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AbstratAging has beome the paradigm to desribe dynamial behavior of glassysystems, and in partiular spin glasses. Trap models have been introdued assimple ariatures of e�etive dynamis of suh systems. In this Letter we showthat in a wide lass of mean �eld models and on a wide range of time sales,aging ours preisely as predited by the REM-like trap model of Bouhaudand Dean. This is the �rst rigorous result about aging in mean �eld modelsexept for the REM and the spherial model.A key onept that has emerged over the last years in the study of dynamial prop-erties of omplex systems, is that of �aging�. It is applied to systems whose dy-namis are dominated by slow transients towards equilibrium (see e.g. [BCKM98℄ ,[FLDM01℄, [Bir05℄, [IM05℄ for exellent reviews). This phenomena ours in a hugevariety of systems, suh as glasses, spin-glasses, bio-moleules, polymers, plastis,and has obvious pratial impliations in real-world appliations.When disussing aging dynamis, it is all important to speify the preise time-salesonsidered in relation to the volume. On the one hand, one may study the non-ativated regime, where the in�nite volume limit at �xed time t is taken �rst, and thenone analyzes the ensuing dynamis as t tends to in�nity. This non-ativated regimehas been studied intensively for Langevin dynamis of various soft-spin versions ofmean �eld spin glasses [CK93, CD95, SCM04, Gui07℄.For longer time sales, that is times diverging with the volume of the system, afull piture is largely missing. The slow dynamis of omplex systems in suh timesales is often attributed to the presene of �thermally ativated� barrier rossingsin the on�guration spae [Gol69℄. For instane, the standard piture of the spinglass phase typially involves a highly omplex landsape of the free energy funtionexhibiting many nested valleys organized aording to some hierarhial tree stru-ture (see e.g. [BK01, FS02℄). To suh a piture orresponds the heuristi image ofa stohasti dynamis that, on time-sales that diverge with the size of the system,an be desribed as performing a sequene of �jumps� between di�erent valleys atrandom times those rates are governed by the depths of the valleys and the heightsof onneting passes or saddle points. The extreme situation here orresponds toonsidering time sales just before the equilibration time. While at these sales therelation to the equilibrium Gibbs distribution is most immediate, in many glassysystems these time sales appear to be beyond experimental or numerial reah.In this letter we show that the mehanism for aging is universal for a lass of Glauberdynamis of p-spin Spin Glasses (with p ≥ 3) , out of equilibrium, in a wide rangeof time sales. These time sales exponentially long but still muh shorter than thetime sales needed to reah equilibrium. Thus this mehanism is essetially a transientone, linked to the exploration of the energy landsape way before the dynamis anfeel the ground state. This mehanism has been �rst established for the simple aseof the REM, hene our title. 1



To apture the features of ativated dynamis, Bouhaud and others [Bou92, BD95,MB96, RMB00, BCKM98℄ introdued an interesting ansatz, that is a mapping ofthe dynamis onto �trap models�. These trap models are Markov jump proesses ona state spae that simply enumerates the valleys of the free energy landsape. Whilethis piture is intuitively appealing, its derivation is based on knowledge obtained inmuh simpler ontexts, suh as di�usions in �nite dimensional potential landsapes.Mathematially, trap models are ontinuous time Markov hains whose state spaeis a (in�nite or growing with some parameter) graph (e.g. Z
d). To the verties (=traps) of this graph one assoiates independent random variables whose ommondistribution is assumed to be heavy tailed, that is their mean is in�nite. Thesevariables represent the mean waiting times of the Markov hain in the orrespondingtrap.Trap models involve the ad-ho introdution of three major features that ultimatelyneed justi�ation. This is the independene of the waiting times assoiated to thetraps, the heavy-tailed nature of their distribution, and �nally the Markov propertyof the dynamis.In a series of papers [B�05, B�M06, B�08, B�07℄ (see [B�06℄ for a omprehensivereview) a systemati investigation of a variety of trap models was initiated. In thisproess, it emerged that the �slow-down� of the dynamis appears to be universalfor these trap models (exept in the exeptional dimension 1), and, more preisely,that it has a saling limit given by an α-stable subordinator. Equivalently it wasshown that the lassial Dynkin-Lamperti piture for heavy-tailed renewal proessesis universally satis�ed for these trap models (in dimension larger than 1).In ontrast, very little has been done onerning the derivation of trap-model dy-namis from stohasti dynamis of even moderately realisti spin-glasses, suh asthe p-spin interation SK models. The only ase where this has been ahieved so faris the simplest of these models, the Random Energy Model (REM) of Derrida witha partiular form of the transition rates. In [BBG02, BBG03a, BBG03b℄ this wasahieved by a very detailed analysis of the dynamis at time sales just before theequilibration time, and at temperatures below the ritial one. This result relied,in partiular, on the detailed understanding of the equilibrium distribution of thismodel. More reently, in [B�08℄, the same model was analyzed at muh shorter (butstill exponentially large) time sales. It emerged that the same aging mehanism isin plae there and that aging an also our above the ritial temperature.All these works made ruial use of the independene of energies of di�erent spin on-�gurations assumed in the de�nition of the REM. In the present letter we presentthe �rst rigorous aging results in a model with orrelated energies, the p-spin in-teration Sherrington-Kirkpatrik (SK) model of spin glasses with p ≥ 3. Quitesurprisingly, the results obtained point again to the validity of the REM-like trapmodel as universal aging mehanism.The p-spin SK model. We reall that the p-spin SK model is is de�ned as follows. Aspin on�guration σ is a vertex of the hyperube SN ≡ {−1, 1}N . The Hamiltonianis given by

HN(σ) ≡ − 1

N (p−1)/2

N
∑

i1,...,ip=1

Ji1...ipσi1 . . . σip , (1)
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where Ji1...ip are independent Gaussian random variables with mean zero and varianeone. Alternatively, we an desribe the Hamiltonian as a entered normal proessindexed by SN with ovariane
E[HN (σ)HN(τ)] = NRN (σ, τ)p, (2)where RN(σ, τ) denotes as usual the normalized overlap, RN(σ, τ) ≡ N−1

∑N
i=1 σiτi.We de�ne a random Gibbs measure on SN , µβ,N ≡ Z−1

β,Ne−βHn(σ). Note that inthe limit p ↑ ∞ one reovers the random energy model [GM84℄, where HN(σ) arei.i.d. Gaussian random variables with variane N .Dynamis. We onsider a ontinuous time Markov dynamis σN (t) on SN whosetransition rates are
pN(σ, τ) = N−1eβHN (σ) (3)if σ and τ are related by �ipping a single spin, and are zero otherwise. It is easy tosee that this dynamis is reversible with respet to the Gibbs measure µβ,N . Onealso sees that it represents a nearest-neighbor random walk on the hyperube withtraps of random depths.It is thus useful to look at this dynamis as at a time hange of a simple unbiaseddisrete-time random walk YN(k), k ∈ N, on SN started out of equilibrium1 at someat some �xed point of SN , say at {1, . . . , 1}: We de�ne the lok-proess by

SN(k) =

k−1
∑

i=0

ei exp
{

− βHN

(

YN(i)
)}

, (4)where (ei, i ∈ N) is a sequene of mean-one i.i.d. exponential random variables. Then
σN(t) an be written as

σN (t) = YN(S−1
N (t)). (5)

SN(k) is the instant of the k-th jump of σN (t).The REM-like trap model. The idea suggested by the known behavior of the equilib-rium distribution is that this dynamis, for β > βc, will spend long periods of time inthe states σ(1), σ(2), . . . et. and will move �quikly� from one of these on�gurationsto the next. Based on this intuition, Bouhaud et al. [Bou92, BD95℄ proposed the�REM-like� trap model: Consider a ontinuous time Markov proess ZM whose statespae is the set KM ≡ {1, . . . , M} of M points, representing the M �deepest� traps.Eah of the states is assigned a random variable εk (representing minus the energy ofthe state k) whih is taken to be exponentially distributed with rate one. If the pro-ess is in state k, it waits an exponentially distributed time with mean proportionalto eβεk , and then jumps with equal probability in one of the other states k′ ∈ KM .The quantity that is used to haraterize the �aging� phenomenon is the probability
Π̃M(t, s) that during a time-interval [t, t + s] the proess does not jump. Bouhaudand Dean [BD95℄ showed that, for β > 1,

lim
s,t↑∞

lim
M↑∞

Π̃M(t, s)

H1/β(s/t)
= 1, (6)1Note that this makes the situation di�erent from the one in [BGM05℄ where the equilibrateddynamis was studied numerially. This makes a omparison of these results with ours di�ult.3



where the funtion Hα is de�ned by
Hα(w) ≡ sin(πα)

π

∫ ∞

w

dx

(1 + x)xα
. (7)The dynamis of the REM-like trap model an be seen as a time hange of a sim-ple random walk ỸM on the �omplete graph� KM by the lok proess, S̃M(k) =

∑k−1
i=0 ei exp{βεYM(i)}. As explained in [B�08℄, the result (6) an be dedued fromthe stronger laim

lim
n↑∞

lim
M↑∞

n−βS̃M(nt) = cV1/β(t), t ≥ 0, (8)where Vα(t) is the α-stable subordinator (inreasing Lévy proess) with Laplaetransform E[e−λVα(t)] = exp(−tλα).The REM. In [BBG02, BBG03a, BBG03b℄ it was on�rmed that the REM-like pi-ture is orret, at least for the dynamis de�ned in (3). This result was furtherextended to shorter time sales in [B�08℄ where the point of view of (8) was putin the foreground. Namely, it was shown that the lok proess onverges againto the stable subordinator: For every 0 < ̺ < 1, if β̺ ≡ β/
√

̺ > βc ≡
√

2 ln 2,
γ = β

√
2̺ ln 2,

lim
N↑∞

e−γNN
β̺

2βc SN(t2N̺) = cVβc/β̺
(t). (9)This implies then a similar aging result as in (6), Π(teγN , seγN)

N→∞−−−→ Hβc/β̺
(s/t),as in the REM-like trap model for the probability ΠN(t, s) that σN (t) does not jumpbetween t and t + s.Note that this result has an interesting interpretation: at a time-sale eγNN−

β̺

2βc theproess sueeds to make 2̺N steps, that is it explores a subset of on�guration spaethat orresponds to a �little REM� in volume n = ̺N . At this time sale, the proessfeels an e�etive inverse temperature β̺. If the e�etive temperature is below theritial one for the standard REM, the system shows aging, otherwise it does not. Itmay seem somewhat ounterintuitive that the systems is `e�etively �warming up�as time goes by.Let us disuss the heuristis of this result. When the random walk has made 2̺Nsteps, with ̺ < 1, it has only explored a small fration of the total on�gurationspae. In partiular, it has not had time to �nd the absolute minima of HN , heneit is still out of equilibrium. Moreover, the random walk will essentially not havevisited any on�guration twie. Therefore, the minimum of HN along on thoseon�gurations that were visited is the minimum of 2̺N independent Gaussian randomvariables of mean zero and variane N . It is well know (see e.g. [LLR83℄) that this isof the order N
√

2̺ ln 2. Then the mean waiting time in this extreme trap is of order
exp(βN

√
2̺ ln 2) = eγN , up to a polynomial orretion. Now the ondition that

β̺ > βc implies that this time is of the same order as the total time the proess hasaumulated in all the other sites along its way, and, more preisely, the proess willhave spent all but a negligible fration of its time in the �few� �deepest trap�. Againstandard results of extreme value theory imply that the preise statistis of the timesspent in the deepest traps are asymptotially governed by a Poisson proess, and that4



the sum of these random times, after resaling, onverge to a stable subordinator,as laimed.
p-spin models We will now present our main results for the p-spin SK model. The fullproofs of these results are given in [BB�℄. First, sine the valleys in the free-energylandsape ontains more than one on�guration, we should hange the two-pointfuntion Π. We set

Πε
N (t, s) = P{RN

(

σN

(

teγN
)

, σN

(

(t + s)eγN
))

≥ 1 − ε
}

, (10)that is the overlap at two far-distant time instants is exeptionally large. Then, asimilar result as in the REM holds, at least if p ≥ 3. Namely, there is a p-dependentonstant ̺p, suh that , if ̺ and β satisfy the onditions
β̺ ≡ β/

√
̺ >

√
2 ln 2 ≡ βc

̺ < ̺p,
(11)then, for any ε ∈ (0, 1), t > 0, and s > 0,

lim
N→∞

Πε
N(t, s) = Hβc/β̺

(s/t). (12)The basis of this result is again the statement analogous to (9) that shows that theproperly resaled lok-proess onverges to a stable subordinator.The funtion ̺p used in (11) to limit the onsidered time sales is inreasing and itsatis�es
̺3 ≃ 0.763941 and lim

p→∞
̺p = 1, (13)hene in the limit p ↑ ∞ we reover the result for the REM.Note the r�le of the two restritions on β and ̺. The �rst one is again the statementthat the e�etive temperature at the time sale onsidered is below the ritial one.The seond ondition is related to the orrelation of the energies. It implies that theREM-like behavior holds only up to time sales where the explored region is still sosmall that the proess does not feel the orrelations; essentially it ensures that theproess does not have enough time to get lose enough to a point it visited before sothat it is able to feel the orrelations.The heuristi justi�ation of the results in the p-spin model is rather similar to thatof the REM. The di�erene here is that the energies at the sites that the walk hasvisited are orrelated. Our assertion is that under the ondition ρ < ρp, this has onlya mild e�et and does not hange the overall piture. The reason for this relies onthe geometri properties of typial trajetories of the random walk on the hyperube,and on the extreme value properties of orrelated Gaussian proesses. First, it hasbeen shown (see e.g. [Bov06, BGK06, BA℄ that if p is larger than 2 and if Kρ isa totally random subset of the hyperube SN of ardinality 2ρ, with ρ su�ientlysmall (depending on p), then the extremal proess of HN restrited to Kρ are thesame as if HN(σ) were independent random variables. Note that this is not true inthe standard SK model with p = 2 whih is the reason our results an be expetedonly for p ≥ 3.Now it is lear that the trajetories of the random walk annot look exatly likea totally random set, after all the trajetory is onneted, while in Kρ essentially5



all points are isolated. However, a detailed analysis of the random walk revealsthat its trajetories look very muh like a random set Kρ with linear piees betweenthem joining the points up in a minimal way. Hene, the orrelations have someimpat only very loally in time, implying in partiular that deep traps will not bemade of single points but onsist of a deep valley (along the trajetory) that hasapproximately the same depth and whose shape and width we an desribe quitepreisely. Remarkably, eah valley is essentially of a size independent of N (that isthe number of sites ontributing signi�antly to the residene time in the valley isessentially �nite), and di�erent valleys are statistially independent.The fat that traps are �nite may appear quite surprising to those familiar with thestatis of p-spin models. From the results there (see [Tal03, Bov06℄), one knows thatthe Gibbs measure onentrates on �lumps� whose radius is of order Nεp, with εp > 0.The mystery is however solved easily: Around a loal minimum σ0 with HN(σ0) ∼
−γN/β, the proess HN(σ) does grows essentially linearly with the distane d(σ0, σ)from the minimum, E[HN(σ) − HN(σ0)] ∼ c(p, γ, β)d(σ0, σ). Therefore, the Gibbsmass dereases exponentially with d(σ0, σ). For the support of the Gibbs measure,one needs to take into aount the entropy, that is that the volumes of the balls ofradius r inreases like exp(N(ln 2 − I(1 − r/N))). For the dynamis, at least at ourtime-sales, this is, however, irrelevant, sine the simple random walk leaves a loalminimum essentially ballistially.Remark: We onlude the Letter with a remark on the r�le of the partiularhoie of the transition probabilities (3) depending only on starting points. Clearlythese favor the proximity to Bouhaud's model. For us, on a tehnial level, theindependene of the random walk trajetory of the random environment de�ned bythe Hamiltonian is ruial. Even in the ase of the REM, we do not know at thispoint how to deal with di�erent, and more usual, dynamis suh as Metropolis orheat bath. This problem remains one of the great hallenges in the �eld.Referenes[BA℄ G. Ben Arous and Kuptov A. in preparation.[BB�℄ Gérard Ben Arous, Anton Bovier, and Ji°í �erný. Universality of theREM for dynamis of mean-�eld spin glasses. arXiv:0706.2135.[BBG02℄ G. Ben Arous, A. Bovier, and V. Gayrard. Aging in the random energymodel. Phys. Rev. Letts, 88(8):087201, February 2002.[BBG03a℄ Gérard Ben Arous, Anton Bovier, and Véronique Gayrard. Glauber dy-namis of the random energy model. I. Metastable motion on the extremestates. Comm. Math. Phys., 235(3):379�425, 2003.[BBG03b℄ Gérard Ben Arous, Anton Bovier, and Véronique Gayrard. Glauberdynamis of the random energy model. II. Aging below the ritial tem-perature. Comm. Math. Phys., 236(1):1�54, 2003.[B�05℄ Gérard Ben Arous and Ji°í �erný. Bouhaud's model exhibits two agingregimes in dimension one. Ann. Appl. Probab., 15(2):1161�1192, 2005.6
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