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Abstract

We study Ostwald ripening of two-dimensional adatom and advacancy islands on
a crystal surface by means of kinetic Monte Carlo simulations. At large bond energies
the islands are square-shaped, which qualitatively changes the coarsening kinetics.
The Gibbs Thomson chemical potential is violated: the coarsening proceeds through
a sequence of ‘magic’ sizes corresponding to square or rectangular islands. The
coarsening becomes attachment-limited, but Wagner’s asymptotic law is reached
only after a very long transient time. The unusual coarsening kinetics obtained in
the Monte Carlo simulations are well described by the Becker Doring equations of
nucleation kinetics. These equations can be applied to a wide range of coarsening
problems.

1 Introduction

Domains of a guest phase inside a matrix tend to coarsen, thus reducing their specific
interface energy. The prominent mechanism of coarsening was proposed by Ostwald |1]
more than hundred years ago: larger domains grow at the expense of smaller ones by
exchanging atoms. The net atom flux is directed to larger domains since they possess
smaller interface energy per atom. The seminal theory of Ostwald ripening was proposed
by Lifshitz and Slyozov |2] and by Wagner [3|. They showed that, at late times, the system
is characterized by a single characteristic scale, namely, the average domain size R(t). The
time evolution of the system consists in changing the scale: the domain distribution, shape
of the diffraction peaks, etc. remain unchanged when scaled by R(t). The average domain
size follows, in turn, universal laws, R(t) oc t'/3 if the atom diffusion is the rate limiting
process |2| and R(t) oc t'/2 if the attachment-detachment at the domain interface is the
limiting one |3].

The kinetic scaling is essentially based on the Gibbs—Thomson formula p = /R for the
excess chemical potential of a gas that is in equilibrium at the curved surface of a liquid
droplet (the constant 7 is proportional to the surface tension). The aim of the present work
is to study the Ostwald ripening kinetics at low temperatures (or large bond energies)
when the crystalline droplets are faceted. The energy of a small crystalline droplet is
minimum at ‘magic’ sizes when all facets are completed. The coarsening proceeds as a
sequence of jumps from one magic size to the next. We perform kinetic Monte Carlo
simulations of Ostwald ripening kinetics for faceted two-dimensional (2D) islands and
find a very long transient behavior of the system, so that the universal asymptotic laws
are still not reached. We develop a mean-field theory for Ostwald ripening, based on the
Becker Doring [4] equations. We show that these equations, being the basic equations of
nucleation theory |5, 6| can be used to describe the coarsening kinetics in a wide range of
sizes, starting from monomers up to the long-time asymptotics that are not available in



Monte Carlo simulations. Both the Lifshitz Slyozov Wagner regime and the coarsening
through a sequence of magic sizes are well described. This approach requires only the
knowledge of the cluster energy dependence on the number of atoms in the cluster and
can be applied to a wide range of coarsening problems in other systems as well.

The original analytical theories of nucleation [5, 6] and Ostwald ripeing [2, 3] are based on
distinct assumptions and describe different kinetic processes: nucleation theory predicts
the rate of formation of stable embryos, while Ostwald ripening theory follows the coars-
ening of large clusters. Langer and Schwartz |7| proposed a mean-field approach to study
the nonlinear dynamical equations of motion for a phase separating system with both
nucleation and growth of droplets. The unified theory of nucleation and coarsening was
further developed by Sagui and Grant |8| by taking into account the correlation effects
in a Thomas-Fermi approximation. We show in the present paper that the ordinary dif-
ferential equations by Becker and Doring are well suited to describe both nucleation and
coarsening kinetics. One can proceed, by solving a system of ordinary differential equa-
tions, from monomers to clusters containing millions of atoms. Although this approach
cannot be extended to arbitrarily large clusters, it can be used to test theories that intend
to describe both nucleation and coarsening processes. We restrict ourselves to small con-
centrations and take into account the screening effects |9] to avoid divergence of solutions
of the two-dimensional diffusion equation. A more accurate description of screening that
takes into account spatial correlations [10] only slightly changes the screening length in
the case of small concentrations.

From the experimental studies of two-dimensional (2D) coarsening, we mention the ones
that report time exponents n in the coarsening law R(t) o< t". These include low-energy
electron diffraction from a chemisorbed monolayer of oxygen on W(110), [11], [12], helium
atom beam diffraction from 0.5 monolayer (ML) of Cu on Cu(100) [13], optical microscopy
of a thin layer of succinonitrile within the liquid-solid coexistence region [14], [15], a binary
mixture of amphiphilic molecules [16] and low-energy electron microscopy of Si on Si(001)
[17], [18]. In these works, [11, 12, 13, 14, 15, 16| time exponents somewhat smaller than
1/3 were found and explained by the Lifshitz—Slyozov law with finite-size corrections. The
time exponent 1/2 obtained for Si on Si(001) |17, 18| was treated as the case of kinetics
limited by the attachment and detachment of adatoms to steps [3]. Our recent x-ray
diffraction study of coarsening of 2D GaAs islands on GaAs(001), [19] which showed an
apparent time exponent close to 1, was the experimental inspiration for the present work.

Two-dimensional islands of ‘magic’ sizes were observed on several surfaces, such as Pt(111)
[20], Si(111) [21] and Ag(111) [22] (see also a review [23]). Calculations with realistic
model potentials show that magic sizes are inherent to metal fcc (001) surfaces [24]. It
was shown theoretically that the presence of magic island sizes disrupts the scaling law
of submonolayer molecular beam epitaxy growth [25]. Magic sizes of three-dimensional
Pb nanocrystals on Si(111) lead to a breakdown of the classical Ostwald ripening laws
[26]. The magic thicknesses of three-dimensional islands arise from a competition between
quantum confinement, charge spilling, and interface-induced Friedel oscillation [27|. The
magic sizes of two-dimensional islands are due to lateral electron confinement [22|. In
our kinetic Monte Carlo study, the energies of 2D islands are obtained simply by bond
counting, and the magic sizes are the ones of squared or rectangular islands. However,
we formulate the Becker Déring equations in such a way that they are applicable to any
(possibly non-regular) discrete dependence of the island energy on the number of atoms



in it. The proposed approach allows to describe the Ostwald ripening kinetics once the
island energetics is established.

Faceted islands are commonly observed on metal surfaces. The adatom and vacancy
islands on the (111) surfaces of Cu, Ag, and Au are equilateral hexagons, while these
on the (100) surfaces are squares (see [28] for a review). Studies of these islands are
performed mostly by scanning tunneling microscopy, which is well suited to provide a
detailed microscopic view of the individual processes. However, the data are not sufficient
to obtain the time evolution of average quantities, such as the mean island size, during
Ostwald ripening. In our kinetic Monte Carlo simulations, the equilibrium island shape
evolves from rounded to square, as the bond energy is increased. We do not analyze the
individual events, such as sintering [29] but concentrate on the average quantities (mean
island size and size distribution) in the process of Ostwald ripening.

Monte Carlo simulations of Ostwald ripening were performed using the 2D Ising model
[30, 31, 32|. Spin conservation was achieved by flipping pairs of neighboring opposite spins
(Kawasaki spin-exchange dynamics). The simulations were limited to rather small values
of the coupling constant, so that the domains are rounded and faceting is absent. Time
exponents were found to be smaller than 1/3, which was explained by finite-size corrections
to the Lifshitz Slyozov law. Further discussion of theoretical and simulation studies can
be found in several reviews |33, 34, 35|]. Despite kinetic Monte Carlo simulations are
routinely used to model epitaxial growth, |36, 37, 38, 39, 40, 41| we are aware of only one
such study of coarsening of 2D islands on a crystal surface [42]. This latter simulation
was limited to small bond energies and rounded islands, similar to the simulations in the
Ising model.

Faceting effects were found in the kinetics of non-conserved systems. Here, the velocity
of a domain wall v is proportional to its curvature K, v = aK, which gives rise to kinetic
scaling with a universal law R(t) oc t'/2 for the domain coarsening [43, 44, 45, 46|. In the
seminal Allen and Cahn theory [44] the coefficient « does not depend on temperature.
However, kinetic Monte Carlo simulations of the non-conserved Ising model (the Glauber
single-spin-flip dynamics) show that, at low temperatures, the anisotropy of surface ten-
sion gives rise to square-shaped domains (in accordance with the Wulff construction) and
results in smaller « [47]. In the opposite case of high temperatures, thermal roughen-
ing reduces « [48|. Both effects do not alter the coarsening law. In somewhat more
complicated models, allowing soft domain walls [49] or both ferromagnetic and antifer-
romagnetic ordering, [50] the time exponent decreases with decreasing temperature and
reaches a universal value of 1/4 at 7' = 0. In the latter model, the domain walls consist
of curved parts and straight stacking faults (facets) with zero curvature, which move by
creation and propagation of kinks.

A physical difference between the coarsening kinetics of 2D epitaxial islands and that
of Ising spins becomes evident when we compare adatoms and advacancies with up and
down spins. The first two objects possess qualitatively different kinetics (motion of an
advacancy is a result of the collective motion of atoms), while up and down spins are
equivalent. This distinction manifests itself in the transition probabilities, as discussed
below. The fundamental laws of Ostwald ripening are expected to be independent of
the transition probability distribution, so that a kinetic Monte Carlo simulation of the
coarsening of epitaxial islands allows one to test this prediction. Here, we perform kinetic



Monte Carlo simulations of Ostwald ripening of 2D adatom islands (surface coverage
0.1 ML) and 2D advacancy islands (surface coverage 0.9 ML) in a wide range of bond
energies (or temperatures). Our particular aim is to perform simulations in the case
of large bond energies (low temperatures) when the islands are faceted, which was not
studied previously.

In our simulations, no step edge barrier is imposed. The atoms can freely detach from
an island and attach, after diffusion on the upper or lower levels, to the same or another
island. The microscopic probability of an atom movement is given by the number of bonds
in its initial state before the movement. The resulting net flux of atoms from smaller to
larger islands decreases the total energy of surface steps (island borders). The simulation
model is similar to the one used in our preceding work [51|, but with a fundamental differ-
ence that leads to a different coarsening mechanism. In |51], the escape of an atom from
a vacancy island to the higher level was prohibited by an infinite step edge barrier. That
resulted in Brownian motion and coalescence of whole islands due to atom detachment
and reattachment within an island. Such coarsening by dynamic coalescence is much less
effective than Ostwald ripening considered in the present paper, and becomes essential
only when the detachment of atoms from islands is prohibited.

2 Monte Carlo simulations

2.1 Simulation method

We employ the well-established generic model developed for kinetic Monte Carlo simu-
lations of molecular beam epitaxy |36, 37, 38, 39, 40, 41, 42|. Atoms occupy a simple
cubic lattice and interact with a pair energy that depends only on the number of bonds.
An alternative approach to simulate surface kinetics is a detailed Monte Carlo simula-
tion of a particular surface with energetic parameters taken from ab initio calculations,
as it was done for GaAs(001) or InAs(001) [52, 53, 54, 55, 56]. Such simulations are
very time-consuming and hence are limited to small time and spatial scales. They can
hardly be applied to study the coarsening process. Some characteristic features of com-
pound semiconductors can, however, be included in the generic model as a compromise
[57, 58, 59].

We use an algorithm |60| that advances simulated time depending on the probability of
the chosen event. This algorithm is commonly used in epitaxial growth simulations. We
note that the Ostwald ripening simulations of the 2D Ising model [30, 31, 32| have em-
ployed the Metropolis accept reject algorithm. This algorithm becomes inefficient at low
temperatures, since most of the attempts are rejected and computer time is wasted. That
is why previous simulations |30, 31, 32| were performed at relatively high temperatures
T > 0.5T,, where T, is the Ising phase transition temperature. Of course, both algorithms
give the same results and differ only in the computation time.

The choice of the probability w(x — y) for the transition from the state x to the state y
introduces the physics of the system into the simulations. The choice is made differently
for the epitaxial growth and the Ising model simulations. It is worthwhile to compare
these probabilites briefly. A sufficient condition that the system evolves to thermodynamic



equilibrium is the detailed balance condition, w(x — y)/w(y — x) = exp(—AFE/kgT).
Here AE = E(y) — E(x) is the energy difference between the states x and y, kg is the
Boltzmann constant and 7' is the temperature. The simulations of the Ising model use
a probability that depends on AFE (either the Metropolis or the Glauber probability).
These probabilities favor transitions which reduce the energy of the system, AE < 0. On
the other hand, for an atom jump on the crystal surface, the transition probability does
not depend on the final state y but only on the height of the energy barrier that needs
to be overcome [61]. The probability is w(x — y) o exp[E(x)/kgT], where E(x) < 0 is
the energy of the initial state with respect to the barrier. Such a probability obviously
satisfies the detailed balance condition. The system evolves into a lower-energy state since
it escapes higher-energy initial states with larger probabilities.

In the present study, no step edge barrier is imposed. An atom detaching from a step
edge can go to the lower or the upper terrace with equal probabilities. In particular, atom
exchange between advacancy islands is achieved predominantly by adatoms diffusing on
the top level rather than by the diffusion of vacancies, despite that the latter process is
not forbidden. Similar simulations, but with an infinite step edge barrier, were performed
in our preceding work |51|. The infinite step edge barrier leads to Brownian motion of
the islands and their dynamic coalescence, which is a much slower process than Ostwald
ripening and leads to much less effective coarsening. It becomes essential only if the
exchange of atoms between islands is prohibited, e.g., by a step edge barrier. In the
present simulations, the dynamic coalescence process is not forbidden but its contribution
is negligible.

An atom that has n neighbors in the initial state with equal bond energies FEj, to these
neighbors possesses an energy E(x) = —(nE, + Ep), where the activation energy of
surface diffusion Ep is the barrier height. It determines the time scale 7 of the problem,
77! = vexp(—Ep/kgT), where v ~ 10'3 s7! is the vibrational frequency of atoms in
a crystal. In the epitaxial growth simulations, the time scale 7 is to be compared with
the deposition flux, which determines an appropriate choice of Ep. We do not consider
deposition, and the choice of Ep is arbitrary. Note that the works on the Ising model
kinetics measure time simply in the flip attempts (sweeps) per lattice site. We take the
same values of Ep as in the preceding work, |51 with the aim to compare time scales of
Ostwald ripening (in absence of the step edge barrier) with that of dynamic coalescence
(infinite step edge barrier). Namely, we choose Ep = 0.2; 0.1; 0 eV for E, = 0.2; 0.3;
0.4 eV, respectively.

The ratio of the interaction energy between neighboring atoms to the temperature Ey,/kgT
is the only essential parameter for the coarsening problem. We fix the temperature at
400 K and vary the bond energy Ej from 0.2 eV to 0.4 €V. In terms of our model, the
Ising phase transition takes place at E,/kgT = 21In(1 4 v/2). Our choice of bond energies
corresponds to T/T, varying from 0.15 to 0.3, temperatures much lower than the ones
used in previous kinetic Monte Carlo studies of Ostwald ripening [30, 31, 32, 42]. Here,
T. is the Ising phase transition temperature.

We perform kinetic Monte Carlo simulations on a 1000x1000 square grid with periodic
boundary conditions. Each simulation is repeated 25 times, to obtain sufficient statistics
for the island size distribution. In the initial state, either 0.1 ML or 0.9 ML are randomly
deposited. Adatom islands form in the first case and advacancy islands in the second.



2.2 Simulation results

Snapshots of the simulated system at the end of a simulation are presented in Fig. 1(a).
As the bond energy Ej is increased (from left to right), the island shape continuously
transforms from more circular to almost square. Since faceting transitions are absent
in 2D systems, we refer to the almost square islands as faceted in order to stress the
qualitative shape difference at small and large bond energies. Apart from the change in
shape, the equilibrium density of adatoms between islands exponentially decreases as the
bond energy increases.

Figures 1(b) and (c) show time variations of average island diameters 2R(t) in logarithmic
and linear scales, respectively. The sizes of all islands in the simulated system are obtained
by using an algorithm[62] that allows to count all topologically connected clusters in the
system. The radii of individual islands are calculated as r, = y/n/m, where n is the
number of atoms in a cluster. At small bond energies (left column in Fig. 1), the process
of Ostwald ripening follows the Lifshitz-Slyozov law R(t) oc t'/3. As the bond energy
increases, the coarsening law for advacancy islands deviates from that for adatom islands
and from the expected t'/3 law. At large bond energies (right column in Fig. 1), the
coarsening behavior of advacancy islands is qualitatively different and close to a linear
dependence, in a wide range of island sizes. The coarsening of adatom islands also notably
deviates from the Lifshitz-Slyozov law. The attachment-limited asymptotic t'/2 can be
inferred from the figure, but it is not really reached.

Figure 1(d) shows the island size distributions at different times. The uniformly spaced
time instances are marked on the curves in Fig. 1(c) by the same symbols as used for
the corresponding size distributions. The distributions are scaled by the average size
R(t): instead of the probability p(r), we plot the scaled probability P(r) = Rp(r) versus
r/R. The scaled distributions do not change in time even at large bond energies, where
the average island sizes do not show a power law behavior. However, the island size
distribution does change with increasing bond energy, Fig. 1(d). The distribution develops
a tail extended to 2R, while at smaller bond energies it is limited to 1.5R.

We also use the Monte Carlo simulations to verify the average island size determination
in diffraction studies. In a diffraction experiment, one has access to the peak profile
only and obtains the average size from its width. Using the island distribution obtained
in the simulation and calculating the peak profiles, we can compare the average sizes
obtained from the real space and the reciprocal space distributions. The diffraction peaks
(structure factors) obtained from the simulations are presented in Fig. 2(a). We consider
the anti-Bragg condition (adjacent atomic layers contribute to the scattering function
with a phase shift of ) and obtain two-dimensional intensity distributions I(g,, ¢,) from
Fourier transformation of exp[imh(x,y)]. Here an integer function h(x,y) is the surface
height. Then, we take into account that in a diffraction experiment, the scattered intensity
is usually collected by a wide open detector that integrates over one of the components
of the scattering vector q [19]. Hence, we integrate the distributions I(g,, ¢,) over one of
the components of the scattering vector, either ¢, or ¢,. The resulting diffraction peaks
I(q) are presented in Fig. 2(a). The peaks corresponding to different time moments [the
same time moments as in Fig. 1(d)| coincide once the wave vectors ¢ are scaled by the
average island size. Kinetic scaling is thus confirmed. The shapes of the peaks depend on
the bond energy Ej,, thus showing that the island size distribution and the correlations



100

8 8 8
(7] (7] (2]
2 2 2
& 10, s 8
] K2 2]

100
S S S
(7] (7] (2]
o) e] ©
5 50 5 5 50
) @ K
0
%. 0

2.0 20 2.0

1.5 1.5l 1.5
= 1.0 = 1.0 = 1.0
a o o

0.5 0.5 0.5

0g- & ‘ . 0g- ¥ . 0.
8.0 0.5 1.0 1.5 2.0 8.0 0.5 1.0 1.5 v 2.0 8
/R /R

Figure 1: Results of kinetic Monte Carlo simulations: (a) snapshots of the 1000x1000
simulation cells at the end of the simulations, (b) and (c¢) time dependence of the average
island size in logarithmic and linear scales, and (d) the island size distributions. The
gray levels in the snapshots vary from black to white as the surface height increases.
Different columns show results for different bond energies Ej, with the temperature fixed
at T'= 400 K. The size distributions are obtained at the time moments marked in (¢) by
the corresponding symbols.
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between the islands change.

The quantity most commonly measured in a diffraction experiment is the full width at half
maximum (FWHM) of a peak obtained by an appropriate fit. Considering islands of linear
size 2R, one obtains a structure factor sin?(¢R)/sin?(qa), which can be approximated by
exp(—q¢?R?/7) [63]. Here, a is the lattice spacing. We obtain the average size 2R by
fitting the peaks to this Gaussian function, despite the peaks are not Gaussian, especially
for small bond energies. Figure 2(b) compares these sizes with the ones obtained from the
real-space island size analysis described above. The values are in good agreement, thus
confirming that the average quantities can be obtained from the diffraction peak widths
even if the profiles deviate notably from Gaussian.

3 Coarsening equations

3.1 The Becker-Doring equations for the 3D problem

The process of Ostwald ripening can be described by two alternative approaches, either in
terms of a continuous function f(r) representing the number density of clusters of radius
r, or in terms of discrete numbers ¢, representing the densities of clusters containing n
atoms (nmers). The first approach was employed by Lifshitz and Slyozov|2| and Wagner
[3]. The equations for discrete quantities ¢, were first formulated by Becker and Déring|4]
and ever since form the basis of nucleation theory |5, 6]. Closely related equations, the
rate equations, were used in the description of crystal growth [64, 65, 66]. They contain
an additional deposition term, while the detachment process is not essential and the
corresponding terms in the equations are frequently omitted. Similar discrete equations for
the Ostwald ripening process were introduced under the names of microscopic continuity
equations |67, 68| population balance equations, [69, 70, 71| or rate equation approach
[72]. Mathematical aspects of the relationship between the discrete and the continuous
equations were also considered |73, 74]. The aim of the present section is to link the
discrete and continuous approaches and obtain equations that can be used for a numerical
study of the Ostwald ripening process.

The number of atoms n in a cluster increases or decreases by one when an atom is attached
to the cluster or detached from it. Let .J, be the net rate of transformation of nmers into
(n+ 1)mers. The number ¢, of nmers increases due to the transformation of (n — 1)mers
into nmers and decreases because of the transformation of nmers into (n + 1)mers:

dendt = Jo g — J,. (1)

This equation is valid for n > 2. The equation describing the number of monomers c; is
obtained by requiring that the total number of atoms in the system

N = chn (2)

does not change in time. The condition dN/dt = 0 gives, after substitution of Egs. (1)



and rearrangement of the terms,
dey/dt = =2J; = > J,. (3)
n=2

This equation takes into account that each transformation of an nmer into an (n+ 1)mer
decreases the number of monomers by one, except in the case n = 1, where two monomers
form a dimer.

The net rate J, is a result of two processes. First, an nmer catches a monomer. The
rate of this process is proportional to the densities of the nmers and the monomers and
can be written as a,cic,, where a, is a time-independent coefficient that remains to
be determined. The second process is a spontaneous detachment of a monomer from a
(n 4+ 1)mer. It is proportional to the density of (n + 1)mers solely and can be written as
bncni1, where b, is another time-independent coefficient to be specified. Hence, we obtain

Jp = anC1Cy — 10y, (4)

Equations (1), (3), and (4) are the Becker Doring equations.

If the time limiting process is the adatom diffusion between clusters, the attachment and
detachment coefficients a,, and b,, for the 3D problem are calculated, for large n, as follows.
The cluster of n atoms is considered as a sphere of radius r,, so that n = 4mr2/3. To
calculate the attachment coefficient, we solve the steady-state diffusion equation Vc(r) =
0 with two boundary conditions: the concentration of the monomers far away from the
cluster is equal to their mean concentration, ¢(r) |,—o = ¢1, while the concentration of the
monomers at the cluster surface is zero, ¢(r) |,—,, = 0, since the monomers are attached
to the cluster as soon as they reach it. The solution is ¢(r) = (1 — r,/r)c;. The total
atom flux at the cluster surface

jn = 47TT721DVC(T) |T’:7“n ) (5)

where D is the diffusion coefficient of the monomers, is equal to 47 Dr,c;, and hence the
attachment coefficient is
a, = 4w Dr,. (6)

The detachment coefficient is calculated assuming that the concentration of the monomers
at the cluster surface is equal to the equilibrium monomer concentration c,eq, while there
is an ideal sink for monomers at infinity, ¢(r) |,—o = 0. The solution of the steady-state
diffusion equation with these boundary conditions is ¢(r) = ¢peqrn /7, and the correspond-
ing detachment flux of the monomers is b,,4; = 47 Dr,cpeq. Here we take into account
that this flux refers to the detachment from the (n 4 1)mer. The ratio of the detachment
and the attachment coefficients is then

bn-i—l/an = Cneq- (7)

The equilibrium density of monomers at the surface of a cluster is given by the Gibbs
Thomson formula

Cneq = Coceq OXP(V/Tn) & Coceq(L +7/Tn); (8)

where 7 is a constant proportional to the surface tension. The explicit expression for 7 is
given in the next section. A correction to Eq. (8) for small clusters consisting of very few
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atoms, while being important for the nucleation theory, is not essential for the Ostwald
ripening problem. Then, equations (1) (8) form a complete set that describes the process
of Ostwald ripening.

When the clusters are large enough, n can be treated as a continuous variable. Let
us verify that the continuous equations derived from the set of equations above are the
Lifshitz—Slyozov equations. The cluster size distribution function f(r,t) is defined so that
f(r,t)dr is the number of clusters per unit volume in an interval from r to r + dr. Then,
f(r,t)dr = c,(t)dn and, keeping in mind that n = 47r3/3, we obtain f(r,t) = 47wric,(t).
The mass conservation law (2) can be rewritten, by separating monomers and larger

clusters, as

4 [ 4

3 r°f(r,t)dr = N = const. 9)
0

The finite-difference equation (1) transforms into the continuity equation

cr(t) +

Of Jdt + 0J/dr = 0. (10)

To calculate the flux in the cluster size space J(r,t), one can neglect the difference between
¢, and ¢, 41 in Eq. (4). Then, substituting Eqgs. (7) and (8), one obtains

Tr0) = 2 er = g = L= (11)

Equations (9)—(11) coincide with the Lifshitz—Slyozov equations |2|.
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Figure 3: (a) The cluster size distribution obtained by numerical solution of the Becker—
Doring equations at different times (thin black lines, the lines closer to the gray line
correspond to later times) and the analytical solution by Lifshitz and Slyozov (thick gray
line). (b) The time dependency of R®. A linear asymptotic is evident from the plot.

As an example, we compare in Fig. 3 numerical solutions of the ordinary differential
equations (1)-(8) with the analytical result |2]. To solve the Becker-Doring system,
we employ a second-order Rosenbrock method, which is essentially based on a Pade-
approximation of the transition operator (see, e.g., citehairer96). A version of this method
[76] that fits well to stiff systems of differential-algebraic equations was used. Practically,
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we solve a set of up to one million ordinary differential equations on a personal computer.
The solutions in Fig. 3 are obtained by taking v = 5 and, as the initial condition at ¢t = 0,
only monomers with the initial supersaturation ¢;/coeq = 105. The figure shows that the
numerical solutions asymptotically converge to the analytical formula, which validates
our approach.

3.2 Attachment and detachment coefficients

Equation (7) can be derived in a more general form that will be useful for the considera-
tions below. In equilibrium, all fluxes J,, are identically equal to zero. Then, denoting by
C,, the equilibrium concentrations of the nmers, we have from Eq. (4)

bn+1/an = Clcn/0n+1. (12)

The equilibrium concentrations calculated in the framework of equilibrium thermodynam-
ics are [77|
C,, = Clexp|—(E, —nky)/ksT], (13)

where F, is the energy of an nmer and FE; is the energy of a monomer. This relation
can be treated as the mass action law for the equilibrium between nmers and monomers,
C,, = nCy. Substitution into Eq. (12) gives

bn—i—l/an = Cooeq eXp[(En—H - En)/kBT]a (14)

where cooeq = exp(—FE1 /kT) is the concentration of monomers that are in equilibrium with
an infinite cluster. For spherical clusters, Eq. (14) reduces to the Gibbs Thomson formula.
The energy of a spherical cluster is F,, = 47r2c, where o is the surface tension, with the
radius r defined by nv = 47r3/3, where v = a® is the volume per atom. The radius
increase due to the attachment of an atom to a nmer is given by v = 47r2Ar. The change
of the energy due to the attachment of a single atom is E,.; — E,, = 8morAr = 2vo/r.
Thus, we arrive at Eq. (8) with v = 2vo/kgT. A similar calculation for the 2D case gives
v = so/kgT, where s is the area per atom.

Equation (14) is more general than the Gibbs Thomson formula and can be used in situ-
ations when the latter is not applicable. Figure 4(a) presents the island size distribution
obtained in our kinetic Monte Carlo simulations at an early stage of coarsening for the
largest bond energy we have studied, £}, = 0.4 eV. The distribution is not smooth but
consists of peaks at ‘magic’ island sizes corresponding to a product of two close integers,
like 30 = 6 x 5. Accordingly, the insert in the figure shows that the islands are mainly rect-
angles with an aspect ratio close to 1. The origin of such a distribution is evident: when
an island consisting, for example, of 30 atoms, grows by one atom, its energy increases
by 2FEy, while further growth to 36 atoms does not change its energy at all. Thus, we
solve the Becker-Doring equations with the energy of a 2D island of n atoms calculated
as follows. First, we find the largest square that still contains fewer atoms than n. Then
we add, as long as the number of atoms does not exceed n, rows of atoms to the side
of the square. The last row may be incomplete. The number of broken bonds for such
an island is calculated. Figure 4(b) presents a numerical solution of the Becker-Doring
equations with the island energies F,, thus calculated and the attachment-detachment
coefficient ratio given by Eq. (14). The approximation for a,, appropriate for the 2D case
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Figure 4: Island size distribution of faceted islands obtained in the kinetic Monte Carlo
simulations (a) and by numerical solution of the Becker Doring equations (b). The strong
preference of magic island sizes is obvious.

is given below in Sec. 3.3. The size distribution closely reproduces the one obtained in the
Monte Carlo simulations: squared or rectangular (with aspect ratio close to 1) islands are
discrete barriers to be overcome, while the filling of an atomic row does not change the
island energy and proceeds relatively fast. This example shows that Eq. (14) can be used
when the island energy E,, is known but is not described simply by the surface tension,
so that the Gibbs—Thomson formula is not applicable.

3.3 Coarsening equations in two dimensions

The Becker—Déring equations (1)—(4) and the equation (14) for the ratio of the coefficients
bni1/a, do not depend on the dimensionality of the system and can be applied to both
2D and 3D problems. (It may be worth to note that the radius r, entering the Gibbs

Thomson law is expressed differently through n in the 2D and 3D cases.) The only formula
that has to be reconsidered is expression (6) for the attachment coefficients a,, since it
is based on the solution of the 3D diffusion equation. The solution of the 2D diffusion
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equation behaves as ¢(r) o Inr and the boundary condition ¢(r) |,—oc = ¢; cannot be
imposed. A simple approximation is to place this condition at a finite distance [, given by
an average distance between the islands |78, 79, 80, 68, 81]. Then, in the case of diffusion-
limited kinetics, the attachment coefficient a,, does not depend on n and is proportional
to (Inl)~!. Proceeding to the continuous distribution function, one arrives at Eq. (11),
with the conservation law (9) rewritten for the 2D case. The coarsening equations are
solved analytically in this case [82, 79, 80].

A self-consistent description of two-dimensional diffusion can be obtained by taking into
account its screening by the island distribution [9]. A solution of the 2D screened diffusion
equation, satisfying the boundary conditions ¢(r) |,—ec = ¢1 and ¢(7) |,=., = 0, is ¢(r) =
[l —Ko(r/€)/Ko(r,/€)], where Ky(z) is the zeroth modified Bessel function and & is the
screening length that remains to be defined. Then, one obtains the attachment coefficient

an = DE(rn/8), (15)

where

K(x) =2nxKy(z)/Ko(x) (16)

and Ki(x) is the first modified Bessel function. The self-consistency condition for the
screening length £ is [9]

_ / K/ £ (r . (17)

Expressions very similar to Eqgs. (15) and (16) are used in studies of crystal growth from
the gas phase|6, 65, 66|, with one essential difference: for the latter problem, the length &
is the mean diffusion length of an adatom on the surface before its reevaporation. It is a
well-defined time-independent constant, so that no self-consistency condition is involved.

In the case of attachment-limited kinetics, the boundary condition for the concentration
field ¢(r) at the island surface is the absence of the flux, Ve¢|,—, = 0, which gives a
constant solution, ¢(r) = ¢;. Then, the attachment coefficient is

an =27Kr,, (18)

where K is the attachment coefficient. The result is independent of screening in this case.
The same expression is obtained in the approximation of a constant screening distance
equal to the mean distance between islands |78, 79, 80, 68, 81|.

3.4 Coarsening equations for advacancy islands

In our Monte Carlo simulations, a step edge barrier is absent and an atom detaching
from a vacancy island ascends to the higher terrace. The vacancy island size increases by
one vacancy at the same time. The coarsening proceeds by exchange of adatoms between
vacancy islands and can be described by equations similar to the Becker Déring equations.
Let us denote by g(t) the concentration of adatoms, while ¢, are the concentrations of
2D islands of n vacancies. Then, the continuity equation (1) for the density of clusters
¢, (t) remains unchanged. The fluxes J,, in these equations describe two processes. The
first process is the spontaneous emission of an adatom. Its rate is proportional to the
density of nmers. The second process is the absorption of an adatom by the vacancy

14



type (n + 1)mer, which gives rise to an nmer. Its rate is proportional to the density g of
adatoms and the density of (n + 1)mers, so that

Jp = bpCp — Upi19Cnyit- (19)

The annihilation of an atom and a single vacancy is described by the flux Jy = —aigc;.
Then, the set of equations (1) is valid for n > 1. The creation of an adatom vacancy pair
from a flat surface is prohibited in our model.

Since the growth of a vacancy cluster by one vacancy is accompanied with the emission
of an adatom, the conserved total amount of atoms in the system is given by

[e.e]

N=nl g (20)

n=1

which replaces Eq. (2). By differentiating this equation with respect to time and rear-
ranging the terms, the condition dN/dt = 0 leads to an equation for the time variation of
the adatom density:

dg/dt = iJn. (21)

The mass action law now has to be written for an equilibrium between an advacancy
island and adatoms that annihilate, C,, + ng < 0. Hence, instead of Eq. (13) we have

Chg" = exp[—(E, + nEy)/ksT]. (22)
The requirement of zero fluxes at equilibrium gives rise to the detailed balance condition

bn/nt+1 = Coceq €XP[—(Ent1 — E,)/ksT] (23)

that differs from Eq. (14) by the sign in the exponent. For circular islands, the same
calculation as above leads to the Gibbs-Thomson formula (8) with negative 7, which
corresponds to a negative curvature of the vacancy island surface.

3.5 Solutions of the coarsening equations

Figure 5 presents the results of the numerical solution of the Becker Déring equations
for adatom and advacancy islands. With the aim to quantitatively compare the solutions
with the results of kinetic Monte Carlo simulations in the whole time interval, we use the
same initial conditions. The initial random adatom distribution with the coverage 0.1
ML contains not only monomers, but also dimers, trimers, etc., the densities of which
quickly decrease with increasing cluster sizes. By simple statistical analysis of the initial
distribution in kinetic Monte Carlo simulations, we find that at t = 0, ¢,, ~ ¢; x 10*=1/2,
This distribution was used as the initial condition for the Becker Doéring equations. The
initial conditions are essential only at the initial stages of coarsening. The results of the
calculations do not depend on the initial monomer concentration c;, as long as the initial
supersaturation ¢ (¢t = 0)/cseq i much larger than unity. The time scale of the solutions
is adjusted to these of the Monte Carlo simulations.
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Figure 5: Results of numerical solutions of the Becker Doring equations: time evolution
of the average island sizes in logarithmic (a) and linear (b) scales and the island size
distributions (c). The left column presents calculations for a bond energy E, = 0.2
eV with diffusion-limited kinetics, while the right column shows the results for a bond
energy Fj, = 0.4 eV with attachment-limited kinetics. The solutions of the Becker-Doring
equations are shown in (a) and (b) by black lines, and the results of the kinetic Monte
Carlo simulations by gray lines. Symbols “a” and “v” on the plots denote the results
for adatom and advacancy islands, respectively. Full lines in the right column show the
calculations for the discrete island energies with ‘magic’ sizes, while the broken lines are
calculations for the continuous Gibbs-Thomson chemical potential.
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The case of small bond energies (left column in Fig. 5) is well described by the 2D diffu-
sion limited kinetics with screening (15) and the ratio of the detachment and attachment
coefficients given by the Gibbs Thomson formula (8). The calculations in the left column
of Fig. 5 are made with v = 3.7. The solutions of the Becker-Doring equations (black
lines) are in a good agreement with the results of the kinetic Monte Carlo simulations
(gray lines), repeated from Fig. 1. The coarsening laws for adatom and advacancy islands
almost coincide and quickly reach the Lifshitz Slyozov t'/? asymptotic. The island size
distributions, Fig. 5(c), also almost coincide for adatom and advacancy islands, obey ki-
netic scaling, and agree well with the ones obtained in the kinetic Monte Carlo simulations,
cf. Fig. 1(d).

For large bond energies (right column in Fig. 5), the calculations are performed with
attachment-limited kinetics, Eq. (18), since the kinetic Monte Carlo simulations point to
the Wagner’s t'/2 asymptotic. We compare the discrete distribution of island energies
that takes into account the ‘magic’ island sizes as described in Sec. 3.2 (full black lines)
with the continuous distribution, given by the Gibbs Thomson formula (broken lines).
The relationship between the discrete and the continuous models is established by calcu-
lating the energy of a square island and a circular one with the same number of atoms:
Ey/kgT = \/7y/2. The calculations are performed for v = 9. The effect of magic sizes is
slightly different for adatom and advacancy islands. For adatom islands, the detachment
coefficients b, given by Eq. (14) are exceptionally large for n = m+1, where m is a magic
number. Thus, a monomer that has attached to a magic island detaches again with a
high probability. For advacancy islands, the detachment coefficients b,, for magic islands
are exceptionally small, so that the detachment of an atom from a vacancy island (this
atom becomes an adatom on the higher level) proceeds at a small rate. Both processes
make each magic size a trap for further island growth, giving rise to the discrete island
size distribution peaked at the magic sizes shown in Fig. 4. The island size distributions
presented in Fig. 5(c) for this case are obtained by averaging over finite ranges of the
sizes, just as for the kinetic Monte Carlo simulations.

The time dependence of the average island sizes obtained for coarsening through the
sequence of magic islands (full black lines in right column of Fig. 5) are in good agreement
with the results of kinetic Monte Carlo simulations (gray lines). For vacancy islands, the
continuous island size distribution with the Gibbs Thomson formula gives rise to a notably
different coarsening behavior (broken lines), with a very fast increase of the island sizes
in the intermediate range. The island size distributions obtained in the discrete (with
magic sizes) and the continuous models are also notably different, see Fig. 5(c). The
distribution obtained in the discrete model is symmetric with respect to the maximum,
similar to the one obtained in the Monte Carlo simulations, but notably narrower, cf.
Fig. 1(d). It is worth to note that the distribution scaled by the average island size does
not change in time and is the same for the adatom and advacancy islands, despite the
time evolutions of the average island sizes not coinciding and not following a power law.
In other words, the solution of the Becker—-Déring equation obeys kinetic scaling in the
sense that the island size distribution is a function of r/R(t) that does not depend on
time. However, R(t) is not described by a power law. The continuous model gives a much
broader and asymmetric island size distribution, shown by broken lines in Fig. 5(c). The
broken-bond counting scheme described in Sec. 3.2 adequately represents the energies E,
of small islands and quantitatively describes the island size distribution at the initial stage
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of coarsening, see Fig. 4. However, for larger islands it oversimplifies the island energy
distribution and gives rise to a more narrow distribution than found in the simulations.
A better model for the island energies F,, is needed to describe this distribution correctly.

To summarize this section, we show that the Ostwald ripening kinetics can be described as
an initial value problem for the ordinary differential equations (1) (8) that can be solved
by standard numerical methods. This approach can be applied to various coarsening
problems by replacing the Gibbs-Thomson formula (8) with Eqs. (14), (23) that admit
any dependence of the island energy F,, on the number of atoms n in it. The alternative
approach, a numerical implementation of the integro-differential equations (9) (11),[83,
84| seems much more difficult.

4 Conclusions

Our kinetic Monte Carlo simulations show that the Ostwald ripening of 2D islands qual-
itatively changes with increasing bond energy (or decreasing temperature). The islands
become faceted and the coarsening proceeds through a sequence of magic sizes. The
Gibbs-Thomson chemical potential is not applicable and the detachment of monomers
from islands is governed by the discrete energies of the islands. The coarsening is dif-
fusion limited at small bond energies and becomes attachment limited at large bond
energies. In this latter case, Wagner’s asymptotic law is reached only after a very long
transient regime.

We show that the Becker-Doring equations of nucleation kinetics are well suited to study
the process of Ostwald ripening. Two- and three-dimensional coarsening processes with
diverse limiting mechanisms can be simulated by solving a system of ordinary differential
equations. Concentrations of clusters of all sizes, from monomers to ones consisting of
millions of atoms, can be traced simultaneously. The calculations are not necessarily
based on the Gibbs-Thomson formula but adopt any continuous or singular dependence
of the cluster energy on the number of atoms in it. This approach can be applied to a
wide range of coarsening problems for two- and three-dimensional islands on a surface.
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