈ [a− s, a), (4)

w(x(b)) = 0, (5)
C(x(t), u(t)) ≤ 0, t ∈ [a, b]. (6)For 
onvenien
e, all fun
tions

g : Rn → R,

L : [a, b] × Rn × Rn × Rm × Rm → R,

f : [a, b] × Rn × Rn × Rm × Rm → Rn,

w : Rn → Rq, 0 ≤ q ≤ n,

C : Rn × Rm → Rp,are assumed to be we twi
e 
ontinuously di�erentiable w.r.t. all arguments. A pair offun
tions (u, x) ∈ L∞([a, b],Rm)×W1,∞([a, b],Rn) is 
alled an admissible pair for problem(ROCP), if the state x and 
ontrol u satisfy the restri
tions (2)�(6). An admissible pair
(û, x̂) is 
alled a lo
ally optimal pair or weak minimum for (ROCP), if

J(û, x̂) ≤ J(u, x)holds for all (u, x) admissible in a neighborhood of (û, x̂) with ‖x(t)−x̂(t)‖, ‖u(t)−û(t)‖ <
ε for all t ∈ [a, b] and ε > 0 su�
iently small. Instead of 
onsidering a weak minimumwe 
ould work with the more general notion of a Pontryagin minimum; 
f. Milyutin,Osmolovskii [22℄.The Hamiltonian or Pontryagin fun
tion H for the delayed 
ontrol problem (ROCP) isde�ned in analogy to the one for nondelayed problems. However, in 
ontrast to thenondelayed Hamiltonian, two additional arguments y ∈ Rn and v ∈ Rm denoting thedelayed state and 
ontrol variable are needed:

H(t, x, y, u, v, λ, µ) := L(t, x, y, u, v) + λ∗f(t, x, y, u, v) + µ∗C(t, x, u),

λ ∈ Rn, µ ∈ Rp.
(7)Here and in the sequel ∗ denotes the transposition. We shall obtain ne
essary optimality
onditions for the retarded 
ontrol problem (ROCP) by �rst transforming (augmenting)problem (ROCP) to a higher-dimensional nondelayed 
ontrol problem. To further studythe augmented problem, we need Pontryagin minimum prin
iple for nondelayed 
ontrolproblems with mixed 
ontrol-state 
onstraints whi
h will be reviewed in the next se
tion.3 First order ne
essary optimality 
onditions for un-delayed optimal 
ontrol problems with mixed 
on-straintsFormally, any undelayed 
ontrol problem is 
ontained in the retarded problem (ROCP)by 
hosing r = s = 0. Due to the absen
e of delays, the initial value pro�les given by3




onditions (3) and (4) are omitted. However, the 
ontinuity of the state variables in theaugmented problem ne
essitates to introdu
e a general boundary 
ondition of mixed type,
w(x(a), x(b)) = 0, (8)whi
h repla
es the terminal boundary 
ondition (5). The Hamiltonian or Pontryaginfun
tion for the nondelayed 
ontrol problem is given by

H(t, x, u, λ, µ) := L(t, x, u) + λ∗f(t, x, u) + µ∗C(t, x, u). (9)The extension of the 
lassi
al Pontryagin minimum prin
iple to mixed 
ontrol�state 
on-straints (6) requires a regularity 
ondition or 
onstraint quali�
ation. For a lo
ally optimalpair (û.x̂) and t ∈ [a, b] , let J0(t) := {j ∈ {1, . . . , p} |Cj(t, x̂(t), û(t)) = 0} denote the setof a
tive indi
es for the inequality 
onstraint (6). Then we assume the rank 
ondition:rank (

∂Cj(t, x̂(t), û(t)

∂u

)

j∈J0(t)

= #J0(t) . (10)The following ne
essary optimality 
onditions are to be found in Hestenes [15℄, Milyutin,Osmolovskii [22℄ and Neustadt [23℄.Theorem 3.1 (Pontryagin's Minimum Prin
iple.) Let (û, x̂) be a lo
ally optimal pair forthe 
ontrol problem (ROCP) without delays, i.e., r = s = 0, and the mixed boundary
ondition (8). Assume that the regularity 
ondition (10) is satis�ed. Then there exist a
ostate (adjoint) fun
tion λ̂ ∈ W1,∞([a, b],Rn), a multiplier fun
tion µ̂ ∈ L∞([a, b],Rp)and a multiplier ν̂ ∈ Rq, su
h that the following 
onditions hold for a.e. t ∈ [a, b]:(i) adjoint di�erential equation:
˙̂
λ(t)∗ = −Hx(t, x̂(t), û(t), λ̂(t), µ̂(t)); (11)(ii) transversality 
onditions:

λ̂(a)∗ = −gxα(x̂(a), x̂(b)) − ν̂∗wxα(x̂(a), x̂(b)), (12)
λ̂(b)∗ = gxβ(x̂(a), x̂(b)) + ν̂∗wxβ(x̂(a), x̂(b)); (13)(iii) minimum 
ondition for the Hamiltonian fun
tion:

H(t, x̂(t), û(t), λ̂(t), µ̂(t)) ≤ H(t, x̂(t), u, λ̂(t), µ̂(t)), (14)for all u ∈ Rm satisfying C(t, x̂(t), u) ≤ 0;(iv) multiplier 
ondition and 
omplementarity:
µ̂(t) ≥ 0 and µ̂i(t)Ci(t, x̂(t), û(t)) = 0, i = 1, . . . , p. (15)Herein, gxα, gxβ , wxα and wxβ denote partial derivatives of g = g(xα, xβ) and w =

w(xα, xα) with respe
t to their �rst and se
ond argument. In parti
ular, the minimum
ondition (14) yields the lo
al minimum 
ondition
Hu(t, x̂(t), û(t), λ̂(t), µ̂(t)) = 0 for a.e. t ∈ [a, b]. (16)In the next se
tion, Theorem 3.1 will be used to derive ne
essary 
onditions for theretarded 
ontrol problem (ROCP). 4



4 Ne
essary optimality 
onditions for delayed optimal
ontrol problems with mixed 
ontrol-state 
onstraintsNow we study the retarded 
ontrol problem (ROCP) with 
onstant delays r, s ≥ 0 and
(r, s) 6= (0, 0). We shall use a transformation te
hnique whi
h requires the te
hni
alassumption that the ratio of the delays is a rational number.Assumption 4.1 (Rationality Assumption) Assume that r, s ≥ 0, (r, s) 6= (0, 0) and

r

s
∈ Q for s > 0, or s

r
∈ Q for r > 0 . (17)In parti
ular, this assumption holds for any 
ouple of rational numbers (r, s), where atleast one number is non-zero. The following �rst order ne
essary 
onditions 
an be foundin Göllmann [12℄; a pre
ise proof under Assumption 4.1. has been given by Kern [19℄.Theorem 4.2 (Minimum prin
iple for the retarded optimal 
ontrol problem (ROCP).) Let

(û, x̂) be lo
ally optimal for (ROCP) with delays satisfying Assumption 4.1. Then there ex-ist a 
ostate (adjoint) fun
tion λ̂ ∈ W1,∞([a, b],Rn), a multiplier fun
tion µ̂ ∈ L∞([a, b],Rp)and a multiplier ν̂ ∈ Rq, su
h that the following 
onditions hold for a.e. t ∈ [a, b]:(i) adjoint di�erential equation:
˙̂
λ(t)∗ = − Ĥx(t) − χ[a,b−r](t)Ĥy(t+ r)

= −Hx(t, x̂(t), x̂(t− r), û(t), û(t− s), λ̂(t), µ̂(t))

− χ[a,b−r](t)Hy(t+ r, x̂(t+ r), x̂(t), û(t+ r), û(t+ r − s), λ̂(t+ r), µ̂(t+ r)),

(18)where Ĥx(t) and Ĥy(t) denote the evaluation of the partial derivatives Hx and Hy along
x̂(t), x̂(t− r), û(t), û(t− s), λ̂(t), µ̂(t);(ii) transversality 
ondition:

λ̂(b)∗ = gx(x̂(b)) + ν̂∗wx(x̂(b)); (19)(iii) minimum 
ondition for the Hamiltonian fun
tion:
Ĥ(t) + χ[a,b−s](t)Ĥ(t+ s)

= H(t, x̂(t), x̂(t− r), û(t), û(t− s), λ̂(t), µ̂(t))

+ χ[a,b−s](t)H(t+ s, x̂(t+ s), x̂(t+ s− r), û(t+ s), û(t), λ̂(t+ s), µ̂(t+ s))

≤ H(t, x̂(t), x̂(t− r), u, û(t− s), λ̂(t), µ̂(t))

+ χ[a,b−s](t)H(t+ s, x̂(t+ s), x̂(t+ s− r), û(t+ s), u, λ̂(t+ s), µ̂(t+ s)),

(20)
for all u ∈ Rm satisfying C(t, x̂(t), u) ≤ 0;(iv) multiplier 
ondition and 
omplementarity 
ondition:

µ̂(t) ≥ 0 and µ̂i(t)Ci(t, x̂(t), û(t)) = 0, i = 1, . . . , p. (21)
5



Proof. The proof uses a transformation te
hnique suggested by Guinn [13℄ to derive �rstorder ne
essary 
onditions for un
onstrained optimal 
ontrol problems with pure statedelays. In view of the rationality assumption (17) there exists integers k, l ∈ N with
r

s
=
k

l
for s 6= 0,

s

r
=
l

k
for r 6= 0.Without loss of generality we may assume the �rst 
ase. Then the delays r, s are integermultiples of the interval length h := s/l,

r = k · h, s = l · h, k, l ∈ N.The time interval [a, a+h] will be used below as the basis time interval for the augmented
ontrol problem. Without loss of generality we may further assume that the intervallength b− a represents an integer multiple of h, i.e., we have b− a = Nh with N ∈ N+.Now we introdu
e the state variable Ξ∗ = (ξ∗0 , . . . , ξ
∗
N−1) ∈ RNn, ξi ∈ Rn, and 
ontrolvariable Θ∗ = (θ∗0, . . . , θ

∗
N−1) ∈ RNm, θi ∈ Rm, whi
h are de�ned by

ξi(t) := x(t+ (ih), θi(t) := u(t+ ih), for t ∈ [a, a+ h], i = 0, . . . , N − 1. (22)The 
ontinuity of the state x(t) in [a, b] implies the following boundary 
onditions for theaugmented state Ξ(t),
ξi(a+ h) = ξi+1(a), i = 0, . . . , N − 2,whi
h 
an be written as

Vi(ξi+1(a), ξi(a+ h)) := ξi(a+ h) − ξi+1(a) = 0, i = 0, . . . , N − 2. (23)In terms of the new state and 
ontrol variables Ξ and Θ, the retarded 
ontrol problem(ROCP) is equivalent to the following undelayed optimal 
ontrol problem on the timeinterval [a, a + h]:Minimize J(Θ,Ξ) = g(ξN−1(a + h)) +

∫ a+h

a

N−1
∑

i=0

L(t+ ih, ξi(t), ξi−k(t), θi(t), θi−l(t)) dt(24)subje
t to
ξ̇i(t) = f(t+ ih, ξi(t), ξi−k(t), θi(t), θi−l(t)), i = 0, . . . , N − 1, t ∈ [a, a+ h], (25)

Vi(ξi+1(a), ξi(a+ h)) = 0, i = 0, . . . , N − 2,

VN−1(ξN−1(a+ h)) := w(ξN−1(a+ h)) = 0,
(26)

C(t+ ih, ξi(t), θi(t)) ≤ 0, i = 0, . . . , N − 1, t ∈ [a, a+ h]. (27)The �xed starting pro�les (3) and (4) are in
luded in this notation by 
onsidering thevariables ξ−k, . . . , ξ−1 and θ−l, . . . , θ−l de�ned by
ξi(t) := ϕ(t+ ih), i = −k, . . . ,−1,

θi(t) := ψ(t+ ih), i = −l, . . . ,−1.6



However, note that ξ−k, . . . , ξ−1 and θ−l, . . . , θ−1 do not represent optimization variables.Introdu
ing adjoint variables and multipliers for the augmented problem by (24)�(27) by
Λ = (Λ0, . . . ,ΛN−1)

∗ ∈ RN ·n, M = (M0, . . . ,MN−1)
∗ ∈ RN ·p,the Hamiltonian (9) for the nondelayed augmented 
ontrol problem is given by

K(t,Ξ,Θ,Λ,M) =
N−1
∑

i=0

[L(t+ ih, ξi, ξi−k, θi, θi−l) + Λ∗
iL(t+ ih, ξi, ξi−k, θi, θi−l)]

+

N−1
∑

i=0

M∗
i C(t+ ih, ξi, θi). (28)Every lo
ally optimal pair (û(·), x̂(·)) for (ROCP) de�nes a pair (Θ̂(·), Ξ̂(·)) that min-imizes the augmented problem (24)�(27). Pontryagin's minimum prin
iple for nonde-layed problems (Theorem 3.1) assures the existen
e of a 
ostate (adjoint) fun
tion Λ̂ ∈

W1,∞([a, a + h],RN ·n), a multiplier fun
tion M̂ ∈ L∞([a, a + h],RN ·p) and a ve
tor
ν ∈ R(N−1)n+q, ν̂ = (ν̂∗0 , . . . , ν̂

∗
N−2, ν̂

∗
N−1)

∗ where ν̂0, . . . ν̂N−2 ∈ Rn and ν̂N−1 ∈ Rq, su
hthat the following 
onditions hold for almost every t ∈ [a, a+ h]:1. adjoint di�erential equation:
d

dt
Λ̂(t)∗ = −KΞ(t, Ξ̂(t), Θ̂(t), Λ̂(t), M̂(t)); (29)2. transversality 
ondition:

Λ̂i(a)
∗ = −ν̂∗i

∂

∂ξi
Vi(ξ̂i+1(a), ξ̂i(a+ h)), i = 0, . . . , N − 2, (30)

Λ̂i(a + h)∗ = ν̂∗i
∂

∂ξi+1
Vi(ξ̂i+1(a), ξ̂i(a+ h)), i = 0, . . . , N − 2, (31)

Λ̂N−1(a + h)∗ = gx(ξ̂N−1(a+ h)) + ν̂∗N−1wx(ξ̂N−1(a + h)); (32)3. minimum 
ondition for the Hamiltonian:
K(t, Ξ̂(t), Θ̂(t), Λ̂(t), M̂(t)) ≤ K(t, Ξ̂(t),Θ, Λ̂(t), M̂(t)) (33)for all admissible Θ = (θ∗0, ..., θ

∗
N−1)

∗ ∈ RNm with C(t + ih, ξ̂i(t), θi) ≤ 0 and i =
0, . . . , N − 1;4. multiplier 
ondition and 
omplementarity:

M̂(t) ≥ 0, M̂i(t)
∗C(t+ ih, ξ̂i(t), θ̂i(t)) = 0, i = 0, . . . , N − 1. (34)Evaluating the adjoint equation for the 
omponent Λ̂j, (0 ≤ j ≤ N − 1) yields

d

dt
Λ̂j(t)

∗ = − Lx(t+ jh, ξ̂j(t), ξ̂j−k(t), θ̂j(t), θ̂j−l(t))

− χ{0,...,N−1−k}(j)Ly(t+ (j + k)h, ξ̂j+k(t), ξ̂j(t), θ̂j+k(t), θ̂j+k−l(t))

− Λ̂j(t)
∗fx(t+ jh, ξ̂j(t), ξ̂j−k(t), θ̂j(t), θ̂j−l(t))

− χ{0,...,N−1−k}(j)Λ̂j+k(t)
∗Ly(t+ (j + k)h, ξ̂j+k(t), ξ̂j(t), θ̂j+k(t), θ̂j+k−l(t))

− M̂j(t)
∗Cx(t+ jh, ξ̂j(t), θ̂j(t)).7



Now we are able to de�ne the adjoint fun
tion λ̂ ∈ W1,∞([a, b],Rn) and multiplier fun
tion
µ̂ ∈ L∞([a, b],Rp) for the retarded 
ontrol problem (ROCP) in the following way. For
t ∈ [a, b] there exists 0 ≤ j ≤ N − 1 with a+ jh ≤ t ≤ a + (j + 1)h. We put

λ̂(t) := Λ̂j(t− jh), µ̂(t) := M̂(t− jh) (35)and obtain from the previous adjoint equation:
˙̂
λ(t) =

d

dt
Λ̂j(t− jh)

= − Lx(t, x̂(t), x̂(t− kh), û(t), û(t− lh))

− χ{0,...,N−1−k}(j)Ly(t+ kh, x̂(t+ kh), x̂(t), û(t+ kh), û(t+ kh− lh))

− λ̂(t)∗fx(t, x̂(t), x̂(t− kh), û(t), û(t− lh))

− χ{1,...,N−1−k}(j)λ̂(t+ kh)∗fy(t+ kh, x̂(t+ kh), x̂(t), û(t+ kh), û(t+ kh− lh))

− µ̂(t)∗Cx(t, x̂(t), û(t))

= −H(t, x̂(t), x̂(t− r), û(t), û(t− s), λ̂(t), µ̂(t))

− χ[a,b−r](t)H(t+ r, x̂(t+ r), x̂(t), û(t+ r), û(t+ r − s), λ̂(t+ r)µ̂(t+ r)).Thus we have found the adjoint equation (18). The transversality 
ondition (32) for ΛN−1,
Λ̂N−1(a+ h)∗ = gx(ξ̂N−1(a + h)) + ν̂∗N−1wx(ξ̂N−1(a+ h)),gives the desired transversality 
ondition (19) for (ROCP) in view of b = a+Nh:

λ̂(a +Nh) = gx(x̂(a +Nh)) + ν̂∗wx(x̂(a +Nh)), ν̂ := ν̂N−1 ∈ Rq.To verify the minimum 
ondition for the Hamiltonian H, we 
onsider t ∈ [a, b] and the
orresponding index j ∈ {0, . . . , N − 1} with a + jh ≤ t ≤ a + (j + 1)h. Putting
t′ := t− jh ∈ [a, a+ h], the minimum 
ondition (33) gives

K(t′, Ξ̂(t′), Θ̂(t′), Λ̂(t′), M̂(t′)) ≤ K(t′, Ξ̂(t′),Θ, Λ̂(t′), M̂(t′)), (36)for all admissible Θ ∈ RNm. We now de�ne an admissible 
ontrol poli
y Θ(·) = (θ∗0, ...,
θ∗N−1)

∗ ∈ RNm by
θi :=

{

û(t′ + ih), i 6= j
u, i = j

, i = 0, . . . , N − 1,where the 
ontrol ve
tor u ∈ Rm is admissible for (ROCP), i.e., C(t, x̂(t), u) ≤ 0. Evalu-ating the inequality (36) for this ve
tor Θ and removing equal expressions on both sides,we get for the remaining terms asso
iated with j and j + l:
8



L(t′ + jh, ξ̂j(t
′), ξ̂j−k(t

′), û(t′ + jh), û(t′ + (j − l)h))

+ Λ̂j(t
′)∗f(t′ + jh, ξ̂j(t

′), ξ̂j−k(t
′), û(t′ + jh), û(t′ + (j − l)h))

+ M̂j(t
′)∗C(t′, ξ̂j(t

′), û(t′ + jh))

+ χ{0,...,N−1−l}(j)L(t′ + (j + l)h, ξ̂j+l(t
′), ξ̂j+l−k(t

′), û(t′ + (j + l)h), û(t′ + jh))

+ χ{0,...,N−1−l}(j)Λ̂j+l(t
′)∗f(t′ + (j + l)h, ξ̂j+l(t

′), ξ̂j+l−k(t
′), û(t′ + (j + l)h), û(t′ + jh))

+ χ{0,...,N−1−l}(j)M̂j+l(t
′)∗C(t′, ξ̂j+l(t

′), û(t′ + (j + l)h))

≤L(t′ + jh, ξ̂j(t
′), ξ̂j−k(t

′), u, û(t′ + (j − l)h))

+ Λ̂j(t
′)∗f(t′ + jh, ξ̂j(t

′), ξ̂j−k(t
′), u, û(t′ + (j − l)h))

+ M̂j(t
′)∗C(t′, ξ̂j(t

′), u)

+ χ{0,...,N−1−l}(j)L(t′ + (j + l)h, ξ̂j+l(t
′), ξ̂j+l−k(t

′), û(t′ + (j + l)h), u)

+ χ{0,...,N−1−l}(j)Λ̂j+l(t
′)∗f(t′ + (j + l)h, ξ̂j+l(t

′), ξ̂j+l−k(t
′), û(t′ + (j + l)h), u)

+ χ{0,...,N−1−l}(j)M̂j+l(t
′)∗C(t′, ξ̂j+l(t

′), û(t′ + (j + l)h))Rede�ning the fun
tions a

ording to (35), we obtain the desired minimum 
ondition (20)for H sin
e t′ = t − jh. Condition (34) immediately implies the multiplier and 
omple-mentarity 
ondition (21) in view of (35). 2Remark: Soliman, Ray [30℄ have dis
ussed bang-bang and singular 
ontrols whi
h appearin 
ontrol problems, where the 
ontrol u ∈ Rm is partitioned into 
ontrols u1 ∈ Rm1and
u2 ∈ Rm2 with 
ontrol u1 appearing linearly in the system. The 
ontrol-state 
onstraint(6) then redu
es to bounds for u1,

u1,min ≤ u1(t) ≤ u1,max for t ∈ [a, b], u1,min, u1,max ∈ Rm1 .The minimum 
ondition (20) shows that the 
ontrol u1(t) is determined by the sign ofthe 
omponents of the swit
hing ve
tor fun
tion
σ(t) = Hu1

(t) + χ[a,b](t+ s)Hv1
(t+ s), (37)while the 
ontrol u2 satis�es the equation

0 = Hu2
(t) + χ[a,b](t+ s)Hv2

(t+ s). (38)The CSTR 
ontrol problem in se
tion 6 provides an example with su
h a partitioning of the
ontrol ve
tor. Soliman, Ray [30℄ study jun
tion phenomena for bang-bang and singularar
s. They give 
onditions under whi
h jun
tion results for 
ontrol systems without delay
arry over to delayed systems, but also give examples for delayed systems whi
h exhibitunusual features whi
h require further work to develop fully the theory. Further examplesillustrating these unusual features have been worked out by Kern [19℄.
9



5 Dis
retization, optimization and the 
onsisten
y ofadjoint variablesWithout restri
tions we may assume that the 
ost fun
tional for the retarded 
ontrolproblem (ROCP) is given in Mayer form
J(u, x) = g(x(b)).The redu
tion of the more general 
ost fun
tional (1) to Mayer form pro
eeds as forundelayed 
ontrol systems by introdu
tion of the additional state variable x0 through theretarded equation

ẋ0(τ) = L(t, x(t), x(t− r), u(t), u(t− s)), x0(a) = 0.Then the 
ost fun
tional (1) is rewritten in Mayer form J(u, x̃) = g(x(b))+x0(b) with thenew state variable x̃ = (x0, x
∗) ∈ Rn+1.As for undelayed di�erential equations, there exist standard integration s
hemes of Eu-ler or Runge�Kutta type for the retarded di�erential equation ẋ(t) = f(t, x(t), x(t −

r), u(t), u(t− s)). Using an uniform stepsize h > 0, it is 
ru
ial to mat
h the delays r and
s to the stepsize h by the following assumption:

r

h
= k ∈ N,

s

h
= l ∈ N . (39)Note that, if h satis�es (39), any fra
tion h/ν with ν ∈ N also does. Therefore, therestri
tion (39) is satis�ed for all �ner grids. For simpli
ity, we dis
uss Euler's integrationmethod with stepsize h = (b−a)/N for N ∈ N+ and grid points ti = a+ ih, i = 0, 1, ..., N.Using the approximations x(ti) ≈ xi ∈ Rn, u(ti) ≈ ui ∈ Rm, we obtain the followingnonlinear programming problem (NLP):Minimize J(u, x) = g(xN) (40)subje
t to

−xi+1 + xi + hf(ti, xi, xi−k, ui, ui−l) = 0, i = 0, .., N − 1, (41)
x−i = ϕ(a− ih), i = 0, .., k, (42)
u−i = ψ(a− ih), i = 1, .., l, (43)

w(xN) = 0, (44)
C(ti, xi, ui) ≤ 0, i = 0, .., N. (45)The optimization variable in (NLP) is represented by the ve
tor

z := (u0, x0, u1, x1, ..., uN , xN) ∈ R(N+1)(m+n).The ne
essary optimality 
onditions for (NLP) by Karush-Kuhn-Tu
ker yield Lagrangemultipliers λ̂i ∈ Rn (i = 0, ..., N − 1) for the equation (41), a multiplier µ̂i ∈ Rp (i =
0, ..., N) for the inequality 
onstraint (45) and a multiplier ν ∈ Rq for the boundary 
on-dition (44). Upon de�ning the multiplier λ̂N := gx(x̂N) + ν∗Nwx(x̂N), it is straightforwardto verify that the following approximations hold:

λ̂(ti) ≈ λ̃i, µ̂(ti) ≈
1

h
µ̂i (i = 0, .., N), ν̂ ≈ ν̂N . (46)10



The important point to note here is the proper s
aling of the multiplier µ̂i ∈ Rp. Themultipliers λ̂i ∈ Rn (i = 0, ..., N − 1) 
an be identi�ed as solutions to the dis
retizedadvan
ed adjoint equation (18) with boundary 
ondition (19).To solve the optimization problem (NLP) in (40) � (45), we employ the programminglanguage AMPL in Fourer, Gay and Kernighan [11℄ together with the optimization solversLOQO developed by Vanderbei [31℄ or IPOPT by Wä
hter et al. [33, 34℄. Both solversalso provide the Lagrange multipliers and hen
e a dis
retization of the adjoint variablesfor the 
ontrol problem (ROCP). Alternatively, the optimization problem (NLP) 
anbe solved using the 
ode NUDOCCCS developed by Büskens [4℄. Instead of Euler'sdis
retization s
heme we also may use any Runge�Kutta type integration s
heme of anorder less than four.For notational ease in the following examples, we suppress the �hat� to denote optimalsolutions.6 An analyti
al exampleWe 
onsider the following optimal 
ontrol problem with the delay r = 1 in the state and
s = 2 in the 
ontrol: Minimize ∫ 3

0

(x2(t) + u2(t)) dt (47)subje
t to
ẋ(t) = x(t− 1)u(t− 2), t ∈ [0, 3], (48)
x(t) = 1, t ∈ [−1, 0], (49)
u(t) = 0, t ∈ [−2, 0]. (50)A 
ontrol-state 
onstraint will be imposed later. The Hamiltonian (7) for this problem is
H(t, x, y, u, v) = x2 + u2 + λyv. (51)For an optimal pair (u, x), the adjoint equations (18) in Theorem 4.2 yield

λ̇(t) = −Hx(t, x(t), x(t− 1), u(t), u(t− 2), λ(t))

−χ[0,2](t)Hy(t+ 1, x(t+ 1), x(t), u(t+ 1), u(t− 1), λ(t+ 1))

= −2x(t) − χ[0,2](t)λ(t+ 1)u(t− 1).It immediately follows from (48)�(50) that
x(t) = 1 for t ∈ [0, 2] .The state variable 
an only be in�uen
ed by the 
ontrol u(t− 2) on the terminal interval

[2, 3]. Hen
e, it su�
es to determine the optimal 
ontrol u(t) on the interval [0, 1]. Themininum 
ondition (20) requires the minimization of the expression
H(t, x(t), x(t− 1), u, u(t− 2)) + χ[0,1](t)H(t+ 2, x(t+ 2), x(t+ 1), u(t+ 2), u)w.r.t. the 
ontrol variable u for t ∈ [0, 3]. For t ∈ [0, 1], we obtain 2u(t)+λ(t+2)x(t+1) =

0, whi
h yields the 
ontrol
u(t) = −

1

2
λ(t+ 2)x(t+ 1) = −

1

2
λ(t+ 2), t ∈ [0, 1].11



On the interval [1, 3], we immediately get
u(t) = 0 for t ∈ [1, 3].Then on [2, 3], the adjoint and state equation be
ome

λ̇(t) = 2x(t) − 2u(t) = 2x(t), ẋ(t) = u(t− 2) = −
1

2
λ(t− 2 + 2) = −

1

2
λ(t).This yields a se
ond order di�erential equation for λ,

λ̈(t) = −2ẋ(t) = λ(t), for t ∈ [2, 3],whi
h has the general solution
λ(t) = Aet +Be−t, x(t) = −

1

2

(

Aet − Be−t
)

.The 
onstants A and B 
an be determined from the transversality 
ondition (19) and the
ontinuity of the state x(t) at t = 2,
λ(3) = 0, x(2) = 1,from whi
h we �nd

A =
−2e−2

e2 + 1
, B =

2e4

e2 + 1
.Then the 
ontrol u on the �rst segment [0, 1] is given by

u(t) =
e−2

e2 + 1
et+2 −

e4

e2 + 1
e−(t+2) for t ∈ [0, 1].Now we evaluate the 
ostate on the se
ond interval [1, 2]. The advan
ed di�erentialequation

λ̇(t) = −2x(t) − λ(t+ 1)u(t− 1) = −2 +
1

2
(λ(t+ 1))2

= −2 +
1

2

(

−2e−2

e2 + 1
et+1 +

2e4

e2 + 1
e−(t+1)

)2and the 
ontinuity of the 
ostate, λ(2−) = λ(2+) = 2(e2−1)
e2+1

≈ 1.523188311, yield theexpli
it solution
λ(t) = λ(2+) +

∫ t

2

(

−2 +
1

2
(λ(τ + 1))2

)

dτ

=
e2t−2 − e6−2t

(e2 + 1)2
− t ·

(

4e2

(e2 + 1)2
+ 2

)

+
4(e2 − 1)

(e2 + 1)2
+ 6 for t ∈ [1, 2].Similarly, we 
an 
ompute λ(t) on [0, 1]. Sin
e x(t) = 1 and u(t) = 0 on [0, 1], the adjointequation redu
es to

λ̇(t) = −2x(t) − λ(t+ 1)u(t− 1) = −2.Then the 
ontinuity of λ in t = 1, λ(1−) = λ(1+) = 2(e2−1)
(e2+1)2

+ 3 ≈ 3.181568497, leads tothe following representation
λ(t) = λ(1+) + 2 − 2t = −2t+

2(e2 − 1)

(e2 + 1)2
+ 5 for t ∈ [0, 1].12



Summing up our �ndings, we have obtained the optimal solution (x, u, λ):for t ∈ [0, 1] : x(t) = 1, u(t) =
e−2

e2 + 1
et+2 −

e4

e2 + 1
e−(t+2),

λ(t) = −2t+
2(e2 − 1)

(e2 + 1)2
+ 5,for t ∈ [1, 2] : x(t) = 1, u(t) = 0,

λ(t) =
e2t−2 − e6−2t

(e2 + 1)2
− t ·

(

4e2

(e2 + 1)2
+ 2

)

+
4(e2 − 1)

(e2 + 1)2
+ 6,for t ∈ [2, 3] : x(t) =

e−2

e2 + 1
et +

e4

e2 + 1
e−t, u(t) = 0, λ(t) =

−2e−2

e2 + 1
et +

2e4

e2 + 1
e−t.The analyti
al optimal solution allows us to determine the optimal performan
e indexexpli
itly after some lengthy 
omputations:

J =

∫ 3

0

(x2(t) + u2(t)) dt =
3

2
−

3e2 + 1

(e2 + 1)2
+ 1 +

e4 + 4e2 − 1

2(e2 + 1)2
= 3 −

2

e2 + 1
≈ 2.76159 .Let us now 
ompare the analyti
al solution with the numeri
al results whi
h are obtainedby applying the dis
retization and optimization methods in se
tion 5. We solve theEuler-dis
retized nonlinear optimization problem (40) � (43) using the interior-point 
odeIPOPT developed by Wä
hter et al. [33, 34℄ with error toleran
e tol =10−10. Thestarting solution is x(t) ≡ 1 and u(t) ≡ 0. Using a 
oarse dis
retization with N = 600grid points, we �nd the performan
e index J(x, u) = 2.765928244 in 0.0127 CPU se
onds.This value means a deviation of about 0.16% from the analyti
al value J = 2.761594156.In
reasing the dis
retization by a fa
tor 100, i.e., using N = 60000 gridpoints, we get

J(x, u) = 2.761638 in 2.5 CPU se
onds. The extremely �ne dis
retization with N =
480000 gridpoints yields J(x, u) = 2.761599 whi
h is 
orre
t in 5 de
imals. In Fig. 1, thenumeri
al solution traje
tories for a mesh of N = 600 grid points are presented.Next, we impose the mixed 
ontrol-state-
onstraint

u(t) + x(t) ≥ 0.3 for t ∈ [0, 6]. (52)We have doubled the length of the time interval to get a more interesting stru
ture ofboundary ar
s for the mixed 
ontrol-state 
onstraint. Here, it is not possible any moreto determine an optimal solution analyti
ally. Again, we use an Euler dis
retization with
N = 600 or N = 60000 grid points. The numeri
al results for the optimal state, theoptimal 
ontrol and the adjoint variable arising from a mesh size of N = 600 points aredisplayed in Fig. 2. The 
onstraint fun
tion x(t) + u(t) and the 
orresponding multiplier
µ(t) are presented in Fig. 3.The performan
e index for N = 600 is J(x, u) = 3.121827278 with CPU = 0.32 se
, while
N = 60000 gives J(x, u) = 3.108259352 with CPU = 65.8 se
. The ne
essary optimality
onditions in Theorem 4.2 provide the existen
e of a multiplier fun
tion µ̂ satisfying

µ(t) ≥ 0, µ(t)(0.3 − u(t) − x(t)) = 0 for t ∈ [0, 6]. (53)Fig. 3 
learly shows that the 
omputed multiplier does satisfy this 
ondition. We have twoboundary ar
s [0, t1], t1 ≈ 0.46, and [t2, 6], t2 ≈ 3.18, where the 
ontrol-state 
onstraintbe
omes a
tive. In the interior of the boundary ar
s, the multiplier µ(t) is stri
tly positive,while µ(t) vanishes on the interior ar
. 13
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7 A nonlinear 
hemi
al tank rea
tor modelWe 
onsider a 
ontinuous nonlinear stirred tank rea
tor system (CSTR) that runs anirreversible 
hemi
al rea
tion. The model is taken from Soliman and Ray [27, 29℄; 
f.also Bader [2℄. The pro
ess is des
ribed by the relative 
on
entration x1 of the produ
t,the relative 
on
entration x2 of the 
atalyst and the relative temperature in the rea
tionvessel. All these quantities represent the relative deviation to an equilibrium and thusheld 
ompletely dimensionless. This model is based upon earlier work by Soliman and Ray[27℄ and has been slightly modi�ed. The 
hemi
al agents in the vessel are stirred by an
'
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6

-6�� P-Controller
Figure 4: Continuous stirred tank rea
tor (CSTR) after Soliman and Ray.agitator and thus kept in a permanent movement. The rea
tion is steered by two 
ontrolfun
tions. The 
atalyst feed is split into a fra
tion γ u2(t) entering the vessel dire
tlyand a remaining fra
tion (1 − γ) u2(t− s) entering the vessel with a time delay r due toprior mixing with the rea
tant feed. The temperature inside the vessel is 
ontrolled by afun
tion u1(t) representing a time dependent proportional gain of a heat ex
hanger devi
e.The adjustment of the temperature depends on a feedba
k p-
ontroller that depends onthe outlet temperature x3(t− r).Our goal is to transfer the system in a balan
e within a �xed time interval optimally. Theobje
tive fun
tional essentially represents the deviation of the state to its equilibrium.Problem (CSTR) Minimize

J(u, x) =

∫ 0.2

0

(‖x(t)‖2
2 + 0.01u2

2(t))dt

16



subje
t to
ẋ1(t) = −x1(t) −R(t),

ẋ2(t) = −x2(t) + 0.9u2(t− s) + 0.1u2(t),

ẋ3(t) = −2x3(t) + 0.25R(t) − 1.05u1(t)x3(t− r),for a.e. t ∈ [0, 0.2], where
R(t) = R(t, x1(t), x2(t), x3(t)) := (1 + x1(t))(1 + x2(t)) exp

(

25x3(t)

1 + x3(t)

)

,and the initial and terminal 
onditions, resp., 
ontrol 
onstraint
x3(t) = −0.02, t ∈ [−r, 0),

u2(t) = 1, t ∈ [−s, 0),

x(0) = (0.49,−0.0002, 0.02)∗,

x(0.2) = (0, 0, 0)∗,

|u1(t)| ≤ 500, t ∈ [0, 0.2].We 
hoose the state delay r = 0.015 and 
ontrol delay s = 0.02. Bader [2℄ attempted tosolve this CSTR problem by using shooting methods. However, due to the 
ompli
atedstru
ture of the 
ontrol, Bader 
ould only obtain a 
oarse approximation of the optimalsolution. We solve the dis
retized 
ontrol problem (NLP) in se
tion 5 by utilizing theInterior Point 
ode IPOPT. The numeri
al 
omputations have been 
arried out with
N = 16000 grid points. We obtain an optimized performan
e index of J = 0.011970541.Due to the �xed terminal 
ondition for the state x(0.2) the algorithm requires the rathervast amount of 63,932 se
onds of CPU time. One 
an expe
t an a

eleration by 
onsideringa free terminal state instead and a quadrati
ally appearing 
ontrol 
omponent u1 in theobje
tive fun
tional. The 
omputed optimal solution and the adjoint variables λ1, λ2, and
λ3 are shown in �gs. 5 � 7.Let us dis
uss the minimum prin
iple in Theorem 4.2 in greater detail. Sin
e there areno mixed 
ontrol-state 
onstraints, the Hamiltonian fun
tion (7) is given by

H(t, x1, x2, x3, y3, λ, u1, u2, v2) = ‖x‖2
2 + 0.01u2

2 + λ1(−x1 − R(x))

+ λ2(−x2 + 0.9v2 + 0.1u2) + λ3(−2x3 + 0.25R(x) − u1y3(x3 + 0.125)).
(54)The adjoint advan
ed ODE (18) be
omes

λ̇1 = −2x1 + λ1 + (λ1 − 0.25λ3)
∂R(x)

∂x1

,

λ̇2 = −2x2 + λ2 + (λ1 − 0.25λ3)
∂R(x)

∂x2
,

λ̇3 = −2x3 + 2λ3 + (λ1 − 0.25λ3)
∂R(x)

∂x3
+ λ3u1y3 + χ[0, 0.2−r](t)λ

+
3 u

+
1 (x+

3 + 0.125) ,where y3 = x3(t−r), x+
3 = x3(t+r), u+

1 = u1(t+r) and λ+
3 = λ3(t+r). Sin
e the terminalstate x(0.2) is �xed, no boundary 
onditions are pres
ribed for λ(0.2). The 
omputed17
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on
entrations x1, x2 and optimal temperature x3initial value is λ(0) = (0.048251674, −0.000949667, −0.123610902). The evaluation ofthe minimum 
ondition (14) is as follows. The 
ontrol 
omponent u1 appears linearly inthe system and is not delayed. Then the swit
hing fun
tion (37) is given by
σ1(t) =

∂H

∂u1
(t) = −λ3(t)x3(t− r)(x3(t) + 0.125). (55)Bang-bang ar
s of u1 are determined by the 
ontrol law

u1(t) =

{

−500, if σ(t) > 0
+500, if σ(t) < 0

} (56)A singular ar
 of u1 is 
hara
terized by the property that σ(t) ≡ 0 holds on a nontrivialsubinterval. However, in 
ontrast to undelayed 
ontrol problems, it is not possible to �nda 
losed expression for a singular 
ontrol u1 by di�erentiating the swit
hing fun
tion. Fig.6 shows that the 
ontrol u1 has 6 bang-bang ar
s and one intermediate singular ar
. Wehave jointly plotted u1(t) and the adequately s
aled σ(t) to demonstrate that the behaviorof the swit
hing fun
tion perfe
tly mat
hes the 
ontrol law (56).As the 
ontrol 
omponent u2 appears quadrati
ally in the 
ost fun
tional and is un
on-strained, it is determined uniquely by minimum 
ondition (20) whi
h yields
∂H

∂u2
(t) + χ[0,0.2](t+ s)

∂H

∂u2
(t+ s) = 0 for t ∈ [0, 0.2].Thus we have

0.02u2(t) + 0.1λ2(t) + χ[0,0.2](t+ s) 0.9λ2(t+ s) = 0 for t ∈ [0, 0.2],whi
h in view of 0.2 − s = 0.18 determines the 
ontrol u2 by
u2(t) =

{

−5λ2(t) − χ[0,0.2](t+ s) · 45λ2(t+ s) for t ∈ [0, 0.18]
−5λ2(t) for t ∈ [0.18, 0.2]

}

. (57)18
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The 
ontrol law (57) shows that the 
ontrol u2 exhibits here a single dis
ontinuity at
t = 0.18 provided that λ2(0.18) 6= 0 holds. This behavior is di�erent from the undelayed
ase where the regularity 
ondition of the Hamiltonian fun
tion implies the 
ontinuity of
ontrol.Remark: The rather large 
omputing time of several hours for this CSTR problem is
aused by three fa
tors: (1) the delay in the 
ontrol variable u2, (2) the 
ontrol u1 isnot penalized in the 
ost fun
tional, and (3) the pres
ribed terminal 
onditions x(0.2) =
(0, 0, 0). The 
onvergen
e is speeded up 
onsiderably by introdu
ing the penalty term
0.01u1(t)

2 in the 
ost fun
tional and deleting the terminal 
onditions. This situationo

urs in a similar CSTR problem with n = 4 state variables but no delay in the 
ontrolvariable; 
f. Dadebo, Luus [9℄. Using a �ne grid with N = 20000, the CPU time for
omputing the optimal solution of this CSTR problem is in the range of a minute.8 Optimal 
ontrol of a renewable resour
eIn this se
tion, we dis
uss the optimal 
ontrol of a logisti
 growth pro
ess. Su
h a model
an be used in biology to des
ribe pathogeni
 
ell growth in in�ammatory pro
esses,whereas in e
onomy it des
ribes the intera
tion between produ
tion and 
onsumption orthe harvesting of a renewable resour
e.A well-known example is optimal �shing, where the fa
t, that over�shing redu
es thepro�t for the �shing industry in the long run, indi
ates the importan
e of developing of along-time �shing strategy.The following model is based on models developed by May [20, 21℄ and has been studiedby Feddermann [10℄. Let x(t) denote the biomass population and u(t) the harvestinge�ort. In the following 
ontrol model with �xed �nal time tf > 0, only the state variable
x(t) has a delay r ≥ 0:Maximize J(u, x) =

∫ tf

0

e−dt(pu(t) − cEx(t)
−1u(t)3) dt (58)subje
t to

ẋ(t) = ax(t)

(

1 −
x(t− r)

b

)

− u(t), (59)
x(t) ≡ x0, t ∈ [−r, 0], (60)
x(t) ≥ x0, t ∈ [0, tf ], (61)
u(t) ≥ 0, t ∈ [0, tf ]. (62)A similar model with a linear 
ost fun
tional was 
onsidered in Clarke, Wolenski [7℄ as anillustrative example to 
ompute the sensitivity of the value fun
tion with respe
t to thetime-lag r. The data are 
hosen as follows: market pri
e p = 2, dis
ount rate d = 0.05,harvesting 
ost cE = 0.2, growth rates a = 3 and b = 5, initial value x0 = 2 and �nal time

tf = 20.For these data, our 
omputations show the state and 
ontrol inequality 
onstraints (61)and (62) do not be
ome a
tive. Hen
e, we do need to take into a

ount the multiplier µ20
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ontrol u(t) and(b) adjoint variable λ(t).in the Hamiltonian (7) whi
h is given here by (note that we are minimizing):
H(t, x, y, u, λ) = e−dt(−pu+ cEx

−1u3) + λ
(

ax
(

1 −
y

b

)

− u
)

.The adjoint equation (18) and transversality 
ondition (19) yield
λ̇(t) = cEe

−dtx−2(t)u3(t) − aλ(t)

(

1 −
x(t− r)

b

)

+ χ[0,tf ](t+ r)λ(t+ r)
a

b
x(t+ r), λ(tf ) = 0.

(63)The minimum 
ondition (20) implies
0 =

∂H

∂u
(t) = e−dt(−p + 3cex

−1(t)u2(t)) − λ(t),whi
h gives the 
ontrol relation using the above data:
u(t) =

√

5

3
exp(0.05t) x(t) λ(t) +

10

3
x(t) . (64)We apply the dis
retization methods in se
tion 5 and solve the resulting nonlinear pro-gramming problem (NLP) with a mesh size of N = 40000 grid points by the Interior PointCode LOQO developed by Vanderbei [31, 32℄. For di�erent delays r ≥ 0, the un
ontrolledstate traje
tories x(t) with u(t) = 0 are shown in Fig. 8(a) and are 
ontrasted in Fig. 8(b)with the optimal state traje
tories. Optimal 
ontrols and the asso
iated adjoint fun
tionsare depi
ted in Fig. 9. Feddermann [10℄ has obtained similar results using the optimal
ontrol pa
kage NUDOCCCS developed by Büskens [4℄. We 
on
lude this se
tion bylisting the 
omputed values of the (maximized) obje
tive fun
tional (58) and the initialvalues λ(0) for di�erent delays: 21



r = 0.0 : J = 56.290449, λ(0) = −0.797255
r = 0.1 : J = 56.416287, λ(0) = −0.801229
r = 0.2 : J = 56.542214, λ(0) = −0.805113
r = 0.3 : J = 56.662908, λ(0) = −0.808916
r = 0.4 : J = 56.780054, λ(0) = −0.812444
r = 0.5 : J = 56.876896, λ(0) = −0.815298Clarke, Wolenski [7℄ have presented 
onditions under whi
h the optimal value fun
tion

V = V (r) is di�erentiable w.r.t. the delay r. It would be of interest to verify their expli
itformula numeri
ally for the derivative dV/dr of the value fun
tion at r = 0. The aboveresults yield the 
rude approximation dV (r)/dr ≈ 1.2 at r = 0.9 Con
lusionThe purpose of this paper was twofold. Firstly, a Pontryagin type minimum prin
iplewas derived for retarded optimal 
ontrol problems with delays in the state and 
ontrolvariable when the 
ontrol system is subje
t to a mixed 
ontrol-state 
onstraint. Underthe assumption that the ratio of state and 
ontrol delay is a rational number (this is nota restri
tion for numeri
al 
omputation), the retarded 
ontrol system was transformed toan augmented nondelayed 
ontrol problem, to whi
h the 
lassi
al Pontryagin minimumprin
iple is appli
able. Then a suitable retransformation of state, 
ontrol and adjointvariables yields the minimum prin
iple for the retarded 
ontrol problem. The se
ond goalwas to develop e�
ient numeri
al methods for 
omputing the optimal state, 
ontrol andadjoint variables. In parti
ular, the adjoint variables enable us to 
he
k the the ne
essaryoptimality 
onditions with high a

ura
y. We have presented a dis
retization method (forsimpli
ity only Euler's method) whereby the 
ontrol problem is trans
ribed into a high-dimensional nonlinear programming problem. Ex
ellent results have been obtained usingthe optimization solvers LOQO by Vanderbei [31℄, IPOPT by Wä
hter et al. [33, 34℄ or,alternatively, the solver NUDOCCCS by Büskens [4℄.Several issues for retarded 
ontrol problems, whi
h 
ould not adequately be addressed inthis paper, require further work. The theory of bang�bang and singular 
ontrol problemsinitiated by Soliman, Ray [30℄ should be studied in more detail; 
f. also Kern [19℄. Thetransformation te
hniques in se
tion 4 
an also be applied to retarded 
ontrol problemswith pure state inequality 
onstraints. This approa
h will eventually lead to 
onditions,under whi
h the multipliers asso
iated with state 
onstraints (
f. Angell, Kirs
h [1℄) aresu�
iently regular. Finally, the theory of se
ond order su�
ient 
onditions (
f. Chan,Yung [6℄ for un
onstrained 
ontrol problems) should be generalized to 
ontrol problemswith 
onstraints and must be made amenable to numeri
al veri�
ation.Referen
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