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Abstra
tWe study Ostwald ripening of two-dimensional adatom and adva
an
y islands ona 
rystal surfa
e by means of kineti
 Monte Carlo simulations. At large bond energiesthe islands are square-shaped, whi
h qualitatively 
hanges the 
oarsening kineti
s.The Gibbs�Thomson 
hemi
al potential is violated: the 
oarsening pro
eeds througha sequen
e of `magi
' sizes 
orresponding to square or re
tangular islands. The
oarsening be
omes atta
hment-limited, but Wagner's asymptoti
 law is rea
hedonly after a very long transient time. The unusual 
oarsening kineti
s obtained inthe Monte Carlo simulations are well des
ribed by the Be
ker�Döring equations ofnu
leation kineti
s. These equations 
an be applied to a wide range of 
oarseningproblems.1 Introdu
tionDomains of a guest phase inside a matrix tend to 
oarsen, thus redu
ing their spe
i�
interfa
e energy. The prominent me
hanism of 
oarsening was proposed by Ostwald [1℄more than hundred years ago: larger domains grow at the expense of smaller ones byex
hanging atoms. The net atom �ux is dire
ted to larger domains sin
e they possesssmaller interfa
e energy per atom. The seminal theory of Ostwald ripening was proposedby Lifshitz and Slyozov [2℄ and by Wagner [3℄. They showed that, at late times, the systemis 
hara
terized by a single 
hara
teristi
 s
ale, namely, the average domain size R(t). Thetime evolution of the system 
onsists in 
hanging the s
ale: the domain distribution, shapeof the di�ra
tion peaks, et
. remain un
hanged when s
aled by R(t). The average domainsize follows, in turn, universal laws, R(t) ∝ t1/3 if the atom di�usion is the rate limitingpro
ess [2℄ and R(t) ∝ t1/2 if the atta
hment-deta
hment at the domain interfa
e is thelimiting one [3℄.The kineti
 s
aling is essentially based on the Gibbs�Thomson formula µ = γ/R for theex
ess 
hemi
al potential of a gas that is in equilibrium at the 
urved surfa
e of a liquiddroplet (the 
onstant γ is proportional to the surfa
e tension). The aim of the present workis to study the Ostwald ripening kineti
s at low temperatures (or large bond energies)when the 
rystalline droplets are fa
eted. The energy of a small 
rystalline droplet isminimum at `magi
' sizes when all fa
ets are 
ompleted. The 
oarsening pro
eeds as asequen
e of jumps from one magi
 size to the next. We perform kineti
 Monte Carlosimulations of Ostwald ripening kineti
s for fa
eted two-dimensional (2D) islands and�nd a very long transient behavior of the system, so that the universal asymptoti
 lawsare still not rea
hed. We develop a mean-�eld theory for Ostwald ripening, based on theBe
ker�Döring [4℄ equations. We show that these equations, being the basi
 equations ofnu
leation theory [5, 6℄ 
an be used to des
ribe the 
oarsening kineti
s in a wide range ofsizes, starting from monomers up to the long-time asymptoti
s that are not available in1



Monte Carlo simulations. Both the Lifshitz�Slyozov�Wagner regime and the 
oarseningthrough a sequen
e of magi
 sizes are well des
ribed. This approa
h requires only theknowledge of the 
luster energy dependen
e on the number of atoms in the 
luster and
an be applied to a wide range of 
oarsening problems in other systems as well.The original analyti
al theories of nu
leation [5, 6℄ and Ostwald ripeing [2, 3℄ are based ondistin
t assumptions and des
ribe di�erent kineti
 pro
esses: nu
leation theory predi
tsthe rate of formation of stable embryos, while Ostwald ripening theory follows the 
oars-ening of large 
lusters. Langer and S
hwartz [7℄ proposed a mean-�eld approa
h to studythe nonlinear dynami
al equations of motion for a phase separating system with bothnu
leation and growth of droplets. The uni�ed theory of nu
leation and 
oarsening wasfurther developed by Sagui and Grant [8℄ by taking into a

ount the 
orrelation e�e
tsin a Thomas-Fermi approximation. We show in the present paper that the ordinary dif-ferential equations by Be
ker and Döring are well suited to des
ribe both nu
leation and
oarsening kineti
s. One 
an pro
eed, by solving a system of ordinary di�erential equa-tions, from monomers to 
lusters 
ontaining millions of atoms. Although this approa
h
annot be extended to arbitrarily large 
lusters, it 
an be used to test theories that intendto des
ribe both nu
leation and 
oarsening pro
esses. We restri
t ourselves to small 
on-
entrations and take into a

ount the s
reening e�e
ts [9℄ to avoid divergen
e of solutionsof the two-dimensional di�usion equation. A more a

urate des
ription of s
reening thattakes into a

ount spatial 
orrelations [10℄ only slightly 
hanges the s
reening length inthe 
ase of small 
on
entrations.From the experimental studies of two-dimensional (2D) 
oarsening, we mention the onesthat report time exponents n in the 
oarsening law R(t) ∝ tn. These in
lude low-energyele
tron di�ra
tion from a 
hemisorbed monolayer of oxygen on W(110), [11℄, [12℄, heliumatom beam di�ra
tion from 0.5 monolayer (ML) of Cu on Cu(100) [13℄, opti
al mi
ros
opyof a thin layer of su

inonitrile within the liquid-solid 
oexisten
e region [14℄, [15℄, a binarymixture of amphiphili
 mole
ules [16℄ and low-energy ele
tron mi
ros
opy of Si on Si(001)[17℄, [18℄. In these works, [11, 12, 13, 14, 15, 16℄ time exponents somewhat smaller than
1/3 were found and explained by the Lifshitz�Slyozov law with �nite-size 
orre
tions. Thetime exponent 1/2 obtained for Si on Si(001) [17, 18℄ was treated as the 
ase of kineti
slimited by the atta
hment and deta
hment of adatoms to steps [3℄. Our re
ent x-raydi�ra
tion study of 
oarsening of 2D GaAs islands on GaAs(001), [19℄ whi
h showed anapparent time exponent 
lose to 1, was the experimental inspiration for the present work.Two-dimensional islands of `magi
' sizes were observed on several surfa
es, su
h as Pt(111)[20℄, Si(111) [21℄ and Ag(111) [22℄ (see also a review [23℄). Cal
ulations with realisti
model potentials show that magi
 sizes are inherent to metal f

 (001) surfa
es [24℄. Itwas shown theoreti
ally that the presen
e of magi
 island sizes disrupts the s
aling lawof submonolayer mole
ular beam epitaxy growth [25℄. Magi
 sizes of three-dimensionalPb nano
rystals on Si(111) lead to a breakdown of the 
lassi
al Ostwald ripening laws[26℄. The magi
 thi
knesses of three-dimensional islands arise from a 
ompetition betweenquantum 
on�nement, 
harge spilling, and interfa
e-indu
ed Friedel os
illation [27℄. Themagi
 sizes of two-dimensional islands are due to lateral ele
tron 
on�nement [22℄. Inour kineti
 Monte Carlo study, the energies of 2D islands are obtained simply by bond
ounting, and the magi
 sizes are the ones of squared or re
tangular islands. However,we formulate the Be
ker�Döring equations in su
h a way that they are appli
able to any(possibly non-regular) dis
rete dependen
e of the island energy on the number of atoms2



in it. The proposed approa
h allows to des
ribe the Ostwald ripening kineti
s on
e theisland energeti
s is established.Fa
eted islands are 
ommonly observed on metal surfa
es. The adatom and va
an
yislands on the (111) surfa
es of Cu, Ag, and Au are equilateral hexagons, while theseon the (100) surfa
es are squares (see [28℄ for a review). Studies of these islands areperformed mostly by s
anning tunneling mi
ros
opy, whi
h is well suited to provide adetailed mi
ros
opi
 view of the individual pro
esses. However, the data are not su�
ientto obtain the time evolution of average quantities, su
h as the mean island size, duringOstwald ripening. In our kineti
 Monte Carlo simulations, the equilibrium island shapeevolves from rounded to square, as the bond energy is in
reased. We do not analyze theindividual events, su
h as sintering [29℄ but 
on
entrate on the average quantities (meanisland size and size distribution) in the pro
ess of Ostwald ripening.Monte Carlo simulations of Ostwald ripening were performed using the 2D Ising model[30, 31, 32℄. Spin 
onservation was a
hieved by �ipping pairs of neighboring opposite spins(Kawasaki spin-ex
hange dynami
s). The simulations were limited to rather small valuesof the 
oupling 
onstant, so that the domains are rounded and fa
eting is absent. Timeexponents were found to be smaller than 1/3, whi
h was explained by �nite-size 
orre
tionsto the Lifshitz�Slyozov law. Further dis
ussion of theoreti
al and simulation studies 
anbe found in several reviews [33, 34, 35℄. Despite kineti
 Monte Carlo simulations areroutinely used to model epitaxial growth, [36, 37, 38, 39, 40, 41℄ we are aware of only onesu
h study of 
oarsening of 2D islands on a 
rystal surfa
e [42℄. This latter simulationwas limited to small bond energies and rounded islands, similar to the simulations in theIsing model.Fa
eting e�e
ts were found in the kineti
s of non-
onserved systems. Here, the velo
ityof a domain wall v is proportional to its 
urvature K, v = αK, whi
h gives rise to kineti
s
aling with a universal law R(t) ∝ t1/2 for the domain 
oarsening [43, 44, 45, 46℄. In theseminal Allen and Cahn theory [44℄ the 
oe�
ient α does not depend on temperature.However, kineti
 Monte Carlo simulations of the non-
onserved Ising model (the Glaubersingle-spin-�ip dynami
s) show that, at low temperatures, the anisotropy of surfa
e ten-sion gives rise to square-shaped domains (in a

ordan
e with the Wul� 
onstru
tion) andresults in smaller α [47℄. In the opposite 
ase of high temperatures, thermal roughen-ing redu
es α [48℄. Both e�e
ts do not alter the 
oarsening law. In somewhat more
ompli
ated models, allowing soft domain walls [49℄ or both ferromagneti
 and antifer-romagneti
 ordering, [50℄ the time exponent de
reases with de
reasing temperature andrea
hes a universal value of 1/4 at T = 0. In the latter model, the domain walls 
onsistof 
urved parts and straight sta
king faults (fa
ets) with zero 
urvature, whi
h move by
reation and propagation of kinks.A physi
al di�eren
e between the 
oarsening kineti
s of 2D epitaxial islands and thatof Ising spins be
omes evident when we 
ompare adatoms and adva
an
ies with up anddown spins. The �rst two obje
ts possess qualitatively di�erent kineti
s (motion of anadva
an
y is a result of the 
olle
tive motion of atoms), while up and down spins areequivalent. This distin
tion manifests itself in the transition probabilities, as dis
ussedbelow. The fundamental laws of Ostwald ripening are expe
ted to be independent ofthe transition probability distribution, so that a kineti
 Monte Carlo simulation of the
oarsening of epitaxial islands allows one to test this predi
tion. Here, we perform kineti
3



Monte Carlo simulations of Ostwald ripening of 2D adatom islands (surfa
e 
overage0.1 ML) and 2D adva
an
y islands (surfa
e 
overage 0.9 ML) in a wide range of bondenergies (or temperatures). Our parti
ular aim is to perform simulations in the 
aseof large bond energies (low temperatures) when the islands are fa
eted, whi
h was notstudied previously.In our simulations, no step edge barrier is imposed. The atoms 
an freely deta
h froman island and atta
h, after di�usion on the upper or lower levels, to the same or anotherisland. The mi
ros
opi
 probability of an atom movement is given by the number of bondsin its initial state before the movement. The resulting net �ux of atoms from smaller tolarger islands de
reases the total energy of surfa
e steps (island borders). The simulationmodel is similar to the one used in our pre
eding work [51℄, but with a fundamental di�er-en
e that leads to a di�erent 
oarsening me
hanism. In [51℄, the es
ape of an atom froma va
an
y island to the higher level was prohibited by an in�nite step edge barrier. Thatresulted in Brownian motion and 
oales
en
e of whole islands due to atom deta
hmentand reatta
hment within an island. Su
h 
oarsening by dynami
 
oales
en
e is mu
h lesse�e
tive than Ostwald ripening 
onsidered in the present paper, and be
omes essentialonly when the deta
hment of atoms from islands is prohibited.2 Monte Carlo simulations2.1 Simulation methodWe employ the well-established generi
 model developed for kineti
 Monte Carlo simu-lations of mole
ular beam epitaxy [36, 37, 38, 39, 40, 41, 42℄. Atoms o

upy a simple
ubi
 latti
e and intera
t with a pair energy that depends only on the number of bonds.An alternative approa
h to simulate surfa
e kineti
s is a detailed Monte Carlo simula-tion of a parti
ular surfa
e with energeti
 parameters taken from ab initio 
al
ulations,as it was done for GaAs(001) or InAs(001) [52, 53, 54, 55, 56℄. Su
h simulations arevery time-
onsuming and hen
e are limited to small time and spatial s
ales. They 
anhardly be applied to study the 
oarsening pro
ess. Some 
hara
teristi
 features of 
om-pound semi
ondu
tors 
an, however, be in
luded in the generi
 model as a 
ompromise[57, 58, 59℄.We use an algorithm [60℄ that advan
es simulated time depending on the probability ofthe 
hosen event. This algorithm is 
ommonly used in epitaxial growth simulations. Wenote that the Ostwald ripening simulations of the 2D Ising model [30, 31, 32℄ have em-ployed the Metropolis a

ept�reje
t algorithm. This algorithm be
omes ine�
ient at lowtemperatures, sin
e most of the attempts are reje
ted and 
omputer time is wasted. Thatis why previous simulations [30, 31, 32℄ were performed at relatively high temperatures
T > 0.5Tc, where Tc is the Ising phase transition temperature. Of 
ourse, both algorithmsgive the same results and di�er only in the 
omputation time.The 
hoi
e of the probability w(x → y) for the transition from the state x to the state yintrodu
es the physi
s of the system into the simulations. The 
hoi
e is made di�erentlyfor the epitaxial growth and the Ising model simulations. It is worthwhile to 
omparethese probabilites brie�y. A su�
ient 
ondition that the system evolves to thermodynami
4



equilibrium is the detailed balan
e 
ondition, w(x → y)/w(y → x) = exp(−∆E/kBT ).Here ∆E = E(y) − E(x) is the energy di�eren
e between the states x and y, kB is theBoltzmann 
onstant and T is the temperature. The simulations of the Ising model usea probability that depends on ∆E (either the Metropolis or the Glauber probability).These probabilities favor transitions whi
h redu
e the energy of the system, ∆E < 0. Onthe other hand, for an atom jump on the 
rystal surfa
e, the transition probability doesnot depend on the �nal state y but only on the height of the energy barrier that needsto be over
ome [61℄. The probability is w(x → y) ∝ exp[E(x)/kBT ], where E(x) < 0 isthe energy of the initial state with respe
t to the barrier. Su
h a probability obviouslysatis�es the detailed balan
e 
ondition. The system evolves into a lower-energy state sin
eit es
apes higher-energy initial states with larger probabilities.In the present study, no step edge barrier is imposed. An atom deta
hing from a stepedge 
an go to the lower or the upper terra
e with equal probabilities. In parti
ular, atomex
hange between adva
an
y islands is a
hieved predominantly by adatoms di�using onthe top level rather than by the di�usion of va
an
ies, despite that the latter pro
ess isnot forbidden. Similar simulations, but with an in�nite step edge barrier, were performedin our pre
eding work [51℄. The in�nite step edge barrier leads to Brownian motion ofthe islands and their dynami
 
oales
en
e, whi
h is a mu
h slower pro
ess than Ostwaldripening and leads to mu
h less e�e
tive 
oarsening. It be
omes essential only if theex
hange of atoms between islands is prohibited, e.g., by a step edge barrier. In thepresent simulations, the dynami
 
oales
en
e pro
ess is not forbidden but its 
ontributionis negligible.An atom that has n neighbors in the initial state with equal bond energies Eb to theseneighbors possesses an energy E(x) = −(nEb + ED), where the a
tivation energy ofsurfa
e di�usion ED is the barrier height. It determines the time s
ale τ of the problem,
τ−1 = ν exp(−ED/kBT ), where ν ≈ 1013 s−1 is the vibrational frequen
y of atoms ina 
rystal. In the epitaxial growth simulations, the time s
ale τ is to be 
ompared withthe deposition �ux, whi
h determines an appropriate 
hoi
e of ED. We do not 
onsiderdeposition, and the 
hoi
e of ED is arbitrary. Note that the works on the Ising modelkineti
s measure time simply in the �ip attempts (sweeps) per latti
e site. We take thesame values of ED as in the pre
eding work, [51℄ with the aim to 
ompare time s
ales ofOstwald ripening (in absen
e of the step edge barrier) with that of dynami
 
oales
en
e(in�nite step edge barrier). Namely, we 
hoose ED = 0.2; 0.1; 0 eV for Eb = 0.2; 0.3;
0.4 eV, respe
tively.The ratio of the intera
tion energy between neighboring atoms to the temperature Eb/kBTis the only essential parameter for the 
oarsening problem. We �x the temperature at400 K and vary the bond energy Eb from 0.2 eV to 0.4 eV. In terms of our model, theIsing phase transition takes pla
e at Eb/kBT = 2 ln(1 +

√
2). Our 
hoi
e of bond energies
orresponds to T/Tc varying from 0.15 to 0.3, temperatures mu
h lower than the onesused in previous kineti
 Monte Carlo studies of Ostwald ripening [30, 31, 32, 42℄. Here,

Tc is the Ising phase transition temperature.We perform kineti
 Monte Carlo simulations on a 1000×1000 square grid with periodi
boundary 
onditions. Ea
h simulation is repeated 25 times, to obtain su�
ient statisti
sfor the island size distribution. In the initial state, either 0.1 ML or 0.9 ML are randomlydeposited. Adatom islands form in the �rst 
ase and adva
an
y islands in the se
ond.5



2.2 Simulation resultsSnapshots of the simulated system at the end of a simulation are presented in Fig. 1(a).As the bond energy Eb is in
reased (from left to right), the island shape 
ontinuouslytransforms from more 
ir
ular to almost square. Sin
e fa
eting transitions are absentin 2D systems, we refer to the almost square islands as fa
eted in order to stress thequalitative shape di�eren
e at small and large bond energies. Apart from the 
hange inshape, the equilibrium density of adatoms between islands exponentially de
reases as thebond energy in
reases.Figures 1(b) and (
) show time variations of average island diameters 2R(t) in logarithmi
and linear s
ales, respe
tively. The sizes of all islands in the simulated system are obtainedby using an algorithm[62℄ that allows to 
ount all topologi
ally 
onne
ted 
lusters in thesystem. The radii of individual islands are 
al
ulated as rn =
√

n/π, where n is thenumber of atoms in a 
luster. At small bond energies (left 
olumn in Fig. 1), the pro
essof Ostwald ripening follows the Lifshitz�Slyozov law R(t) ∝ t1/3. As the bond energyin
reases, the 
oarsening law for adva
an
y islands deviates from that for adatom islandsand from the expe
ted t1/3 law. At large bond energies (right 
olumn in Fig. 1), the
oarsening behavior of adva
an
y islands is qualitatively di�erent and 
lose to a lineardependen
e, in a wide range of island sizes. The 
oarsening of adatom islands also notablydeviates from the Lifshitz�Slyozov law. The atta
hment-limited asymptoti
 t1/2 
an beinferred from the �gure, but it is not really rea
hed.Figure 1(d) shows the island size distributions at di�erent times. The uniformly spa
edtime instan
es are marked on the 
urves in Fig. 1(
) by the same symbols as used forthe 
orresponding size distributions. The distributions are s
aled by the average size
R(t): instead of the probability p(r), we plot the s
aled probability P (r) = Rp(r) versus
r/R. The s
aled distributions do not 
hange in time even at large bond energies, wherethe average island sizes do not show a power law behavior. However, the island sizedistribution does 
hange with in
reasing bond energy, Fig. 1(d). The distribution developsa tail extended to 2R, while at smaller bond energies it is limited to 1.5R.We also use the Monte Carlo simulations to verify the average island size determinationin di�ra
tion studies. In a di�ra
tion experiment, one has a

ess to the peak pro�leonly and obtains the average size from its width. Using the island distribution obtainedin the simulation and 
al
ulating the peak pro�les, we 
an 
ompare the average sizesobtained from the real spa
e and the re
ipro
al spa
e distributions. The di�ra
tion peaks(stru
ture fa
tors) obtained from the simulations are presented in Fig. 2(a). We 
onsiderthe anti-Bragg 
ondition (adja
ent atomi
 layers 
ontribute to the s
attering fun
tionwith a phase shift of π) and obtain two-dimensional intensity distributions I(qx, qy) fromFourier transformation of exp[iπh(x, y)]. Here an integer fun
tion h(x, y) is the surfa
eheight. Then, we take into a

ount that in a di�ra
tion experiment, the s
attered intensityis usually 
olle
ted by a wide open dete
tor that integrates over one of the 
omponentsof the s
attering ve
tor q [19℄. Hen
e, we integrate the distributions I(qx, qy) over one ofthe 
omponents of the s
attering ve
tor, either qx or qy. The resulting di�ra
tion peaks
I(q) are presented in Fig. 2(a). The peaks 
orresponding to di�erent time moments [thesame time moments as in Fig. 1(d)℄ 
oin
ide on
e the wave ve
tors q are s
aled by theaverage island size. Kineti
 s
aling is thus 
on�rmed. The shapes of the peaks depend onthe bond energy Eb, thus showing that the island size distribution and the 
orrelations6
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between the islands 
hange.The quantity most 
ommonly measured in a di�ra
tion experiment is the full width at halfmaximum (FWHM) of a peak obtained by an appropriate �t. Considering islands of linearsize 2R, one obtains a stru
ture fa
tor sin2(qR)/ sin2(qa), whi
h 
an be approximated by
exp(−q2R2/π) [63℄. Here, a is the latti
e spa
ing. We obtain the average size 2R by�tting the peaks to this Gaussian fun
tion, despite the peaks are not Gaussian, espe
iallyfor small bond energies. Figure 2(b) 
ompares these sizes with the ones obtained from thereal-spa
e island size analysis des
ribed above. The values are in good agreement, thus
on�rming that the average quantities 
an be obtained from the di�ra
tion peak widthseven if the pro�les deviate notably from Gaussian.3 Coarsening equations3.1 The Be
ker�Döring equations for the 3D problemThe pro
ess of Ostwald ripening 
an be des
ribed by two alternative approa
hes, either interms of a 
ontinuous fun
tion f(r) representing the number density of 
lusters of radius
r, or in terms of dis
rete numbers cn representing the densities of 
lusters 
ontaining natoms (nmers). The �rst approa
h was employed by Lifshitz and Slyozov[2℄ and Wagner[3℄. The equations for dis
rete quantities cn were �rst formulated by Be
ker and Döring[4℄and ever sin
e form the basis of nu
leation theory [5, 6℄. Closely related equations, therate equations, were used in the des
ription of 
rystal growth [64, 65, 66℄. They 
ontainan additional deposition term, while the deta
hment pro
ess is not essential and the
orresponding terms in the equations are frequently omitted. Similar dis
rete equations forthe Ostwald ripening pro
ess were introdu
ed under the names of mi
ros
opi
 
ontinuityequations [67, 68℄ population balan
e equations, [69, 70, 71℄ or rate equation approa
h[72℄. Mathemati
al aspe
ts of the relationship between the dis
rete and the 
ontinuousequations were also 
onsidered [73, 74℄. The aim of the present se
tion is to link thedis
rete and 
ontinuous approa
hes and obtain equations that 
an be used for a numeri
alstudy of the Ostwald ripening pro
ess.The number of atoms n in a 
luster in
reases or de
reases by one when an atom is atta
hedto the 
luster or deta
hed from it. Let Jn be the net rate of transformation of nmers into
(n + 1)mers. The number cn of nmers in
reases due to the transformation of (n− 1)mersinto nmers and de
reases be
ause of the transformation of nmers into (n + 1)mers:

dcn/dt = Jn−1 − Jn. (1)This equation is valid for n ≥ 2. The equation des
ribing the number of monomers c1 isobtained by requiring that the total number of atoms in the system
N =

∞
∑

n=1

ncn (2)does not 
hange in time. The 
ondition dN/dt = 0 gives, after substitution of Eqs. (1)9



and rearrangement of the terms,
dc1/dt = −2J1 −

∞
∑

n=2

Jn. (3)This equation takes into a

ount that ea
h transformation of an nmer into an (n + 1)merde
reases the number of monomers by one, ex
ept in the 
ase n = 1, where two monomersform a dimer.The net rate Jn is a result of two pro
esses. First, an nmer 
at
hes a monomer. Therate of this pro
ess is proportional to the densities of the nmers and the monomers and
an be written as anc1cn, where an is a time-independent 
oe�
ient that remains tobe determined. The se
ond pro
ess is a spontaneous deta
hment of a monomer from a
(n + 1)mer. It is proportional to the density of (n + 1)mers solely and 
an be written as
bncn+1, where bn is another time-independent 
oe�
ient to be spe
i�ed. Hen
e, we obtain

Jn = anc1cn − bn+1cn+1. (4)Equations (1), (3), and (4) are the Be
ker�Döring equations.If the time limiting pro
ess is the adatom di�usion between 
lusters, the atta
hment anddeta
hment 
oe�
ients an and bn for the 3D problem are 
al
ulated, for large n, as follows.The 
luster of n atoms is 
onsidered as a sphere of radius rn, so that n = 4πr3
n/3. To
al
ulate the atta
hment 
oe�
ient, we solve the steady-state di�usion equation ∇2c(r) =

0 with two boundary 
onditions: the 
on
entration of the monomers far away from the
luster is equal to their mean 
on
entration, c(r) |r=∞
= c1, while the 
on
entration of themonomers at the 
luster surfa
e is zero, c(r) |r=rn

= 0, sin
e the monomers are atta
hedto the 
luster as soon as they rea
h it. The solution is c(r) = (1 − rn/r)c1. The totalatom �ux at the 
luster surfa
e
jn = 4πr2

nD∇c(r) |r=rn
, (5)where D is the di�usion 
oe�
ient of the monomers, is equal to 4πDrnc1, and hen
e theatta
hment 
oe�
ient is

an = 4πDrn. (6)The deta
hment 
oe�
ient is 
al
ulated assuming that the 
on
entration of the monomersat the 
luster surfa
e is equal to the equilibrium monomer 
on
entration cneq, while thereis an ideal sink for monomers at in�nity, c(r) |r=∞
= 0. The solution of the steady-statedi�usion equation with these boundary 
onditions is c(r) = cneqrn/r, and the 
orrespond-ing deta
hment �ux of the monomers is bn+1 = 4πDrncneq. Here we take into a

ountthat this �ux refers to the deta
hment from the (n + 1)mer. The ratio of the deta
hmentand the atta
hment 
oe�
ients is then

bn+1/an = cneq. (7)The equilibrium density of monomers at the surfa
e of a 
luster is given by the Gibbs�Thomson formula
cneq = c

∞eq exp(γ/rn) ≈ c
∞eq(1 + γ/rn), (8)where γ is a 
onstant proportional to the surfa
e tension. The expli
it expression for γ isgiven in the next se
tion. A 
orre
tion to Eq. (8) for small 
lusters 
onsisting of very few10



atoms, while being important for the nu
leation theory, is not essential for the Ostwaldripening problem. Then, equations (1)�(8) form a 
omplete set that des
ribes the pro
essof Ostwald ripening.When the 
lusters are large enough, n 
an be treated as a 
ontinuous variable. Letus verify that the 
ontinuous equations derived from the set of equations above are theLifshitz�Slyozov equations. The 
luster size distribution fun
tion f(r, t) is de�ned so that
f(r, t)dr is the number of 
lusters per unit volume in an interval from r to r + dr. Then,
f(r, t)dr = cn(t)dn and, keeping in mind that n = 4πr3/3, we obtain f(r, t) = 4πr2cn(t).The mass 
onservation law (2) 
an be rewritten, by separating monomers and larger
lusters, as

c1(t) +
4π

3

∫

∞

0

r3f(r, t)dr = N = const. (9)The �nite-di�eren
e equation (1) transforms into the 
ontinuity equation
∂f/dt + ∂J/∂r = 0. (10)To 
al
ulate the �ux in the 
luster size spa
e J(r, t), one 
an negle
t the di�eren
e between

cn and cn+1 in Eq. (4). Then, substituting Eqs. (7) and (8), one obtains
J(r, t) =

D

r
(c1 − c

∞eq −
γc

∞eq

r
)f. (11)Equations (9)�(11) 
oin
ide with the Lifshitz�Slyozov equations [2℄.
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Figure 3: (a) The 
luster size distribution obtained by numeri
al solution of the Be
ker�Döring equations at di�erent times (thin bla
k lines, the lines 
loser to the gray line
orrespond to later times) and the analyti
al solution by Lifshitz and Slyozov (thi
k grayline). (b) The time dependen
y of R3. A linear asymptoti
 is evident from the plot.As an example, we 
ompare in Fig. 3 numeri
al solutions of the ordinary di�erentialequations (1)�(8) with the analyti
al result [2℄. To solve the Be
ker�Döring system,we employ a se
ond-order Rosenbro
k method, whi
h is essentially based on a Pade-approximation of the transition operator (see, e.g., 
itehairer96). A version of this method[76℄ that �ts well to sti� systems of di�erential-algebrai
 equations was used. Pra
ti
ally,11



we solve a set of up to one million ordinary di�erential equations on a personal 
omputer.The solutions in Fig. 3 are obtained by taking γ = 5 and, as the initial 
ondition at t = 0,only monomers with the initial supersaturation c1/c∞eq = 105. The �gure shows that thenumeri
al solutions asymptoti
ally 
onverge to the analyti
al formula, whi
h validatesour approa
h.3.2 Atta
hment and deta
hment 
oe�
ientsEquation (7) 
an be derived in a more general form that will be useful for the 
onsidera-tions below. In equilibrium, all �uxes Jn are identi
ally equal to zero. Then, denoting by
Cn the equilibrium 
on
entrations of the nmers, we have from Eq. (4)

bn+1/an = C1Cn/Cn+1. (12)The equilibrium 
on
entrations 
al
ulated in the framework of equilibrium thermodynam-i
s are [77℄
Cn = Cn

1 exp[−(En − nE1)/kBT ], (13)where En is the energy of an nmer and E1 is the energy of a monomer. This relation
an be treated as the mass a
tion law for the equilibrium between nmers and monomers,
Cn ⇆ nC1. Substitution into Eq. (12) gives

bn+1/an = c
∞eq exp[(En+1 − En)/kBT ], (14)where c

∞eq = exp(−E1/kT ) is the 
on
entration of monomers that are in equilibrium withan in�nite 
luster. For spheri
al 
lusters, Eq. (14) redu
es to the Gibbs�Thomson formula.The energy of a spheri
al 
luster is En = 4πr2σ, where σ is the surfa
e tension, with theradius r de�ned by nv = 4πr3/3, where v = a3 is the volume per atom. The radiusin
rease due to the atta
hment of an atom to a nmer is given by v = 4πr2∆r. The 
hangeof the energy due to the atta
hment of a single atom is En+1 − En = 8πσr∆r = 2vσ/r.Thus, we arrive at Eq. (8) with γ = 2vσ/kBT . A similar 
al
ulation for the 2D 
ase gives
γ = sσ/kBT , where s is the area per atom.Equation (14) is more general than the Gibbs�Thomson formula and 
an be used in situ-ations when the latter is not appli
able. Figure 4(a) presents the island size distributionobtained in our kineti
 Monte Carlo simulations at an early stage of 
oarsening for thelargest bond energy we have studied, Eb = 0.4 eV. The distribution is not smooth but
onsists of peaks at `magi
' island sizes 
orresponding to a produ
t of two 
lose integers,like 30 = 6×5. A

ordingly, the insert in the �gure shows that the islands are mainly re
t-angles with an aspe
t ratio 
lose to 1. The origin of su
h a distribution is evident: whenan island 
onsisting, for example, of 30 atoms, grows by one atom, its energy in
reasesby 2Eb, while further growth to 36 atoms does not 
hange its energy at all. Thus, wesolve the Be
ker�Döring equations with the energy of a 2D island of n atoms 
al
ulatedas follows. First, we �nd the largest square that still 
ontains fewer atoms than n. Thenwe add, as long as the number of atoms does not ex
eed n, rows of atoms to the sideof the square. The last row may be in
omplete. The number of broken bonds for su
han island is 
al
ulated. Figure 4(b) presents a numeri
al solution of the Be
ker�Döringequations with the island energies En thus 
al
ulated and the atta
hment�deta
hment
oe�
ient ratio given by Eq. (14). The approximation for an appropriate for the 2D 
ase12
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Figure 4: Island size distribution of fa
eted islands obtained in the kineti
 Monte Carlosimulations (a) and by numeri
al solution of the Be
ker�Döring equations (b). The strongpreferen
e of magi
 island sizes is obvious.is given below in Se
. 3.3. The size distribution 
losely reprodu
es the one obtained in theMonte Carlo simulations: squared or re
tangular (with aspe
t ratio 
lose to 1) islands aredis
rete barriers to be over
ome, while the �lling of an atomi
 row does not 
hange theisland energy and pro
eeds relatively fast. This example shows that Eq. (14) 
an be usedwhen the island energy En is known but is not des
ribed simply by the surfa
e tension,so that the Gibbs�Thomson formula is not appli
able.3.3 Coarsening equations in two dimensionsThe Be
ker�Döring equations (1)�(4) and the equation (14) for the ratio of the 
oe�
ients
bn+1/an do not depend on the dimensionality of the system and 
an be applied to both2D and 3D problems. (It may be worth to note that the radius rn entering the Gibbs�Thomson law is expressed di�erently through n in the 2D and 3D 
ases.) The only formulathat has to be re
onsidered is expression (6) for the atta
hment 
oe�
ients an, sin
e itis based on the solution of the 3D di�usion equation. The solution of the 2D di�usion13



equation behaves as c(r) ∝ ln r and the boundary 
ondition c(r) |r=∞
= c1 
annot beimposed. A simple approximation is to pla
e this 
ondition at a �nite distan
e l, given byan average distan
e between the islands [78, 79, 80, 68, 81℄. Then, in the 
ase of di�usion-limited kineti
s, the atta
hment 
oe�
ient an does not depend on n and is proportionalto (ln l)−1. Pro
eeding to the 
ontinuous distribution fun
tion, one arrives at Eq. (11),with the 
onservation law (9) rewritten for the 2D 
ase. The 
oarsening equations aresolved analyti
ally in this 
ase [82, 79, 80℄.A self-
onsistent des
ription of two-dimensional di�usion 
an be obtained by taking intoa

ount its s
reening by the island distribution [9℄. A solution of the 2D s
reened di�usionequation, satisfying the boundary 
onditions c(r) |r=∞

= c1 and c(r) |r=rn
= 0, is c(r) =

c1[1−K0(r/ξ)/K0(rn/ξ)], where K0(x) is the zeroth modi�ed Bessel fun
tion and ξ is thes
reening length that remains to be de�ned. Then, one obtains the atta
hment 
oe�
ient
an = DK(rn/ξ), (15)where

K(x) = 2πxK1(x)/K0(x) (16)and K1(x) is the �rst modi�ed Bessel fun
tion. The self-
onsisten
y 
ondition for thes
reening length ξ is [9℄
ξ−1 =

∫

∞

0

K(r/ξ)f(r, t)dr. (17)Expressions very similar to Eqs. (15) and (16) are used in studies of 
rystal growth fromthe gas phase[6, 65, 66℄, with one essential di�eren
e: for the latter problem, the length ξis the mean di�usion length of an adatom on the surfa
e before its reevaporation. It is awell-de�ned time-independent 
onstant, so that no self-
onsisten
y 
ondition is involved.In the 
ase of atta
hment-limited kineti
s, the boundary 
ondition for the 
on
entration�eld c(r) at the island surfa
e is the absen
e of the �ux, ∇c |r=rn
= 0, whi
h gives a
onstant solution, c(r) = c1. Then, the atta
hment 
oe�
ient is

an = 2πKrn, (18)where K is the atta
hment 
oe�
ient. The result is independent of s
reening in this 
ase.The same expression is obtained in the approximation of a 
onstant s
reening distan
eequal to the mean distan
e between islands [78, 79, 80, 68, 81℄.3.4 Coarsening equations for adva
an
y islandsIn our Monte Carlo simulations, a step edge barrier is absent and an atom deta
hingfrom a va
an
y island as
ends to the higher terra
e. The va
an
y island size in
reases byone va
an
y at the same time. The 
oarsening pro
eeds by ex
hange of adatoms betweenva
an
y islands and 
an be des
ribed by equations similar to the Be
ker�Döring equations.Let us denote by g(t) the 
on
entration of adatoms, while cn are the 
on
entrations of2D islands of n va
an
ies. Then, the 
ontinuity equation (1) for the density of 
lusters
cn(t) remains un
hanged. The �uxes Jn in these equations des
ribe two pro
esses. The�rst pro
ess is the spontaneous emission of an adatom. Its rate is proportional to thedensity of nmers. The se
ond pro
ess is the absorption of an adatom by the va
an
y14



type (n + 1)mer, whi
h gives rise to an nmer. Its rate is proportional to the density g ofadatoms and the density of (n + 1)mers, so that
Jn = bncn − an+1gcn+1. (19)The annihilation of an atom and a single va
an
y is des
ribed by the �ux J0 = −a1gc1.Then, the set of equations (1) is valid for n ≥ 1. The 
reation of an adatom�va
an
y pairfrom a �at surfa
e is prohibited in our model.Sin
e the growth of a va
an
y 
luster by one va
an
y is a

ompanied with the emissionof an adatom, the 
onserved total amount of atoms in the system is given by

N =
∞

∑

n=1

nJn − g, (20)whi
h repla
es Eq. (2). By di�erentiating this equation with respe
t to time and rear-ranging the terms, the 
ondition dN/dt = 0 leads to an equation for the time variation ofthe adatom density:
dg/dt =

∞
∑

n=0

Jn. (21)The mass a
tion law now has to be written for an equilibrium between an adva
an
yisland and adatoms that annihilate, Cn + ng ⇆ 0. Hen
e, instead of Eq. (13) we have
Cng

n = exp[−(En + nE1)/kBT ]. (22)The requirement of zero �uxes at equilibrium gives rise to the detailed balan
e 
ondition
bn/an+1 = c

∞eq exp[−(En+1 − En)/kBT ] (23)that di�ers from Eq. (14) by the sign in the exponent. For 
ir
ular islands, the same
al
ulation as above leads to the Gibbs�Thomson formula (8) with negative γ, whi
h
orresponds to a negative 
urvature of the va
an
y island surfa
e.3.5 Solutions of the 
oarsening equationsFigure 5 presents the results of the numeri
al solution of the Be
ker�Döring equationsfor adatom and adva
an
y islands. With the aim to quantitatively 
ompare the solutionswith the results of kineti
 Monte Carlo simulations in the whole time interval, we use thesame initial 
onditions. The initial random adatom distribution with the 
overage 0.1ML 
ontains not only monomers, but also dimers, trimers, et
., the densities of whi
hqui
kly de
rease with in
reasing 
luster sizes. By simple statisti
al analysis of the initialdistribution in kineti
 Monte Carlo simulations, we �nd that at t = 0, cn ≈ c1 ×10(n−1)/2.This distribution was used as the initial 
ondition for the Be
ker�Döring equations. Theinitial 
onditions are essential only at the initial stages of 
oarsening. The results of the
al
ulations do not depend on the initial monomer 
on
entration c1, as long as the initialsupersaturation c1(t = 0)/c
∞eq is mu
h larger than unity. The time s
ale of the solutionsis adjusted to these of the Monte Carlo simulations.15
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al solutions of the Be
ker�Döring equations: time evolutionof the average island sizes in logarithmi
 (a) and linear (b) s
ales and the island sizedistributions (
). The left 
olumn presents 
al
ulations for a bond energy Eb = 0.2eV with di�usion-limited kineti
s, while the right 
olumn shows the results for a bondenergy Eb = 0.4 eV with atta
hment-limited kineti
s. The solutions of the Be
ker�Döringequations are shown in (a) and (b) by bla
k lines, and the results of the kineti
 MonteCarlo simulations by gray lines. Symbols �a� and �v� on the plots denote the resultsfor adatom and adva
an
y islands, respe
tively. Full lines in the right 
olumn show the
al
ulations for the dis
rete island energies with `magi
' sizes, while the broken lines are
al
ulations for the 
ontinuous Gibbs-Thomson 
hemi
al potential.16



The 
ase of small bond energies (left 
olumn in Fig. 5) is well des
ribed by the 2D di�u-sion limited kineti
s with s
reening (15) and the ratio of the deta
hment and atta
hment
oe�
ients given by the Gibbs�Thomson formula (8). The 
al
ulations in the left 
olumnof Fig. 5 are made with γ = 3.7. The solutions of the Be
ker�Döring equations (bla
klines) are in a good agreement with the results of the kineti
 Monte Carlo simulations(gray lines), repeated from Fig. 1. The 
oarsening laws for adatom and adva
an
y islandsalmost 
oin
ide and qui
kly rea
h the Lifshitz�Slyozov t1/3 asymptoti
. The island sizedistributions, Fig. 5(
), also almost 
oin
ide for adatom and adva
an
y islands, obey ki-neti
 s
aling, and agree well with the ones obtained in the kineti
 Monte Carlo simulations,
f. Fig. 1(d).For large bond energies (right 
olumn in Fig. 5), the 
al
ulations are performed withatta
hment-limited kineti
s, Eq. (18), sin
e the kineti
 Monte Carlo simulations point tothe Wagner's t1/2 asymptoti
. We 
ompare the dis
rete distribution of island energiesthat takes into a

ount the `magi
' island sizes as des
ribed in Se
. 3.2 (full bla
k lines)with the 
ontinuous distribution, given by the Gibbs�Thomson formula (broken lines).The relationship between the dis
rete and the 
ontinuous models is established by 
al
u-lating the energy of a square island and a 
ir
ular one with the same number of atoms:
Eb/kBT =

√
πγ/2. The 
al
ulations are performed for γ = 9. The e�e
t of magi
 sizes isslightly di�erent for adatom and adva
an
y islands. For adatom islands, the deta
hment
oe�
ients bn given by Eq. (14) are ex
eptionally large for n = m+1, where m is a magi
number. Thus, a monomer that has atta
hed to a magi
 island deta
hes again with ahigh probability. For adva
an
y islands, the deta
hment 
oe�
ients bm for magi
 islandsare ex
eptionally small, so that the deta
hment of an atom from a va
an
y island (thisatom be
omes an adatom on the higher level) pro
eeds at a small rate. Both pro
essesmake ea
h magi
 size a trap for further island growth, giving rise to the dis
rete islandsize distribution peaked at the magi
 sizes shown in Fig. 4. The island size distributionspresented in Fig. 5(
) for this 
ase are obtained by averaging over �nite ranges of thesizes, just as for the kineti
 Monte Carlo simulations.The time dependen
e of the average island sizes obtained for 
oarsening through thesequen
e of magi
 islands (full bla
k lines in right 
olumn of Fig. 5) are in good agreementwith the results of kineti
 Monte Carlo simulations (gray lines). For va
an
y islands, the
ontinuous island size distribution with the Gibbs�Thomson formula gives rise to a notablydi�erent 
oarsening behavior (broken lines), with a very fast in
rease of the island sizesin the intermediate range. The island size distributions obtained in the dis
rete (withmagi
 sizes) and the 
ontinuous models are also notably di�erent, see Fig. 5(
). Thedistribution obtained in the dis
rete model is symmetri
 with respe
t to the maximum,similar to the one obtained in the Monte Carlo simulations, but notably narrower, 
f.Fig. 1(d). It is worth to note that the distribution s
aled by the average island size doesnot 
hange in time and is the same for the adatom and adva
an
y islands, despite thetime evolutions of the average island sizes not 
oin
iding and not following a power law.In other words, the solution of the Be
ker�Döring equation obeys kineti
 s
aling in thesense that the island size distribution is a fun
tion of r/R(t) that does not depend ontime. However, R(t) is not des
ribed by a power law. The 
ontinuous model gives a mu
hbroader and asymmetri
 island size distribution, shown by broken lines in Fig. 5(
). Thebroken-bond 
ounting s
heme des
ribed in Se
. 3.2 adequately represents the energies Enof small islands and quantitatively des
ribes the island size distribution at the initial stage17



of 
oarsening, see Fig. 4. However, for larger islands it oversimpli�es the island energydistribution and gives rise to a more narrow distribution than found in the simulations.A better model for the island energies En is needed to des
ribe this distribution 
orre
tly.To summarize this se
tion, we show that the Ostwald ripening kineti
s 
an be des
ribed asan initial value problem for the ordinary di�erential equations (1)�(8) that 
an be solvedby standard numeri
al methods. This approa
h 
an be applied to various 
oarseningproblems by repla
ing the Gibbs�Thomson formula (8) with Eqs. (14), (23) that admitany dependen
e of the island energy En on the number of atoms n in it. The alternativeapproa
h, a numeri
al implementation of the integro-di�erential equations (9)�(11),[83,84℄ seems mu
h more di�
ult.4 Con
lusionsOur kineti
 Monte Carlo simulations show that the Ostwald ripening of 2D islands qual-itatively 
hanges with in
reasing bond energy (or de
reasing temperature). The islandsbe
ome fa
eted and the 
oarsening pro
eeds through a sequen
e of magi
 sizes. TheGibbs-Thomson 
hemi
al potential is not appli
able and the deta
hment of monomersfrom islands is governed by the dis
rete energies of the islands. The 
oarsening is dif-fusion limited at small bond energies and be
omes atta
hment limited at large bondenergies. In this latter 
ase, Wagner's asymptoti
 law is rea
hed only after a very longtransient regime.We show that the Be
ker�Döring equations of nu
leation kineti
s are well suited to studythe pro
ess of Ostwald ripening. Two- and three-dimensional 
oarsening pro
esses withdiverse limiting me
hanisms 
an be simulated by solving a system of ordinary di�erentialequations. Con
entrations of 
lusters of all sizes, from monomers to ones 
onsisting ofmillions of atoms, 
an be tra
ed simultaneously. The 
al
ulations are not ne
essarilybased on the Gibbs�Thomson formula but adopt any 
ontinuous or singular dependen
eof the 
luster energy on the number of atoms in it. This approa
h 
an be applied to awide range of 
oarsening problems for two- and three-dimensional islands on a surfa
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