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AbstratIn this paper we present the new numerial algorithm GEOMS for the numer-ial integration of the most general form of the equations of motion of multi-body systems, inluding nonholonomi onstraints and possible redundaniesin the onstraints, as they may appear in industrial appliations. Besides thenumerial integration it o�ers some additional features like stabilization of themodel equations, use of di�erent deomposition strategies, or heking andorretion of the initial values with respet to their onsisteny. Furthermore,GEOMS preserves hidden onstraints and (possibly) existing solution invariantsif they are provided as equations.We will also demonstrate the performane and the appliability of GEOMS fortwo mehanial examples of di�erent degrees of omplexity.1 IntrodutionThe multibody system (MBS) approah is frequently used in industrial simulationpakages in robotis, vehile system dynamis, and biomehanis. A multibodysystem model onsists of a �nite number of rigid or elasti bodies and their in-teronnetions like, e.g., joints, springs, dampers, and atuators. The equations ofmotion may be generated in a systemati way by multibody formalisms that arebased on the priniples of lassial mehanis [35℄.The e�ient and robust numerial integration of these equations is a hallengingproblem in the development of simulation pakages, sine dynamial simulation isfrequently used and one of the most time onsuming analysis methods for MBSmodels. The equations of motion with nonredundant onstraints form a nonlinearsystem of di�erential-algebrai equations (DAEs) of di�erentiation index (d-index)3, see [7, 10, 13, 18℄. It is well known that the numerial treatment of DAEs of highindex or higher index, i.e., d-index 2 or larger than 2, respetively, is nontrivial ingeneral. E�ets arising in the numerial treatment are, for example, drift, instabil-ities, onvergene problems, or inonsistenies. These di�ulties in the numerialsolution of suh high index problems are disussed in [4, 12, 14, 15, 17, 18, 24, 29, 30℄.However, the equations of motion are DAEs with a very speial struture that shouldbe exploited in the numerial solution [7, 18℄.In this report we will present the new software pakage GEOMS for the numerialintegration of general equations of motion of multibody systems in desriptor form.In ontrast to standard textbook presentations like [18℄, we do not restrit ourselvesto lassial onstrained mehanial systems but onsider the more omplex modelequations that are atually used in state-of-the-art MBS simulation pakages [7, 34℄.1



The software pakage GEOMS is suited for general equations of motion involving dy-namial fore elements, ontat onditions, and (possibly) redundant holonomi aswell as nonholonomi onstraints. Furthermore, the pakage takes into aount pos-sibly existing information onerning solution invariants, e.g., energy onservation.The ode is based on residual evaluations, i.e., the system need not be given om-pletely in expliit form. It is su�ient that the right-hand side of the equations ofmotion and the mass matrix are spei�ed.Although, the pakage GEOMS is able to treat also redundant onstraints, in thispaper we will restrit our onsiderations to regular equations of motion, i.e., theonstraints are assumed to be nonredundant. For more details on equations of mo-tion with redundant onstraints we refer to [26, 38℄.As base of the integration method GEOMS we will propose a remodeling of the equa-tions of motions. The aim of this remodeling is to determine an equivalent formula-tion, the so alled projeted-strangeness free form, whih has d-index 1 but has thesame set of solutions as the original equations of motion. Beause of the reduedd-index, the numerial treatment of the projeted-strangeness free form by use ofimpliit ODE methods is not a�eted by instabilities arising from the higher index.Furthermore, all (hidden) onstraints are preserved suh that no drift-o� e�ets arisein the numerial treatment. The proposed remodeling an be seen as regularizationof the equations of motion. For more details on the regularization of equations ofmotion we refer to [38℄. The integration method implemented in GEOMS ombinesan impliit Runge-Kutta-Method of order 5 with this regularization tehnique.The report is organized as follows. In Setion 2 we introdue the equations of motionwhih we want to treat numerially and we disuss the remodeling to the projeted-strangeness-free form whih will be used for the disretization in GEOMS. In Setion3 we introdue the ode GEOMS and we disuss its features and its appliability indetail. In Setion 4 we demonstrate the properties of the software pakage GEOMS bytwo numerial examples. For the usage and implementation of GEOMS the manual ispresented in Appendix A.2 The Equations of Motion and their RemodelingHere and in the following we will use the following notation.Notation 2.1 Let f be a di�erentiable funtion f : X → R
m, X ⊂ R

n, and let
x be a di�erentiable funtion x : I → X, where I is an open interval in R. The
ith (total) derivative of x(t) with respet to t is denoted by x(i)(t) = dix(t)/dti for
i ∈ N0. Note the onvention x(0)(t) = x(t), x(1)(t) = ẋ(t), and x(2)(t) = ẍ(t). The(partial) derivative of f(x) with respet to x is denoted by f,x(x) = ∂

∂x
f(x). Thesame notation is used for di�erentiable vetor and matrix funtions. The set of

l-times ontinuously di�erentiable funtions from X to Y is denoted by Cl(X, Y). ⊳In the following we investigate a spatial multibody system with holonomi as well asnonholonomi onstraints [19, 33℄. More preisely we onsider the following initial2



value problem on the domain I = [t0, tf ] onsisting of the equations of motion in theform
ṗ = Z(p)v, (1a)

M(p, t)v̇ = f(p, v, r, w, s, λ, µ, t)− ZT (p)GT (p, s, t)λ − ZT (p)HT (p, s, t)µ, (1b)
ṙ = b(p, v, r, w, s, λ, µ, t), (1)
0 = d(p, v, r, w, s, λ, µ, t), (1d)
0 = c(p, s, t), (1e)
0 = H(p, s, t)Z(p)v + h(p, s, t) (= h̆(p, v, s, t)), (1f)
0 = g(p, s, t) (1g)with the initial values

p(t0) = p0 ∈ R
np, v(t0) = v0 ∈ R

nv , r(t0) = r0 ∈ R
nr , w(t0) = w0 ∈ R

nw ,
s(t0) = s0 ∈ R

ns, λ(t0) = λ0 ∈ R
nλ , µ(t0) = µ0 ∈ R

nµ .
(2)Here, the position vetor p ontains arbitrary position oordinates of the multibodysystem. The Euler-Lagrange formalism for modeling multibody systems yields theequations of motion in seond order form. In order to transform the seond ordersystem to an equivalent �rst order system we introdue a veloity vetor v and getthe relation (1a) between the generalized veloities ṗ and the veloities v with amatrix Z(p), that determines the angular veloities. The equations (1a) are alledkinemati equations. The transformation matrix Z(p) ours only if there are ro-tations in three dimensional spae, it may be determined by Poisson's kinematialequations [1, 7℄. In the two dimensional ase we have Z(p) = I, ṗ = v.The equations (1b) are alled dynami equations of motion. They follow from theequilibrium of fores and momenta and inlude the mass matrix M(p), the vetorof the applied and gyrosopi fores f(p, v, r, w, s, λ, µ, t), the onstraint matries

G(p, s, t) and H(p, s, t) of the holonomi and nonholonomi onstraints, respetively,whih ontain the inaessible diretions of motion olumn-wise, the assoiated on-straint fores GT (p, s, t)λ and HT (p, s, t)µ, and the Lagrange multipliers λ and µ.The holonomi onstraint matrix is de�ned as G(p, s, t) = d
dp

g(p, s(p, t), t). Themass matrix M(p) is positive semi-de�nite, sine the kineti energy is a nonnegativequadrati form, and inludes the inertia properties of the multibody system.In a real multibody system, there are often dynami fore elements whih are de-sribed by the vetor r and determined by equations (1), see [7℄.Furthermore, not all onstraints of a multibody system are diretly desribed bythe position variables p or the veloity variables v, but depend on ertain ontatpoints with oordinates s on the surfae of some bodies. The relationship betweenthese ontat point oordinates s and the position variables p are given by (1e).Furthermore, the equations of motion are a�eted by the nλ holonomi onstraints(1g) and nµ nonholonomi onstraints (1f). These onstraints are also alled theholonomi onstraints on position level and the nonholonomi onstraints on velo-ity level, respetively. Sometimes, fore laws and onstraints may be formulatedmore onveniently using auxiliary variables w that are impliitly de�ned by the nw3



possibly nonlinear equation (1d).Here, n = np +nv +nr +nw +ns +nλ +nµ denotes the number of unknown variables.Furthermore, many motions of mehanial systems have known solution invariants,i.e., relations whih are satis�ed along any motion of the mehanial system, likethe invariane of the total energy, momentum, or impulse. Let us denote the meequations desribing suh solution invariants by
0 = e(p, v, s, t). (3)In partiular, onservative multibody systems are energy onserving. In this asethe total energy is onstant along every motion of the system. For more details onsolution invariants we refer to [38℄.The theoretial basis of the ode GEOMS is based on the following assumptions.Assumption 2.2 Consider the equations of motion (1). Then the matries

a) d,w, (4a)
b) c,s, (4b)
c) M (4)
d)

[

GZM−1Gλ GZM−1Hµ

HZM−1Gλ HZM−1Hµ

] (4d)are assumed to be nonsingular with a bounded inverse for all (p, v, r, w, s, λ, µ, t) ∈
M, see (10), where

Gλ = ZT GT − f,λ + f,wd−1
,w d,λ, (5)

Hµ = ZT HT − f,µ + f,wd−1
,w d,µ. (6)Furthermore, it is assumed that

d ∈ C1(M, Rnw), c ∈ C1(M, Rns), h̆ ∈ C2(M, Rnµ), g ∈ C3(M, Rnλ).Remark 2.3 a) The nonsingularity of the mass matrix M is assumed only forreasons of simpliity. It is not neessary for the suessful numerial integrationwith GEOMS.b) Furthermore, note that in Assumption 2.2 redundant onstraints are exluded.Redundant onstraints may result in a nonuniqueness of the Lagrange multipliers.Nevertheless, GEOMS is able to deal with ertain types of redundant onstraints. Formore details on redundant onstraints see [26, 38℄. ⊳Using the equations of motion (1), the �rst and seond derivatives with respet to tof the holonomi onstraints (1g) are given by
0 = gI(p, v, s, t) =

d

dt
g(p, s, t) (7a)

= GZv + g,t − g,sc
−1
,s c,t (7b)4



and
0 = gII(p, v, r, w, s, λ, µ, t) =

d2

dt2
g(p, s, t) (8a)

= (gI
,p − gI

,sc
−1
,s c,p)Zv + GZM−1(f − ZT GT λ − ZT HTµ) + gI

,t − gI
,sc

−1
,s c,t. (8b)They are alled holonomi onstraints on veloity level (7a) and holonomi on-straints on aeleration level (8a), respetively. The �rst derivative with respet to

t of the nonholonomi onstraints (1f) is given by
0 = hI(p, v, r, w, s, λ, µ, t) =

d

dt
(H(p, s, t)Z(p)v + h(p, s, t)) (9a)

= (h̆,p − h̆,sc
−1
,s c,p)Zv + HZM−1(f − ZT GT λ − ZT HTµ) + (h̆,t − h̆,sc

−1
,s c,t)(9b)whih are alled nonholonomi onstraints on aeleration level (9a).The holonomi onstraints on veloity level and on aeleration level in form (7b)and (8b), respetively, as well as the nonholonomi onstraints on aeleration levelin form (9b) turn out to be the hidden onstraints of the equations of motion, see[38℄. The hoie of values (p, v, r, w, s, λ, µ, t) ∈ R

n×I is restrited by all onstraintsinluding the hidden onstraints, i.e., (1d)-(1g), (7b), (8b), and (9b). Values whihsatisfy all of these onstraints are alled onsistent and we get the set of onsisteny
M = {(p, v, r, w, s, λ, µ, t) ∈ R

n × I : 0 = d(p, v, r, w, s, λ, µ, t), (10)
0 = c(p, s, t),

0 = H(p, s, t)Z(p)v + h(p, s, t),

0 = g(p, s, t),

0 = hI(p, v, r, w, s, λ, µ, t),

0 = gI(p, v, s, t),

0 = gII(p, v, r, w, s, λ, µ, t)}.Theorem 2.4 Let the equations of motion (1) satisfy Assumptions 2.2. Then thereexist matrix funtions Sp ∈ C0(M, Rnfp ,np) and Sv ∈ C0(M, Rnfv ,nv) with nfp
=

np − nλ and nfv
= nv − nλ − nµ suh that the matrix funtions

[

Sp(p, t)
G(p, t)

] and 



Sv(p, t)M(p, t)
G(p, t)Z(p)
H(p, t)Z(p)



 are nonsingular (11)
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for all (p, v, r, w, s, λ, µ, t) ∈ M. Then the di�erential-algebrai system
Sp(p, t)ṗ = Sp(p, t)Z(p)v, (12a)

Sv(p, t)M(p, t)v̇ = Sv(p, t)f(p, v, r, w, s, λ, µ, t) (12b)
−Sv(p, t)Z

T (p)GT (p, s, t)λ − Sv(p, t)Z
T (p)HT (p, s, t)µ,

ṙ = b(p, v, r, w, s, λ, µ, t), (12)
0 = d(p, v, r, w, s, λ, µ, t), (12d)
0 = c(p, s, t), (12e)
0 = H(p, s, t)Z(p)v + h(p, s, t), (12f)
0 = g(p, s, t), (12g)
0 = hI(p, v, r, w, s, λ, µ, t), (12h)
0 = gI(p, v, s, t), (12i)
0 = gII(p, v, r, w, s, λ, µ, t) (12j)has d-index 1 and the same set of solutions as the equations of motion (1).Proof. The proof an be found in [38℄.Remark 2.5 a) The matrix funtions Sp and Sv are alled kinemati seletor anddynami seletor, respetively.b) We will all the DAE (12) the projeted-strangeness-free formulation of the equa-tions of motion. In [21, 22, 23, 24℄ the strangeness-onept is introdued as toolfor the lassi�ation of general nonlinear DAEs inluding over- and underdeter-mined DAEs. In partiular, so alled strangeness-free DAEs are introdued. Apartfrom the over- or underdeterminedness strangeness-free DAEs behave like DAEswith d-index 1 while nonstrangeness-free DAEs behave like DAEs with d-index 2or larger. Strangeness-free DAEs do not ontain hidden onstraints. In partiular,in [21, 22, 23, 24℄ it is pointed out that strangeness-free DAEs and, therefore, theprojeted-strangeness-free formulation of the equations of motion (12), are suitedand preferable for the numerial treatment using sti� ODE solvers like impliitRunge-Kutta-Methods or BDF methods.) The algorithm GEOMS is based on a projeted-strangeness-free from (12) of theequations of motion but it is not neessary that this form is provided by the user, i.e.,the user does not have to perform the regularization to the projeted-strangeness-freeform. It is su�ient, if the user provides the onstraints on veloity level (7b) andon aeleration level (8b) and (9b) in addition to the original equations of motion(1) and, if available, (3). By use of so alled order-n-formalisms for the evaluationof the equations of motion the onstraints on veloity level and on aeleration levelare omputed automatially, see [8, 34℄. ⊳With these preparations we have presented all the tools to perform the onsistenypreserving index redution of the equations of motion (1) as follows.6



Algorithm 2.6 (Consisteny preserving index redution)The equations of motion (1) are assumed to satisfy Assumptions 2.2. Furthermore,let M ∈ C0(Mp, R
nv,nv) and Z ∈ C0(Mp, R

np,nv), where Mp = M ∩ (Rnp × I) is theset of onsistent (p, t).Then the regularization via onsisteny preserving index redution is done by hoos-ing a seletor Sp ∈ C0(Mp, R
nfp ,np) and a seletor Sv ∈ C0(Mp, R

nfv ,nv) depending on
(p, u) with nfp

= np − nλ and nfv
= nv − nλ − nµ, in the following way.1. Determination of seletor Sp(a) DetermineKp ∈ C0(Mp, R

np,nfp ) depending on (p, t) suh that the olumnsof Kp(p, t) span ker(G(p, s(p, t), t)) for all (p, t) ∈ Mp.(b) Determine the seletor Sp ∈ C0(Mp, R
nfp ,np) depending on (p, t) suh that

Sp(p, t)Kp(p, t) is nonsingular for all (p, t) ∈ Mp.2. Determination of seletor Sv(a) DetermineKv ∈ C0(Mp, R
nv,nfv ) depending on (p, t) suh that the olumnsof Kv(p, t) span

ker(

[

G(p, s(p, t), t)Z(p)
H(p, s(p, t), t)Z(p)

]

)for all (p, t) ∈ Mp.(b) Determine the seletor Sv ∈ C0(Mp, R
nfv ,nv) depending on (p, t) suh that

Sv(p, t)M(p, t)Kv(p, t) is nonsingular for all (p, t) ∈ Mp.3. Projeted strangeness-free form of the equations of motionBy appending the onstraints on veloity level (7b) and the onstraints onaeleration level (8b) and (9b), the projeted-strangeness-free form of theequations of motion is given by (12).With this algorithm we are able to determine a projeted-strangeness-free form (12)of the equations of motion whih ontains all information of the set of onsisteny(10). The projeted-strangeness-free form (12) that is reated in this way is ana-lytially equivalent to the original equations of motion in the sense that both havethe same set of solutions. Therefore and beause of Remark 2.5, the projeted-strangeness-free form (12) an be seen as a regularization tehnique. In partiular,the semi-impliit form of the projeted-strangeness-free form (12) is of great advan-tage, sine all onstraints are stated as purely algebrai equations, and there are noredundanies among the algebrai onstraints and the di�erential equations.Remark 2.7 Note that Seletors Sp and Sv satisfying the rank onditions (11) arenot uniquely determined. Rather it is possible to hoose the seletors in a pieewiseonstant fashion. In priniple, the seletors may be kept onstant as long as theNewton iteration matrix N (see Page 15) remains nonsingular. But the hoie of7



the seletors in�uenes the onditioning of the projeted-strangeness-free formula-tion. Therefore, with respet to the onditioning of the linear systems whih haveto be solved during the Newton iteration, the seletors should be reomputed earlyenough and not just shortly before reahing a state, where the Newton iterationmatrix beomes singular. This fat is treated in GEOMS by the reomputation of theseletors if the olumn pivoting with respet to the algebrai onstraints hanges oronvergene problems of the Newton iteration our. This is demonstrated in twosimulation senarios whih are depited in Tables 3 and 4.Note that the pieewise onstant hoie of the seletors is of great advantage andimportane for the numerial integration, beause it o�ers the possibility to reduethe amount of omputational work for the omputation of the seletors. In par-tiular, this means, that the ondition number of the Newton iteration matrix Ndepends diretly on the hoie of the seletors. ⊳Example 2.8 The mathematial pendulum: Let us onsider a mathematialpendulum, of length L > 0 whih represents a point mass moving without fritionalong a vertial irle of radius L under gravity denoted by the gravity aeleration
g. For the desription of the on�guration of the pendulum we hoose Cartesian o-ordinates p =

[

x y
]T denoting the position of the mass m in the two dimensionalspae R

2. The equations of motion of �rst order have the form
[

ṗ1

ṗ2

]

=

[

v1

v2

]

, (13a)
[

m 0
0 m

] [

v̇1

v̇2

]

=

[

0
−mg

]

−
[

2p1

2p2

]

[

λ1

]

, (13b)
0 =

[

p2
1 + p2

2 − L2
]

. (13)The holonomi onstraints on veloity level and on aeleration level are given by
0 =

[

2p1v1 + 2p2v2

]

, (13d)
0 =

[

2v2
1 + 2v2

2 − 2p2g − 4
m

(p2
1 + p2

2)λ1

]

, (13e)respetively. Following Algorithm 2.6 we have to onsider G =
[

2p1 2p2

]

. Thematrix funtion Kp an be determined as
Kp =

[

−p2

p1

]and, therefore, the seletor Sp an be hosen as
Sp =

[

−p2 p1

]suh that
SpKp =

[

−p2 p1

]

[

−p2

p1

]

=
[

p2
2 + p2

1

]

=
[

L2
]

,8



see the onstraints (13). Sine the mass matrix is given by M = mI, we an use
Sv = Sp and we get the projeted-strangeness-free formulation

−p2ṗ1 + p1ṗ2 = −p2v1 + p1v2, (14a)
−mp2v̇1 + mp1v̇2 = −mgp1, (14b)

0 = p2
1 + p2

2 − L2, (14)
0 = 2p1v1 + 2p2v2, (14d)
0 = 2v2

1 + 2v2
2 − 2p2g − 4

m
(p2

1 + p2
2)λ1. (14e)As mentioned in Remark 2.7, the seletors Sp and Sv are not uniquely determined bythe onditions (11) or the Algorithm 2.6. In partiular, the seletors an be hosento be pieewise onstant.Let us onsider this fat for the pendulum with the initial state p1 = 0 and p2 = −L,i.e., the pendulum is hanging downwards. In this position the seletors an bedetermined as

Sp(p, u) = Sv(p, u) =
[

L 0
]

. (15)Keeping these seletors onstant, the leading matrix of the left-hand side of theunderlying ordinary di�erential equations, (obtained by substituting the algebraiequations in (14) by their derivatives with respet to t) is












L 0 0 0 0
0 0 mL 0 0

2p1 2p2 0 0 0
× × 2p1 2p2 0
× × × × 4

m
(p2

1 + p2
2)













. (16)Obviously, the rank onditions (11) are ful�lled and the leading matrix (16) is non-singular, as long as p2 does not beome zero. In partiular, this means that as longas the pendulum does not reah one of the horizontal positions, i.e., p1 = ±L and
p2 = 0, the seletors an be hosen onstant as in (15). Otherwise, if the pendulumreahes or passes the horizontal position, the matrix (16) beomes singular and the�rst and third as well as the seond and fourth equations are redundant suh thatthe solution is not uniquely de�ned. Furthermore, the ondition number of matrix(16) goes to in�nity as p2 goes to zero.For these reasons, in the neighborhood of the horizontal position of the pendulumnew seletors have to be determined. See also the Example 4.1 for numerial results.
⊳3 GEOMSThe ode GEOMS is implemented in FORTRAN77 and furthermore, there exists aMATLAB [20℄ interfae via MEX �les for the diret usage of GEOMS in MATLAB.9



However, in the following we only disuss the in FORTRAN77 implementation ofGEOMS.In GEOMS the 3-stage impliit Runge-Kutta Method Radau IIa of order 5, see [18℄,as disretization of the projeted-strangeness-free formulation (12) of the equationsof motion is implemented. Although, GEOMS bases on the presented stabilizationtehnique developed in [38℄ and presented in Theorem 2.4, i.e., GEOMS uses theprojeted-strangeness-free formulation (12) for the disretization, the user does nothave to provide the projeted-strangeness-free formulation. Instead the user hasto provide all neessary information, i.e., in partiular, the hidden onstraints inaddition to the original equations of motion (1) and , if available, (3).The Runge-Kutta matrix A, the weight vetor b, and the node vetor c are given bythe Buther tableau
c A

bT ⇔

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

, (17)see [17, 18℄. The algorithm GEOMS is designed to handle equations of motion of theform (1) with possible redundant onstraints as well as with possibly known solutioninvariants (3) whih may be provided as additional equations. If the mass matrix Mis nonsingular and the onstraints are nonredundant then the equations of motionhave to satisfy Assumption 2.2. If this is not the ase some further rank assumptionshave to be satis�ed. For more details see [38℄.Here and in the following we will use the typewriter style for objets whih are partof the soure odes of the implemented numerial algorithms. In partiular, thisinvolves names of subroutines like GEOMS, GEERREST, IVCOND, and variables like T,X, NWTMAT, CALSEL.In the following we will disuss the features of GEOMS in detail. For the use andimplementation of GEOMS see the manual in Appendix A.The information of the equations of motion needed from the integration algorithmhas to be provided in the following form.The vetor of unknown variables has to be in the form
xT = X

T =
[

wT λT µT rT vT sT pT
]and the right-hand side in (1) and (3) of the hidden onstraints has to be spei�edin a user-supplied subroutine with a name given by the user. The di�erent parts
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have to be given in the following order provided they our.
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(18)
In partiular, the right-hand side has to be ordered suh that the algebrai part,i.e., the upper part (18A), ontains the algebrai onstraints ordered with respetto their dependenies, i.e., �rst (18a) , the onstraints whih restrit the additionalvariables w as well as the Lagrange multipliers λ and µ, seond (18b), the onstraintson veloity level and the information onerning solution invariants whih restritthe veloities v, and third (18), the onstraints on position level, whih restrit theposition p and the ontat variables s. The spei�ed order leads to a Jaobian of thealgebrai part with respet to x whih has already blok upper triangular struturethat will be exploited in GEOMS.The di�erential part, i.e., the seond part (18D), ontains the right-hand side ofthe di�erential equations also ordered in the same way as the algebrai part. We�rst (18d) have the equations that desribe the behavior of the dynamial foreelements followed by (18e) the dynamial equations of motion and, �nally, (18f) thekinematial equations of motion.In some ases the onstraints of aeleration level (8) and (9), i.e., 0 = gII and
0 = hI , are not expliitly available or di�ult to evaluate. In this ase GEOMS isalso appliable. But one should note that only if all algebrai information, inluding
0 = gI , 0 = gII , and 0 = hI are provided, instabilities and drift an be avoided byGEOMS. It is preferable to provide as muh information as possible. In the ase thatthe onstraints on aeleration level are missing, the provided information is similarto a DAE that behaves like a DAE with d-index 2.This fat has to be ommuniated by the user to the ode GEOMS with help of theoption IOPT(5)=FORM. If IOPT(5)=0 then the projeted-strangeness-free form (12)of the equations of motion will be expeted as basis for the disretization. Thus,the user has to speify all information of the hidden onstraints, i.e., up to aeler-ation level. If IOPT(5)=1, then the disretization will be done without speifyingthe onstraints on aeleration level 0 = gII and 0 = hI . In the latter ase theused formulation of the equations of motion behaves like a system of d-index 2,i.e., it is not strangeness-free. Beause of the fat that the used formulation is notstrangeness-free, the suess of the numerial integration depends highly sensitivelyon the problem and on the onsisteny of the initial values, in partiular, on the11



Option Name Feature Pagepreserving invariant solutions 4preserving hidden onstraints 5preserving nonholonomi onstraints 2taking into aount of redundanies in the on-straints 19IOPT( 2) LUN optional output for integration informationIOPT( 3) NIT maximal number of Newton iterations 17IOPT( 4) STARTN starting values for the internal stages in the New-ton iteration 15IOPT( 5) FORM inomplete regularization 11IOPT( 6) NMAX maximal number of integration steps 19IOPT( 8) PRED step size ontrol 18IOPT( 9) NWTMAT approximation of the Newton matrix at x0 or oneof the extrapolated stages possible 15IOPT(10) NWTUPD update of the Newton matrix 17IOPT(11) DECOMPC LU, QR, or SV deomposition for the algebraipart 17IOPT(12) DECOMPD LU or QR deomposition for the di�erential part 17IOPT(13) SELCOMP seletor ontrol 18IOPT(14) AUTONOM exploitation of autonomous equations of motion 19IOPT(15) MASSTRCT exploitation of the struture of the mass matrix 19IOPT(17) IVCNSST hek and orretion of the initial values withrespet to its onsisteny 14Table 1: Options and features of GEOMSonsisteny of the Lagrange multipliers λ and µ.An overview over the features of GEOMS is given in Table 1. Furthermore, in Table2 the subroutines belonging to GEOMS and their task are listed.The initial values are of great importane for the existene and the uniquenessof the solution. For the existene of a ontinuous solution the onsisteny of theinitial values is neessary. In partiular, admissible initial values are restrited bythe (hidden) onstraints. On the other hand onsistent initial values, in partiular,onsistent initial Lagrange multipliers, are not automatially given by the modelingproess and their determination by solving a system of nonlinear algebrai equa-tions is di�ult for omplex multibody systems with a large number of onstraints.Therefore, the algorithm GEOMS provides the possibility to determine onsistent ini-tial values.In addition to the algebrai equations determining the set of onsisteny M, see(10), the user has to de�ne in a subroutine IVCOND additional onditions to deter-mine onsistent initial values. Suh onditions o�er the possibility to determinesome of the freely hoosable variables or to give further relations whih allows aunique determination of onsistent initial values.12



Subroutines ontained in the ode GEOMSGEBSUBST bakward substitution of the algebrai partGECORE ore routineGEDECCLU deomposition of the algebrai part with LU deompositionGEDECCQR deomposition of the algebrai part with QR deompositionGEDECCSV deomposition of the algebrai part with SV deompositionGEDECDLU LU deomposition of the di�erential partGEELIMFXQ elimination in the di�erential part aording to QR deompositionof the algebrai partGEELIMFXS elimination in the di�erential part aording to SV deompositionof the algebrai partGEELIMMIQ elimination in the mass matrix and the identity of the kinemati-al equations of motion aording to QR deomposition of thealgebrai partGEELIMMIS elimination in the mass matrix and the identity of the kinemat-ial equations of motion aording to SV deomposition of thealgebrai partGEERREST error estimation, see Page 18GEFXNUM numerial approximation of the Jaobian of the right-hand side ofthe equations of motionGEGREPEQ piking relevant olumns of the di�erential part aording to QRdeompositionGEGREPES piking relevant olumns of the di�erential part aording to LUand SV deompositionGEINIVAL determination of onsistent initial values, see Page 14GEOMS main routineGESOLDLU solving the di�erential part by use of LU deompositionGESOLDQR solving the di�erential part by use of QR deompositionGETRFRHSC transformation of the right-hand side aording to the algebraipartUser-supplied subroutinesEOM provides the redued derivative array RDA (18)IVCOND provides additional initial onditions needed for the onsistent ini-tialization, see Page 12JAC provides the Jaobian of the redued derivative arrayMAS provides the mass matrixSOLOUT output of the numerial solution and additional information duringintegrationTable 2: Subroutines of GEOMSExample 3.1 The mathematial pendulum: In Example 2.8 we have intro-dued the mathematial pendulum. The position variables p are restrited to theirle with radius L, i.e., the onstraint on position level is given by 0 = p2
1 +p2

2−L2.If one of the position variables is given, the other is uniquely determined up to the13



sign.By de�ning additional onditions via the subroutine IVCOND the user an fore thependulum into a deviation of π/4 by setting p1 = L/
√

2 or by 0 = p1 + p2, forinstane. Furthermore, a ertain angular veloity ω an be presribed by 0 =
√

v2
1 + v2

2/L − ω. ⊳The determination of onsistent initial values is done in the subroutine GEINIVALand is based on the olletion of all algebrai onstraints (1d)-(1g) and (7), (8), and(9) together with the onditions de�ned in the subroutine IVCOND.The user has to deide if the given initial values are assumed to be onsistent or not.By setting IOPT(17)=IVCNSST=1, the initial values are assumed to be onsistentand no hek of onsisteny or orretion of the initial values is done during the runof GEOMS. Note that nononsistent initial values ould lead to onvergene problemsin the integration proess whih leads to an abort of the run of GEOMS. Otherwise,by setting IOPT(17)=0, the initial values are onsidered to be possibly inonsistent.Thus, onsisteny will be heked and the initial values will be orreted during therun of GEOMS, if neessary. If the user does not provide su�iently many additionalonditions, only the onsisteny is heked. If the initial values are onsistent, thenthe integration will be ontinued, otherwise the run of GEOMS will be stopped. Ifthe user provides more additional onditions than neessary, then the orretion (ifneessary) is done regarding the overdetermined nonlinear system. If all onditionstogether are nonontraditory, then onsistent initial values will be determined.Otherwise, the Newton iteration used in this proess will diverge and the run ofGEOMS will be stopped.The solution of the nonlinear system of equations is obtained via a simpli�ed Newtonmethod with the possibility of a ertain number of updates of the iteration matrix,as desribed at Page 17. The stopping riterion is the same as that for the simpli�edNewton method during the integration proess desribed at Page 16.Remark 3.2 Note the fat that the onditions provided to IVCOND by the userdominate the given initial guess, i.e., if the given initial guess is onsistent but doesnot satisfy the (possibly wrong) onditions provided by IVCOND, then the initialguess will be orreted in suh a way that both, the onstraints (1d)-(1g) and (7),(8), and (9) and the initial onditions provided to IVCOND are satis�ed.In ase of an initial guess whih is onsistent to the onstraints, the option IOPT(17)an be set to one to avoid suh a orretion. Otherwise, the onditions provided toIVCOND should be adapted. ⊳If there is only interest in the omputation of onsistent initial values, the user hasto set T=TEND and IOPT(17)=0. Then the ode GEOMS determines onsistent initialvalues, will all the user-supplied subroutine SOLOUT, and �nally will return to thealling subroutine.In the following we will disuss the approah whih is used in the algorithm GEOMSfor the numerial integration of the equations of motion (1) and, if available, (3) by14



use of the three stage Runge-Kutta method of type Radau IIa of order 5. Let s = 3denote the number of stages.As mentioned above, the ode GEOMS ombines the disretization method with theregularization tehnique presented in Theorem 2.4. Therefore, the algorithm usesthe projeted-strangeness-free form (12) as basis for the disretization. For moredetails on the disretization we refer to [38℄. This disretization leads to a nonlinearstage equation for the determination of the three stages Xki ∈ R
n, i = 1, 2, 3 onthe urrent integration interval [tk, tk+1] with tk+1 = tk + hk. Here hk denotes theurrent step size. The stages Xki ∈ R

n, i = 1, 2, 3 approximate the solution at thepoints tki = tk + cihk The nonlinear stage equation has to be solved by use of a(simpli�ed) Newton method.A good hoie of starting values X0
ki, i = 1, 2, 3 is very important for the on-vergene of the Newton iteration. In the ode GEOMS two di�erent possibilities forthe determination of starting values for the integration step from tk to tk+1 are im-plemented. The user has to de�ne in advane whih of both shall be used duringthe integration proess.By setting IOPT(4)=STARTN=1 the starting values for the internal stages are hosenby X0

ki = xk, i = 1, 2, 3, where xk denotes the already known value whih approx-imates the solution at the point tk. This xk orresponds either to the initial valuein the �rst integration step, i.e., k = 0, or it orresponds to the value determined atthe end of the preeding integration step.On the other hand setting IOPT(4)=0 (whih is the default) the starting values
X0

ki, i = 1, 2, 3 for the Newton iteration are obtained by evaluating the interpolationpolynomial q(t) of degree s over the already passed integration interval [tk−1, tk] with
tk−1 = tk−hk−1 and with q(tk−1) = xk−1, q(tk−1+cihk−1) = Xk−1i, i = 1, 2, 3. In thisway we obtain the starting values for the Newton iteration as X0

ki = q(tk +cihk), i =
1, 2, 3, where xk−1 denotes the numerial solution at the point tk−1. In partiular,this means that the new starting values in the integration step from tk to tk+1 areobtained by extrapolation to the points tk + cihk, i = 1, 2, 3 based on the internalstages of the earlier integration step from tk−1 to tk. Of ourse, this is not possiblein the �rst step. For more details see [18℄.In GEOMS a simpli�ed Newton method is implemented. For more details on Newtonmethods we refer to [6℄. In partiular, this means that a onstant Newton iterationmatrix N is used during the whole or several parts of the Newton iteration insidethe urrent integration step [tk, tk+1]. We use the simpli�ed Newton method, sinea onstant Newton iteration matrix redues the amount of omputation beause ofthe saved evaluation of Jaobians and saved deompositions of the Newton iterationmatrix in every exept the �rst Newton iteration step. But the partiular hoie ofthe Newton iteration matrix in�uenes the onvergene of the Newton iteration. Forthis reason, the ode GEOMS o�ers the possibility to hoose between several referenepoints (X∗, t∗) for the determination of the Newton matrix. The hoie has to be de-termined by the user by setting the option IOPT(9)=NWTMAT. The range of possiblehoies is related to the stages during the integration step. As disussed previously,15



there are two possibilities for the hoie of initial values for the Newton iteration forthe determination of the internal stages. In ase of IOPT(4)=0 the initial values areobtained by extrapolation of the solution omputed so far in the points tk + cihk,
i = 1, 2, 3. This o�ers the possibility to approximate the Newton iteration matrixat four di�erent referene points (X∗, t∗) = (X0

ki, tk + cihk) for i = 0, ..., 3, where
c0 = 0 and ci, i = 1, 2, 3 orrespond to the node vetor of the Runge-Kutta method,see Table 17. Furthermore, X0

ki orresponds to the extrapolated starting values forthe internal stages at the times tk + cihk, i = 0, ..., 3, and, in partiular, X0
k0 = xkorresponds to the initial state of the urrent integration interval. Note that thispossibility is only given if the initial values for the Newton iteration are extrapo-lated, i.e., if IOPT(4)=0. In the ase of initial values hosen suh that X0
ki = xkfor all i = 1, 2, 3 this possibility is not given and the Newton iteration matrix willbe approximated at the initial point (xk, tk) with the initial state of the urrentintegration step [tk, tk+1].Several numerial experiments have shown that the onvergene of the Newton it-eration an be improved by use of extrapolated initial values, i.e., IOPT(4)=0 inonnetion with an approximation of the Newton iteration matrix at the seondinternal stage, i.e., (X∗, U∗) = (X0

k2, tk + c2hk) with IOPT(9)=2. But, if the Newtoniteration detets onvergene problems, and the integration step has to be repeatedwith a smaller step size, then the Newton iteration matrix has to be reomputedsuh that the overall omputation time may inrease if the number of times a on-vergene problems is deteted is large. This number is re�eted in the ounterNCRJCT=IWORK(11) whih orresponds to the number of step rejetions aused byonvergene test failures.It should be noted that the hoie of di�erent Newton iteration matries within theNewton iteration is not available in the ode RADAU5. Furthermore, the ode GEOMSo�ers the possibility of a ertain number of updates of the Newton iteration matrixduring the Newton iteration inside of one integration step, see the following.The onvergene rate of the simpli�ed Newton method is investigated in detail in[6℄, see also [17, 27℄. One important question in the use of an iterative method forsolving nonlinear systems inside an integration proess is when to stop the iterationsuh that the obtained auray of the omputed solution of the nonlinear systemis within the presribed tolerane without performing too many Newton iterationsteps.The onvergene estimation and the stopping riterion implemented in GEOMS is de-sribed in [18℄ and adopted from the ode RADAU5 [17, 18℄. The estimation of theonvergene is based on the weighted root square norm || · ||sc whih is de�ned for a
ζ ∈ R

n by
||ζ ||sc =
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√

√
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)2 (19)with sci = ATOL(i) + max(|xki|, |xk+1i|)RTOL(i), see [18℄. This norm allows to pre-sribe that some solution omponents have to be more preisely approximated than16



other. This an be spei�ed in the vetors ATOL and RTOL presribing the absoluteand relative tolerane, respetively. For more details on the error estimation andthe stopping riterion of the Newton iteration we refer to [18, 38℄.In the ase of a very slow onvergene or, in partiular, in the ase of divergene,the number of Newton iteration steps has to be restrited by a maximal number
kmax = NIT = IOPT(3). Thus, the Newton iteration will stop unsuessfully if a)the stopping riterion is not satis�ed within the maximal number kmax of allowedNewton iteration steps, or if b) the iteration diverges.In ase a) the user has to deide whether the whole integration step has to be re-jeted beause of onvergene failures and to be repeated with a redued step size,or if the Newton iteration should be ontinued with an updated Newton iterationmatrix. In GEOMS this deision is made by de�ning the maximal number of updatesin the option IOPT(10)=NWTUPD. However, several numerial results suggest thatthe number of allowed updates should not exeed 1.It should be noted that the possibility of an update of the Newton iteration matrixwithin the Newton iteration is not available in the ode RADAU5.During the Newton iteration a linear system has to be solved in eah step. This hasto be done in an e�ient but stable way. The ode GEOMS o�ers the possibility todeompose the di�erential part and the algebrai part via di�erent deompositionmethods. The user has to speify in the option IOPT(11)=DECOMPC if the algebraipart, i.e., the Jaobian of the onstraints, should be deomposed by use of the LUdeomposition with full pivoting (IOPT(11)=1), by a QR deomposition with pivot-ing (IOPT(11)=2), or by a SV deomposition (IOPT(11)=3). Heuristially seen, theLU deomposition with (partial) pivoting is a good ompromise onerning e�ienyand stability. Therefore, it is the default in GEOMS, although, the SV deompositiono�ers exellent stability properties but is more expensive.Furthermore, with the option IOPT(12)=DECOMPD, the user an speify how to de-ompose the di�erential part. By setting IOPT(12)=0 the LU deomposition withpartial pivoting is used and by setting IOPT(12)=1 the QR deomposition is used.Remark 3.3 a) The separate deomposition implemented in GEOMS has the advan-tage that the deomposition of the algebrai part an be done independently of thestep size h. Only the deomposition of the di�erential part has to be done separatelydepending on h. In partiular, if the Newton iteration has onvergene problems andthe algorithm interrupts the Newton for to redue the step size, then the informationwith respet to the algebrai part may be reyled whih saves omputational work.b) For the linear algebra omputations like QR deompositions and SV deomposi-tions we use BLAS1 (Basi Linear Algebra Subprograms) [25℄ and LAPACK2 (LinearAlgebra PACKage) [2℄ subroutines. ⊳For strangeness-free di�erential-algebrai systems in semi-impliit form like the pro-jeted-strangeness-free form (12) the saling of the algebrai onstraints with 1/h is1BLAS - http://www.netlib.org/blas/2LAPACK - http://www.netlib.org/lapak/17



reommended in [32℄, where h is the urrent step size. Sine the numerial integra-tion of the equations of motion in GEOMS is based on the projeted-strangeness-freeformulation of the equations of motion, the onstraints are saled by 1/h.The step size ontrol of the integration proess is a very sensitive topi in the im-plementation of numerial algorithms for the integration of ODEs as well as forDAEs. An overview over several step size ontrol strategies is given in [37℄, see also[4, 5, 11, 18℄. The ode GEOMS works with two di�erent step size ontrol strategiesas used in the ode RADAU5, but adapted to the struture of the equations of motion(1). The basis for a step size ontrol mehanism is a loal error estimation. Formore details we refer to [18℄. The error estimation is implemented in the subrou-tine GEERREST. For the hoie of a new step size for the next integration step or arepeated integration step two possibilities are implemented in GEOMS whih have tobe seleted by use of the option IOPT(8)=PRED. With IOPT(8)=2 the lassial stepsize ontroller developed in [11℄ is used and with IOPT(8)=1 the preditive step sizeontroller, developed by Gustafsson in [16℄, is used. The preditive step size ontrolis not possible in the �rst step, so, the lassial step size ontroller will be usedinstead. The preditive step size ontroller needs slightly more work and storagethan the lassial step size ontroller but is more �exible in adaptating the stepsize. By use of the preditive step size ontroller a faster redution of the step sizewithout step rejetions is possible than by use of the lassial step size ontroller.This leads to a possible redution of the overall amount of omputation by use ofthe preditive step size ontroller. Experiments suggest that the preditive step sizeontroller seems to produe safer results for simple problems. On the other hand,the hoie of the lassial ontroller often produes slightly faster runs, see also [18℄.The preditive step size ontroller will be used in GEOMS by default.Sine the ode GEOMS is based on the ombination of disretization and regulariza-tion to the projeted-strangeness-free formulation of the equations of motion whihis in�uened by the hoie of the seletors Sp and Sv, see Theorem 2.4, an e�ientomputation of these seletors is also important and will be disussed in the follow-ing.In general, it is not neessary to reompute seletors in every integration step, seeRemark 2.7.If the LU deomposition is used for the di�erential part then it is possible to de-ide whether the determination of the seletors is done in eah integration step(IOPT(13)=SELCOMP=1) or the seletors are kept onstant for those integration stepswhere the pivoting in the algebrai part does not hange (IOPT(13)=0). The latterase is the default.The ode GEOMS o�ers the possibility to integrate the equations of motion of form(1) with possibly redundant onstraints. As disussed in the literature [26℄, see alsoRemark 2.3, the solution may not be unique in this ase, but under ertain ondi-tions the nonuniqueness is only restrited to the Lagrange multipliers λ, µ, and w.For more details see [38℄. 18



Very important for the integration of equations of motion with redundant onstraintsis the detetion of the degree of redundany, i.e., the determination of the rank ofthe Jaobian assoiated with the onstraints. The reliable numerial determinationof the rank of a matrix is a deliate task and the SV deomposition is a ommonlyused tool for doing this. Therefore, the numerial integration of equations of mo-tion with redundant onstraints is only allowed via the SV deomposition for theonstraints, i.e., IOPT(11)=DECOMPC=3.The rank of the onstraints will be determined in every integration step. If it isdeteted in the �rst step that the onstraints are redundant, a reliable numerialintegration requires the use of the SV deomposition at least for the deompositionof the onstraints. Furthermore, if a possibly hange of the rank from one step toanother is deteted, then the integration possibly has reahed a singular point andwill be stopped with an error message.If the equations of motion have solution invariants (3), then it is often desirableto preserve these solution invariants expliitly. GEOMS is able to preserve solutioninvariants if they are provided by the user as equations (3) in the RDA (18). See theExample 4.1.The user may restrit the maximal number of allowed integration steps by setting theoption IOPT(6)=NMAX. The default value of NMAX is 100000. Furthermore, the usermay fore the ode to exploit some speial strutures of the problem. If the prob-lem is autonomous the amount of omputational work for the numerial integrationmay be redued. By setting IOPT(14)=AUTONOM=1 the user tells the ode that theproblem is autonomous and the ode GEOMS exploits this in the integration proess.The default is IOPT(14)=0, i.e., the problem is not autonomous. In partiular, ifthe mass matrix is onstant and/or diagonal a large amount of omputational workan be saved. Therefore, the user an speify by use of IOPT(15)=MASSTRKT if themass matrix is diagonal and onstant IOPT(15)=4, full and onstant IOPT(15)=3,diagonal and time and/or state dependent IOPT(15)=2, or full and time and/orstate dependent IOPT(15)=1 (default).4 Numerial experimentsIn the following we will demonstrate the appliability and the performane of thenew solver GEOMS. The integration with GEOMS will be performed for three di�erentformulations of the regularized equations of motion. First, the numerial resultsobtained with GEOMS using the projeted-strangeness-free form (12) of the equationsof motion will be abbreviated by GEOMS(psfEoM). Seond, the numerial resultsobtained with GEOMS without providing the onstraints on aeleration level, seeoption IOPT(5) on Page 11, will be abbreviated by GEOMS(pEoM1). Furthermore,if the solution of the onsidered example satis�es some solution invariants we will usethe projeted-strangeness-free form of the equations of motion with expliit foringof the solution invariants in addition to the two formulations above, see Page 4. The19



numerial results in this ase are denoted by GEOMS(psfEoM+I).The numerial integrations are done on an AMD Athlon XP 1800+, 1533 MHz.Let us note that we will abstain from the use of physial units like meters or seonds.Example 4.1 The mathematial pendulum: In Example 2.8 we introduedthe equations of motion of the mathematial pendulum and we did regularize them tothe projeted-strangeness-free form (14) whih is used for the numerial integrationvia GEOMS.For the numerial simulations of the movement we used the mass m = 1, the length
L = 1, and the gravitational aeleration g = 13.75. Let us note that we didmodify the gravitational aeleration to approximately g = 13.75 suh that theexat solution has a period of 2 whih allows the omparison of the auray everyperiod.

0 100 200 300 400 500 600 700 800 900 1000
−20

−15

−10

−5

0

5
x 10

−4 Total energy

simulation time

to
ta

l e
ne

rg
y

   prescribed tolerance 1e−07

PSfrag replaements GEOMS(psfEoM)GEOMS(psfEoM1)GEOMS(psfEoM+I)
RADAU5(EoM)
RADAU5(EoM2)

RADAU5(EoM1)
RADAU5(GGL)ODASSL(oEoM)DASSL(EoM1)

DASSL(EoM1)
MEXAX
HEDOP5

Figure 1: Mathematial Pendulum: Conservation of the total energy by the numer-ial solutions for presribed RTOL=ATOL=10−7 on the time domain I = [0, 1000]The mathematial pendulum modeled as in 13 represents a mehanial system whihonserves the total energy. This total energy is given by
E(p, v) =

1

2
m(v2

1 + v2
2) + mgp2 (20)and is onserved suh that

0 = E(p(t), v(t)) − E0 = e(p, v) with E0 = E(p0, v0) (21)for t ∈ I and every solution of the equations of motion (13).Let us onsider the holonomi onstraints (13) and their derivatives, whih restrit20



the motion of the pendulum in a nonredundant way, in omparison to the onserva-tion of the total energy (21). We have
0 = p2

1 + p2
2 − L2, (22a)

0 = 2p1v1 + 2p2v2, (22b)
0 = 2v2

1 + 2v2
2 − 2p2g − 4

m
(p2

1 + p2
2)λ1, (22)

0 =
1

2
m(v2

1 + v2
2) + mgp2 − E0. (22d)The onstraints (22) are nonredundant for all p, v, and λ satisfying (22). In par-tiular, in addition to the holonomi onstraints and their derivatives the energyonservation restrits the solution as well. The dimension of the solution manifoldwith the energy onservation is therefore smaller than without the energy onserva-tion.For omparison, in Figure 1 the total energy in the numerial solution is depited. Inaddition to GEOMS, the numerial solution is omputed with RADAU5 [17, 18℄ for di�er-ent formulations, i.e., (EoM) the equations of motion (1) of d-index 3, (EoM2) the d-index 2 formulation (using the onstraints on veloity level instead of the holonomionstraints), (EoM1) the d-index 1 formulation (using the onstraints on aelerationlevel instead of the holonomi onstraints), and (GGL) the Gear-Gupta-Leimkuhlerformulation, see [13℄. Furthermore, the solution is omputed with ODASSL [9, 10℄,DASSL [4, 31℄, MEXAX [28℄, and HEDOP5 [3℄. Expeting GEOMS(psfEoM+I) the nu-merially omputed total energy is far from being onstant. This an be expetedbeause the energy onservation is ontained as an equation in the used formulationand is therefore expliitely fored during the numerial integration. However, eventhe other numerial results obtained with GEOMS satisfy the onservation of totalenergy very aurately. The preserving of the total energy yields a stabilization ofthe solution.In the Figures 2 and 3 the e�ieny is depited, i.e., the relation between theobtained auray and the onsumed omputation time of the di�erent used for-mulations. Obviously, the integration with use of GEOMS based on the projeted-strangeness-free formulation (14) plus solution invariants GEOMS(psfEoM+I) o�ersthe best performane for this example. Note that the approximation of the Lagrangemultipliers by GEOMS(psfEOM+I) is muh better than of the other results.A very important fat for the numerial integration and the stability of the numerialalgorithms regarding the integration of DAEs is the satisfation of the onstraints,inluding the hidden onstraints. In Figure 4 the residual of the onstraints ofposition level, of veloity level, and of aeleration level depending on the simulationtime is depited. As one an see, GEOMS satis�es all onstraints well.Above we disussed the strategy for the determination of appropriate seletors,onerning IOPT(13), see Page 18. Furthermore, the projeted-strangeness-free for-mulation (14) of the pendulum has been developed in Example 2.8 and the hoie ofthe seletors Sp and Sv has been onsidered. We have stated above that, in priniplethe seletors may be kept onstant as long as the deviation of the pendulum does21
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Figure 2: Mathematial Pendulum: E�ieny of the solvers based on residual eval-uations. Simulations are done on the time domain I = [0, 1000].
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Example 01_SimpPendIntegration with GEOMS(psfEoM)TSTART = 0.00 TEND = 5.00 H0 = 0.100E-01TOLMIN = 1.0D- 7 TOLMAX = 1.0D- 9Initial veloity 2.80 rad[SimpPend℄ GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-06[SimpPend℄ GEOMS(psfEoM) finished with IDID= 0 H= 0.254E-01 at T= 0.500E+01NACCPT = 187 | NEOM= 2167 | NPDEC = 187NERJCT = 16 | NJAC= 187 | NEDEC = 204NCRJCT = 1 | NMAS= 1 | NBSUB = 660CPUTIME= 0.060s | | NSEL = 2[SimpPend℄ GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-07[SimpPend℄ GEOMS(psfEoM) finished with IDID= 0 H= 0.176E-01 at T= 0.500E+01NACCPT = 270 | NEOM= 2961 | NPDEC = 270NERJCT = 13 | NJAC= 270 | NEDEC = 284NCRJCT = 1 | NMAS= 1 | NBSUB = 897CPUTIME= 0.060s | | NSEL = 2[SimpPend℄ GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-08[SimpPend℄ GEOMS(psfEoM) finished with IDID= 0 H= 0.118E-01 at T= 0.500E+01NACCPT = 391 | NEOM= 4141 | NPDEC = 391NERJCT = 9 | NJAC= 391 | NEDEC = 401NCRJCT = 1 | NMAS= 1 | NBSUB = 1250CPUTIME= 0.080s | | NSEL = 2Table 3: Mathematial Pendulum: Statistial results for the numerial simulationwith GEOMS using the psfEoM with initial veloity v10 = 2.8not reah 90 degrees with respet to the initial state. The strategy for hoosing theseletors is demonstrated in two simulation senarios whih are depited in Tables3 and 4.Both senarios simulate the motion of the pendulum starting with the downwardhanging initial position p0 =
[

0 −1
]T and an initial veloity v0 =

[

v10 0
]Tover the time domain I = [0, 5]. In Table 3 the simulation starts with an ini-tial veloity of v10 = 2.8. This initial veloity leads to the highest deviation of

p =
[

±0.699 −0.715
] whih does not reah the deviation of 45 degrees. Beausethe onstraint matrix has the form G =

[

2p1 2p2

] and beause of |2p1| < |2p2| forall t ∈ I, a hange of the pivoting is not neessary suh that a (re-)omputation of theseletor is only neessary at the beginning of the integration proess and after everydeteted onvergene failure. Therefore, the number NSEL of (re-)omputations ofthe seletor equals the number NCRJCT of rejetions beause of onvergene failuresplus one initial omputation. The situation hanges ompletely if the pendulumpasses the deviation of 45 degrees with respet to the initial state. This happens ifthe initial veloity is inreased to v10 = 2.9. The numerial results are depited inTable 4. Obviously, the (re-)omputations of the seletor NSEL happened 13 times24



Example 01_SimpPendIntegration with GEOMS(psfEoM)TSTART = 0.00 TEND = 5.00 H0 = 0.100E-01TOLMIN = 1.0D- 7 TOLMAX = 1.0D- 9Initial veloity 2.90 rad[SimpPend℄ GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-06[SimpPend℄ GEOMS(psfEoM) finished with IDID= 0 H= 0.236E-01 at T= 0.500E+01NACCPT = 207 | NEOM= 2730 | NPDEC = 207NERJCT = 7 | NJAC= 207 | NEDEC = 227NCRJCT = 13 | NMAS= 1 | NBSUB = 841CPUTIME= 0.060s | | NSEL = 26[SimpPend℄ GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-07[SimpPend℄ GEOMS(psfEoM) finished with IDID= 0 H= 0.121E-02 at T= 0.500E+01NACCPT = 303 | NEOM= 3729 | NPDEC = 303NERJCT = 12 | NJAC= 303 | NEDEC = 321NCRJCT = 6 | NMAS= 1 | NBSUB = 1142CPUTIME= 0.080s | | NSEL = 19[SimpPend℄ GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-08[SimpPend℄ GEOMS(psfEoM) finished with IDID= 0 H= 0.109E-01 at T= 0.500E+01NACCPT = 441 | NEOM= 5208 | NPDEC = 441NERJCT = 12 | NJAC= 441 | NEDEC = 459NCRJCT = 6 | NMAS= 1 | NBSUB = 1589CPUTIME= 0.090s | | NSEL = 19Table 4: Mathematial Pendulum: Statistial results for the numerial simulationwith GEOMS using the psfEoM with initial veloity v10 = 2.9more often than onvergene problems NCRJCT are deteted. In Figure 6 the motionof the pendulum is depited. One an see that the altitude of the pendulum passes12 times the altitude of a deviation of 45 degrees. Therefore, the number NSELof (re-)omputations of the seletors exeeds the number NCRJCT of onvergeneproblems by 13, i.e., 12 plus one initial omputations of the seletors. ⊳Example 4.2 The truk model: In [36℄ a planar nonlinear model of a truk isintrodued as benhmark example. In Figure 7 the topology as well as the oordi-nates, bodies, joints, and fore elements are depited. The model onsists of elevenoordinates pi, i = 1, ..., 11 desribing the motion of seven rigid bodies and oneLagrange multiplier λ1, see Table 5.We omit to speify the equations of motion in detail and refer to [36℄ instead. Notethat the equations of motion of the truk model are badly saled, sine the solutionof the Lagrange multiplier λ1 is of magnitude 104 but the solution of the otherindependent variables p and v are of magnitude 10−2.25
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Body Coordinate1 rear wheel p1 vertial motion2 front wheel p2 vertial motion3 truk hassis p3 vertial motion
p4 rotation about y-axis4 engine p5 vertial motion
p6 rotation about y-axis5 driver abin p7 vertial motion
p8 rotation about y-axis6 driver seat p9 vertial motion7 loading area p10 vertial motion
p11 rotation about y-axis
λ1 Lagrange multiplier with respet to the jointbetween loading area and truk hassisTable 5: Nonlinear truk model
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toleranes RTOL=ATOL≥ 10−15. ⊳5 SummaryIn this paper we have presented the new numerial algorithm GEOMS for the numer-ial integration of general equations of motion.In partiular, the algorithm GEOMS has been developed to arry out the numerialintegration of the most general form of the equations of motion, inluding nonholo-nomi onstraints and possible redundanies in the onstraints, as they may appearin industrial appliations. Besides the numerial integration it o�ers some additionalfeatures like preservation of invariant solutions, preservation of hidden onstraints,use of di�erent deomposition strategies, use of an inomplete regularization, andalso heking and orretion of the initial values with respet to their onsisteny.Subsequently, we have demonstrated the performane and the appliability of thealgorithm for two mehanial examples of di�erent degrees of omplexity. The ex-periene with these numerial examples and several other numerial tests suggestthat the ode GEOMS is an e�ient and robust method for the numerial integrationof the equations of motion.A Manual of GEOMSSUBROUTINE GEOMS(# NP,NV,NR,NW,NS,NL,NM,NI,M,N,NIVCOND,# X,T,TEND,H,RTOL,ATOL,ITOL,IOPT,ROPT,# IVCOND,EOM,MAS,JAC,IJAC,# SOLOUT,IOUT,# LIWORK,IWORK,LRWORK,RWORK,# RPAR,IPAR,IERR,# IDID)C -----------------------------------------------------------------------------CC NAME : (G)eneral (E)quations (O)f (M)otion (S)olverCC PURPOSE : This subroutine performs the numerial simulationC of a multibody system whose state is desribed byCC p - position variables of dimension NP,C v - veloity variables of dimension NV,C r - dynamial fore element variables of dimension NR,C w - auxiliary variables of dimension NW,C s - ontat point variables of dimension NS,C l - holonomi Lagrange multipliers of dimension NL,C m - nonholonomi Lagrange multipliers of dimension NMCC by numerial integration of the equations of motionC of the formC 28



C p'= Z(p)*v, (1) (f_kin)C M(p,t)*v'= f(p,v,r,w,s,l,m,t)-ZT(p)*GT(p,s,t)*lC -ZT(p)*HT(p,s,t)*m, (2) (f_dyn)C r'= b(p,v,r,w,s,l,m,t), (3)C 0 = d(p,v,r,w,s,l,m,t), (4)C 0 = (p,s,t), (5)C 0 = H(p,s,t)Z(p)v+h(p,s,t) (6)C 0 = g(p,s,t), (7)C 0 = e(p,v,s,t) (8)CC on the domain [t_0,t_f℄=[T,TEND℄.CC The prime denotes the time derivative, e.g., p'=dp/dt, and theC 'T' following a matrix or vetor denotes the transpose of thisC matrix or vetor, e.g.,GT is the transpose of G and ZT is theC transpose of Z. Furthermore, the equations orrespond toCC (1) Kinematial equations of motion of dimension NP,C (2) Dynamial equations of motion of dimension NV,C (3) Dynamial fore element equations of dimension NR,C (4) Additional equations for variables w of dimension NW,C (5) Contat equations of dimension NS,C (6) Nonholonomi onstraints of dimension NM,C Notation: h~(p,v,s,t)=H(p,s,t)Z(p)v+h(p,s,t)C (7) Holonomi onstraints of dimension NL,C (8) Solution invariants of dimension NI.CC The System (1)-(8) has to satisfy the following.C a) G = dg/dp - dg/ds*(d/ds)^{-1}*d/dp.C b) [ GZM^{-1}Gl GZM^{-1}Hm℄C rank([ ℄)=rank(G)+rank(H)=onstantC [ HZM^{-1}Gl HZM^{-1}Hm℄C with Gl=ZT*GT-df/dl+df/dw*(dd/dw)^{-1}*dd/dlC and Hm=ZT*HT-df/dm+df/dw*(dd/dw)^{-1}*dd/dmC for all t in [T,TEND℄.C Alternatively,C [ M Gl Gm ℄C rank([ GZ 0 0 ℄)=NV+rank(G)+rank(H)C [ HZ 0 0 ℄C has to be satisfied for all t in [T,TEND℄.C ) d/ds has to be nonsingular for all times t in [T,TEND℄.C d) dd/dw has to be nonsingular for all times t in [T,TEND℄.C e) de/dv has to have full rank for all times t in [T,TEND℄.CC The integration method used is the impliit Runge-Kutta methodC (Radau IIa) of order 5 with step size ontrol, ontinuousC output, and onsistent initialization.CC METHOD : The equations of motion are integrated by the impliitC Runge-Kutta method of type RADAU IIa of order 5 and using theC projeted-strangeness-free formulation or theC projeted-strangeness-index-1 formulation of the equations ofC motion.C 29



C VERSION : April 12, 2006CC REVISIONS : -CC AUTHORS : Address: A. SteinbreherC Weierstrass Institute for Applied AnalysisC and StohastisC Forshungsverbund Berlin e.V.C Mohrenstr. 39C 10117 BerlinC e-mail: steinbreher�wias-berlin.deCC REFERENCES: This ode is part of the PhD thesis:C A.Steinbreher. Numerial Solution of Quasi-Linear Differential-C Algebrai Equations and Industrial Simulation of MultibodyC Systems. PhD thesis, TU Berlin, Institut fuer Mathematik, 2006CC KEYWORDS : numerial simulation of mehanial systems, equations of motion,C differential-algebrai equations, projeted-strangeness-freeC formulation, projeted-strangeness-index-1 formulationCC NOTE : The (basi) linear algebra routines are provided by theC libraries BLAS and LAPACKCC DISCLAIMER: Warranty dislaimer: The software is supplied "as is" withoutC warranty of any kind. The opyright holder:C (1) dislaim any warranties, express or implied, inluding butC not limited to any implied warranties of merhantability,C fitness for a partiular purpose, title or non-infringement,C (2) do not assume any legal liability or responsibility for theC auray, ompleteness, or usefulness of the software,C (3) do not represent that use of the software would notC infringe privately owned rights,C (4) do not warrant that the software will funtionC uninterrupted, that it is error-free or that any errorsC will be orreted.C Limitation of liability: In no event will the opyright holder:C be liable for any indiret, inidental, onsequential, speialC or punitive damages of any kind or nature, inluding but notC limited to loss of profits or loss of data, for any reasonC whatsoever, whether suh liability is asserted on the basisC of ontrat, tort (inluding negligene or strit liability),C or otherwise, even if any of said parties has been warned ofC the possibility of suh loss or damages.CC -----------------------------------------------------------------------------CC CALLC ---------------------------CC SUBROUTINE GEOMS(C # NP,NV,NR,NW,NS,NL,NM,NI,M,N,NIVCOND,C # X,T,TEND,H,RTOL,ATOL,ITOL,IOPT,ROPT,C # IVCOND,EOM,MAS,JAC,IJAC, 30



C # SOLOUT,IOUT,C # LIWORK,IWORK,LRWORK,RWORK,C # RPAR,IPAR,IERR,C # IDID)C IMPLICIT NONEC INTEGER NP,NV,NR,NW,NS,NL,NM,NI,M,N,NIVCOND,C # ITOL,IJAC,IOUT,LIWORK,LRWORK,IERR,IDID,C # IOPT(40),IWORK(LIWORK),IPAR(*)C DOUBLE PRECISION T,TEND,H,C # X(N),RTOL(*),ATOL(*),ROPT(40),RWORK(LRWORK),C RPAR(*)C EXTERNAL IVCOND,EOM,MAS,JAC,SOLOUTCC INPUT- AND OUTPUT-ARGUMENTSC ---------------------------CC NP Input : integerC Number of position variables p.CC NV Input : integerC Number of veloity variables v.CC NR Input : integerC Number of dynamial fore element variables r.CC NW Input : integerC Number of auxiliary variables w.CC NS Input : integerC Number of ontat point variables s.CC NL Input : integerC Number of Lagrange multipliers l=lambda for holonomiC onstraints.CC NM Input : integerC Number of Lagrange multipliers m=mu for nonholonomiC onstraints.CC NI Input : integerC Number of invariants, e.g., energy onservation.CC M Input : integerC Total number of provided equations (M.GE.N), i.e., dimension ofC RDA, see subroutine EOM. In the ase of the use of theC * projeted-strangeness-free formulation we haveC M=NP+NV+NR+NW+NS+3*NL+2*NM+NI,C * projeted-strangeness-index-1 formulation we haveC M=NP+NV+NR+NW+NS+2*NL+NM+NI.CC N Input : integerC Number of unknowns (M.GE.N), i.e., dimension of X. We haveC N=NP+NV+NR+NW+NS+NL+NM.C 31



C NIVCOND Input : integerC Number of initial value onditions, whih have to be satisfiedC in addition to the onstraints obtained from the provided equa-C tions of motion. See subroutine IVCOND.CC X Input : double preision array X(N)C Initial values for X. The array X ontains the (initial) stateC of the mehanial system in the following orderCC X(1:NW) =wC X(NW+1:NW+NL) =l (=lambda)C X(NW+NL+1:NW+NL+NM) =m (=mu)C --------------------------------------------------------C X(NL+NM+NW+1:NL+NM+NW+NR) =rC --------------------------------------------------------C X(NL+NM+NW+NR+1:NL+NM+NW+NR+NV) =vC --------------------------------------------------------C X(NL+NM+NW+NR+NV+1:NL+NM+NW+NR+NV+NS) =sC X(NL+NM+NW+NR+NV+NS+1:NL+NM+NW+NR+NV+NS+NP) =pCC Output :C Numerial approximation of the solution at the last suessfullyC reahed time T.CC T Input : double preisionC Initial time.C Output :C Last suessfully reahed time. If the whole integration wasC suessful then T=TEND.CC TEND Input : double preisionC Final time.CC H Input : double preisionC Initial step size.C Output :C Last used step size.CC RTOL Input : double preision RTOL (or array RTOL(N))C ATOL Input : double preision ATOL (or array ATOL(N))C Relative and absolute error toleranes. They an be bothC salars or else both vetors of length N.C In the ase of a salar the presribed relative and absoluteC toleranes are valid for every omponent of the vetor ofC unknowns X. The ode keeps, roughly, the loal error of X(I)C below RTOL*ABS(X(I))+ATOL.C In the ase of a vetor of dimension N the presribed relativeC toleranes RTOL(I) and absolute toleranes ATOL(I) are validC for the I-th omponent X(I) of the vetor of unknowns X.C The ode keeps, roughly, the loal error of X(I) belowC RTOL(I)*ABS(Y(I))+ATOL(I).CC ITOL Input : integerC Swith for RTOL and ATOL: 32



C ITOL=0 Both RTOL and ATOL are salars.C ITOL=1 Both RTOL and ATOL are vetors.CC IOPT Input : integer array IOPT(40)C Serve as parameters for the ode. For standard use of the odeC IOPT(2),..,IOPT(17) must be set to zero before alling.C See below for a more sophistiated use.CC IOPT( 2)=LUN output devieC 0 - no output (default)C 6 - output to the sreenC >10 - other output devies (to define)C In the ase that the output of several messages is de-C sired, the user has to define an output devie and toC assoiate this devie with IOPT(2), e.g.,C IOPT(2)=13C OPEN(UNIT=13,FILE='geoms.log')C Finally, the output devie has to be losed, e.g.,C CLOSE(13)C In the ase of an unsuessful run of GEOMS it is re-C ommended to set IOPT(2) > 0 suh that GEOMS is ableC to provide more detailed informations to the user.C Furthermore, it is reommended to setC IOPT(2)=0, 6, or >10.CC IOPT( 3)=NIT maximum number of Newton iterations for the solu-C tion of the impliit system in eah step.C The default value (for IOPT(3)=0) is 10.CC IOPT( 4)=STARTN defines the hoie of starting values for theC Newton method solving the nonlinear stage equationsC 0 - The extrapolated olloation solution is taken asC starting value for Newton method. (default)C 1 - Zero starting values are used as starting valueC forNewton method.C IOPT(4)=1 is reommended if the Newton method has on-C verging diffiulties (this is the ase when IWORK(11)C is very large in omparison to IWORK(1), see outputC parameters).CC IOPT( 5)=FORM Used formulation as basis of the numerialC integrationC 0 - projeted-strangeness-free formulation, i.e., theC user has to provide the equations (1)-(7) toge-C ther with the first and seond time derivativeC of the holonomi onstraints, i.e.,C gI(p,v,t) = d/dt g(p,t),C gII(p,v,r,w,s,l,m,t)= d^2/dt^2 g(p,t),C and the first time derivative of the nonholonomiC onstraints, i.e.,C hI(p,v,r,w,s,l,m,t)= d/dt(H(p,s,t)Z(p)v+h(p,s,t)).C If there exist some solution invariants (8) theC user should also provide them and set NI equalC to the number of the solution invariants. All33



C provided equations have to be defined in the sub-C routine EOM and the subroutine MAS in the orretC order, see the subroutines EOM and MAS for moreC details.C 1 - projeted-strangeness-index-1 formulation , i.e.,C the user has to provide the equations (1)-(7)C together with the first time derivative of theC holonomi onstraints, i.e.,C gI(p,v,t) = d/dt g(p,t).C If there exist some solution invariants (8) theC user should also provide them and set NI equalC to the number of the solution invariants. AllC provided equations have to be defined in the sub-C routine EOM and the subroutine MAS in the orretC order, see the subroutines EOM and MAS for moreC detail.CC IOPT( 6)=NMAX Maximal number of allowed steps.C The default value (for IOPT(6)=0) is 100000.C If the ode stops with the error message IDID=-1117,C IOPT(6) has to be inrease orC the integration an be ontinued by use of the obtainedC X and T as initial values for the ontinued integration.CC IOPT( 8)=PRED Step size strategyC 1 - preditive ontroller (Gustafsson)C 2 - lassial step size ontrolC The default value (for IOPT(8)=0) is 1.C The hoie IOPT(8)=1 seems to produe safer results;C for simple problems, the hoie IOPT(8)=2 produesC often slightly faster runs.CC IOPT( 9)=NWTMAT Approximation of the Newton iteration matrixC 0 - approximation at the initial point x_i of theC urrent integration interval [t_{i},t_{i+1}℄C i.e., at (t_{i},x_{i}) (default)C 1 - approximation at the first extrapolated stage ofC the urrent integration interval [t_{i},t_{i+1}℄C i.e., at (t_{i}+_{1}*h,X_{i1})C 2 - approximation at the seond extrapolated stage ofC the urrent integration interval [t_{i},t_{i+1}℄C i.e., at (t_{i}+_{2}*h,X_{i2})C 3 - approximation at the third extrapolated stage ofC the urrent integration interval [t_{i},t_{i+1}℄C i.e., at (t_{i}+_{3}*h,X_{i3})C Several numerial experiments turned out that theC hoie IOPT(9)=2 is the fastest while theC hoie IOPT(9)=0 is theoretially the safest.C IOPT(9).NE.0 is only possible if IOPT(4)=STARTN=0,C i.e., the extrapolated olloation solution is takenC as starting value for Newton method.CC IOPT(10)=NWTUPD Update of the Newton iteration matrixC 0 - for the whole Newton iteration proess in one34



C integration step the same Newton iteration matrixC is used, i.e., no update is allowed. (default)C >0 - during the Newton iteration proess in the urrentC integration step IOPT(10) updates of the NewtonC iteration matrix are allowed.C If onvergene problems during the Newton iterationC proess our, often the Newton matrix is not suitable.C Therefore, in the ase of IOPT(10)=0 theC urrent integration step is rejeted, the ounter NCRJCTC will be inreased by one and the urrent integrationC step will be repeated with redued step size.C The option IOPT(10)>0 allows the update of the NewtonC iteration matrix IOPT(10) times. The Newton iterationC matrix will be updated by use of the urrent iteratesC and the Newton iteration will be ontinued.C Several numerial experiments have shown that IOPT(10)C should not exeed 1.CC IOPT(11)=DECOMPC Deomposition of the algebrai partC 0 - LU deomposition with full pivoting (default)C 1 - QR deomposition with pivotingC 2 - SV deompositionC By use of IOPT(11)=1 the integration beomes fastestC but the stability of the deomposition an not beC guaranteed. In situations with isolated singularitiesC it may happen that the integrator does not detetC the singularity if the toleranes RTOL or ATOL areC too large.C By use of IOPT(11)=2 or 3 the stability of theC deomposition is guaranteed but the integrationC beomes slower.C In ase of redundant onstraints only IOPT(11)=3 isC possible.CC IOPT(12)=DECOMPD Deomposition of differential partC 0 - LU deomposition with partial pivoting (default)C 1 - QR deompositionC By use of IOPT(12)=0 the integration beomes fastest.CC IOPT(13)=SELCOMP Reomputation strategy for the seletorsC 0 - situation adaptedC the reomputation of the seletor will be doneC only if the row pivoting of the onstraints isC hanging or onvergene problems our duringC the Newton iteration proess (default)C 1 - in every integration stepC In ase of IOPT(13)=0 the amount of omputationsC is redued and the integration beomes faster.C This speed-up is only possible if DECOMPD=0.CC IOPT(14)=AUTONOM Autonomy of the equations of motionC 0 - the equations of motion are not autonomousC (default)C 1 - the equations of motion are autonomous35



C If the equations of motion are autonomous the amountC of omputations an be redued and the integrationC beomes faster.CC IOPT(15)=MASSTRKT Struture of the mass matrixC 1 - full and time or/and state dependentC 2 - diagonal and time or/and state dependentC 3 - full and onstantC 4 - diagonal and onstantC The default value (for IOPT(15)=0) is 1.CC IOPT(17)=IVCNSST are the initial values onsistentC 0 - No, the initial values are assumed to be notC onsistent. A hek of onsisteny will beC done and if neessary a orretion will beC omputed. (default)C 1 - Yes, the initial values are assumed to beC onsistent. No hek of onsisteny will beC done.CC ROPT Input : double preision array ROPT(40)C Serve as parameters for the ode. For standard use of the odeC ROPT(1),..,ROPT(40) must be set to zero before alling.C See below for a more sophistiated use.CC ROPT( 1)=UROUND The rounding unitC The default value (for ROPT(1)=0.0) is 1.D-16.CC ROPT( 2)=SAFE Safety fator in step size preditionC The default value (for ROPT(2)=0.0) is 0.9.CC ROPT( 3)=THET Reomputation of the JaobianC Deides whether the Jaobian should be reomputed.C Inrease ROPT(3), to 0.1 say, when Jaobian evaluationsC are ostly. for small systems ROPT(3) should be smallerC (say 0.001D0). Negative ROPT(3) fores the ode toC ompute the Jaobian after every aepted step.C The default value (for ROPT(3)=0.0) is 0.001D0.CC ROPT( 4)=FNEWT Stopping riterion for Newton's methodC Smaller values of ROPT(4) make the ode slower, butC safer.C The default value (for ROPT(4)=0.0) isC MIN(0.03D0,RTOL(1)**0.5D0)CCC ROPT( 5)=QUOT1 Change of the step sizeC See ROPT(6).C The default value (for ROPT(5)=0.0) is 1.0D0CC ROPT( 6)=QUOT2 Change of the step sizeC If QUOT1 < HNEW/HOLD < QUOT2, then the step size is notC hanged. This saves, together with a large ROPT(3),C deompositions and the amount of omputations for36



C large systems. For small systems one may haveC ROPT(5)=1.00D0, ROPT(6)=1.2D0, for large full systemsC ROPT(5)=0.99D0, ROPT(6)=2.0D0 might be good hoies.C The default value (for ROPT(6)=0.0) is 1.2D0CC ROPT( 7)=HMAX Maximal step sizeC The default value (for ROPT(7)=0.0) is TEND-TCC ROPT( 8)=FACL PARAMETER FOR STEP SIZE SELECTIONC See ROPT(9).C The default value (for ROPT(9)=0.0) is 8.0D0CC ROPT( 9)=FACR Step size seletionC The new step size is hosen subjet to the restritionC FACR <= HNEW/HOLD <= FACLC The default value (for ROPT(8)=0.0) is 0.2D0CC IVCOND User supplied subroutine whih provides initial onditions inC addition to the onstraints ontained in the equationsC of motion (inluding hidden onstraints)CC SUBROUTINE IVCOND(N,T,X,NCOND,COND,IPAR,RPAR,IERR)C IMPLICIT NONEC INTEGER N,NCOND,IPAR(*),IERRC DOUBLE PRECISION T,X(N),COND(NCOND),RPAR(*)CC N Input : integerC Number of unknowns, i.e., dimension of XC X has to remain unhanged.CC T Input : double preisionC Initial time t_0.C T has to remain unhanged.CC X Input : double preision array X(N)C Unknown variables, see above.C X has to remain unhanged.CC NCOND Input : integerC Number of additional initial onditions provided in theC subroutine IVCOND.C NCOND has to remain unhanged.CC COND Output : double preision array COND(NCOND)C Residual of initial onditions, e.g. the onditionC COND(1)=X(4)-.5 fores the initial state of X(4) toC be 0.5, i.e. X(4)=0.5D0.C Note the fat, that the onditions given in IVCONDC override the given initial values, i.e., if the givenC initial values are onsistent but do not satisfy theC (possibly wrong) onditions given in IVCOND theC initial values will be orreted suh that both,C the onstraints and the initial onditions areC satisfied. 37



C In ase of initial values whih are onsistent toC the onstraints the option IOPT(17) ould be set to 1C to avoid suh a orretion.CC IPAR Input/Output: integer array IPAR(*)C Integer parameters whih are only used by the user.C They are unused and unhanged by GEOMS.CC RPAR Input/Output: double preision array RPAR(*)C Double preision parameters whih are only used by theC user. RPAR is unused and unhanged by GEOMS.CC IERR Output : integerC Indiator of suess. IERR is only used byC user supplied subroutines. After every all of a userC supplied subroutine the status of IERR is heked. IfC IERR is negative the run of GEOMS will be interruptedC and GEOMS returns to the alling program. IERR isC unhanged by GEOMS.CC EOM Name (EXTERNAL) of the user supplied subroutine whih providesC the right-hand side (RHS) of EoM (1)-(8) together with the firstC and seond time derivative of the holonomi onstraints, i.e.,C gI(p,v,t) = d/dt g(p,t),C gII(p,v,r,w,s,l,m,t) = d^2/dt^2 g(p,t),C and the first time derivative of the nonholonomi onstraints,C i.e.,C hI(p,v,r,w,s,l,m,t) = d/dt (H(p,s,t)Z(p)v+h(p,s,t)).C The order and the number of the provided right-hand sidesC depends on the used formulation, see IOPT(5) and above for moreC detail.CC SUBROUTINE EOM(M,N,T,X,RDA,IOPT,ROPT,IPAR,RPAR,IERR)C IMPLICIT NONEC INTEGER M,N,IOPT(*),IPAR(*),IERRC DOUBLE PRECISION T,X(N),RDA(M),ROPT(*),RPAR(*)CC M Input : integerC Total umber of provided equations (M.GE.N),C i.e., dimension of RDA, see below.C In the ase of use ofC * projeted-strangeness-free formulation we haveC M=NP+NV+NR+NW+NS+3*NL+2*NM+NI,C * projeted-strangeness-index-1 formulation we haveC M=NP+NV+NR+NW+NS+2*NL+NM+NI.C M has to remain unhanged.CC N Input : integerC Number of unknowns (M.GE.N), i.e., dimension of X.C We have N=NP+NV+NR+NW+NS+NL+NM.C N has to remain unhanged.CC T Input : double preisionC Evaluation of the right-hand side of the provided38



C equations at time T.C T has to remain unhanged.CC X Input : double preision array X(N)C Vetor of unknowns, see above.C X has to remain unhanged.CC RDA Output : double preision array RDA(M)C Right-hand side of the provided redued derivativeC array. The order and the number of the providedC right-hand sides depends on the used formulation, seeC IOPT(5).C If IOPT( 5)=0 the numerial integration is based on theC projeted-strangeness-free formulation, i.e., theC user has to provide the equations (1)-(7) togetherC with the first and seond time derivative of theC holonomi onstraints, i.e.,C gI(p,v,t) =d/dt g(p,t),C gII(p,v,r,w,s,l,m,t)=d^2/dt^2 g(p,t),C and the first time derivative of the nonholonomiC onstraints, i.e.,C hI(p,v,r,w,s,l,m,t) =d/dt(H(p,s,t)Z(p)v+h(p,s,t)).C If there exist some solution invariants (8) the userC should also provide them and set NI equal to theC number of the solution invariants. The order is givenC byCC RDA(1:NW) =dC RDA(NW+1:NW+NL) =gIIC RDA(NW+NL+1:NW+NL+NM) =hIC ----------------------------------------------------C RDA(NW+NL+NM+1:NW+NL+NM+NL) =gIC RDA(NW+NL+NM+NL+1:NW+NL+NM+NL+NM) =hC RDA(NW+NL+NM+NL+NM+1:NW+NL+NM+NL+NM+NI) =eC ----------------------------------------------------C RDA(NW+NL+NM+NL+NM+NI+1:NW+NL+NM+NL+NM+NI+NS) =C RDA(NW+NL+NM+NL+NM+NI+NS+1:...C NW+NL+NM+NL+NM+NI+NS+NL) =gC ----------------------------------------------------C RDA(NW+NL+NM+NL+NM+NI+NS+NL+1:...C NW+NL+NM+NL+NM+NI+NS+NL+NR) =bC ----------------------------------------------------C RDA(NW+NL+NM+NL+NM+NI+NS+NL+NR+1:...C NW+NL+NM+NL+NM+NI+NS+NL+NR+NV) =f_dynC ----------------------------------------------------C RDA(NW+NL+NM+NL+NM+NI+NS+NL+NR+NV+1:...C NW+NL+NM+NL+NM+NI+NS+NL+NR+NV+NP) =f_kinCC If IOPT( 5)=1 the numerial integration is based on theC projeted-strangeness-index-1 formulation , i.e., theC user has to provide the equations (1)-(7) togetherC with the first time derivative of the holonomiC onstraints, i.e.,C gI(p,v,t) = d/dt g(p,t).39



C If there exist some solution invariants (8) the userC should also provide them and set NI equal to theC number of the solution invariants. The order is givenC byCC RDA(1:NW) =dC ----------------------------------------------------C RDA(NW+1:NW+NL) =gIC RDA(NW+NL+1:NW+NL+NM) =hC RDA(NW+NL+NM+1:NW+NL+NM+NI) =eC ----------------------------------------------------C RDA(NW+NL+NM+NI+1:NW+NL+NM+NI+NS) =C RDA(NW+NL+NM+NI+NS+1:NW+NL+NM+NI+NS+NL) =gC ----------------------------------------------------C RDA(NW+NL+NM+NI+NS+NL+1:NW+NL+NM+NI+NS+NL+NR) =bC ----------------------------------------------------C RDA(NW+NL+NM+NI+NS+NL+NR+1:...C NW+NL+NM+NI+NS+NL+NR+NV) =f_dynC ----------------------------------------------------C RDA(NW+NL+NM+NI+NS+NL+NR+NV+1:...C NW+NL+NM+NI+NS+NL+NR+NV+NP) =f_kinCCC IOPT Input : integer array IOPT(40)C Serve as parameters for the ode.C IOPT has to remain unhanged.CC ROPT Input : double preision array ROPT(40)C Serve as parameters for the ode.C ROPT has to remain unhanged.CC IPAR Input/Output: integer array IPAR(*)C Integer parameters whih are only used by the user.C They are unused and unhanged by GEOMS.CC RPAR Input/Output: double preision array RPAR(*)C Double preision parameters whih are only used by theC user. They are unused and unhanged by GEOMS.CC IERR Output : integerC Indiator of suess. IERR is only used byC user supplied subroutines. After every all of a userC supplied subroutine the status of IERR is heked. IfC IERR is negative the run of GEOMS will be interruptedC and GEOMS returns to the alling program. IERR isC unhanged by GEOMS.CC MAS Name (EXTERNAL) of the user supplied subroutine whih providesC the mass matrix M(p,t) in equation (2) of the EoMCC SUBROUTINE MAS(T,NX,X,M,N,MA,IOPT,ROPT,IPAR,RPAR,IERR)C IMPLICIT NONEC INTEGER NX,M,N,IOPT(*),IPAR(*),IERRC DOUBLE PRECISION T,X(NX),MA(M,N),ROPT(*),RPAR(*)40



CC T Input : double preisionC Evaluation of the mass matrix MA at time T.C T has to remain unhanged.CC NX Input : integerC Number of unknowns, i.e., dimension of X. We haveC NX=NP+NV+NR+NW+NS+NL+NM.C NX has to remain unhanged.CC M Input : integerC Number of rows of the mass matrix MA. We have M=NV.C M has to remain unhanged.CC N Input : integerC Number of rows of the mass matrix MA. We have N=NV.C N has to remain unhanged.CC X Input : double preision array X(NX)C Vetor of unknowns, see above.C X has to remain unhanged.CC MA Output : double preision array MA(M,N)C Mass matrix of the equations of motion. The mass matrixC has to be provided as a full M x N array,C also in the ase of diagonal struture. Beause of theC used regularization tehnique a sparse storage is notC possible and does not save time or memory.CC IOPT Input : integer array IOPT(40)C Serve as parameters for the ode.C IOPT has to remain unhanged.CC ROPT Input : double preision array ROPT(40)C Serve as parameters for the ode.C IOPT has to remain unhanged.CC IPAR Input/Output: integer array IPAR(*)C Integer parameters whih are only used by the user.C They are unused and unhanged by GEOMS.CC RPAR Input/Output: double preision array RPAR(*)C Double preision parameters whih are only used by theC user. They are unused and unhanged by GEOMS.CC IERR Output : integerC Indiator of suess. IERR is only used byC user supplied subroutines. After every all of a userC supplied subroutine the status of IERR is heked. IfC IERR is negative the run of GEOMS will be interruptedC and GEOMS returns to the alling program. IERR isC unhanged by GEOMS.CC JAC Name (EXTERNAL) of the user supplied subroutine whih omputes41



C the NEGATIVE partial derivatives of the right-hand side of theC equations of motion. (This routine is only alled if IJAC=1.C Supply a dummy subroutine in the ase IJAC=0).CC SUBROUTINE JAC(M1,M2,M3,M4,M5,M6,N1,N2,N3,N4,M,N,C # T,X,FX1,FX2,FX3,FX4,FX5,FX6,C # IOPT,ROPT,RPAR,IPAR,IERR)C IMPLICIT NONEC INTEGER M1,M2,M3,M4,M5,M6,N1,N2,N3,N4,M,N,C # IOPT(*),IPAR(*),IERRC DOUBLE PRECISION T,X(N),FX1,FX2,FX3,FX4,FX5,FX6,ROPT(*),RPAR(*)CC M1 Input : integerC Number of onstraints depending on all unknownC variables and restriting the Lagrange multipliers lC and m and the auxiliary variables w, i.e., 0=d,C 0=gII, 0=hI. IF IOPT(5)=0 we have M1=NW+NL+NM and ifC IOPT(5)=1 we have M1=NW (note that M1=0 is possible).C Compare with the blok row struture of RDA in theC subroutine EOM.C M1 has to remain unhanged.CC M2 Input : integerC Number of onstraints only depending on the unknownC variables p, v, and s and restriting the veloityC variables v, i.e., 0=gI, 0=h, 0=e. We have M2=NL+NM+NI.C Compare with the blok row struture of RDA in theC subroutine EOM.C M2 has to remain unhanged.CC M3 Input : integerC Number of onstraints only depending on the unknownC variables p and s and restriting the position p andC the ontat variables s, i.e., 0=, 0=g. We haveC M3=NS+NL.C Compare with the blok row struture of RDA in theC subroutine EOM.C M3 has to remain unhanged.CC M4 Input : integerC Number of dynamial fore element equations (3), i.e.,C we have M4=NR.C Compare with the blok row struture of RDA in theC subroutine EOM.C M4 has to remain unhanged.CC M5 Input : integerC Number of dynamial equations of motion (2), i.e.,C we have M5=NV.C Compare with the blok row struture of RDA in theC subroutine EOM.C M5 has to remain unhanged.CC M6 Input : integer42



C Number of kinematial equations of motion (1), i.e.,C we have M6=NP.C Compare with the blok row struture of RDA in theC subroutine EOM.C M6 has to remain unhanged.CC N1 Input : integerC Number of auxiliary variables plus the number ofC Lagrange multipliers, i.e., we have N1=NW+NL+NM.C Compare with the blok row struture of X above.C N1 has to remain unhanged.CC N2 Input : integerC Number of dynamial fore element variables, i.e.,C we have N2=NR.C Compare with the blok row struture of X above.C N2 has to remain unhanged.CC N3 Input : integerC Number of veloity variables, i.e., we have N3=NV.C Compare with the blok row struture of X above.C N3 has to remain unhanged.CC N4 Input : integerC Number of ontat point variables plus the number ofC position variables, i.e., we have N1=NS+NP.C Compare with the blok row struture of X above.C N4 has to remain unhanged.CC M Input : integerC Total number of provided equations,C i.e., dimension of RDA, see subroutine EOM and theC number of rows of the partial derivatives. We haveC M=M1+M2+M3+M4+M5+M6.C M has to remain unhanged.CC N Input : integerC Number of unknowns, i.e., dimension of X.C We have N=NP+NV+NR+NW+NS+NL+NM=N1+N2+N3+N4.C N has to remain unhanged.CC T Input : double preisionC Evaluation of the partial derivatives at time T.C T has to remain unhanged.CC X Input : double preision array X(NX)C Vetor of unknowns, see above.C X has to remain unhanged.CC FX1 Output : double preision array FX1(M1,N)C NEGATIVE partial derivatives of d, gII, hI withC respet to [w l m | r | v | s p ℄. We haveC [ d d /d[w l m | r | v | s p ℄ ℄C FX1=[ d gII/d[w l m | r | v | s p ℄ ℄ in R^(M1,N)43



C [ d hI /d[w l m | r | v | s p ℄ ℄C Compare with the blok row struture of RDA in theC subroutine EOM and with the blok row struture of XC above.CC FX2 Output : double preision array FX2(M2,N3+N4)C NEGATIVE partial derivatives of gI, h~, e withC respet to [v s p℄. We haveC [ d gI/d[v s p℄ ℄C FX2=[ d h~/d[v s p℄ ℄ in R^(M2,N3+N4)C [ d e /d[v s p℄ ℄C Compare with the blok row struture of RDA in theC subroutine EOM and with the blok row struture of XC above.CC FX3 Output : double preision array FX3(M3,N4)C NEGATIVE partial derivatives of  and g withC respet to [s p℄. We haveC [ d /d[s p℄ ℄C FX3=[ ℄ in R^(M3,N4)C [ d g/d[s p℄ ℄C Compare with the blok row struture of RDA in theC subroutine EOM and with the blok row struture of XC above.CC FX4 Output : double preision array FX4(M4,N)C NEGATIVE partial derivatives of the right-hand side ofC the dynamial fore element equations, i.e., of b withC respet to [w l m | r | v | s p ℄. We haveC FX4=d b/d[w l m | r | v | s p ℄ in R^(M4,N)C Compare with the blok row struture of RDA in theC subroutine EOM and with the blok row struture of XC above.CC FX5 Output : double preision array FX5(M5,N)C NEGATIVE partial derivatives of the right-hand side ofC the dynamial equations of motion, i.e., of f_dyn withC respet to [w l m | r | v | s p ℄. We haveC FX5=d f_dyn/d[w l m | r | v | s p ℄ in R^(M5,N)C Compare with the blok row struture of RDA in theC subroutine EOM and with the blok row struture of XC above.CCC FX6 Output : double preision array FX6(M6,N3+N4)C NEGATIVE partial derivatives of the right-hand side ofC the kinematial equations of motion, i.e., of f_kinC with respet to [v | s p ℄. We haveC FX6=d f_kin/d[ v | s p ℄ in R^(M6,N3+N4)C Compare with the blok row struture of RDA in theC subroutine EOM and with the blok row struture of XC above.CC IOPT Input : integer array IOPT(40)C Serve as parameters for the ode.44



C IOPT has to remain unhanged.CC ROPT Input : double preision array ROPT(40)C Serve as parameters for the ode.C IOPT has to remain unhanged.CC IPAR Input/Output: integer array IPAR(*)C Integer parameters whih are only used by the user.C They are unused and unhanged by GEOMS.CC RPAR Input/Output: double preision array RPAR(*)C Double preision parameters whih are only used by theC user. They are unused and unhanged by GEOMS.CC IERR Output : integerC Indiator of suess. IERR is only used byC user supplied subroutines. After every all of a userC supplied subroutine the status of IERR is heked. IfC IERR is negative the run of GEOMS will be interruptedC and GEOMS returns to the alling program. IERR isC unhanged by GEOMS.CC IJAC Input : integerC Swith for the omputation of the partial derivatives of theC right-hand side of the equations of motionC IJAC=0 Partial derivatives are omputed internally by finite differenes, subroutine JAC is never alled.C IJAC=1 Partial derivatives are supplied by subroutine JAC.CC SOLOUT Name (EXTERNAL) of subroutine providing the numerial solutionC during integration.C If IOUT=1, it is alled after every suessful step. Supply aC dummy subroutine if IOUT=0.C SOLOUT furnishes the solution X at the nr-th grid-point TC (Thereby the initial value is the first grid-point).CC SUBROUTINE SOLOUT(NACCPT,TOLD,T,X,N,NN2,NN3,NN4,CONTX,H,C1M1,C # C2M1,RPAR,IPAR,IERR)C IMPLICIT NONEC INTEGER NACCPT,N,NN2,NN3,NN4,IPAR(*),IERRC DOUBLE PRECISION TOLD,T,H,X(N),CONTX(NN4),RPAR(*),C1M1,C2M1C DOUBLE PRECISION GEDENSOUTC EXTERNAL GEDENSOUTCC NACCPT Input : integerC Number of aepted steps so far.C NACCPT has to remain unhanged.CC TOLD Input : double preisionC The preeeding grid-point.C TOLD has to remain unhanged.CC T Input : double preisionC Current simulation time T.45



C T has to remain unhanged.CC X Input : double preision array X(NX)C Vetor of unknowns, see above.C X has to remain unhanged.CC N Input : integerC Number of unknowns, i.e., dimension of X.C We have N=NP+NV+NR+NW+NS+NL+NM=N1+N2+N3+N4.C N has to remain unhanged.CC NN2,NN3,NN4,CONTX,H,C1M1,C2M1 Input: integer/double preisionC Internal ommuniation for the use by the subroutineC GEDENSOUT for dense output.C NN2,NN3,NN4,CONTX,H,C1M1,C2M1 have to remain unhanged.CC IPAR Input/Output: integer array IPAR(*)C Integer parameters whih are only used by the user.C They are unused and unhanged by GEOMS.CC RPAR Input/Output: double preision array RPAR(*)C Double preision parameters whih are only used by theC user. They are unused and unhanged by GEOMS.CC IERR Output : integerC Indiator of suess. IERR is only used byC user supplied subroutines. After every all of a userC supplied subroutine the status of IERR is heked. IfC IERR is negative the run of GEOMS will be interruptedC and GEOMS returns to the alling program. IERR isC unhanged by GEOMS.CC ----- Continuous output -----C During alls to "SOLOUT", a ontinuous solutionC for the interval [TOLD,T℄ is available throughC the funtionC GEDENSOUT(I,TOUT,N,NN2,NN3,NN4,T,H,CONTX,C1M1,C2M1)C whih provides an approximation to the I-thC omponent of the solution at the point TOUT, e.g.,C DO I=1,NC XOUT(I)=GEDENSOUT(I,TOUT,N,NN2,NN3,NN4,T,H,CONTX,C # C1M1,C2M1)C END DOC The value TOUT should lie in the interval [TOLD,T℄.C Do not hange the entries of N, NN2, NN3, NN4, T, H,C CONTX, C1M1, C2M1.C The funtion GEDENSOUT is adopted from the ode RADAU5,C see the book:C E. Hairer and G. Wanner, Solving Ordinary DifferentialC Equations II. Stiff and Differential-Algebrai ProblemsC Springer Series in Computational Mathematis 14,C Springer-Verlag 1991, Seond edition 1996.C The former name was CONTR5.C 46



C IOUT Input : integerC Swith for the alling of subroutine SOLOUT.C IOUT=0 Subroutine is never alled.C IOUT=1 Subroutine is available for output.CC LIWORK Input : integerC Delares the length of the array IWORK. LIWORK has to be at leastC 20.CC IWORK Output: integer array IWORK(LIWORK)C Statistial informationC IWORK( 1) NACCPT - Number of aepted integration stepsC IWORK( 2) NEOM - Number of evaluations of the right-hand sideC of the equations of motionC IWORK( 3) NMAS - Number of evaluations of the mass matrixC IWORK( 4) NJAC - Number of evaluations of the Jaobian of theC right-hand side of the equations of motionC IWORK( 5) NSEL - Number of determinations of suitable seletorsC IWORK( 6) NPDEC - Number of predeompositions, i.e., of FX, M,C and IKINC IWORK( 7) NEDEC - Number of E-deompositions, i.e., of E1 and E2C IWORK( 8) NBSUB - Number of bakward substitutionsC IWORK( 9) NSTEP - Number of stepsC IWORK(10) NERJCT - Number of rejetions aused by error testC failuresC IWORK(11) NCRJCT - Number of rejetions aused by onvergeneC problems of the Newton proessCC LRWORK Input : integerC Delares the length of the array RWORK.C A safe hoie for all possible setting in IOPT isC LRWORK at least 5*NC Depending on IOPT it is suffiient ...C If IOPT(17)=IVCNSST=0 then LRWORK has to be at least 5*NC If IOPT(11)=DECOMPC=3 then LRWORK has to be at leastC 5*MAX(M1,M2,M3,N1,N3,N4), see omments to subroutine JAC.C If IOPT(11)=DECOMPC=2 then LRWORK has to be at least NC If IOPT(12)=DECOMPD=1 then LRWORK has to be at least 2*NC For good performane, LRWORK should generally be larger.CC RWORK Intern : integer array IWORK(LIWORK)CC IPAR Input/Output : integer array IPAR(*)C Integer parameters whih are only used by the user. They areC unused and unhanged by GEOMS.CC RPAR Input/Output: double preision array RPAR(*)C Double preision parameters whih are only used by the user.C RPAR is unused and unhanged by GEOMS.CC IERR Input/Output : integerC Indiator of suess. IERR is only used by userC supplied subroutines. After every all of a user suppliedC subroutine the status of IERR is heked. If IERR is negative47



C the run of GEOMS will be interrupted and GEOMS returns to theC alling program. IERR is unhanged by GEOMS.CC IDID Output : integerC Reports suess upon return. The first two digitsC indiate the subroutine whih auses trouble.CC IDID=-10.. An error ourred in the subroutine GEOMSC -1001 Option array IOPT or ROPT or toleranes RTOL or ATOLC ontains wrong dataC Chek the output in UNIT=IOPT(2) for more informationC If the option IOPT(2) equals 0 turn on the output.C -1002 Initial IDID lower than 0CC IDID=-11.. An error ourred in the subroutine GECORC -1101 Stop initialized by SOLOUTC -1102 Stop initialized by EOMC -1103 Stop initialized by MASC -1104 Stop initialized by JACC -1105 Initial onditions not onsistentC -1106 Final time TEND before initial time TC -1111 QR-Deomposition of FX1 not possibleC -1112 QR-Deomposition of FX2 not possibleC -1113 QR-Deomposition of FX3 not possibleC -1114 QR-Deomposition of E1 or E2 not possibleC -1115 Newton method repeatedly does not onverge NSING.GE.5C -1116 Newton method repeatedly does not onverge NSING.GE.5C -1117 More than NMAX steps are neededC -1118 Step size too smallC -1128 An error ourred during use of DORMQRC -1129 An error ourred during use of DORMQRCC IDID=-12.. An error ourred in the subroutine GEFXNUMC -1201 Stop initialized by EOMCC IDID=-14.. An error ourred in the subroutine GEDECCQRC -1401 Constraints redundant or dd/dw singularC (FX1 rank defiient).C Try the integration again with IOPT(11)=3 (SVD).C -1402 Constraints or the invariant equations are redundantC (FX2 rank defiient). Try the integration again withC IOPT(11)=3 (SVD).C -1403 Constraints redundant or d/ds singularC (FX3 rank defiient).C Try the integration again with IOPT(11)=3 (SVD).CC IDID=-18.. An error ourred in the subroutine GETRFRHSCC -1801 Multipliation with Q1 not possibleC -1802 Multipliation with Q2 not possibleC -1803 Multipliation with Q3 not possibleC -1804 Multipliation with Q4 not possibleCC IDID=-20.. An error ourred in the subroutine GEERRESTC -2004 Multipliation with Q4 not possible48



CC IDID=-21.. An error ourred in the subroutine GEINIVAL.C -2101 Stop initialized by EOM.C -2102 Stop initialized by IVCOND.C -2103 An error ourred during SVD.C -2104 Divergene during determination of onsistent initialC values. The given onditions in IVCOND together withC all onstraints of the EoM form an overdetermined system.C Perhaps it is ontraditory.C => Chek onsisteny of all onstraints of the EoM inC relation to the onditions given in IVCOND!C => If you are sure that the initial values are onsistentC (at least variables P and V) you an set IOPT(17)=1.C -2105 No Convergene in the given limit of iterations.C (See the soure ode of GEINIVAL and inrease NIT or/andC NNWTUPD.C -2106 Given onditions in IVCOND together with onstraints inC EoM are not suffiient to uniquely determine onsistentC initial values. Perhaps there are not enough onditionsC or they are redundant.C => Provide more (nonredundant) onditions in IVCOND!C => Chek NIVCOND!C => Chek redundany of all onstraints of the EoM inC relation to the onditions given in IVCOND!C => If you are sure that the initial values are onsistentC (at least variables P and V) you an set IOPT(17)=1.CC IDID=-24.. An error ourred in the subroutine GEDECCSVC -2401 Constraints are not uniformly redundant, i.e., rank of FX1C was hangingC -2402 Constraints are not uniformly redundant, i.e., rankC defiieny of FX1 not idential to rank defiieny of FX2C -2403 Constraints are not uniformly redundant, i.e., rankC defiieny of FX1 not idential to rank defiieny of FX3C -2404 An error ourred during SVD of FX1 or FX2 or FX3CC IDID=-26.. An error ourred in the subroutine GEDECCLUC -2601 Constraints redundant or dd/dw singularC (FX1 rank defiient).C Try the integration again with IOPT(11)=3 (SVD).C -2602 Constraints or the invariant equations are redundantC (FX2 rank defiient). Try the integration again withC IOPT(11)=3 (SVD).C -2603 Constraints redundant or d/ds singularC (FX3 rank defiient).C Try the integration again with IOPT(11)=3 (SVD).CC -----------------------------------------------------------------------------
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