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Abstract

In this paper we present the new numerical algorithm GEOMS for the numer-
ical integration of the most general form of the equations of motion of multi-
body systems, including nonholonomic constraints and possible redundancies
in the constraints, as they may appear in industrial applications. Besides the
numerical integration it offers some additional features like stabilization of the
model equations, use of different decomposition strategies, or checking and
correction of the initial values with respect to their consistency. Furthermore,
GEOMS preserves hidden constraints and (possibly) existing solution invariants
if they are provided as equations.

We will also demonstrate the performance and the applicability of GEOMS for
two mechanical examples of different degrees of complexity.

1 Introduction

The multibody system (MBS) approach is frequently used in industrial simulation
packages in robotics, vehicle system dynamics, and biomechanics. A multibody
system model consists of a finite number of rigid or elastic bodies and their in-
terconnections like, e.g., joints, springs, dampers, and actuators. The equations of
motion may be generated in a systematic way by multibody formalisms that are
based on the principles of classical mechanics |35].

The efficient and robust numerical integration of these equations is a challenging
problem in the development of simulation packages, since dynamical simulation is
frequently used and one of the most time consuming analysis methods for MBS
models. The equations of motion with nonredundant constraints form a nonlinear
system of differential-algebraic equations (DAEs) of differentiation index (d-index)
3, see |7, 10, 13, 18|. It is well known that the numerical treatment of DAEs of high
index or higher index, i.e., d-index 2 or larger than 2, respectively, is nontrivial in
general. Effects arising in the numerical treatment are, for example, drift, instabil-
ities, convergence problems, or inconsistencies. These difficulties in the numerical
solution of such high index problems are discussed in |4, 12, 14, 15, 17, 18, 24, 29, 30).
However, the equations of motion are DAEs with a very special structure that should
be exploited in the numerical solution |7, 18].

In this report we will present the new software package GEOMS for the numerical
integration of general equations of motion of multibody systems in descriptor form.
In contrast to standard textbook presentations like [18], we do not restrict ourselves
to classical constrained mechanical systems but consider the more complex model
equations that are actually used in state-of-the-art MBS simulation packages |7, 34|.
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The software package GEOMS is suited for general equations of motion involving dy-
namical force elements, contact conditions, and (possibly) redundant holonomic as
well as nonholonomic constraints. Furthermore, the package takes into account pos-
sibly existing information concerning solution invariants, e.g., energy conservation.
The code is based on residual evaluations, i.e., the system need not be given com-
pletely in explicit form. It is sufficient that the right-hand side of the equations of
motion and the mass matrix are specified.

Although, the package GEOMS is able to treat also redundant constraints, in this
paper we will restrict our considerations to regular equations of motion, i.e., the
constraints are assumed to be nonredundant. For more details on equations of mo-
tion with redundant constraints we refer to |26, 38|.

As base of the integration method GEOMS we will propose a remodeling of the equa-
tions of motions. The aim of this remodeling is to determine an equivalent formula-
tion, the so called projected-strangeness free form, which has d-index 1 but has the
same set of solutions as the original equations of motion. Because of the reduced
d-index, the numerical treatment of the projected-strangeness free form by use of
implicit ODE methods is not affected by instabilities arising from the higher index.
Furthermore, all (hidden) constraints are preserved such that no drift-off effects arise
in the numerical treatment. The proposed remodeling can be seen as regularization
of the equations of motion. For more details on the regularization of equations of
motion we refer to [38]. The integration method implemented in GEOMS combines
an implicit Runge-Kutta-Method of order 5 with this regularization technique.

The report is organized as follows. In Section 2 we introduce the equations of motion
which we want to treat numerically and we discuss the remodeling to the projected-
strangeness-free form which will be used for the discretization in GEOMS. In Section
3 we introduce the code GEOMS and we discuss its features and its applicability in
detail. In Section 4 we demonstrate the properties of the software package GEOMS by
two numerical examples. For the usage and implementation of GEOMS the manual is
presented in Appendix A.

2 The Equations of Motion and their Remodeling

Here and in the following we will use the following notation.

Notation 2.1 Let f be a differentiable function f : X — R™, X C R”, and let
x be a differentiable function x : I — X, where I is an open interval in R. The
ith (total) derivative of x(t) with respect to ¢ is denoted by z((¢) = d'x(t)/dt’ for
i € Ny. Note the convention 2V (t) = z(¢), 2V (¢t) = @(t), and 2 () = #(t). The
(partial) derivative of f(x) with respect to x is denoted by f.(x) = a% (). The

same notation is used for differentiable vector and matrix functions. The set of
I-times continuously differentiable functions from X to Y is denoted by C/(X,Y). «

In the following we investigate a spatial multibody system with holonomic as well as
nonholonomic constraints [19, 33|. More precisely we consider the following initial
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value problem on the domain I = [ty, t¢] consisting of the equations of motion in the
form

p = Z(ph, (1a)
M(p,tyo = f(p,v,rw,8,A 1, t) = Z5 (p)GT (p, s, )\ = ZT (p)H" (p, 5, ), (1D)
= b(p,v,r,w,s,\ ut), (1c)
0 = d(p,v,r,w,s,\ u,t), (1d)
0 = c(p,s,t), (le)
0 = H(p,s,t)Z(p)v+ hip,s,1) (= h(p,v,s.1)), (1f)
0 = g(pst) (1g)
with the initial values
p(to) = po € R™, v(ty) = vg € R™, r(ty) =19 € R™, w(ty) = wo € R™, 2)
s(to) = so € R™, A(tg) = Ao € R™, u(ty) = po € R"™.

Here, the position vector p contains arbitrary position coordinates of the multibody
system. The Euler-Lagrange formalism for modeling multibody systems yields the
equations of motion in second order form. In order to transform the second order
system to an equivalent first order system we introduce a velocity vector v and get
the relation (la) between the generalized velocities p and the velocities v with a
matrix Z(p), that determines the angular velocities. The equations (1a) are called
kinematic equations. The transformation matrix Z(p) occurs only if there are ro-
tations in three dimensional space, it may be determined by Poisson’s kinematical
equations [1, 7]. In the two dimensional case we have Z(p) = I, p = v.

The equations (1b) are called dynamic equations of motion. They follow from the
equilibrium of forces and momenta and include the mass matriz M (p), the vector
of the applied and gyroscopic forces f(p,v,r,w, s, \, u,t), the constraint matrices
G(p, s,t) and H(p, s,t) of the holonomic and nonholonomic constraints, respectively,
which contain the inaccessible directions of motion column-wise, the associated con-
straint forces GT(p,s,t)\ and HT (p,s,t)u, and the Lagrange multipliers X\ and p.
The holonomic constraint matrix is defined as G(p, s, t) = dipg(p,s(p, t),t). The
mass matrix M (p) is positive semi-definite, since the kinetic energy is a nonnegative
quadratic form, and includes the inertia properties of the multibody system.

In a real multibody system, there are often dynamic force elements which are de-
scribed by the vector r and determined by equations (1c), see [7].

Furthermore, not all constraints of a multibody system are directly described by
the position variables p or the velocity variables v, but depend on certain contact
points with coordinates s on the surface of some bodies. The relationship between
these contact point coordinates s and the position variables p are given by (le).
Furthermore, the equations of motion are affected by the n, holonomic constraints
(1g) and n, nonholonomic constraints (1f). These constraints are also called the
holonomic constraints on position level and the nonholonomic constraints on veloc-
ity level, respectively. Sometimes, force laws and constraints may be formulated
more conveniently using auxiliary variables w that are implicitly defined by the n,,



possibly nonlinear equation (1d).

Here, n = ny+n, +mn, +ny,+ns+ny+n, denotes the number of unknown variables.
Furthermore, many motions of mechanical systems have known solution invariants,
i.e., relations which are satisfied along any motion of the mechanical system, like
the invariance of the total energy, momentum, or impulse. Let us denote the m,
equations describing such solution invariants by

0=-e(p,v,s,t). (3)

In particular, conservative multibody systems are energy conserving. In this case
the total energy is constant along every motion of the system. For more details on
solution invariants we refer to [38].

The theoretical basis of the code GEOMS is based on the following assumptions.

Assumption 2.2 Consider the equations of motion (1). Then the matrices

a d , (4a
(

)
) Cs:
)
)

o

M (4c
GZM™'G, GZM™'H,
HZM™'G, HZM™'H,

o

o

are assumed to be nonsingular with a bounded inverse for all (p,v,r,w, s, \, u,t) €
M, see (10), where
Gh = Z'G" = fa+ fud dy, (5)
H, = Z"H" = f .+ fuwd, d,. (6)

Furthermore, it is assumed that

d e CH(M,R™), ¢ € C{(M,R™), h € C*(M,R™), g€ C3(M,R™).

Remark 2.3 a) The nonsingularity of the mass matrix M is assumed only for
reasons of simplicity. It is not necessary for the successful numerical integration
with GEOMS.

b) Furthermore, note that in Assumption 2.2 redundant constraints are excluded.
Redundant constraints may result in a nonuniqueness of the Lagrange multipliers.
Nevertheless, GEOMS is able to deal with certain types of redundant constraints. For
more details on redundant constraints see [26, 38|. q

Using the equations of motion (1), the first and second derivatives with respect to ¢
of the holonomic constraints (1g) are given by

d
0 = gl(p,v,s,t) = &g(p, s, t) (7a)
= GZv+g,; — g,Sc,_Slc,t (7b)
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and

2

d
0= gl[( 7,U7T7w787)\7:u7t) = @g(pﬂsat) (83)

= (¢, —gclep)Zv+ GZM ™ (f — Z"G"A— Z"H" ) + gy — g'c ey (8D)

They are called holonomic constraints on velocity level (7a) and holonomic con-
straints on acceleration level (8a), respectively. The first derivative with respect to
t of the nonholonomic constraints (1f) is given by

d
0 = hl(p,v,r,w,s, A, t) = &(H(p, s, 1) Z(p)v+ h(p, s,t)) (9a)

= (Fva — B,chlcm)ZU + HZM_l(f —7ZTGT\ — ZTHT,u) + (7zt - Esc,_slc,t) (9b)

which are called nonholonomic constraints on acceleration level (9a).

The holonomic constraints on velocity level and on acceleration level in form (7b)
and (8b), respectively, as well as the nonholonomic constraints on acceleration level
in form (9b) turn out to be the hidden constraints of the equations of motion, see
[38]. The choice of values (p,v,r, w, s, A, i, t) € R™ x T is restricted by all constraints
including the hidden constraints, i.e., (1d)-(1g), (7b), (8b), and (9b). Values which
satisfy all of these constraints are called consistent and we get the set of consistency

M= {(p,v,r,w,s, \, i, t) eR" xI : 0 = d(p,v,m,w,s,\ p,t), (10)
0 = c(p,s,t),

0 = H(p,s,t)Z(p)v+h(p,s,t),

0 = g(ps,t),

0 = hli(p,v,r,w,s,\ p,t),

0 = g¢'(p,v,s,t),

0 g (p,v, 7w, 5, A, 1, 1)}

Theorem 2.4 Let the equations of motion (1) satisfy Assumptions 2.2. Then there
exist matriz functions S, € C°(M,R™»"™) and S, € C°(M,R"7"™) with ny, =
n, —ny and ng, = n, —ny —n, such that the matriz functions

Sy(p, t)M(p,t)
{ Sp(p,t) } and G(p,t)Z(p) are nonsingular (11)

H(p,t)Z(p)



for all (p,v,r,w, s, \, u,t) € M. Then the differential-algebraic system

Sp(p,t)p = Sp(p, 1) Z(p)v, (12a)
So(p,)M(p,t)o = Su(p,t)f(p,v,r,w,5, A ) (12b)
=S,(p, )27 ()G (p, s, )\ = Sy(p, ) Z" (p)H' (p, 5, )1,

T = b(p,v,r,w,s,\ ut), (12¢)

0 = d(p,v,r,w,s,\, u,t), (12d)

0 c(p, s,t), (12e)

0 = H(p,s,t)Z(p)v+ h(p,s,t), (12f)

0 = g(pst), (12g)

0 = hli(p,v,r,w,s,\ put), (12h)

0 = ¢'(p,v,s,t), (12i)

0 g (p,v,r,w, 8, \, p1, 1) (12j)

has d-index 1 and the same set of solutions as the equations of motion (1).

Proof. The proof can be found in [38|. O

Remark 2.5 a) The matrix functions S, and S, are called kinematic selector and
dynamic selector, respectively.

b) We will call the DAE (12) the projected-strangeness-free formulation of the equa-
tions of motion. In [21, 22, 23, 24| the strangeness-concept is introduced as tool
for the classification of general nonlinear DAEs including over- and underdeter-
mined DAEs. In particular, so called strangeness-free DAEs are introduced. Apart
from the over- or underdeterminedness strangeness-free DAEs behave like DAEs
with d-index 1 while nonstrangeness-free DAEs behave like DAEs with d-index 2
or larger. Strangeness-free DAEs do not contain hidden constraints. In particular,
in |21, 22, 23, 24| it is pointed out that strangeness-free DAEs and, therefore, the
projected-strangeness-free formulation of the equations of motion (12), are suited
and preferable for the numerical treatment using stiff ODE solvers like implicit
Runge-Kutta-Methods or BDF methods.

¢) The algorithm GEOMS is based on a projected-strangeness-free from (12) of the
equations of motion but it is not necessary that this form is provided by the user, i.e.,
the user does not have to perform the regularization to the projected-strangeness-free
form. It is sufficient, if the user provides the constraints on velocity level (7b) and
on acceleration level (8b) and (9b) in addition to the original equations of motion
(1) and, if available, (3). By use of so called order-n-formalisms for the evaluation
of the equations of motion the constraints on velocity level and on acceleration level
are computed automatically, see [8, 34]. <

With these preparations we have presented all the tools to perform the consistency
preserving index reduction of the equations of motion (1) as follows.
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Algorithm 2.6 (Consistency preserving index reduction)

The equations of motion (1) are assumed to satisfy Assumptions 2.2. Furthermore,
let M € C°(M,,R™™) and Z € C°(M,, R™"™), where M, = M[N (R™ x I) is the
set of consistent (p,1).

Then the regularization via consistency preserving index reduction is done by choos-
ing a selector S, € C°(M,, R™»"™) and a selector S, € C°(M,, R"+") depending on
(p,u) with ng = n, —ny and ny, = n, —ny — ny,, in the following way.

1. Determination of selector S,

(a) Determine K, € C°(M,,, R™"») depending on (p, t) such that the columns
of K,(p,t) span ker(G(p, s(p,t),t)) for all (p,t) € M,

(b) Determine the selector S, € C°(M,,, R™» ") depending on (p,t) such that
Sp(p,t)K,(p, t) is nonsingular for all (p,t) € M,

2. Determination of selector S,

(a) Determine K,, € C°(M],, R™"#) depending on (p, t) such that the columns
of K,(p,t) span

for all (p,t) € M,

(b) Determine the selector S, € C°(M,,, R"f+") depending on (p,t) such that
Sy(p,t)M (p, t)K,(p,t) is nonsingular for all (p,t) € M,,.

3. Projected strangeness-free form of the equations of motion
By appending the constraints on velocity level (7b) and the constraints on
acceleration level (8b) and (9b), the projected-strangeness-free form of the
equations of motion is given by (12).

With this algorithm we are able to determine a projected-strangeness-free form (12)
of the equations of motion which contains all information of the set of consistency
(10). The projected-strangeness-free form (12) that is created in this way is ana-
lytically equivalent to the original equations of motion in the sense that both have
the same set of solutions. Therefore and because of Remark 2.5, the projected-
strangeness-free form (12) can be seen as a regularization technique. In particular,
the semi-implicit form of the projected-strangeness-free form (12) is of great advan-
tage, since all constraints are stated as purely algebraic equations, and there are no
redundancies among the algebraic constraints and the differential equations.

Remark 2.7 Note that Selectors S, and S, satisfying the rank conditions (11) are
not uniquely determined. Rather it is possible to choose the selectors in a piecewise
constant fashion. In principle, the selectors may be kept constant as long as the
Newton iteration matrix 9 (see Page 15) remains nonsingular. But the choice of
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the selectors influences the conditioning of the projected-strangeness-free formula-
tion. Therefore, with respect to the conditioning of the linear systems which have
to be solved during the Newton iteration, the selectors should be recomputed early
enough and not just shortly before reaching a state, where the Newton iteration
matrix becomes singular. This fact is treated in GEOMS by the recomputation of the
selectors if the column pivoting with respect to the algebraic constraints changes or
convergence problems of the Newton iteration occur. This is demonstrated in two
simulation scenarios which are depicted in Tables 3 and 4.

Note that the piecewise constant choice of the selectors is of great advantage and
importance for the numerical integration, because it offers the possibility to reduce
the amount of computational work for the computation of the selectors. In par-
ticular, this means, that the condition number of the Newton iteration matrix N
depends directly on the choice of the selectors. N

Example 2.8 The mathematical pendulum: Let us consider a mathematical
pendulum, of length L > 0 which represents a point mass moving without friction
along a vertical circle of radius L under gravity denoted by the gravity acceleration
g. For the description of the configuration of the pendulum we choose Cartesian co-
ordinates p = [ Ty }T denoting the position of the mass m in the two dimensional
space R%2. The equations of motion of first order have the form

5] - [t
D2 U2
m 0 1‘)1 o 0 _ 2p1
KRR I Y A ISR E
0 = [pi+p3—L*]. (13c)
The holonomic constraints on velocity level and on acceleration level are given by

0 = [ 2p1111 + 2p2112 } s (13(31)
0 = [ 20} 4203 —2pog — 2 (pI+ P3N\ |, (13e)

respectively. Following Algorithm 2.6 we have to consider G = [ 2p1 2ps } . The
matrix function K, can be determined as

—P2
K. =
g {pl}

and, therefore, the selector S, can be chosen as
Sp = [ —P2 D1 ]

such that

S,K, = [ —ps pl}{;fz]Z[p%pH:[Lz}’
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see the constraints (13c). Since the mass matrix is given by M = ml, we can use
S, = 5, and we get the projected-strangeness-free formulation

—p2p1 + P1P2 —P2U1 + P12, (14a)
—mpaU; +mpivy = —mgpi, (14b)
0 = pi+ps— L% (14c)
0 2p1v1 + 2pava, (14d)

4
0 = 207+ 205 — 2pag — E(pf + p3) A1 (14e)

As mentioned in Remark 2.7, the selectors .S, and S, are not uniquely determined by
the conditions (11) or the Algorithm 2.6. In particular, the selectors can be chosen
to be piecewise constant.

Let us consider this fact for the pendulum with the initial state p; = 0 and p, = —L,
i.e., the pendulum is hanging downwards. In this position the selectors can be
determined as

Keeping these selectors constant, the leading matrix of the left-hand side of the
underlying ordinary differential equations, (obtained by substituting the algebraic
equations in (14) by their derivatives with respect to t) is

L 0 0 0 0
0 0 mL 0 0
21 2p2 0 0O 0 (16)
X X 2p1 2p9 0
| X x x o x o S(pipy) |

Obviously, the rank conditions (11) are fulfilled and the leading matrix (16) is non-
singular, as long as py does not become zero. In particular, this means that as long
as the pendulum does not reach one of the horizontal positions, i.e., p;y = =L and
po = 0, the selectors can be chosen constant as in (15). Otherwise, if the pendulum
reaches or passes the horizontal position, the matrix (16) becomes singular and the
first and third as well as the second and fourth equations are redundant such that
the solution is not uniquely defined. Furthermore, the condition number of matrix
(16) goes to infinity as py goes to zero.

For these reasons, in the neighborhood of the horizontal position of the pendulum
new selectors have to be determined. See also the Example 4.1 for numerical results.
<

3 GEOMS

The code GEOMS is implemented in FORTRANT77 and furthermore, there exists a
MATLAB |20] interface via MEX files for the direct usage of GEOMS in MATLAB.
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However, in the following we only discuss the in FORTRANT77 implementation of
GEOMS.

In GEOMS the 3-stage implicit Runge-Kutta Method Radau I1a of order 5, see [18],
as discretization of the projected-strangeness-free formulation (12) of the equations
of motion is implemented. Although, GEOMS bases on the presented stabilization
technique developed in 38| and presented in Theorem 2.4, i.e., GEOMS uses the
projected-strangeness-free formulation (12) for the discretization, the user does not
have to provide the projected-strangeness-free formulation. Instead the user has
to provide all necessary information, i.e., in particular, the hidden constraints in
addition to the original equations of motion (1) and , if available, (3).

The Runge-Kutta matrix A, the weight vector b, and the node vector ¢ are given by
the Butcher tableau

4—/6 88—7/6 206—169v6 —2+3v6

10 360 1800 225
cl A 446 | 296+169v6 88+7v6 —2-3v6
PN 10 1800 360 225 (17)
uT 1 16—6 16+v/6 1
36 36 9
16—/6 16+6 1
36 36 9

see |17, 18]. The algorithm GEOMS is designed to handle equations of motion of the
form (1) with possible redundant constraints as well as with possibly known solution
invariants (3) which may be provided as additional equations. If the mass matrix M
is nonsingular and the constraints are nonredundant then the equations of motion
have to satisfy Assumption 2.2. If this is not the case some further rank assumptions
have to be satisfied. For more details see |38|.

Here and in the following we will use the typewriter style for objects which are part
of the source codes of the implemented numerical algorithms. In particular, this
involves names of subroutines like GEOMS, GEERREST, IVCOND, and variables like T,
X, NWTMAT, CALSEL.

In the following we will discuss the features of GEOMS in detail. For the use and
implementation of GEOMS see the manual in Appendix A.

The information of the equations of motion needed from the integration algorithm
has to be provided in the following form.
The wvector of unknown variables has to be in the form

leT:XT:[wT A\ MT‘TT‘UT‘ST pT}

and the right-hand side in (1) and (3) of the hidden constraints has to be specified
in a user-supplied subroutine with a name given by the user. The different parts
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have to be given in the following order provided they occur.

d(p7/UJ T7w7 87 )\7 /’LJ t)
gﬂ(p7/U7 T7w7 87 )\7 /’LJ t)
hI(p7/U7 T7w7 87 )\7 /’LJ t)

9 (p,v,s,1) %
|

H(p,5,0)Z(p)v + h(p, 5,1) by
RDA = e(p,v,s,t) (18)
c(p, s, t) (0)
g(p,s,t) )
b(p,v, T, w, 8, A\, 1, 1) }(d)
fp,v,r,w, 8, 5, t)—Z" (p) G (p, s, )A=Z" (p) H  (p, s, )| }(e) (D)
Z(p)v 1)

In particular, the right-hand side has to be ordered such that the algebraic part,
i.e., the upper part (18A), contains the algebraic constraints ordered with respect
to their dependencies, i.e., first (18a) , the constraints which restrict the additional
variables w as well as the Lagrange multipliers A and p, second (18b), the constraints
on velocity level and the information concerning solution invariants which restrict
the velocities v, and third (18c), the constraints on position level, which restrict the
position p and the contact variables s. The specified order leads to a Jacobian of the
algebraic part with respect to x which has already block upper triangular structure
that will be exploited in GEOMS.

The differential part, i.e., the second part (18D), contains the right-hand side of
the differential equations also ordered in the same way as the algebraic part. We
first (18d) have the equations that describe the behavior of the dynamical force
elements followed by (18e) the dynamical equations of motion and, finally, (18f) the
kinematical equations of motion.

In some cases the constraints of acceleration level (8) and (9), i.e., 0 = g7 and
0 = A', are not explicitly available or difficult to evaluate. In this case GEOMS is
also applicable. But one should note that only if all algebraic information, including
0 =g’ 0=g" and 0 = h! are provided, instabilities and drift can be avoided by
GEOMS. It is preferable to provide as much information as possible. In the case that
the constraints on acceleration level are missing, the provided information is similar
to a DAE that behaves like a DAE with d-index 2.

This fact has to be communicated by the user to the code GEOMS with help of the
option IOPT(5) FORM. If IOPT(5) 0 then the projected-strangeness-free form (12)
of the equations of motion will be expected as basis for the discretization. Thus,
the user has to specify all information of the hidden constraints, i.e., up to acceler-
ation level. If IOPT(5)=1, then the discretization will be done without specifying
the constraints on acceleration level 0 = ¢ and 0 = h’. In the latter case the
used formulation of the equations of motion behaves like a system of d-index 2,
i.e., it is not strangeness-free. Because of the fact that the used formulation is not
strangeness-free, the success of the numerical integration depends highly sensitively
on the problem and on the consistency of the initial values, in particular, on the
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Option Name Feature Page

preserving invariant solutions 4
preserving hidden constraints 5)
preserving nonholonomic constraints 2
taking into account of redundancies in the con- | 19
straints
I0PT( 2) | LUN optional output for integration information
I0PT( 3) | NIT maximal number of Newton iterations 17

I0PT( 4) | STARTN starting values for the internal stages in the New- | 15
ton iteration

I0PT( 5) | FORM incomplete regularization 11
I0PT( 6) | NMAX maximal number of integration steps 19
I0PT( 8) | PRED step size control 18

I0PT( 9) | NWTMAT approximation of the Newton matrix at xy or one | 15
of the extrapolated stages possible

I0PT(10) | NWTUPD update of the Newton matrix 17

I0PT(11) | DECOMPC LU, QR, or SV decomposition for the algebraic | 17
part

I0PT(12) | DECOMPD LU or QR decomposition for the differential part | 17

I0PT(13) | SELCOMP selector control 18

I0PT(14) | AUTONOM exploitation of autonomous equations of motion | 19
I0PT(15) | MASSTRCT | exploitation of the structure of the mass matrix | 19
I0PT(17) | IVCNSST check and correction of the initial values with | 14
respect to its consistency

Table 1: Options and features of GEOMS

consistency of the Lagrange multipliers A and pu.
An overview over the features of GEOMS is given in Table 1. Furthermore, in Table
2 the subroutines belonging to GEOMS and their task are listed.

The initial values are of great importance for the existence and the uniqueness
of the solution. For the existence of a continuous solution the consistency of the
initial values is necessary. In particular, admissible initial values are restricted by
the (hidden) constraints. On the other hand consistent initial values, in particular,
consistent initial Lagrange multipliers, are not automatically given by the modeling
process and their determination by solving a system of nonlinear algebraic equa-
tions is difficult for complex multibody systems with a large number of constraints.
Therefore, the algorithm GEOMS provides the possibility to determine consistent ini-
tial values.

In addition to the algebraic equations determining the set of consistency M, see
(10), the user has to define in a subroutine IVCOND additional conditions to deter-
mine consistent initial values. Such conditions offer the possibility to determine
some of the freely choosable variables or to give further relations which allows a
unique determination of consistent initial values.
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Subroutines contained in the code GEOMS

GEBSUBST
GECORE
GEDECCLU
GEDECCQR
GEDECCSV
GEDECDLU
GEELIMFXQ

GEELIMFXS

GEELIMMIQ

GEELIMMIS

GEERREST
GEFXNUM

GEGREPEQ
GEGREPES

GEINIVAL
GEOMS
GESOLDLU
GESOLDQR
GETRFRHSC

backward substitution of the algebraic part

core routine

decomposition of the algebraic part with LU decomposition
decomposition of the algebraic part with QR decomposition
decomposition of the algebraic part with SV decomposition

LLU decomposition of the differential part

elimination in the differential part according to QR decomposition

of the algebraic part
elimination in the differential part according to SV decomposition

of the algebraic part
elimination in the mass matrix and the identity of the kinemati-

cal equations of motion according to QR decomposition of the

algebraic part
elimination in the mass matrix and the identity of the kinemat-

ical equations of motion according to SV decomposition of the

algebraic part
error estimation, see Page 18

numerical approximation of the Jacobian of the right-hand side of

the equations of motion
picking relevant columns of the differential part according to QR

decomposition
picking relevant columns of the differential part according to LU

and SV decomposition
determination of consistent initial values, see Page 14

main routine

solving the differential part by use of LU decomposition

solving the differential part by use of QR decomposition

transformation of the right-hand side according to the algebraic
part

User-supplied subroutines

EOM
IVCOND

JAC
MAS
SOLOUT

provides the reduced derivative array RDA (18)
provides additional initial conditions needed for the consistent ini-

tialization, see Page 12
provides the Jacobian of the reduced derivative array

provides the mass matrix
output of the numerical solution and additional information during
integration

Table 2: Subroutines of GEOMS

Example 3.1 The mathematical pendulum: In Example 2.8 we have intro-
duced the mathematical pendulum. The position variables p are restricted to the
circle with radius L, i.e., the constraint on position level is given by 0 = p? +p3 — L.
If one of the position variables is given, the other is uniquely determined up to the
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sign.

By defining additional conditions via the subroutine IVCOND the user can force the
pendulum into a deviation of /4 by setting p; = L/v/2 or by 0 = p; + po, for
instance. Furthermore, a certain angular velocity w can be prescribed by 0 =

Vui+vi/L - w. q

The determination of consistent initial values is done in the subroutine GEINIVAL
and is based on the collection of all algebraic constraints (1d)-(1g) and (7), (8), and
(9) together with the conditions defined in the subroutine IVCOND.

The user has to decide if the given initial values are assumed to be consistent or not.
By setting IOPT(17)=IVCNSST=1, the initial values are assumed to be consistent
and no check of consistency or correction of the initial values is done during the run
of GEOMS. Note that nonconsistent initial values could lead to convergence problems
in the integration process which leads to an abort of the run of GEOMS. Otherwise,
by setting IOPT (17) —0, the initial values are considered to be possibly inconsistent.
Thus, consistency will be checked and the initial values will be corrected during the
run of GEOMS, if necessary. If the user does not provide sufficiently many additional
conditions, only the consistency is checked. If the initial values are consistent, then
the integration will be continued, otherwise the run of GEOMS will be stopped. If
the user provides more additional conditions than necessary, then the correction (if
necessary) is done regarding the overdetermined nonlinear system. If all conditions
together are noncontradictory, then consistent initial values will be determined.
Otherwise, the Newton iteration used in this process will diverge and the run of
GEOMS will be stopped.

The solution of the nonlinear system of equations is obtained via a simplified Newton
method with the possibility of a certain number of updates of the iteration matrix,
as described at Page 17. The stopping criterion is the same as that for the simplified
Newton method during the integration process described at Page 16.

Remark 3.2 Note the fact that the conditions provided to IVCOND by the user
dominate the given initial guess, i.e., if the given initial guess is consistent but does
not satisfy the (possibly wrong) conditions provided by IVCOND, then the initial
guess will be corrected in such a way that both, the constraints (1d)-(1g) and (7),
(8), and (9) and the initial conditions provided to IVCOND are satisfied.

In case of an initial guess which is consistent to the constraints, the option IOPT (17)
can be set to one to avoid such a correction. Otherwise, the conditions provided to
IVCOND should be adapted. 4

If there is only interest in the computation of consistent initial values, the user has
to set T=TEND and IOPT(17)—0. Then the code GEOMS determines consistent initial
values, will call the user-supplied subroutine SOLOUT, and finally will return to the
calling subroutine.

In the following we will discuss the approach which is used in the algorithm GEOMS
for the numerical integration of the equations of motion (1) and, if available, (3) by
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use of the three stage Runge-Kutta method of type Radau Ila of order 5. Let s =3
denote the number of stages.

As mentioned above, the code GEOMS combines the discretization method with the
regularization technique presented in Theorem 2.4. Therefore, the algorithm uses
the projected-strangeness-free form (12) as basis for the discretization. For more
details on the discretization we refer to [38|. This discretization leads to a nonlinear
stage equation for the determination of the three stages X;; € R", ¢ = 1,2,3 on
the current integration interval [ty, tgy1] with ¢x,1 = ty + hg. Here hy denotes the
current step size. The stages X;; € R”, ¢ = 1,2, 3 approximate the solution at the
points ty; = tx + c;hx The nonlinear stage equation has to be solved by use of a
(simplified) Newton method.

A good choice of starting values X2, i = 1,2,3 is very important for the con-
vergence of the Newton iteration. In the code GEOMS two different possibilities for
the determination of starting values for the integration step from t; to t;,, are im-
plemented. The user has to define in advance which of both shall be used during
the integration process.

By setting I0PT(4) —STARTN—1 the starting values for the internal stages are chosen
by X2 =z, i = 1,2,3, where x;, denotes the already known value which approx-
imates the solution at the point £,. This x; corresponds either to the initial value
in the first integration step, i.e., k = 0, or it corresponds to the value determined at
the end of the preceding integration step.

On the other hand setting IOPT(4) 0 (which is the default) the starting values
XP. i =1,2,3 for the Newton iteration are obtained by evaluating the interpolation
polynomial ¢(t) of degree s over the already passed integration interval [t;_1, ;] with
ty—1 = tp—hi_1 and with Q(tk—l) = Tp_1, Q(tk—l‘l’cihk—l) = Xg_15, 2 = 1,2,3. In this
way we obtain the starting values for the Newton iteration as X7, = q(tx +c;hg), i =
1,2,3, where x;,_; denotes the numerical solution at the point ¢,_;. In particular,
this means that the new starting values in the integration step from ¢, to ¢, are
obtained by extrapolation to the points ¢ + c;hy, @ = 1,2,3 based on the internal
stages of the earlier integration step from ¢;_; to t,. Of course, this is not possible
in the first step. For more details see [18].

In GEOMS a simplified Newton method is implemented. For more details on Newton
methods we refer to [6]. In particular, this means that a constant Newton iteration
matrix O is used during the whole or several parts of the Newton iteration inside
the current integration step [tg,tx+1]. We use the simplified Newton method, since
a constant Newton iteration matrix reduces the amount of computation because of
the saved evaluation of Jacobians and saved decompositions of the Newton iteration
matrix in every except the first Newton iteration step. But the particular choice of
the Newton iteration matrix influences the convergence of the Newton iteration. For
this reason, the code GEOMS offers the possibility to choose between several reference
points (X*,¢*) for the determination of the Newton matrix. The choice has to be de-
termined by the user by setting the option IOPT(9) —NWTMAT. The range of possible
choices is related to the stages during the integration step. As discussed previously,
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there are two possibilities for the choice of initial values for the Newton iteration for
the determination of the internal stages. In case of IOPT(4)—0 the initial values are
obtained by extrapolation of the solution computed so far in the points t; + c;hy,
1 = 1,2,3. This offers the possibility to approximate the Newton iteration matrix
at four different reference points (X*,t*) = (X2, + c;ihy) for ¢ = 0,...,3, where
co =0 and ¢;, i = 1,2, 3 correspond to the node vector of the Runge-Kutta method,
see Table 17. Furthermore, X2, corresponds to the extrapolated starting values for
the internal stages at the times ¢ + c;hy, i = 0,...,3, and, in particular, X2, = zy
corresponds to the initial state of the current integration interval. Note that this
possibility is only given if the initial values for the Newton iteration are extrapo-
lated, i.e., if IOPT(4)=0. In the case of initial values chosen such that X}, = xy
for all ¢+ = 1,2, 3 this possibility is not given and the Newton iteration matrix will
be approximated at the initial point (zj,%;) with the initial state of the current
integration step [tg, txi1]-

Several numerical experiments have shown that the convergence of the Newton it-
eration can be improved by use of extrapolated initial values, i.e., IOPT(4)=0 in
connection with an approximation of the Newton iteration matrix at the second
internal stage, i.e., (X*, U*) = (X2, tx + c2hy) with IOPT(9) —2. But, if the Newton
iteration detects convergence problems, and the integration step has to be repeated
with a smaller step size, then the Newton iteration matrix has to be recomputed
such that the overall computation time may increase if the number of times a con-
vergence problems is detected is large. This number is reflected in the counter
NCRJCT=IWORK(11) which corresponds to the number of step rejections caused by
convergence test failures.

It should be noted that the choice of different Newton iteration matrices within the
Newton iteration is not available in the code RADAU5. Furthermore, the code GEOMS
offers the possibility of a certain number of updates of the Newton iteration matrix
during the Newton iteration inside of one integration step, see the following.

The convergence rate of the simplified Newton method is investigated in detail in
[6], see also |17, 27|. One important question in the use of an iterative method for
solving nonlinear systems inside an integration process is when to stop the iteration
such that the obtained accuracy of the computed solution of the nonlinear system
is within the prescribed tolerance without performing too many Newton iteration
steps.

The convergence estimation and the stopping criterion implemented in GEOMS is de-
scribed in [18| and adopted from the code RADAU5S |17, 18]. The estimation of the
convergence is based on the weighted root square norm || - ||s. which is defined for a

¢ € R" by

PERESS (i) (19

i=1

with s¢; = ATOL(7) + max(|zg;|, |Tg+1:|)RTOL(7), see [18|. This norm allows to pre-
scribe that some solution components have to be more precisely approximated than
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other. This can be specified in the vectors ATOL and RTOL prescribing the absolute
and relative tolerance, respectively. For more details on the error estimation and
the stopping criterion of the Newton iteration we refer to [18, 38].

In the case of a very slow convergence or, in particular, in the case of divergence,
the number of Newton iteration steps has to be restricted by a maximal number
Kmaw = NIT = IOPT(3). Thus, the Newton iteration will stop unsuccessfully if a)
the stopping criterion is not satisfied within the maximal number £,,,, of allowed
Newton iteration steps, or if b) the iteration diverges.

In case a) the user has to decide whether the whole integration step has to be re-
jected because of convergence failures and to be repeated with a reduced step size,
or if the Newton iteration should be continued with an updated Newton iteration
matrix. In GEOMS this decision is made by defining the maximal number of updates
in the option IOPT(10) —NWTUPD. However, several numerical results suggest that
the number of allowed updates should not exceed 1.

It should be noted that the possibility of an update of the Newton iteration matrix
within the Newton iteration is not available in the code RADAUS.

During the Newton iteration a linear system has to be solved in each step. This has
to be done in an efficient but stable way. The code GEOMS offers the possibility to
decompose the differential part and the algebraic part via different decomposition
methods. The user has to specify in the option IOPT(11)=DECOMPC if the algebraic
part, i.e., the Jacobian of the constraints, should be decomposed by use of the LU
decomposition with full pivoting (IOPT(11) 1), by a QR decomposition with pivot-
ing (IOPT(11)—2), or by a SV decomposition (IOPT(11) —3). Heuristically seen, the
LU decomposition with (partial) pivoting is a good compromise concerning efficiency
and stability. Therefore, it is the default in GEOMS, although, the SV decomposition
offers excellent stability properties but is more expensive.

Furthermore, with the option IOPT(12) DECOMPD, the user can specify how to de-
compose the differential part. By setting I0PT(12) —0 the LU decomposition with
partial pivoting is used and by setting IOPT(12) —1 the QR decomposition is used.

Remark 3.3 a) The separate decomposition implemented in GEOMS has the advan-
tage that the decomposition of the algebraic part can be done independently of the
step size h. Only the decomposition of the differential part has to be done separately
depending on h. In particular, if the Newton iteration has convergence problems and
the algorithm interrupts the Newton for to reduce the step size, then the information
with respect to the algebraic part may be recycled which saves computational work.
b) For the linear algebra computations like QR decompositions and SV decomposi-
tions we use BLAS! (Basic Linear Algebra Subprograms) [25] and LAPACK? (Linear
Algebra PACKage) [2] subroutines. Q

For strangeness-free differential-algebraic systems in semi-implicit form like the pro-
jected-strangeness-free form (12) the scaling of the algebraic constraints with 1/h is

IBLAS - http://www.netlib.org/blas/
2LAPACK - http://www.netlib.org/lapack/
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recommended in [32|, where h is the current step size. Since the numerical integra-
tion of the equations of motion in GEOMS is based on the projected-strangeness-free
formulation of the equations of motion, the constraints are scaled by 1/h.

The step size control of the integration process is a very sensitive topic in the im-
plementation of numerical algorithms for the integration of ODEs as well as for
DAEs. An overview over several step size control strategies is given in [37], see also
[4, 5, 11, 18]. The code GEOMS works with two different step size control strategies
as used in the code RADAUS5, but adapted to the structure of the equations of motion
(1). The basis for a step size control mechanism is a local error estimation. For
more details we refer to [18]. The error estimation is implemented in the subrou-
tine GEERREST. For the choice of a new step size for the next integration step or a
repeated integration step two possibilities are implemented in GEOMS which have to
be selected by use of the option I0OPT(8) ~PRED. With IOPT(8) 2 the classical step
size controller developed in [11] is used and with IOPT(8) =1 the predictive step size
controller, developed by Gustafsson in |16, is used. The predictive step size control
is not possible in the first step, so, the classical step size controller will be used
instead. The predictive step size controller needs slightly more work and storage
than the classical step size controller but is more flexible in adaptating the step
size. By use of the predictive step size controller a faster reduction of the step size
without step rejections is possible than by use of the classical step size controller.
This leads to a possible reduction of the overall amount of computation by use of
the predictive step size controller. Experiments suggest that the predictive step size
controller seems to produce safer results for simple problems. On the other hand,
the choice of the classical controller often produces slightly faster runs, see also [18].
The predictive step size controller will be used in GEOMS by default.

Since the code GEOMS is based on the combination of discretization and regulariza-
tion to the projected-strangeness-free formulation of the equations of motion which
is influenced by the choice of the selectors S, and S,, see Theorem 2.4, an efficient
computation of these selectors is also important and will be discussed in the follow-
ing.

In general, it is not necessary to recompute selectors in every integration step, see
Remark 2.7.

If the LU decomposition is used for the differential part then it is possible to de-
cide whether the determination of the selectors is done in each integration step
(IOPT(13)=SELCOMP=1) or the selectors are kept constant for those integration steps
where the pivoting in the algebraic part does not change (IOPT(13)=0). The latter
case is the default.

The code GEOMS offers the possibility to integrate the equations of motion of form
(1) with possibly redundant constraints. As discussed in the literature |26], see also
Remark 2.3, the solution may not be unique in this case, but under certain condi-
tions the nonuniqueness is only restricted to the Lagrange multipliers A\, u, and w.
For more details see [38].
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Very important for the integration of equations of motion with redundant constraints
is the detection of the degree of redundancy, i.e., the determination of the rank of
the Jacobian associated with the constraints. The reliable numerical determination
of the rank of a matrix is a delicate task and the SV decomposition is a commonly
used tool for doing this. Therefore, the numerical integration of equations of mo-
tion with redundant constraints is only allowed via the SV decomposition for the
constraints, i.e., IOPT(11) -~ DECOMPC- 3.

The rank of the constraints will be determined in every integration step. If it is
detected in the first step that the constraints are redundant, a reliable numerical
integration requires the use of the SV decomposition at least for the decomposition
of the constraints. Furthermore, if a possibly change of the rank from one step to
another is detected, then the integration possibly has reached a singular point and
will be stopped with an error message.

If the equations of motion have solution invariants (3), then it is often desirable
to preserve these solution invariants explicitly. GEOMS is able to preserve solution
invariants if they are provided by the user as equations (3) in the RDA (18). See the
Example 4.1.

The user may restrict the maximal number of allowed integration steps by setting the
option IOPT(6)=NMAX. The default value of NMAX is 100000. Furthermore, the user
may force the code to exploit some special structures of the problem. If the prob-
lem is autonomous the amount of computational work for the numerical integration
may be reduced. By setting IOPT(14) —AUTONOM—1 the user tells the code that the
problem is autonomous and the code GEOMS exploits this in the integration process.
The default is IOPT(14) =0, i.e., the problem is not autonomous. In particular, if
the mass matrix is constant and/or diagonal a large amount of computational work
can be saved. Therefore, the user can specify by use of IOPT(15) ~MASSTRKT if the
mass matrix is diagonal and constant IOPT(15) —4, full and constant I0PT(15)—3,
diagonal and time and/or state dependent IOPT(15) 2, or full and time and/or
state dependent IOPT(15)=1 (default).

4 Numerical experiments

In the following we will demonstrate the applicability and the performance of the
new solver GEOMS. The integration with GEOMS will be performed for three different
formulations of the regularized equations of motion. First, the numerical results
obtained with GEOMS using the projected-strangeness-free form (12) of the equations
of motion will be abbreviated by GEOMS(psfEoM). Second, the numerical results
obtained with GEOMS without providing the constraints on acceleration level, see
option IOPT(5) on Page 11, will be abbreviated by GEOMS(pEoM1). Furthermore,
if the solution of the considered example satisfies some solution invariants we will use
the projected-strangeness-free form of the equations of motion with explicit forcing
of the solution invariants in addition to the two formulations above, see Page 4. The
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numerical results in this case are denoted by GEOMS(psfEoM+1).
The numerical integrations are done on an AMD Athlon XP 1800+, 1533 MHz.
Let us note that we will abstain from the use of physical units like meters or seconds.

Example 4.1 The mathematical pendulum: In Example 2.8 we introduced
the equations of motion of the mathematical pendulum and we did regularize them to
the projected-strangeness-free form (14) which is used for the numerical integration
via GEOMS.

For the numerical simulations of the movement we used the mass m = 1, the length
L = 1, and the gravitational acceleration g = 13.75. Let us note that we did
modify the gravitational acceleration to approximately ¢ = 13.75 such that the
exact solution has a period of 2 which allows the comparison of the accuracy every
period.

x10™* Total energy

T T
DASSL(EoM1)
RADAUS(EoM1) ~_ |HEDOPs

GEOMS(psfEoM+1)
GEOMS(psfEoM1)

GEOMS(psfEoM)

|
a

) RADAUS5(EoM?2)
2 RADAUS5(GGL)
= MEXAX
°
—10F 4
ODASSL (oEoM)
-151 DASSL(EoM1) B
RADAUS5(EoM)
prescribed tolerance 1e-07
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simulation time

Figure 1: Mathematical Pendulum: Conservation of the total energy by the numer-
ical solutions for prescribed RTOL—ATOL—10~" on the time domain I = [0, 1000]

The mathematical pendulum modeled as in 13 represents a mechanical system which
conserves the total energy. This total energy is given by

1
E(p,v) = gm(vf + v3) + mgp> (20)
and is conserved such that
0= E(p(t),v(t)) — Ey = e(p,v) with Ey = E(po,vo) (21)

for t € I and every solution of the equations of motion (13).
Let us consider the holonomic constraints (13c¢) and their derivatives, which restrict
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the motion of the pendulum in a nonredundant way, in comparison to the conserva-
tion of the total energy (21). We have

0 = pi+ps—172 (22a)
0 = 2p1U1 + 2p21)2, (22b)
4
0 = 207+ 205 = 2pog — —(p} +P3) M, (22¢)
1
0 = §m(vf + v3) + mgps — Ey. (22d)

The constraints (22) are nonredundant for all p, v, and A satisfying (22). In par-
ticular, in addition to the holonomic constraints and their derivatives the energy
conservation restricts the solution as well. The dimension of the solution manifold
with the energy conservation is therefore smaller than without the energy conserva-
tion.

For comparison, in Figure 1 the total energy in the numerical solution is depicted. In
addition to GEOMS, the numerical solution is computed with RADAUS5 |17, 18| for differ-
ent formulations, i.e., (EoM) the equations of motion (1) of d-index 3, (EoM2) the d-
index 2 formulation (using the constraints on velocity level instead of the holonomic
constraints), (EoM1) the d-index 1 formulation (using the constraints on acceleration
level instead of the holonomic constraints), and (GGL) the Gear-Gupta-Leimkuhler
formulation, see |13|. Furthermore, the solution is computed with ODASSL |9, 10|,
DASSL |4, 31|, MEXAX |28|, and HEDOP5 |3|. Expecting GEOMS(psfEoM+I) the nu-
merically computed total energy is far from being constant. This can be expected
because the energy conservation is contained as an equation in the used formulation
and is therefore explicitely forced during the numerical integration. However, even
the other numerical results obtained with GEOMS satisfy the conservation of total
energy very accurately. The preserving of the total energy yields a stabilization of
the solution.

In the Figures 2 and 3 the efficiency is depicted, i.e., the relation between the
obtained accuracy and the consumed computation time of the different used for-
mulations. Obviously, the integration with use of GEOMS based on the projected-
strangeness-free formulation (14) plus solution invariants GEOMS(psfEoM+1) offers
the best performance for this example. Note that the approximation of the Lagrange
multipliers by GEOMS(psfEOM+1) is much better than of the other results.

A very important fact for the numerical integration and the stability of the numerical
algorithms regarding the integration of DAEs is the satisfaction of the constraints,
including the hidden constraints. In Figure 4 the residual of the constraints of
position level, of velocity level, and of acceleration level depending on the simulation
time is depicted. As one can see, GEOMS satisfies all constraints well.

Above we discussed the strategy for the determination of appropriate selectors,
concerning IOPT(13), see Page 18. Furthermore, the projected-strangeness-free for-
mulation (14) of the pendulum has been developed in Example 2.8 and the choice of
the selectors S, and S, has been considered. We have stated above that, in principle
the selectors may be kept constant as long as the deviation of the pendulum does
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Figure 2: Mathematical Pendulum: Efficiency of the solvers based on residual eval-
uations. Simulations are done on the time domain I = [0, 1000].
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Figure 3: Mathematical Pendulum: Efficiency of the solvers based on residual eval-
uations. Simulations are done on the time domain I = [0, 1000].
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Example 01_SimpPend
Integration with GEOMS (psfEoM)

TSTART = 0.00 TEND = 5.00 HO = 0.100E-01
TOLMIN = 1.0D- 7 TOLMAX = 1.0D- 9
Initial velocity 2.80 rad

[SimpPend] GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-06
[SimpPend] GEOMS(psfEoM) finished with IDID= 0 H= 0.254E-01 at T= 0.500E+01
NACCPT = 187 | NEOM= 2167 | NPDEC = 187
NERJCT = 16 | NJAC= 187 | NEDEC = 204
NCRJCT = 1 | NMAS= 1 | NBSUB = 660
CPUTIME= 0.060s | | NSEL = 2
[SimpPend] GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-07
[SimpPend] GEOMS(psfEoM) finished with IDID= 0 H= 0.176E-01 at T= 0.500E+01
NACCPT = 270 | NEOM= 2961 | NPDEC = 270
NERJCT = 13 | NJAC= 270 | NEDEC = 284
NCRJCT = 1 | NMAS= 1 | NBSUB = 897
CPUTIME= 0.060s | | NSEL = 2
[SimpPend] GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-08
[SimpPend] GEOMS(psfEoM) finished with IDID= 0 H= 0.118E-01 at T= 0.500E+01
NACCPT = 391 | NEOM= 4141 | NPDEC = 391
NERJCT = 9 | NJAC= 391 | NEDEC = 401
NCRJCT = 1 | NMAS= 1 | NBSUB = 1250
CPUTIME= 0.080s | | NSEL = 2

Table 3: Mathematical Pendulum: Statistical results for the numerical simulation
with GEOMS using the psfEoM with initial velocity v = 2.8

not reach 90 degrees with respect to the initial state. The strategy for choosing the
selectors is demonstrated in two simulation scenarios which are depicted in Tables
3 and 4.

Both scenarios simulate the motion of the pendulum starting with the downward
hanging initial position pyg = [ 0 -1 ]T and an initial velocity vy = [ vig 0 ]T
over the time domain I = [0,5]. In Table 3 the simulation starts with an ini-
tial velocity of vy = 2.8. This initial velocity leads to the highest deviation of
p= [ +0.699 —0.715 } which does not reach the deviation of 45 degrees. Because
the constraint matrix has the form G = [ 2p; 2p, | and because of [2p;| < |2p,| for
all t € I, a change of the pivoting is not necessary such that a (re-)computation of the
selector is only necessary at the beginning of the integration process and after every
detected convergence failure. Therefore, the number NSEL of (re-)computations of
the selector equals the number NCRICT of rejections because of convergence failures
plus one initial computation. The situation changes completely if the pendulum
passes the deviation of 45 degrees with respect to the initial state. This happens if
the initial velocity is increased to v;g = 2.9. The numerical results are depicted in
Table 4. Obviously, the (re-)computations of the selector NSEL happened 13 times
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Example 01_SimpPend
Integration with GEOMS (psfEoM)

TSTART = 0.00 TEND = 5.00 HO = 0.100E-01
TOLMIN = 1.0D- 7 TOLMAX = 1.0D- 9
Initial velocity 2.90 rad

[SimpPend] GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-06
[SimpPend] GEOMS(psfEoM) finished with IDID= 0 H= 0.236E-01 at T= 0.500E+01
NACCPT = 207 | NEOM= 2730 | NPDEC = 207
NERJCT = 7 | NJAC= 207 | NEDEC = 227
NCRJCT = 13 | NMAS= 1 | NBSUB = 841
CPUTIME= 0.060s | | NSEL = 26
[SimpPend] GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-07
[SimpPend] GEOMS(psfEoM) finished with IDID= 0 H= 0.121E-02 at T= 0.500E+01
NACCPT = 303 | NEOM= 3729 | NPDEC = 303
NERJCT = 12 | NJAC= 303 | NEDEC = 321
NCRJCT = 6 | NMAS= 1 | NBSUB = 1142
CPUTIME= 0.080s | | NSEL = 19

[SimpPend] GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-08
[SimpPend] GEOMS(psfEoM) finished with IDID= 0 H= 0.109E-01 at T= 0.500E+01
NACCPT = 441 | NEOM= 5208 | NPDEC = 441
NERJCT = 12 | NJAC= 441 | NEDEC = 459
NCRJCT = 6 | NMAS= 1 | NBSUB = 15689
CPUTIME= 0.090s | | NSEL = 19

Table 4: Mathematical Pendulum: Statistical results for the numerical simulation
with GEOMS using the psfEoM with initial velocity v = 2.9

more often than convergence problems NCRJICT are detected. In Figure 6 the motion
of the pendulum is depicted. One can see that the altitude of the pendulum passes
12 times the altitude of a deviation of 45 degrees. Therefore, the number NSEL
of (re-)computations of the selectors exceeds the number NCRICT of convergence
problems by 13, i.e., 12 plus one initial computations of the selectors. <

Example 4.2 The truck model: In [36] a planar nonlinear model of a truck is
introduced as benchmark example. In Figure 7 the topology as well as the coordi-
nates, bodies, joints, and force elements are depicted. The model consists of eleven
coordinates p;, @ = 1,...,11 describing the motion of seven rigid bodies and one
Lagrange multiplier A\;, see Table 5.

We omit to specify the equations of motion in detail and refer to |36] instead. Note
that the equations of motion of the truck model are badly scaled, since the solution
of the Lagrange multiplier \; is of magnitude 10* but the solution of the other
independent variables p and v are of magnitude 1072
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Figure 6: Mathematical Pendulum: Solution py for initial velocity v = 2.8 and
v10 = 2.9 on the time domain I = [0, 5].
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Body

Coordinate

1 | rear wheel P1

vertical motion

front w

heel | po

vertical motion

3 | truck chassis | p3

vertical motion

ps | rotation about y-axis
4 | engine ps | vertical motion
ps | rotation about y-axis

5 | driver cabin | p7

Ds

vertical motion
rotation about y-axis

6 | driver seat Do

vertical motion

Efficiency with respect to the Lagr.mult.

7 | loading area | pip | vertical motion
p11 | rotation about y-axis
A1 | Lagrange multiplier with respect to the joint
between loading area and truck chassis
Table 5: Nonlinear truck model
Efficiency with respect to the positions » Efficiency with respect to the velocities
10
10° 107"
> >
g g
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10710 1078
GEOMS(pEoM1) - GEOMS(pEoM1) D
10" 10° 10" 10°
computation time computation time

[N
(=}
©

accuracy

10°
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10"
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computation time

#® corresponds to prescribed tolerance 1e-07

Figure 8: Truck: Efficiency of the solvers based on residual evaluations. Simulations

are done on the time domain I = [0, 20].

The obtained accuracy of the numerical solutions is compared with the numerical
solution RADAU5(GGL) obtained with a prescribed tolerance RTOL—ATOL—10715.
The precision of all results obtained by a prescribed tolerance are of similar accuracy
but the consumed computation time differs, as seen in the Figure 8. By the use of
the code GEOMS no problem occurred in the numerical integrations for any prescribed
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tolerances RTOL=ATOL> 10715, N

5 Summary

In this paper we have presented the new numerical algorithm GEOMS for the numer-
ical integration of general equations of motion.

In particular, the algorithm GEOMS has been developed to carry out the numerical
integration of the most general form of the equations of motion, including nonholo-
nomic constraints and possible redundancies in the constraints, as they may appear
in industrial applications. Besides the numerical integration it offers some additional
features like preservation of invariant solutions, preservation of hidden constraints,
use of different decomposition strategies, use of an incomplete regularization, and
also checking and correction of the initial values with respect to their consistency.
Subsequently, we have demonstrated the performance and the applicability of the
algorithm for two mechanical examples of different degrees of complexity. The ex-
perience with these numerical examples and several other numerical tests suggest
that the code GEOMS is an efficient and robust method for the numerical integration
of the equations of motion.

A  Manual of GEOMS

SUBROUTINE GEOMS (
# NP,NV,NR,NW,NS,NL,NM,NI,M,N,NIVCOND,
# X,T,TEND,H,RTOL,ATOL,ITOL,IOPT,ROPT,
#  IVCOND,EOM,MAS,JAC,IJAC,

#  SOLOUT,IOUT,

#  LIWORK,IWORK,LRWORK,RWORK,

# RPAR,IPAR,IERR,

#

IDID)
C o ______
C
C NAME : (G)eneral (E)quations (0)f (M)otion (S)olver
C
C PURPOSE : This subroutine performs the numerical simulation
C of a multibody system whose state is described by
C
C p - position variables of dimension NP,
C v - velocity variables of dimension NV,
C r - dynamical force element variables of dimension NR,
C w - auxiliary variables of dimension NW,
C s - contact point variables of dimension NS,
C 1 - holonomic Lagrange multipliers of dimension NL,
C m - nonholonomic Lagrange multipliers of dimension NM
C
C by numerical integration of the equations of motion
C of the form
C
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p’= Z(p)*v, (1) (f_kin)
M(p,t)*v’= f(p,v,r,w,s,l,m,t)-ZT(p) *GT(p,s,t)*1
-ZT(p)*HT(p,s,t)*m, (2) (f_dyn)

r’= b(p,v,r,w,s,1l,m,t), (3)
0 =d(p,v,r,w,s,l,m,t), (4)
0 = c(p,s,t), (5)
0 = H(p,s,t)Z(p)v+h(p,s,t) (6)
0 = glp,s,t), e
0 = e(p,v,s,t) (8)

on the domain [t_O0,t_f]=[T,TEND].

The prime denotes the time derivative, e.g., p’=dp/dt, and the
’T? following a matrix or vector denotes the transpose of this
matrix or vector, e.g.,GT is the transpose of G and ZT is the
transpose of Z. Furthermore, the equations correspond to

(1) Kinematical equations of motion of dimension NP,
(2) Dynamical equations of motion of dimension NV,
(3) Dynamical force element equations of dimension NR,
(4) Additional equations for variables w of dimension NW,
(5) Contact equations of dimension NS,
(6) Nonholonomic constraints of dimension NM,
Notation: h™(p,v,s,t)=H(p,s,t)Z(p)v+h(p,s,t)
(7) Holonomic constraints of dimension NL,
(8) Solution invariants of dimension NI.

The System (1)-(8) has to satisfy the following.

a) G = dg/dp - dg/dsx*(dc/ds)~{-1}*dc/dp.

b) [ GZM~{-1}G1 GZM~{-1}Hm]
rank ([ 1)=rank(G) +rank (H)=constant

[ HZM~{-1}G1 HZM~{-1}Hm]

with G1=ZT*GT-df/dl+df/dw+*(dd/dw)~{-1}*dd/dl
and Hm=ZT*HT-df/dm+df/dw*(dd/dw) ~{-1}*dd/dm
for all t in [T,TEND].

Alternatively,
[ M Gl Gm ]

rank([ GZ 0 0 1)=NV+rank(G)+rank(H)
[HZ O 0 1

has to be satisfied for all t in [T,TEND].
c) dc/ds has to be nonsingular for all times t in [T,TEND].
d) dd/dw has to be nonsingular for all times t in [T,TEND].
e) de/dv has to have full rank for all times t in [T,TEND].

The integration method used is the implicit Runge-Kutta method
(Radau IIa) of order 5 with step size control, continuous
output, and consistent initialization.

METHOD : The equations of motion are integrated by the implicit
Runge-Kutta method of type RADAU IIa of order 5 and using the
projected-strangeness-free formulation or the
projected-strangeness-index-1 formulation of the equations of
motion.
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VERSION

REVISIONS :

AUTHORS

REFERENCES:

KEYWORDS

NOTE

DISCLAIMER:

: April 12, 2006

: Address: A. Steinbrecher

Weierstrass Institute for Applied Analysis
and Stochastics
Forschungsverbund Berlin e.V.
Mohrenstr. 39
10117 Berlin
e-mail: steinbrecher@wias-berlin.de

This code is part of the PhD thesis:

A.Steinbrecher. Numerical Solution of Quasi-Linear Differential-
Algebraic Equations and Industrial Simulation of Multibody
Systems. PhD thesis, TU Berlin, Institut fuer Mathematik, 2006

: numerical simulation of mechanical systems, equations of motion,

differential-algebraic equations, projected-strangeness-free
formulation, projected-strangeness-index-1 formulation

: The (basic) linear algebra routines are provided by the

libraries BLAS and LAPACK

Warranty disclaimer: The software is supplied "as is" without

warranty of any kind. The copyright holder:

(1) disclaim any warranties, express or implied, including but
not limited to any implied warranties of merchantability,
fitness for a particular purpose, title or non-infringement,

(2) do not assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of the software,

(3) do not represent that use of the software would not
infringe privately owned rights,

(4) do not warrant that the software will function
uninterrupted, that it is error-free or that any errors
will be corrected.

Limitation of liability: In no event will the copyright holder:

be liable for any indirect, incidental, consequential, special

or punitive damages of any kind or nature, including but not
limited to loss of profits or loss of data, for any reason
whatsoever, whether such liability is asserted on the basis

of contract, tort (including negligence or strict liability),

or otherwise, even if any of said parties has been warned of

the possibility of such loss or damages.

SUBROUTINE GEOMS (

# NP,NV,NR,NW,NS,NL,NM,NI,M,N,NIVCOND,
# X,T,TEND,H,RTOL,ATOL,ITOL,IOPT,ROPT,
#  IVCOND,EOM,MAS,JAC,IJAC,
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#  SOLOUT,IOUT,
#  LIWORK,IWORK,LRWORK,RWORK,
# RPAR,IPAR,IERR,
#  IDID)
IMPLICIT NONE
INTEGER NP,NV,NR,NW,NS,NL,NM,NI,M,N,NIVCOND,
# ITOL,IJAC,IO0UT,LIWORK,LRWORK,IERR, IDID,

#

I0PT(40) ,IWORK(LIWORK) ,IPAR(*)

DOUBLE PRECISION T,TEND,H,

# X(N) ,RTOL(*) ,ATOL (*) ,ROPT(40) ,RWORK (LRWORK) ,
RPAR (*)
EXTERNAL IVCOND,EOM,MAS, JAC,SOLOUT
INPUT- AND OUTPUT-ARGUMENTS
NP Input : integer
Number of position variables p.
NV Input : integer
Number of velocity variables v.
NR Input : integer
Number of dynamical force element variables r.
NW Input : integer
Number of auxiliary variables w.
NS Input : integer
Number of contact point variables s.
NL Input : integer
Number of Lagrange multipliers l=lambda for holonomic
constraints.
NM Input : integer
Number of Lagrange multipliers m=mu for nonholonomic
constraints.
NI Input : integer
Number of invariants, e.g., energy conservation.
M Input : integer
Total number of provided equations (M.GE.N), i.e., dimension of
RDA, see subroutine EOM. In the case of the use of the
* projected-strangeness-free formulation we have
M=NP+NV+NR+NW+NS+3*NL+2*NM+NT,
* projected-strangeness-index-1 formulation we have
M=NP+NV+NR+NW+NS+2*NL+NM+NI.
N Input : integer

Number of unknowns (M.GE.N), i.e., dimension of X. We have
N=NP+NV+NR+NW+NS+NL+NM.
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NIVCOND Input : integer

TEND

RTOL
ATOL

ITOL

Number of initial value conditions, which have to be satisfied
in addition to the constraints obtained from the provided equa-
tions of motion. See subroutine IVCOND.

Input : double precision array X(N)
Initial values for X. The array X contains the (initial) state
of the mechanical system in the following order

X(1:NW) —w
X (NW+1:NW+NL) =1 (=lambda)
X (NW+NL+1 : NW+NL+NM) =m (=mu)

X (NL+NM+NW+1 : NL+NM+NW+NR) =r

X (NL+NM+NW+NR+1 : NL+NM+NW+NR+NV) =v

X (NL+NM+NW+NR+NV+1 : NL+NM+NW+NR+NV+NS) =s

X (NL+NM+NW+NR+NV+NS+1 : NL+NM+NW+NR+NV+NS+NP) =p

Output
Numerical approximation of the solution at the last successfully
reached time T.

Input : double precision

Initial time.

Output

Last successfully reached time. If the whole integration was
successful then T=TEND.

Input : double precision
Final time.

Input : double precision
Initial step size.
Output

Last used step size.

Input : double precision RTOL (or array RTOL(N))

Input : double precision ATOL (or array ATOL(N))

Relative and absolute error tolerances. They can be both
scalars or else both vectors of length N.

In the case of a scalar the prescribed relative and absolute
tolerances are valid for every component of the vector of
unknowns X. The code keeps, roughly, the local error of X(I)
below RTOL*ABS(X(I))+ATOL.

In the case of a vector of dimension N the prescribed relative
tolerances RTOL(I) and absolute tolerances ATOL(I) are valid
for the I-th component X(I) of the vector of unknowns X.

The code keeps, roughly, the local error of X(I) below
RTOL (I)*ABS(Y(I))+ATOL(I).

Input : integer
Switch for RTOL and ATOL:
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ITOL=0 Both RTOL and ATOL are scalars.
ITOL=1 Both RTOL and ATOL are vectors.

I0PT Input : integer array IOPT(40)
Serve as parameters for the code. For standard use of the code
I0PT(2),..,I0PT(17) must be set to zero before calling.
See below for a more sophisticated use.

IOPT( 2)=LUN output device
0 - no output (default)
6 - output to the screen
>10 - other output devices (to define)
In the case that the output of several messages is de-
sired, the user has to define an output device and to
associate this device with IOPT(2), e.g.,
I0PT(2)=13
OPEN(UNIT=13,FILE=’geoms.log’)
Finally, the output device has to be closed, e.g.,
CLOSE(13)
In the case of an unsuccessful run of GEOMS it is re-
commended to set IOPT(2) > 0 such that GEOMS is able
to provide more detailed informations to the user.
Furthermore, it is recommended to set
I0PT(2)=0, 6, or >10.

I0OPT( 3)=NIT maximum number of Newton iterations for the solu-
tion of the implicit system in each step.
The default value (for IOPT(3)=0) is 10.

IOPT( 4)=STARTN defines the choice of starting values for the

Newton method solving the nonlinear stage equatioms

0 - The extrapolated collocation solution is taken as
starting value for Newton method. (default)

1 - Zero starting values are used as starting value
forNewton method.

I0PT(4)=1 is recommended if the Newton method has con-

verging difficulties (this is the case when IWORK(11)

is very large in comparison to IWORK(1), see output

parameters) .

I0OPT( 5)=FORM Used formulation as basis of the numerical

integration

0 - projected-strangeness-free formulation, i.e., the
user has to provide the equations (1)-(7) toge-
ther with the first and second time derivative
of the holonomic constraints, i.e.,
gl(p,v,t) = d/dt g(p,t),
gll(p,v,r,w,s,l,m,t)= d~2/dt~2 g(p,t),
and the first time derivative of the nonholonomic
constraints, i.e.,
hI(p,v,r,w,s,l,m,t)= d/dt(H(p,s,t)Z(p)v+h(p,s,t)).
If there exist some solution invariants (8) the
user should also provide them and set NI equal
to the number of the solution invariants. All
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provided equations have to be defined in the sub-
routine EOM and the subroutine MAS in the correct
order, see the subroutines EOM and MAS for more
details.

1 - projected-strangeness-index-1 formulation , i.e.,
the user has to provide the equations (1)-(7)
together with the first time derivative of the
holonomic constraints, i.e.,
gl(p,v,t) = d/dt g(p,t).

If there exist some solution invariants (8) the
user should also provide them and set NI equal

to the number of the solution invariants. All
provided equations have to be defined in the sub-
routine EOM and the subroutine MAS in the correct
order, see the subroutines EOM and MAS for more
detail.

I0PT( 6)=NMAX Maximal number of allowed steps.
The default value (for IOPT(6)=0) is 100000.
If the code stops with the error message IDID=-1117,
IOPT(6) has to be increase or
the integration can be continued by use of the obtained
X and T as initial values for the continued integration.

I0OPT( 8)=PRED Step size strategy
1 - predictive controller (Gustafsson)
2 - <classical step size control
The default value (for IOPT(8)=0) is 1.
The choice IOPT(8)=1 seems to produce safer results;
for simple problems, the choice IOPT(8)=2 produces
often slightly faster runms.

I0PT( 9)=NWIMAT Approximation of the Newton iteration matrix
0 - approximation at the initial point x_i of the
current integration interval [t_{i},t_{i+1}]
i.e., at (t_{i},x_{i}) (default)
1 - approximation at the first extrapolated stage of
the current integration interval [t_{il},t_{i+1}]
i.e., at (t_{i}+c_{1}*n,X_{i1})
2 - approximation at the second extrapolated stage of
the current integration interval [t_{il},t_{i+1}]
i.e., at (t_{i}+c_{2}*h,X_{i2})
3 - approximation at the third extrapolated stage of
the current integration interval [t_{il},t_{i+1}]
i.e., at (t_{i}+c_{3}*h,X_{i3})
Several numerical experiments turned out that the
choice IOPT(9)=2 is the fastest while the
choice IOPT(9)=0 is theoretically the safest.
I0PT(9) .NE.O is only possible if IOPT(4)=STARTN=0,
i.e., the extrapolated collocation solution is taken
as starting value for Newton method.

I0OPT(10)=NWTUPD Update of the Newton iteration matrix
0 - for the whole Newton iteration process in one
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integration step the same Newton iteration matrix
is used, i.e., no update is allowed. (default)
>0 - during the Newton iteration process in the current
integration step IOPT(10) updates of the Newton
iteration matrix are allowed.
If convergence problems during the Newton iteration
process occur, often the Newton matrix is not suitable.
Therefore, in the case of IOPT(10)=0 the
current integration step is rejected, the counter NCRJCT
will be increased by one and the current integration
step will be repeated with reduced step size.
The option IOPT(10)>0 allows the update of the Newton
iteration matrix IOPT(10) times. The Newton iteration
matrix will be updated by use of the current iterates
and the Newton iteration will be continued.
Several numerical experiments have shown that I0PT(10)
should not exceed 1.

I0PT(11)=DECOMPC Decomposition of the algebraic part

0 - LU decomposition with full pivoting (default)

1 - QR decomposition with pivoting

2 - SV decomposition
By use of IOPT(11)=1 the integration becomes fastest
but the stability of the decomposition can not be
guaranteed. In situations with isolated singularities
it may happen that the integrator does not detect
the singularity if the tolerances RTOL or ATOL are
too large.
By use of IOPT(11)=2 or 3 the stability of the
decomposition is guaranteed but the integration
becomes slower.

In case of redundant constraints only IOPT(11)=3 is
possible.

I0OPT(12)=DECOMPD Decomposition of differential part
0 - LU decomposition with partial pivoting (default)
1 - QR decomposition
By use of IOPT(12)=0 the integration becomes fastest.

I0OPT(13)=SELCOMP Recomputation strategy for the selectors

0 - situation adapted
the recomputation of the selector will be domne
only if the row pivoting of the constraints is
changing or convergence problems occur during
the Newton iteration process (default)

1 - in every integration step

In case of IOPT(13)=0 the amount of computations

is reduced and the integration becomes faster.

This speed-up is only possible if DECOMPD=0.

I0PT(14)=AUTONOM Autonomy of the equations of motion
0 - the equations of motion are not autonomous
(default)
1 - the equations of motion are autonomous
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ROPT

If the equations of motion are autonomous the amount
of computations can be reduced and the integration
becomes faster.

I0OPT(15)=MASSTRKT Structure of the mass matrix
1 - full and time or/and state dependent
2 - diagonal and time or/and state dependent
3 - full and constant
4 - diagonal and constant
The default value (for IOPT(15)=0) is 1.

IOPT(17)=IVCNSST are the initial values consistent

0 - No, the initial values are assumed to be not
consistent. A check of consistency will be
done and if necessary a correction will be
computed. (default)

1 - Yes, the initial values are assumed to be
consistent. No check of consistency will be
done.

Input : double precision array ROPT(40)

Serve as parameters for the code. For standard use of the code
ROPT(1),..,ROPT(40) must be set to zero before calling.

See below for a more sophisticated use.

ROPT( 1)=URQUND The rounding unit
The default value (for ROPT(1)=0.0) is 1.D-16.

ROPT( 2)=SAFE Safety factor in step size prediction
The default value (for ROPT(2)=0.0) is 0.9.

ROPT( 3)=THET Recomputation of the Jacobian
Decides whether the Jacobian should be recomputed.
Increase ROPT(3), to 0.1 say, when Jacobian evaluations
are costly. for small systems ROPT(3) should be smaller
(say 0.001D0). Negative ROPT(3) forces the code to
compute the Jacobian after every accepted step.
The default value (for ROPT(3)=0.0) is 0.001DO.

ROPT( 4)=FNEWT Stopping criterion for Newton’s method
Smaller values of ROPT(4) make the code slower, but
safer.

The default value (for ROPT(4)=0.0) is
MIN(O.03DO,RTOL(1)**0.5D0)

ROPT( 5)=QUOT1 Change of the step size
See ROPT(6).
The default value (for ROPT(5)=0.0) is 1.0DO

ROPT( 6)=QUOT2 Change of the step size
If QUOT1 < HNEW/HOLD < QUOT2, then the step size is not
changed. This saves, together with a large ROPT(3),
decompositions and the amount of computations for
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IVCOND

ROPT( 7)=

ROPT( 8)=

ROPT( 9)=

User sup

SUBRO
IMPLI
INTEG
DOUBL

N

NCOND

COND

large systems. For small systems one may have
ROPT(5)=1.00D0, ROPT(6)=1.2D0, for large full systems
ROPT(5)=0.99D0, ROPT(6)=2.0D0 might be good choices.
The default value (for ROPT(6)=0.0) is 1.2DO0

HMAX Maximal step size
The default value (for ROPT(7)=0.0) is TEND-T

FACL PARAMETER FOR STEP SIZE SELECTION
See ROPT(9).
The default value (for ROPT(9)=0.0) is 8.0DO

FACR Step size selection

The new step size is chosen subject to the restriction
FACR <= HNEW/HOLD <= FACL

The default value (for ROPT(8)=0.0) is 0.2D0

plied subroutine which provides initial conditions in
addition to the constraints contained in the equations
of motion (including hidden constraints)

UTINE IVCOND(N,T,X,NCOND,COND,IPAR,RPAR, IERR)
CIT NONE

ER N,NCOND, IPAR(*) , IERR

E PRECISION T,X(N),COND(NCOND) ,RPAR(x)

Input : integer
Number of unknowns, i.e., dimension of X
X has to remain unchanged.

Input : double precision
Initial time t_O.
T has to remain unchanged.

Input : double precision array X(N)
Unknown variables, see above.
X has to remain unchanged.

Input : integer

Number of additional initial conditions provided in the
subroutine IVCOND.

NCOND has to remain unchanged.

Output : double precision array COND(NCOND)

Residual of initial conditions, e.g. the condition
COND(1)=X(4)-.5 forces the initial state of X(4) to
be 0.5, i.e. X(4)=0.5D0.

Note the fact, that the conditions given in IVCOND
override the given initial values, i.e., if the given
initial values are consistent but do not satisfy the
(possibly wrong) conditions given in IVCOND the
initial values will be corrected such that both,

the constraints and the initial conditions are
satisfied.
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EOM

In case of initial values which are consistent to
the constraints the option IOPT(17) could be set to 1
to avoid such a correction.

IPAR Input/Qutput: integer array IPAR(x*)
Integer parameters which are only used by the user.
They are unused and unchanged by GEOMS.

RPAR Input/Output: double precision array RPAR(*)
Double precision parameters which are only used by the
user. RPAR is unused and unchanged by GEOMS.

IERR (QOutput : integer
Indicator of success. IERR is only used by
user supplied subroutines. After every call of a user
supplied subroutine the status of IERR is checked. If
IERR is negative the run of GEOMS will be interrupted
and GEOMS returns to the calling program. IERR 1is
unchanged by GEOMS.

Name (EXTERNAL) of the user supplied subroutine which provides
the right-hand side (RHS) of EoM (1)-(8) together with the first
and second time derivative of the holonomic constraints, i.e.,
gl(p,v,t) d/dt g(p,t),
glli(p,v,r,w,s,1l,m,t) = d~2/dt~2 g(p,t),
and the first time derivative of the nonholonomic constraints,

i.e.,

hI(p,v,r,w,s,1l,m,t) = d/dt (H(p,s,t)Z(p)v+h(p,s,t)).
The order and the number of the provided right-hand sides
depends on the used formulation, see I0OPT(5) and above for more
detail.

SUBROUTINE EOM(M,N,T,X,RDA,IOPT,ROPT,IPAR,RPAR,IERR)
IMPLICIT NONE

INTEGER M,N, IOPT (%) ,IPAR(x*),IERR

DOUBLE PRECISION T,X(N),RDA(M),ROPT(*),RPAR (%)

M Input : integer

Total umber of provided equations (M.GE.N),

i.e., dimension of RDA, see below.

In the case of use of

* projected-strangeness-free formulation we have
M=NP+NV+NR+NW+NS+3*NL+2*NM+NI,

* projected-strangeness-index-1 formulation we have
M=NP+NV+NR+NW+NS+2*NL+NM+NI.

M has to remain unchanged.

N Input : integer
Number of unknowns (M.GE.N), i.e., dimension of X.
We have N=NP+NV+NR+NW+NS+NL+NM.
N has to remain unchanged.

T Input : double precision
Evaluation of the right-hand side of the provided
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RDA

equations at time T.
T has to remain unchanged.

Input : double precision array X(N)
Vector of unknowns, see above.
X has to remain unchanged.

Output : double precision array RDA(M)

Right-hand side of the provided reduced derivative

array. The order and the number of the provided

right-hand sides depends on the used formulation, see

I0PT(5).

If IOPT( 5)=0 the numerical integration is based on the
projected-strangeness-free formulation, i.e., the
user has to provide the equations (1)-(7) together
with the first and second time derivative of the
holonomic constraints, i.e.,

gI(p,v,t) =d/dt g(p,t),

gli(p,v,r,w,s,l,m,t)=d"2/dt"2 g(p,t),
and the first time derivative of the nonholonomic
constraints, i.e.,

hI(p,v,r,w,s,l,m,t) =d/dt(H(p,s,t)Z(p)v+h(p,s,t)).
If there exist some solution invariants (8) the user
should also provide them and set NI equal to the
number of the solution invariants. The order is given

by

RDA (1:NW) =d
RDA (NW+1 : NW+NL) =glI
RDA (NW+NL+1 : NW+NL+NM) =hI
RDA (NW+NL+NM+1 : NW+NL+NM+NL) =gI
RDA (NW+NL+NM+NL+1 : NW+NL+NM+NL+NM) =
RDA (NW+NL+NM+NL+NM+1 : NW+NL+NM+NL+NM+N1I) =e

RDA (NW+NL+NM+NL+NM+NI+1: NW+NL+NM+NL+NM+NI+NS) =c
RDA (NW+NL+NM+NL+NM+NI+NS+1: . ..
NW+NL+NM+NL+NM+NI+NS+NL) =g
RDA (NW+NL+NM+NL+NM+NI+NS+NL+1: . ..
NW+NL+NM+NL+NM+NI+NS+NL+NR) =b
RDA (NW+NL+NM+NL+NM+NI+NS+NL+NR+1: . ..
NW+NL+NM+NL+NM+NI+NS+NL+NR+NV) =f_dyn
RDA (NW+NL+NM+NL+NM+NI+NS+NL+NR+NV+1: ...
NW+NL+NM+NL+NM+NI+NS+NL+NR+NV+NP) =f_kin

If IOPT( 5)=1 the numerical integration is based on the
projected-strangeness-index-1 formulation , i.e., the
user has to provide the equations (1)-(7) together
with the first time derivative of the holonomic
constraints, i.e.,

gl(p,v,t) = d/dt g(p,t).
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MAS

IOPT

ROPT

IPAR

RPAR

IERR

If there exist some solution invariants (8) the user
should also provide them and set NI equal to the
number of the solution invariants. The order is given

by

RDA(1:NW) =d
RDA (NW+1 : NW+NL) =g
RDA (NW+NL+1 : NW+NL+NM) =

RDA (NW+NL+NM+1 : NW+NL+NM+N1I) =e
RDA (NW+NL+NM+NI+1:NW+NL+NM+NI+NS) =c
RDA (NW+NL+NM+NI+NS+1 : NW+NL+NM+NI+NS+NL) =g

RDA (NW+NL+NM+NI+NS+NL+NR+1: . ..
NW+NL+NM+NI+NS+NL+NR+NV) =f_dyn
RDA (NW+NL+NM+NI+NS+NL+NR+NV+1: ...
NW+NL+NM+NI+NS+NL+NR+NV+NP) =f_kin

Input : integer array IOPT(40)
Serve as parameters for the code.
IOPT has to remain unchanged.

Input : double precision array ROPT(40)
Serve as parameters for the code.
ROPT has to remain unchanged.

Input/Output: integer array IPAR(x*)
Integer parameters which are only used by the user.
They are unused and unchanged by GEOMS.

Input/Output: double precision array RPAR(x*)
Double precision parameters which are only used by the
user. They are unused and unchanged by GEOMS.

Output : integer

Indicator of success. IERR is only used by

user supplied subroutines. After every call of a user
supplied subroutine the status of IERR is checked. If
IERR is negative the run of GEOMS will be interrupted
and GEOMS returns to the calling program. IERR 1is
unchanged by GEOMS.

Name (EXTERNAL) of the user supplied subroutine which provides
the mass matrix M(p,t) in equation (2) of the EoM

SUBROUTINE MAS(T,NX,X,M,N,MA,IOPT,ROPT,IPAR,RPAR,IERR)
IMPLICIT NONE

INTEGER

NX,M,N,IOPT(*),IPAR(*),IERR

DOUBLE PRECISION T,X(NX),MA(M,N),ROPT(*),RPAR(*)
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NX

MA

I0PT

ROPT

IPAR

RPAR

TERR

Input : double precision
Evaluation of the mass matrix MA at time T.
T has to remain unchanged.

Input : integer

Number of unknowns, i.e., dimension of X. We have
NX=NP+NV+NR+NW+NS+NL+NM.

NX has to remain unchanged.

Input : integer
Number of rows of the mass matrix MA. We have M=NV.
M has to remain unchanged.

Input : integer
Number of rows of the mass matrix MA. We have N=NV.
N has to remain unchanged.

Input : double precision array X(NX)
Vector of unknowns, see above.
X has to remain unchanged.

Output : double precision array MA(M,N)

Mass matrix of the equations of motion. The mass matrix
has to be provided as a full M x N array,

also in the case of diagonal structure. Because of the
used regularization technique a sparse storage is not
possible and does not save time or memory.

Input : integer array IOPT(40)
Serve as parameters for the code.
IOPT has to remain unchanged.

Input : double precision array ROPT(40)
Serve as parameters for the code.
IOPT has to remain unchanged.

Input/Output: integer array IPAR(x*)
Integer parameters which are only used by the user.
They are unused and unchanged by GEOMS.

Input/Output: double precision array RPAR(x*)
Double precision parameters which are only used by the
user. They are unused and unchanged by GEOMS.

Output : integer

Indicator of success. IERR is only used by

user supplied subroutines. After every call of a user
supplied subroutine the status of IERR is checked. If
IERR is negative the run of GEOMS will be interrupted
and GEOMS returns to the calling program. IERR 1is
unchanged by GEOMS.

JAC Name (EXTERNAL) of the user supplied subroutine which computes
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the NEGATIVE partial derivatives of the right-hand side of the
equations of motion. (This routine is only called if IJAC=1.
Supply a dummy subroutine in the case IJAC=0).

SUBROUTINE JAC(M1,M2,M3,M4,M5,M6,N1,N2,N3,N4,M,N,

# T,X,FX1,FX2,FX3,FX4,FX5,FX6,
# I0PT,ROPT,RPAR, IPAR, IERR)

IMPLICIT NONE

INTEGER M1,M2,M3,M4,M5,M6,N1,N2,N3,N4,M,N,
# IOPT (%) ,IPAR(%),IERR

DOUBLE PRECISION T,X(N),FX1,FX2,FX3,FX4,FX5,FX6,ROPT (%) ,RPAR(%*)

M1 Input : integer
Number of constraints depending on all unknown
variables and restricting the Lagrange multipliers 1
and m and the auxiliary variables w, i.e., 0=d,
0=gII, O=hI. IF IOPT(5)=0 we have M1=NW+NL+NM and if
I0PT(5)=1 we have M1=NW (note that M1=0 is possible).
Compare with the block row structure of RDA in the
subroutine EOM.
M1 has to remain unchanged.

M2 Input : integer
Number of constraints only depending on the unknown
variables p, v, and s and restricting the velocity
variables v, i.e., O=gI, O=h, O=e. We have M2=NL+NM+NI.
Compare with the block row structure of RDA in the
subroutine EQOM.
M2 has to remain unchanged.

M3 Input : integer
Number of constraints only depending on the unknown
variables p and s and restricting the position p and
the contact variables s, i.e., 0O=c, O=g. We have
M3=NS+NL.
Compare with the block row structure of RDA in the
subroutine EQOM.
M3 has to remain unchanged.

M4 Input : integer
Number of dynamical force element equations (3), i.e.,
we have M4=NR.
Compare with the block row structure of RDA in the
subroutine EQOM.
M4 has to remain unchanged.

M5 Input : integer
Number of dynamical equations of motion (2), i.e.,
we have Mb=NV.
Compare with the block row structure of RDA in the
subroutine EQOM.
M5 has to remain unchanged.

M6 Input : integer
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Number of kinematical equations of motion (1), i.e.,
we have M6=NP.

Compare with the block row structure of RDA in the
subroutine EQOM.

M6 has to remain unchanged.

N1 Input : integer
Number of auxiliary variables plus the number of
Lagrange multipliers, i.e., we have N1=NW+NL+NM.
Compare with the block row structure of X above.
N1 has to remain unchanged.

N2 Input : integer
Number of dynamical force element variables, i.e.,
we have N2=NR.
Compare with the block row structure of X above.
N2 has to remain unchanged.

N3 Input : integer
Number of velocity variables, i.e., we have N3=NV.
Compare with the block row structure of X above.
N3 has to remain unchanged.

N4 Input : integer
Number of contact point variables plus the number of
position variables, i.e., we have N1=NS+NP.
Compare with the block row structure of X above.
N4 has to remain unchanged.

M Input : integer
Total number of provided equations,
i.e., dimension of RDA, see subroutine EOM and the
number of rows of the partial derivatives. We have
M=M1+M2+M3+M4+M5+M6 .
M has to remain unchanged.

N Input : integer
Number of unknowns, i.e., dimension of X.
We have N=NP+NV+NR+NW+NS+NL+NM=N1+N2+N3+N4.
N has to remain unchanged.

T Input : double precision
Evaluation of the partial derivatives at time T.
T has to remain unchanged.

X Input : double precision array X(NX)
Vector of unknowns, see above.
X has to remain unchanged.

FX1  Output : double precision array FX1(M1,N)
NEGATIVE partial derivatives of d, gII, hI with
respect to [wlm | r | v | s p]l. We have
[dd /dlwlm | x|l v]spl]
FX1=[ d gII/dlwlm | r | v | s p ] ] in R~(M1,N)
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FX2

FX3

FX4

FX5

FX6

I0OPT

[dhI /dlwlm |l | v I]spl]
Compare with the block row structure of RDA in the
subroutine EOM and with the block row structure of X
above.

Output : double precision array FX2(M2,N3+N4)
NEGATIVE partial derivatives of gI, h™, e with
respect to [v s p]. We have

[ d gI/dlv s p] ]

FX2=[ 4 h™/d[v s p] ] in R~ (M2,N3+N4)

[ de /dlv s p] ]
Compare with the block row structure of RDA in the
subroutine EOM and with the block row structure of X
above.

Output : double precision array FX3(M3,N4)
NEGATIVE partial derivatives of c and g with
respect to [s p]. We have
[ dc/dls pl ]
FX3=[ 1 in R~ (M3,N4)
[ d g/dls p] ]
Compare with the block row structure of RDA in the
subroutine EOM and with the block row structure of X
above.

Output : double precision array FX4(M4,N)
NEGATIVE partial derivatives of the right-hand side of
the dynamical force element equations, i.e., of b with
respect to [wlm | r | v | s p]. We have

FX4=d b/d[w 1m | r | v | s p ] in R~(M4,N)
Compare with the block row structure of RDA in the
subroutine EOM and with the block row structure of X
above.

Output : double precision array FX5(M5,N)
NEGATIVE partial derivatives of the right-hand side of
the dynamical equations of motion, i.e., of f_dyn with
respect to [wlm | r | v | s p]. We have

FX6=d f dyn/dlwlm [ r | v | s p ] in R~(M5,N)
Compare with the block row structure of RDA in the
subroutine EOM and with the block row structure of X
above.C

Output : double precision array FX6(M6,N3+N4)
NEGATIVE partial derivatives of the right-hand side of
the kinematical equations of motion, i.e., of f_kin
with respect to [v | s p ]. We have

FX6=d f_kin/d[ v | s p ] in R~(M6,N3+N4)
Compare with the block row structure of RDA in the
subroutine EOM and with the block row structure of X
above.

Input : integer array IOPT(40)
Serve as parameters for the code.
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IOPT has to remain unchanged.

ROPT Input : double precision array ROPT(40)
Serve as parameters for the code.
IOPT has to remain unchanged.

IPAR Input/Output: integer array IPAR(x*)
Integer parameters which are only used by the user.
They are unused and unchanged by GEOMS.

RPAR Input/Output: double precision array RPAR(*)
Double precision parameters which are only used by the
user. They are unused and unchanged by GEOMS.

IERR Output : integer
Indicator of success. IERR is only used by
user supplied subroutines. After every call of a user
supplied subroutine the status of IERR is checked. If
IERR is negative the run of GEOMS will be interrupted
and GEOMS returns to the calling program. IERR is
unchanged by GEOMS.

IJAC Input : integer
Switch for the computation of the partial derivatives of the
right-hand side of the equations of motion
IJAC=0 Partial derivatives are computed internally by finite
differences, subroutine JAC is never called.
IJAC=1 Partial derivatives are supplied by subroutine JAC.

SOLOUT Name (EXTERNAL) of subroutine providing the numerical solution
during integration.
If I0UT=1, it is called after every successful step. Supply a
dummy subroutine if IOUT=O0.
SOLOUT furnishes the solution X at the nr-th grid-point T
(Thereby the initial value is the first grid-point).

SUBROUTINE SOLOUT(NACCPT,TOLD,T,X,N,NN2,NN3,NN4,CONTX,H,C1M1,
# C2M1,RPAR, IPAR, IERR)

IMPLICIT NONE

INTEGER NACCPT,N,NN2,NN3,NN4, IPAR (%) , IERR

DOUBLE PRECISION TOLD,T,H,X(N),CONTX(NN4),RPAR(*),C1M1,C2M1
DOUBLE PRECISION GEDENSOUT

EXTERNAL GEDENSQUT

NACCPT Input : integer
Number of accepted steps so far.
NACCPT has to remain unchanged.

TOLD Input : double precision
The preceeding grid-point.

TOLD has to remain unchanged.

T Input : double precision
Current simulation time T.
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T has to remain unchanged.

Input : double precision array X(NX)
Vector of unknowns, see above.
X has to remain unchanged.

Input : integer

Number of unknowns, i.e., dimension of X.
We have N=NP+NV+NR+NW+NS+NL+NM=N1+N2+N3+N4.
N has to remain unchanged.

NN2,NN3,NN4,CONTX,H,C1M1,C2M1 Input: integer/double precision

IPAR

RPAR

TERR

Internal communication for the use by the subroutine
GEDENSOUT for dense output.
NN2,NN3,NN4,CONTX,H,C1M1,C2M1 have to remain unchanged.

Input/Output: integer array IPAR(x*)
Integer parameters which are only used by the user.
They are unused and unchanged by GEOMS.

Input/Output: double precision array RPAR(x*)
Double precision parameters which are only used by the
user. They are unused and unchanged by GEOMS.

Output : integer

Indicator of success. IERR is only used by

user supplied subroutines. After every call of a user
supplied subroutine the status of IERR is checked. If
IERR is negative the run of GEOMS will be interrupted
and GEOMS returns to the calling program. IERR is
unchanged by GEOMS.

Continuous output -----
During calls to "SOLOUT", a continuous solution
for the interval [TOLD,T] is available through
the function
GEDENSOUT(I,TOUT,N,NN2,NN3,NN4,T,H,CONTX,C1M1,C2M1)
which provides an approximation to the I-th
component of the solution at the point TOUT, e.g.,
DO I=1,N
X0UT(I)=GEDENSOUT(I,TOUT,N,NN2,NN3,NN4,T,H,CONTX,
# C1iM1,C2M1)
END DO
The value TOUT should lie in the interval [TOLD,T].
Do not change the entries of N, NN2, NN3, NN4, T, H,
CONTX, CiM1, C2M1.
The function GEDENSOUT is adopted from the code RADAU5,
see the book:
E. Hairer and G. Wanner, Solving Ordinary Differential
Equations II. Stiff and Differential-Algebraic Problems
Springer Series in Computational Mathematics 14,
Springer-Verlag 1991, Second edition 1996.
The former name was CONTR5.
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I10UT

LIWORK

IWORK

LRWORK

RWORK

IPAR

RPAR

IERR

Input : integer

Switch for the calling of subroutine SOLOUT.
I0UT=0 Subroutine is never called.

I0UT=1 Subroutine is available for output.

Input : integer
Declares the length of the array IWORK. LIWORK has to be at least
20.

Output: integer array IWORK(LIWORK)
Statistical information
IWORK( 1) NACCPT - Number of accepted integration steps

IWORK( 2) NEOM - Number of evaluations of the right-hand side
of the equations of motion

IWORK( 3) NMAS - Number of evaluations of the mass matrix

IWORK( 4) NJAC - Number of evaluations of the Jacobian of the
right-hand side of the equations of motion

IWORK( 5) NSEL - Number of determinations of suitable selectors

IWORK( 6) NPDEC - Number of predecompositions, i.e., of FX, M,
and IKIN

IWORK( 7) NEDEC - Number of E-decompositions, i.e., of El and E2

IWORK( 8) NBSUB - Number of backward substitutions

IWORK( 9) NSTEP - Number of steps

IWORK(10) NERJCT - Number of rejections caused by error test
failures

IWORK(11) NCRJCT - Number of rejections caused by convergence
problems of the Newton process

Input : integer

Declares the length of the array RWORK.

A safe choice for all possible setting in IOPT is
LRWORK at least 5N

Depending on IOPT it is sufficient ...
If IOPT(17)=IVCNSST=0 then LRWORK has to be at least 5*N
If IOPT(11)=DECOMPC=3 then LRWORK has to be at least

5%MAX (M1,M2,M3,N1,N3,N4), see comments to subroutine JAC.

If IOPT(11)=DECOMPC=2 then LRWORK has to be at least N
If IOPT(12)=DECOMPD=1 then LRWORK has to be at least 2*N

For good performance, LRWORK should generally be larger.

Intern : integer array IWORK(LIWORK)

Input/Output : integer array IPAR(*)
Integer parameters which are only used by the user. They are
unused and unchanged by GEOMS.

Input/Output: double precision array RPAR(*)
Double precision parameters which are only used by the user.
RPAR is unused and unchanged by GEOMS.

Input/Output : integer

Indicator of success. IERR is only used by user

supplied subroutines. After every call of a user supplied
subroutine the status of IERR is checked. If IERR is negative
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the run of GEOMS will be interrupted and GEOMS returns to the
calling program. IERR 1is unchanged by GEOMS.

IDID Output : integer
Reports success upon return. The first two digits
indicate the subroutine which causes trouble.

IDID=-10.. An error occurred in the subroutine GEOMS
-1001 Option array IOPT or ROPT or tolerances RTOL or ATOL
contains wrong data
Check the output in UNIT=I0PT(2) for more information
If the option IOPT(2) equals O turn on the output.
-1002 Initial IDID lower than O

IDID=-11.. An error occurred in the subroutine GECOR
-1101 Stop initialized by SOLOUT
-1102 Stop initialized by EOM
-1103 Stop initialized by MAS
-1104 Stop initialized by JAC
-1105 Initial conditions not consistent
-1106 Final time TEND before initial time T
-1111 QR-Decomposition of FX1 not possible
-1112 QR-Decomposition of FX2 not possible
-1113 QR-Decomposition of FX3 not possible
-1114 QR-Decomposition of E1 or E2 not possible
-1115 Newton method repeatedly does not converge NSING.GE.5
-1116 Newton method repeatedly does not converge NSING.GE.5
-1117 More than NMAX steps are needed
-1118 Step size too small
-1128 An error occurred during use of DORMQR
-1129 An error occurred during use of DORMQR

IDID=-12.. An error occurred in the subroutine GEFXNUM
-1201 Stop initialized by EOM

IDID=-14.. An error occurred in the subroutine GEDECCQR

-1401 Constraints redundant or dd/dw singular
(FX1 rank deficient).
Try the integration again with IOPT(11)=3 (SVD).

-1402 Constraints or the invariant equations are redundant
(FX2 rank deficient). Try the integration again with
I0OPT(11)=3 (SVD).

-1403 Constraints redundant or dc/ds singular
(FX3 rank deficient).
Try the integration again with IOPT(11)=3 (SVD).

IDID=-18.. An error occurred in the subroutine GETRFRHSC
-1801 Multiplication with Q1 not possible
-1802 Multiplication with Q2 not possible
-1803 Multiplication with Q3 not possible
-1804 Multiplication with Q4 not possible

IDID=-20.. An error occurred in the subroutine GEERREST
-2004 Multiplication with Q4 not possible
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Q

IDID=-21..
-2101
-2102
-2103
-2104

-2105

-2106

IDID=-24..
-2401

-2402

-2403

-2404

IDID=-26..

-2601

-2602

-2603

An error occurred in the subroutine GEINIVAL.

Stop initialized by EOM.

Stop initialized by IVCOND.

An error occurred during SVD.

Divergence during determination of consistent initial

values. The given conditions in IVCOND together with

all constraints of the EoM form an overdetermined system.

Perhaps it is contradictory.

=> Check consistency of all constraints of the EoM in
relation to the conditions given in IVCOND!

=> If you are sure that the initial values are consistent
(at least variables P and V) you can set IOPT(17)=1.

No Convergence in the given limit of iteratioms.

(See the source code of GEINIVAL and increase NIT or/and

NNWTUPD.

Given conditions in IVCOND together with constraints in

EoM are not sufficient to uniquely determine consistent

initial values. Perhaps there are not enough conditions

or they are redundant.

=> Provide more (nonredundant) conditions in IVCOND!

=> Check NIVCOND!

=> Check redundancy of all constraints of the EoM in
relation to the conditions given in IVCOND!

=> If you are sure that the initial values are consistent
(at least variables P and V) you can set IOPT(17)=1.

An error occurred in the subroutine GEDECCSV

Constraints are not uniformly redundant, i.e., rank of FX1
was changing

Constraints are not uniformly redundant, i.e., rank
deficiency of FX1 not identical to rank deficiency of FX2
Constraints are not uniformly redundant, i.e., rank
deficiency of FX1 not identical to rank deficiency of FX3
An error occurred during SVD of FX1 or FX2 or FX3

An error occurred in the subroutine GEDECCLU
Constraints redundant or dd/dw singular

(FX1 rank deficient).

Try the integration again with IOPT(11)=3 (SVD).
Constraints or the invariant equations are redundant
(FX2 rank deficient). Try the integration again with
I0PT(11)=3 (SVD).

Constraints redundant or dc/ds singular

(FX3 rank deficient).

Try the integration again with IOPT(11)=3 (SVD).
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